
Java-News
Beyond Java 8

Tim Hegemann
2018-05-16

1

Outline

jshell

New Syntax

Java Platform Module System (JPMS)

API Changes

2

New Release Cycle

• Oracle is proposing to increase the release cadence of Java SE to every six
months

Release Availability End of Life
8 Mar 2014 >2020
9 Sep 2017 Mar 2018
10 (18.3) Mar 2018 Sep 2018
11 (18.9) Sep 2018 TBA (LTS)

3

jshell

jshell

• Java REPL (Read-Eval-Print Loop)
• Included in JDK 9 and newer
• Tab completion for methods, parameters, variable names and documentation

• jshell [options] [load-files]

• --class-path path to set the classpath
• Predefined scripts: DEFAULT, JAVASE, PRINTING

4

jshell

• Java REPL (Read-Eval-Print Loop)
• Included in JDK 9 and newer
• Tab completion for methods, parameters, variable names and documentation
• jshell [options] [load-files]

• --class-path path to set the classpath
• Predefined scripts: DEFAULT, JAVASE, PRINTING

4

jshell Example

$ jshell

| Welcome to JShell -- Version 10.0.1

| For an introduction type: /help intro

jshell> 1 + 2 * 3

$1 ==> 7

jshell> 6 - $1

$2 ==> -1

5

jshell Example

jshell> int fib(int n) {

...> int a = 0, b = 1;

...> for(int i = 0; i < n; ++i) {

...> b = b + a;

...> a = b;

...> }

...> return a;

...> }

| created method fib(int)

jshell> fib(13)

$2 ==> 4096

6

jshell Example

jshell> int fib(int n) {

...> int a = 0, b = 1;

...> for(int i = 0; i < n; ++i) {

...> b = b + a;

...> a = b;

...> }

...> return a;

...> }

| created method fib(int)

jshell> fib(13)

$2 ==> 4096

6

jshell Example

jshell> int fib(int n) {

...> return fibRec(0, 1, n);

...> }

| modified method fib(int), however, it cannot be invoked until method

fibRec(int,int,int) is declared↪→

jshell> int fibRec(int a, int b, int n) {

...> if (n == 0) return a;

...> return fibRec(b, a + b, n - 1);

...> }

| created method fibRec(int,int,int)

jshell> fib(13)

$8 ==> 233

7

jshell Example

jshell> int fib(int n) {

...> return fibRec(0, 1, n);

...> }

| modified method fib(int), however, it cannot be invoked until method

fibRec(int,int,int) is declared↪→

jshell> int fibRec(int a, int b, int n) {

...> if (n == 0) return a;

...> return fibRec(b, a + b, n - 1);

...> }

| created method fibRec(int,int,int)

jshell> fib(13)

$8 ==> 233

7

jshell Example

jshell> int fib(int n) {

...> return fibRec(0, 1, n);

...> }

| modified method fib(int), however, it cannot be invoked until method

fibRec(int,int,int) is declared↪→

jshell> int fibRec(int a, int b, int n) {

...> if (n == 0) return a;

...> return fibRec(b, a + b, n - 1);

...> }

| created method fibRec(int,int,int)

jshell> fib(13)

$8 ==> 233

7

New Syntax

Private Interface Methods

public interface SortedArray<T extends Comparable<T>> {

T get(int idx);

int length();

default int binSearch(T elem) {

return binSearchRec(elem, 0, length());

}

private int binSearchRec(T elem, int start, int end) {

if (start > end) return -1; // nothing found

int mid = start + (end - start) / 2;

if (get(mid).compareTo(elem) == 0) return mid;

if (get(mid).compareTo(elem) >= 0)

return binSearchRec(elem, start, mid);

return binSearchRec(elem, mid, end);

}

} 8

Local Variable Type Inference

The traditional way:

String words = "a b a a b a b c a b c d";

Collector<String, ?, Map<String, Long>> byOccurrence =

Collectors.groupingBy(Function.identity(), Collectors.counting());

Map<String, Long> wordFreq = Arrays.stream(words.split(" "))

.collect(byOccurrence);

for (Map.Entry<String, Long> entry : wordFreq.entrySet())

if (entry.getValue() > 2)

System.out.println(entry.getKey() + ": " + entry.getValue());

// prints:

// a: 5

// b: 4 9

Local Variable Type Inference

The Java 10 way:

var words = "a b a a b a b c a b c d";

var byOccurrence = Collectors.groupingBy(Function.identity(),

Collectors.counting());↪→

var wordFreq = Arrays.stream(words.split(" ")).collect(byOccurrence);

for (var entry : wordFreq.entrySet())

if (entry.getValue() > 2)

System.out.println(entry.getKey() + ": " + entry.getValue());

// prints:

// a: 5

// b: 4

9

Local Variable Type Inference – Non-Denotable Types

The traditional way:

jshell> Object user = new Object() {

...> int id = 0;

...> String name = "root";

...> }

user ==> 1@685cb137

jshell> user.id

| Error:

| cannot find symbol

| symbol: variable id

| user.id

| ^-----^

10

Local Variable Type Inference – Non-Denotable Types

The Java 10 way:

jshell> var user = new Object() {

...> int id = 0;

...> String name = "root";

...> }

user ==> $1@6093dd95

jshell> user.id

$4 ==> 0

jshell> user.name

$5 ==> "root"

10

Java Platform Module System (JPMS)

Project Jigsaw

• Originally proposed in 2005 for Java 7

• A Java module is a uniquely named, reusable group of related packages, as
well as resources and a module descriptor.

