

Eine Genealogie höherer Programmiersprachen

Zusammengetragen von der Forschungsgruppe Softwarearchäologie am
Von Leitner-Institut für verteiltes Echtzeit-Java

Tim Hegemann

17. Mai 2017

Outline

Languages of Historical Interest

FORTRAN

ALGOL

COBOL

APL

BASIC

Encore

Languages of Historical Interest

Languages of Historical Interest

Dinosaurs

- “Old” >20 Years
- Once popular, nowadays irrelevant or extinct

Languages of Historical Interest

Dinosaurs

- “Old” >20 Years
- Once popular, nowadays irrelevant or extinct

Zombies

- Old-fashioned and unpleasant but (unfortunately) still relevant

Languages of Historical Interest

Dinosaurs

- “Old” >20 Years
- Once popular, nowadays irrelevant or extinct

Zombies

- Old-fashioned and unpleasant but (unfortunately) still relevant

Jack o’ Lanterns

- Languages that never “took off”
- Often innovative and influential

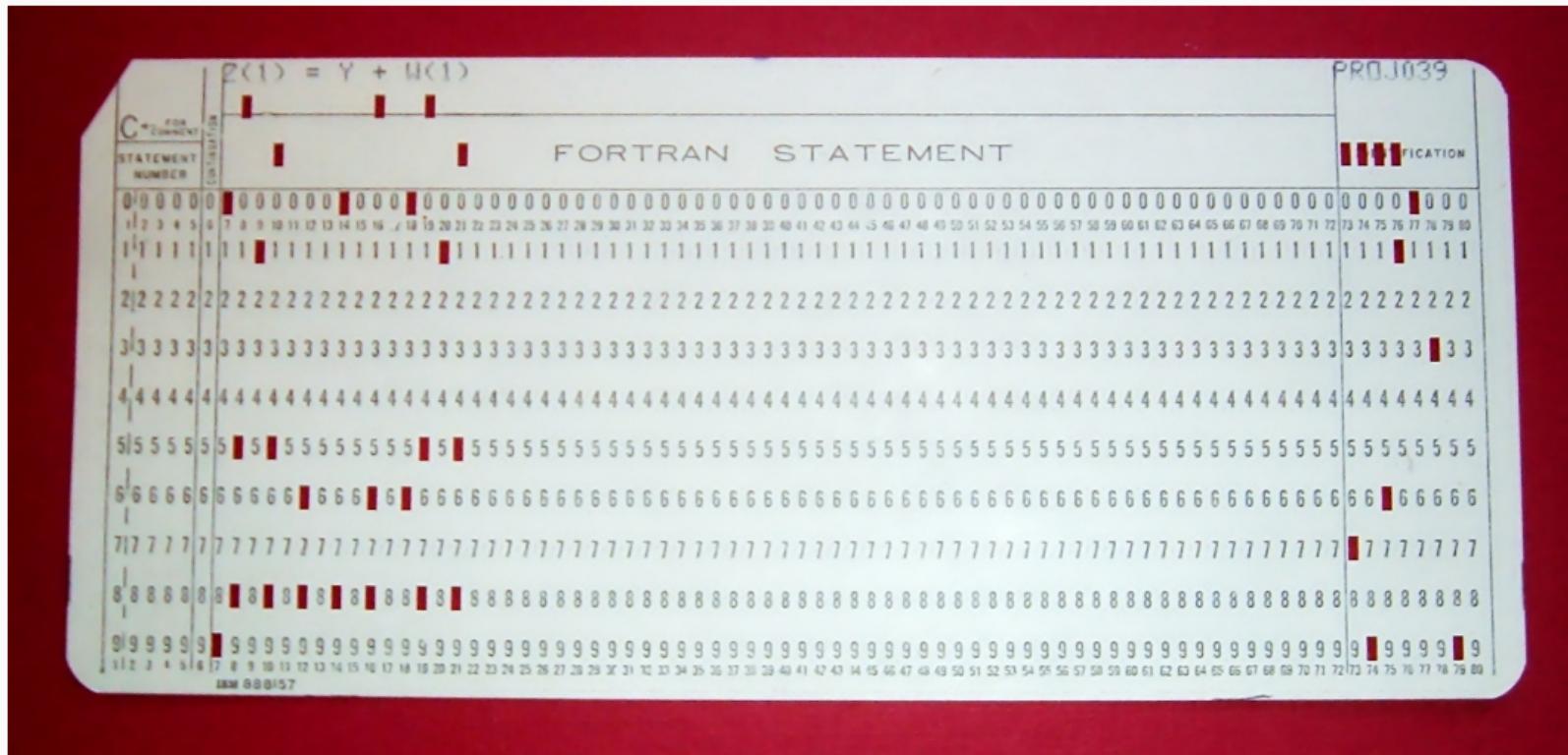
FORTRAN

FORTRAN

- Designed 1957 by John W. Backus at IBM
- One of the oldest high-level programming languages
- “**Formula translation**”
- Compiled, strongly typed
- TIOBE Rank: 30

FORTRAN

- Designed 1957 by John W. Backus at IBM
- One of the oldest high-level programming languages
- “**Formula translation**”
- Compiled, strongly typed
- TIOBE Rank: 30


