Java Microbenchmarking mit JMH

Alexander Gehrke
January 24, 2018

Microbenchmarks?

- Messung der Performance eines kleinen Codeteils (z.B.
einer Funktion)

- Kein Ersatz fur Benchmarks des gesamten Programms

Messe fur zufalliges Int notige Zeit

final Random random = new Random();
final long start = System.nanoTime();
random.nextInt();

final long end = System.nanoTime();
System.out.println(end - start);

MesseWZeit

final Random random = new Random();
final long start = System.nanoTime();
random.nextInt();

final long end = System.nanoTime();
System.out.println(end - start);

Messe ziemlich zufallige Zeit

final Random random = new Random();
final long start = System.nanoTime();
random.nextInt();

final long end = System.nanoTime();
System.out.println(end - start);

- JVM benutzt JIT-Compilation, aber standardmaliig erst
nach 1000 Aufrufen
Random.nextInt() dauert nursehr kurz =
Betriebssystemaktivitat (z.B. Interrupts, Scheduling) fallt
ins Gewicht

- Statistische Schwankungen

Yﬂ“ﬁlﬂﬂlc“MﬂﬂK IS Bﬂll

7
&
%,
-

00 $@®

A

AND YIIII Slllllllll FEEL BAD

Etwas besserer Ansatz

static void doMeasure() {
final long start = System.nanoTime();
for(int i=0; i<1_000_000; i++) {
random.nextInt();

}

final long end = System.nanoTime();
System.out.println(end - start);

- Methode mehrfach aufrufen - erster Durchlauf fur
JIT-Warmup

Etwas besserer Ansatz

Weniger schlecht als vorheriges Ergebnis, aber immer noch

ungenau:

- Keine Trennung vom Testframework, JIT optimiert uns evtl.
die Schleife.

- Vergleich mehrerer Varianten in einem Benchmark nicht
moglich wegen fehlender Isolation.

JMH to the rescue!

- Java Microbenchmarking Harness aus dem
Open)DK-Projekt

- Anwendung ahnlich wie Unittests: Code in Methode
packen, Annotation dran — Benchmark!

- Prinzipiell fur jede JVM-Sprache, Vorlagen fur Java, Scala,
Groovy und Kotlin

Einbindung in bestehendes Projekt

Maven Dependencies:
org.openjdk. jmh : jmh-core : 1.19

org.openjdk. jmh : jmh-generator-annprocess : 1.19

Empfohlen: separates Maven-Projekt

mvn archetype:generate \
—-DinteractiveMode=false \
—DarchetypeGroupld=org.openjdk. jmh \
—DarchetypeArtifactld=jmh-java-benchmark—-archetype \
—DgroupId=org.sample \
—DartifactId=test \
—Dversion=1.0-SNAPSHOT

archetypeArtifactId in der vierten Zeile an gewunschte
Programmiersprache anpassen

Benchmark in JMH

@Warmup(iterations=3, time=3, timeUnit=TimeUnit.SECONDS)
@Measurement(iterations=5, time=10,
= timeUnit=TimeUnit.SECONDS)
@Fork (1)
@BenchmarkMode(Mode . AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Benchmark)
@Threads(1)
class MyBenchmark {

private Random random = new Random();

@Benchmark
public void runRandomInt() {
random.nextInt();

Bei Verwendung des Maven-Archetype:

mvn clean install

java —jar target/benchmarks. jar

Dann etwas (je nach Konfiguration auch lange) warten:

Run progress: 0.00% complete, ETA ©0:00:59
Fork: 1 of 1

Warmup Iteration 1: 12.098 ns/op

Warmup Iteration 2: 12.079 ns/op

Warmup Iteration 3: 12.067 ns/op
Iteration 1: 12.122 ns/op

Iteration 2: 12.092 ns/op

10

Result "org.sample.MyBenchmark.testMethod":

12.096 +(99.9%) 0.074 ns/op [Average]

(min, avg, max) = (12.071, 12.096, 12.122), stdev = 0.019
CI (99.9%): [12.022, 12.170] (assumes normal distribution)

Run complete. Total time: 00:00:59

Benchmark Mode Cnt Score Error Units
MyBenchmark .testMethod avgt 5 12.096 + ©0.074 ns/op

"

Parametrisierte Benchmarks

@Param({”i”, nsin, "65", "181", n1®3u}>
public int arg;

@Param({”@”, ”1”, n2u’ u4u/ ”8”, "16", u32u})
public int certainty;

@Benchmark
public boolean bench() {
return BigInteger.valueOf(arg)
.isProbablePrime(certainty);

12

Parametrisierte Benchmarks

Benchmark (arg) (certainty) Score Error
MyBenchmark . bench 1 0 4.419 + 0.129
MyBenchmark . bench 1 1 T7.754 + 0.425
MyBenchmark . bench 1 2 8.440 + 1.462
MyBenchmark . bench 1 4 T.720 + 0.213

MyBenchmark . bench 31

9] 6.236 + 0.3%51
MyBenchmark . bench 31 1 660.332 + 11.083
MyBenchmark . bench 34 2 660.559 + 34.127
MyBenchmark . bench 31 4 1269.245 + 67.708
MyBenchmark . bench 3 8 2439.929 + 52.919

(Spalten Mode, Cnt und Units fehlen aus Platzgriinden)

13

Mehr Features

- 4 verschiedene Benchmark-Modes (Throughput, Avg. Time,
Sampled Time, Single Shot Time)

- State-Scoping (fiir welche Benchmark-Durchlaufe gilt ein
Parameter)

- Fixtures (@Setup, @Teardown)

14

Fallstricke

- Unerwartete Optimierungen der JVM

- ,Black Holes" benutzen, um Wegoptimierung von

unbenutzten Ergebnissen zu verhindern (bei nur einem
Wert: return)

- auch konstante Parameter nicht final machen

- der IDE nicht glauben, wenn sie sagt ,Die Variable geht
auch lokal.

- zusatzliche Probleme bei multi-treaded Benchmarks (z.B.
false sharing”)

15

Further Reading / Sources

- JMH Homepage inkl. vielen Beispielen
- JAXenter: Aus der Java-Trickkiste: Microbenchmarking

- baeldung.com: Microbenchmarking with Java

http://openjdk.java.net/projects/code-tools/jmh/
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/
https://jaxenter.de/aus-der-java-trickkiste-microbenchmarking-24155
http://www.baeldung.com/java-microbenchmark-harness