• Goals:
• Reliable configuration
• Strong encapsulation
• Scalable Java platform
• Greater platform integrity

11

Project Jigsaw

• Originally proposed in 2005 for Java 7

• A Java module is a uniquely named, reusable group of related packages, as
well as resources and a module descriptor.

• Goals:
• Reliable configuration
• Strong encapsulation
• Scalable Java platform
• Greater platform integrity

11

Project Jigsaw

• Originally proposed in 2005 for Java 7

• A Java module is a uniquely named, reusable group of related packages, as
well as resources and a module descriptor.

• Goals:
• Reliable configuration
• Strong encapsulation
• Scalable Java platform
• Greater platform integrity

11

Module Declarations

$ tree .

.

└── src

└── de.uniwue.rudi

├── de

│ └── uniwue

│ └── rudi

│ └── Main.java

└── module-info.java

$ cat src/de.uniwue.rudi/module-info.java

module de.uniwue.rudi {

}

12

Module Declarations

$ tree .

.

└── src

└── de.uniwue.rudi

├── de

│ └── uniwue

│ └── rudi

│ └── Main.java

└── module-info.java

$ cat src/de.uniwue.rudi/module-info.java

module de.uniwue.rudi {

}

12

More Module Declarations

module de.uniwue.rudi {

// public members of package rudi are visivble to other modules.

exports de.uniwue.rudi;

// qualified export - visability is limited to packages marie and

herbert.↪→

exports de.uniwue.rudi.internal to de.uniwue.marie,

de.uniwue.herbert;↪→

// module dependency to module ingrid.

requires de.uniwue.ingrid;

// modules that depend on rudi implicitly depend on karl too.

requires transitive de.uniwue.karl;

// further reading: uses, provides, opens, ...

} 13

API Changes

Enhanced Deprecation (since 9)

/**

* Not implemented, does nothing.

*

* @deprecated

* This method was intended to control instruction tracing.

* It has been superseded by JVM-specific tracing mechanisms.

* This method is subject to removal in a future version of Java SE.

*

* @param on ignored

*/

@Deprecated(since="9", forRemoval=true)

public void traceInstructions(boolean on) { }

14

Long Overdue Stuff (since 9)

In class InputStream

• byte[] readAllBytes()

In class java.time.Duration

• long toMinutesPart()

In class Stream<T>

• Stream<T> takeWhile(Predicate<? super T> p)

• Stream<T> dropWhile(Predicate<? super T> p)

15

Long Overdue Stuff (since 9)

In class InputStream

• byte[] readAllBytes()

In class java.time.Duration

• long toMinutesPart()

jshell> var d = java.time.Duration.ofSeconds(12345);

d ==> PT3H25M45S

jshell> d.toMinutes()

$1 ==> 205

jshell> d.toMinutesPart()

$2 ==> 25

jshell> d.toSecondsPart()

$3 ==> 45

In class Stream<T>

• Stream<T> takeWhile(Predicate<? super T> p)

• Stream<T> dropWhile(Predicate<? super T> p)

15

Long Overdue Stuff (since 9)

In class InputStream

• byte[] readAllBytes()

In class java.time.Duration

• long toMinutesPart()

In class Stream<T>

• Stream<T> takeWhile(Predicate<? super T> p)

• Stream<T> dropWhile(Predicate<? super T> p)

15

Optional-like (since 9)

In class Optional<T>

• Stream<T> stream()

// flatten a stream of optionals discarding empty elements

Stream<Optional<T>> os = ...

Stream<T> s = os.flatMap(Optional::stream);

• T orElseThrow()

In class Objects

• static <T> T requireNonNullElse(T obj, T orElse)

16

Optional-like (since 9)

In class Optional<T>

• Stream<T> stream()

• T orElseThrow()

In class Objects

• static <T> T requireNonNullElse(T obj, T orElse)

16

Optional-like (since 9)

In class Optional<T>

• Stream<T> stream()

• T orElseThrow()

In class Objects

• static <T> T requireNonNullElse(T obj, T orElse)

16

Array Comparison (since 9)

In class Arrays

• <T extends Comparable<? super T>> int compare(T[] a, T[] b)

• int compareUnsigned(int[] a, int[] b)

• int mismatch(Object[] a, Object[] b)

17

Unmodifiable Collection Factories

// since 9

var original = new ArrayList<>(List.of(1, 2, 3, 4, 5, 6, 7));

var view = Collections.unmodifiableList(original);

// since 10

var copy = List.copyOf(original);

original.remove(3); // removes the 4 :(

System.out.println(view.contains(4)); // false

System.out.println(copy.contains(4)); // true

See also Collectors.toUnmodifiableList() .

See also Map.ofEntries(Map.Entry<K, V>[]) and Map.entry(K, V) .

18

Unmodifiable Collection Factories

// since 9

var original = new ArrayList<>(List.of(1, 2, 3, 4, 5, 6, 7));

var view = Collections.unmodifiableList(original);

// since 10

var copy = List.copyOf(original);

original.remove(3); // removes the 4 :(

System.out.println(view.contains(4)); // false

System.out.println(copy.contains(4)); // true

See also Collectors.toUnmodifiableList() .

See also Map.ofEntries(Map.Entry<K, V>[]) and Map.entry(K, V) .
18

	jshell
	New Syntax
	Java Platform Module System (JPMS)
	API Changes