Consistently separating words by spaces became a general custom about the tenth century A.D., and lasted until about 1957, when FORTRAN abandoned the practice.

Sun FORTRAN Reference Manual

FORTRAN66 Example Program

```
C INPUT - CARD READER UNIT 5, INTEGER INPUT, ONE BLANK CARD FOR END-OF-DATA
C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
501 FORMAT(3I5)
601 FORMAT(4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2,
$13H SQUARE UNITS)
602 FORMAT(10HNORMAL END)
603 FORMAT(23HINPUT ERROR, ZERO VALUE)
INTEGER A,B,C
10 READ(5,501) A,B,C
IF(A.EQ.0 .AND. B.EQ.0 .AND. C.EQ.0) GO TO 50
IF(A.EQ.0 .OR. B.EQ.0 .OR. C.EQ.0) GO TO 90
S = (A + B + C) / 2.0
AREA = SQRT( S * (S - A) * (S - B) * (S - C) )
WRITE(6,601) A,B,C,AREA
GO TO 10
50 WRITE(6,602)
STOP
90 WRITE(6,603)
STOP
END
```

A Punched Card with FORTRAN Code

FORTRAN95 Example Program

```
PROGRAM test
    CALL print_message
END PROGRAM test
SUBROUTINE print_message
    PRINT *, 'Hello world!'
END SUBROUTINE print_message
```

ALGOL

ALGOL

- ALGOrithmic Language
- Proposals 1958 – first implementation 1960
- TIOBE Rank: >100
- Procedural, structured, compiled

ALGOL

- ALGOrithmic Language
- Proposals 1958 – first implementation 1960
- TIOBE Rank: >100
- Procedural, structured, compiled

[ALGOL 60] is a language so far ahead of its time, that it was not only an improvement on its predecessors, but also on nearly all its successors.

