
Java Microbenchmarking mit JMH

Alexander Gehrke
January 24, 2018

1

Microbenchmarks?

• Messung der Performance eines kleinen Codeteils (z.B.
einer Funktion)

• Kein Ersatz für Benchmarks des gesamten Programms

2

Naiver Ansatz

Messe für zufälliges Int nötige Zeit

final Random random = new Random();

final long start = System.nanoTime();

random.nextInt();

final long end = System.nanoTime();

System.out.println(end - start);

• JVM benutzt JIT-Compilation, aber standardmäßig erst
nach 1000 Aufrufen

• Random.nextInt() dauert nur sehr kurz =⇒
Betriebssystemaktivität (z.B. Interrupts, Scheduling) fällt
ins Gewicht

• Statistische Schwankungen

3

Naiver Ansatz

Messe
((((((((((((hhhhhhhhhhhh
für zufälliges Int nötige Zeit

final Random random = new Random();

final long start = System.nanoTime();

random.nextInt();

final long end = System.nanoTime();

System.out.println(end - start);

• JVM benutzt JIT-Compilation, aber standardmäßig erst
nach 1000 Aufrufen

• Random.nextInt() dauert nur sehr kurz =⇒
Betriebssystemaktivität (z.B. Interrupts, Scheduling) fällt
ins Gewicht

• Statistische Schwankungen

3

Naiver Ansatz

Messe ziemlich zufällige Zeit

final Random random = new Random();

final long start = System.nanoTime();

random.nextInt();

final long end = System.nanoTime();

System.out.println(end - start);

• JVM benutzt JIT-Compilation, aber standardmäßig erst
nach 1000 Aufrufen

• Random.nextInt() dauert nur sehr kurz =⇒
Betriebssystemaktivität (z.B. Interrupts, Scheduling) fällt
ins Gewicht

• Statistische Schwankungen
3

3

Etwas besserer Ansatz

static void doMeasure() {

final long start = System.nanoTime();

for(int i=0; i<1_000_000; i++) {

random.nextInt();

}

final long end = System.nanoTime();

System.out.println(end - start);

}

• Methode mehrfach aufrufen - erster Durchlauf für
JIT-Warmup

4

Etwas besserer Ansatz

Weniger schlecht als vorheriges Ergebnis, aber immer noch
ungenau:

• Keine Trennung vom Testframework, JIT optimiert uns evtl.
die Schleife.

• Vergleich mehrerer Varianten in einem Benchmark nicht
möglich wegen fehlender Isolation.

5

JMH to the rescue!

• Java Microbenchmarking Harness aus dem
OpenJDK-Projekt

• Anwendung ähnlich wie Unittests: Code in Methode
packen, Annotation dran→ Benchmark!

• Prinzipiell für jede JVM-Sprache, Vorlagen für Java, Scala,
Groovy und Kotlin

6

Einbindung in bestehendes Projekt

Maven Dependencies:

org.openjdk.jmh : jmh-core : 1.19

org.openjdk.jmh : jmh-generator-annprocess : 1.19

7

Empfohlen: separates Maven-Projekt

mvn archetype:generate \

-DinteractiveMode=false \

-DarchetypeGroupId=org.openjdk.jmh \

-DarchetypeArtifactId=jmh-java-benchmark-archetype \

-DgroupId=org.sample \

-DartifactId=test \

-Dversion=1.0-SNAPSHOT

archetypeArtifactId in der vierten Zeile an gewünschte
Programmiersprache anpassen

8

Benchmark in JMH

@Warmup(iterations=3, time=3, timeUnit=TimeUnit.SECONDS)

@Measurement(iterations=5, time=10,

timeUnit=TimeUnit.SECONDS)↪→
@Fork(1)

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.NANOSECONDS)

@State(Scope.Benchmark)

@Threads(1)

class MyBenchmark {

private Random random = new Random();

@Benchmark

public void runRandomInt() {

random.nextInt();

}

}

9

Ausführen

Bei Verwendung des Maven-Archetype:

mvn clean install

java -jar target/benchmarks.jar

Dann etwas (je nach Konfiguration auch lange) warten:

Run progress: 0.00% complete, ETA 00:00:59

Fork: 1 of 1

Warmup Iteration 1: 12.098 ns/op

Warmup Iteration 2: 12.079 ns/op

Warmup Iteration 3: 12.067 ns/op

Iteration 1: 12.122 ns/op

Iteration 2: 12.092 ns/op

...
10

Ergebnis

Result "org.sample.MyBenchmark.testMethod":

12.096 ±(99.9%) 0.074 ns/op [Average]

(min, avg, max) = (12.071, 12.096, 12.122), stdev = 0.019

CI (99.9%): [12.022, 12.170] (assumes normal distribution)

Run complete. Total time: 00:00:59

Benchmark Mode Cnt Score Error Units

MyBenchmark.testMethod avgt 5 12.096 ± 0.074 ns/op

11

Parametrisierte Benchmarks

@Param({"1", "31", "65", "101", "103"})

public int arg;

@Param({"0", "1", "2", "4", "8", "16", "32"})

public int certainty;

@Benchmark

public boolean bench() {

return BigInteger.valueOf(arg)

.isProbablePrime(certainty);

}

12

Parametrisierte Benchmarks

Benchmark (arg) (certainty) Score Error

MyBenchmark.bench 1 0 4.419 ± 0.129

MyBenchmark.bench 1 1 7.754 ± 0.425

MyBenchmark.bench 1 2 8.440 ± 1.462

MyBenchmark.bench 1 4 7.720 ± 0.213

...

MyBenchmark.bench 31 0 6.236 ± 0.351

MyBenchmark.bench 31 1 660.332 ± 11.083

MyBenchmark.bench 31 2 660.559 ± 34.127

MyBenchmark.bench 31 4 1269.245 ± 67.708

MyBenchmark.bench 31 8 2439.929 ± 52.919

...

(Spalten Mode, Cnt und Units fehlen aus Platzgründen)

13

Mehr Features

• 4 verschiedene Benchmark-Modes (Throughput, Avg. Time,
Sampled Time, Single Shot Time)

• State-Scoping (für welche Benchmark-Durchläufe gilt ein
Parameter)

• Fixtures (@Setup, @Teardown)
• ...

14

Fallstricke

• Unerwartete Optimierungen der JVM
• „Black Holes“ benutzen, um Wegoptimierung von
unbenutzten Ergebnissen zu verhindern (bei nur einem
Wert: return)

• auch konstante Parameter nicht final machen
• der IDE nicht glauben, wenn sie sagt „Die Variable geht
auch lokal.“

• zusätzliche Probleme bei multi-treaded Benchmarks (z.B.
„false sharing“)

15

Further Reading / Sources

• JMH Homepage inkl. vielen Beispielen
• JAXenter: Aus der Java-Trickkiste: Microbenchmarking
• baeldung.com: Microbenchmarking with Java

16

http://openjdk.java.net/projects/code-tools/jmh/
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/
https://jaxenter.de/aus-der-java-trickkiste-microbenchmarking-24155
http://www.baeldung.com/java-microbenchmark-harness

