vhb - Kurs: Grundlagen der elementaren Zahlentheorie

III.4. Rechnen mit RestklassenBeispiel: Gruppentafel

Für das Modul m=3 gibt es drei verschiedene Restklassen und diese lassen sich etwa als die Mengen der ganzen Zahlen beschreiben, die bei Division durch 3 entweder den Rest 0,1 oder 2 lassen. Mit der eingeführten Addition und Multiplikation von Restklassen ergeben sich die folgenden Tabellen:

Wir erinnern uns an den Begriff der Gruppe bzw. des Rings aus dem vorherigen Modul. Tatsächlich zeigt die obige 'Gruppentafel', dass die Menge $\mathbb{Z}/3\mathbb{Z}$ der Restklassen modulo 3 eine Gruppe mit der oben eingeführten Addition von Restklassen bildet; ferner erweist sich $\mathbb{Z}/3\mathbb{Z}$ als abgeschlossen bzgl. der Multiplikation von Restklassen. Also ist $\mathbb{Z}/3\mathbb{Z}$ mit diesen Operationen ein Ring. Tatsächlich ist $\mathbb{Z}/3\mathbb{Z}$ sogar ein Körper, wie man der Gruppentafel für die Multiplikation entnimmt.

Ein weiteres Beispiel liefert m = 4. Hier findet man ganz ähnlich:

+	0	1	2	3			0	1	2	3
0	0	1	2	3		0	0	0	0	0
1	1	2	3	0	und	1	0	1	2	3
2	2	3	0	1		2	0	2	0	2
3	3	0	1	2		3	0	3	2	1

Auch hier ist $\mathbb{Z}/4\mathbb{Z}$ ein Ring, allerdings kein Körper, da etwa $2 \cdot 2 \equiv 0 \mod 4$ gilt (ein Phänomen, das wir später noch studieren werden).