C. A. R. Hoare 1973

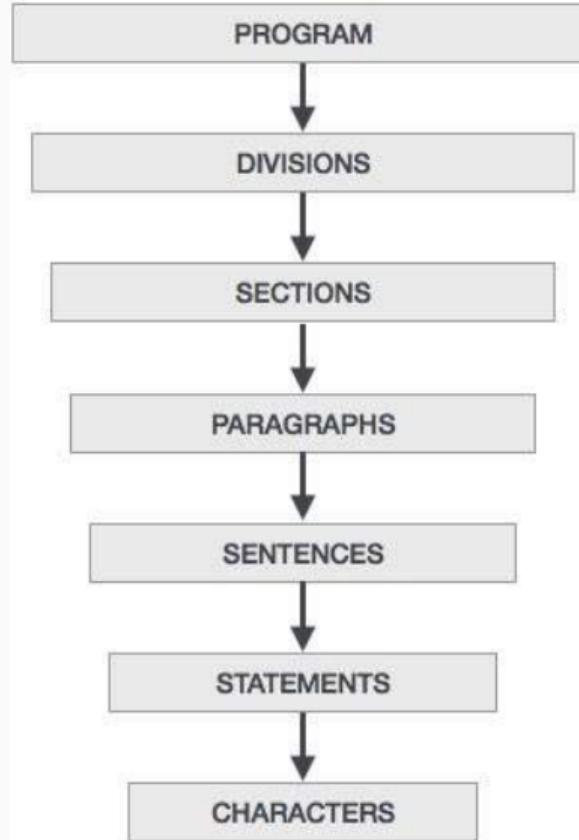
Simple ALGOL60 Example

```
procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
  value n, m; array a; integer n, m, i, k; real y;
comment The absolute greatest element of the matrix a, of size n by m,
  ↵ is transferred to y, and the subscripts of this element to i and k;
begin
  integer p, q;
  y := 0; i := k := 1;
  for p := 1 step 1 until n do
    for q := 1 step 1 until m do
      if abs(a[p, q]) > y then
        begin y := abs(a[p, q]);
          i := p; k := q
        end
  end
end Absmax
```

COBOL

COBOL

- COmmon Business Orientated Language
- 1959: Six computer manufacturers and three US government agencies meet to build a new programming language ...


- COmmon Business Orientated Language
- 1959: Six computer manufacturers and three US government agencies meet to build a new programming language ...
- TIOBE Rank: 25
- >300 Dialects
- depending on dialect about 300 to 1100 reserved keywords

- COmmon Business Orientated Language
- 1959: Six computer manufacturers and three US government agencies meet to build a new programming language ...
- TIOBE Rank: 25
- >300 Dialects
- depending on dialect about 300 to 1100 reserved keywords

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offense.

Edsger W. Dijkstra

The Hierarchical Structure of COBOL

A Simple COBOL60 Example

```
IDENTIFICATION DIVISION.  
PROGRAM-ID. HELLO.  
  
DATA DIVISION.  
  WORKING-STORAGE SECTION.  
    01 WS-STUDENT-NAME PIC X(25).  
    01 WS-DATE PIC X(10).  
  
PROCEDURE DIVISION.  
  ACCEPT WS-STUDENT_NAME.  
  ACCEPT WS-DATE FROM DATE.  
  DISPLAY "Name : " WS-STUDENT-NAME.  
  DISPLAY "Date : " WS-DATE.  
  
STOP RUN.
```

APL

A Programming Language (APL)

- designed in 1964 by Kenneth E. Iverson at IBM
- functional, vector orientated, dynamically typed
- famous descendants: MATLAB
- TIOBE Index: >50

A Programming Language (APL)

- designed in 1964 by Kenneth E. Iverson at IBM
- functional, vector orientated, dynamically typed
- famous descendants: MATLAB
- TIOBE Index: >50

This article contains APL source code. Without proper rendering support, you may see question marks, boxes, or other symbols instead of APL symbols.

Common Operators

Monadic	Dyadic				Higher Order	Misc
? * ϕ	+ \lceil , $\bar{}$ >				/	-
\lceil - Θ	- \lfloor \ \otimes \neq				\dagger	α
\lfloor + Δ	\times ρ / ! \vee				\	\rightarrow
ρ \times \Downarrow	\div \uparrow τ .. \wedge				\dagger	\leftarrow
\sim \div Φ	* \downarrow \boxdot < \tilde{v}				.	
, $\bar{}$	\circ \perp ϕ \leq $\tilde{\wedge}$				$\circ.$	
τ \boxdot \otimes	? \top Θ =					
\otimes \circ !	\in \otimes \geq					

A Very Short Example

```
(~R ∈ R ∘.× R) / R ← 1↓ τR
```

A Very Short Example

```
(~R ∈ R ∘.× R) / R ← 1↓ τR
```

- finds all prime numbers from 1 to R in $O(R^2)$

A Very Short Example

```
(~R ∈ R ∘.× R) / R ← 1↓ iota
```

- finds all prime numbers from 1 to R in $O(R^2)$
- for $R = 6$:
- iota operator: 2 3 4 5 6

A Very Short Example

```
(~R ∈ R °.× R) / R ← 1↓ τR
```

- finds all prime numbers from 1 to R in $O(R^2)$
- for $R = 6$:
- Iota operator: 2 3 4 5 6

4	6	8	10	12
6	9	12	15	18
8	12	16	20	24
10	15	20	25	30
12	18	24	30	36

- Outer product:

A Very Short Example

```
(~R ∈ R ∘.× R) / R ← 1↓ iota
```

- finds all prime numbers from 1 to R in $O(R^2)$
- for $R = 6$:
- Iota operator: 2 3 4 5 6

4	6	8	10	12
6	9	12	15	18
8	12	16	20	24
10	15	20	25	30
12	18	24	30	36

- Outer product:
- Element of operator and negation: 1 1 0 1 0
- Reduction: 2 3 5

BASIC

BASIC

- Beginner's All-purpose Symbolic Instruction Code
- Family of more than 300 different Language Dialects
- First appearance: 1964 as Dartmouth BASIC
- Still relevant: Visual Basic .Net, VBA, Gambas

BASIC

- Beginner's All-purpose Symbolic Instruction Code
- Family of more than 300 different Language Dialects
- First appearance: 1964 as Dartmouth BASIC
- Still relevant: Visual Basic .Net, VBA, Gambas

It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.

Edsger W. Dijkstra

GW-BASIC Example Program

```
10 INPUT "What is your name: "; U$  
20 PRINT "Hello "; U$  
30 INPUT "How many stars do you want: "; N  
40 S$ = ""  
50 FOR I = 1 TO N  
60 S$ = S$ + "*"  
70 NEXT I  
80 PRINT S$  
90 INPUT "Do you want more stars? "; A$  
100 IF LEN(A$) = 0 THEN GOTO 90  
110 A$ = LEFT$(A$, 1)  
120 IF A$ = "Y" OR A$ = "y" THEN GOTO 30  
130 PRINT "Goodbye "; U$  
140 END
```

Encore

Further Developments

- 1958 LISP
 - Lots of Irritating Superfluous Parentheses
 - Every novelty of any programming language was first implemented in LISP
 - TIOBE rank: 31

Further Developments

- 1958 LISP
 - Lots of Irritating Superfluous Parentheses
 - Every novelty of any programming language was first implemented in LISP
 - TIOBE rank: 31
- 1967 Simula
 - First object-orientated language with classes and inheritance
 - TIOBE rank: >100

Further Developments

- 1958 LISP
 - Lots of Irritating Superfluous Parentheses
 - Every novelty of any programming language was first implemented in LISP
 - TIOBE rank: 31
- 1967 Simula
 - First object-orientated language with classes and inheritance
 - TIOBE rank: >100
- 1970 Pascal
 - Very clean and structured syntax
 - TIOBE rank: >100

Further Developments

- 1958 LISP
 - Lots of Irritating Superfluous Parentheses
 - Every novelty of any programming language was first implemented in LISP
 - TIOBE rank: 31
- 1967 Simula
 - First object-orientated language with classes and inheritance
 - TIOBE rank: >100
- 1970 Pascal
 - Very clean and structured syntax
 - TIOBE rank: >100
- 1972 C
 - Root of all evil
 - TIOBE rank: 2

Duff's Device

```
int main() {
    register short *to, *from;
    register count;
{
    register n = (count + 7) / 8;
    switch (count % 8) {
        case 0: do { *to = *from++;
        case 7:      *to = *from++;
        case 6:      *to = *from++;
        case 5:      *to = *from++;
        case 4:      *to = *from++;
        case 3:      *to = *from++;
        case 2:      *to = *from++;
        case 1:      *to = *from++;
    } while (--n > 0);
}
}
```