
Modular Arithmetic

There are several concepts and theorems that were known in nearly every
civilised culture (independently from each other!). Some examples are the The-
orem of Pythagoras (see chapter The Theorem of Pythagoras), the number Pi
(see chapter Pi) or modular arithmetic (with the Euclidean Algorithm as one
example). Those were known to the ancient Greeks but also to the Indians and
the Chinese.
The Chinese (like the other Islamic and Asian cultures, too) became familiar
with modular arithmetic while discussing astronomical and calendrical prob-
lems, where they had to solve systems of indeterminate linear equations. How-
ever, there were also some simple congruence problems considered by the ancient
Chinese, and ”in fact probably the most famous mathematical technique com-
ing from China is the techinque long known as the Chinese remainder theorem”
([Katz, p. 222]), which even has the word Chinese in it. This theorem was
named ”after a description of some congruence problems appeared in one of the
first reports in the West on Chinese mathematics, articles by Alexander Wylie
published in 1852 in the North China Herald, which were soon translated into
both German and French and republished in European journals” [Katz, p. 222],
so it wasn’t the Chinese who gave this theorem its name. This theorem states
the following:

Let r and s be positive integers which are relatively prime and let a
and b be any two integers. Then there is an integer N such that

N ≡ a (mod r) and N ≡ b (mod s)
Moreover, N is uniquely determined modulo rs.

The earliest example of one dealing with this theorem dates back to Sun
Zi. In his Sunzi suanjing (this can be translated to Mathematical Classics of
Master Sun, written around the third century), he states:
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”We have things of which we do not know the number; if we count
them by threes, the remainder is 2; if we count them by fives, the
remainder is 3; if we count them by sevens, the remainder is 2. How
many things are there?” [Katz, p. 222]

Here we can see the connection to the word remainder. If we rewrite this
riddle using our modern modulo notation1 this would be:

N ≡ 2 (mod 3) N ≡ 3 (mod 5), N ≡ 2 (mod 7),

or we could write it as well by finding an N such that it fulfills all of the
following three conditions:

N = 3x + 2, N = 5y + 3, N = 7z + 2, with x, y, z ∈ Z.

Moreover, Sun Zi was able to give the right solution (it is 23) as well as his
strategy for it:

”If we count by threes and there is a remainder 2, put down 140.
If we count by fives and there is a remainder 3, put down 63.
If we count by sevens and there is a remainder 2, put down 30.
Add them to obtain 233 and subtract 210 to get the answer.”
[Stilwell, p. 71]

This task was the starting point of the Chinese remainder theorem, but it took
many more years until it was advanced further. About two centuries after Sun
Zi, in Zhang Quijian’s Mathematical Manual there was a similar riddle posed,
the problem of the ”hundred fowls” (this task is famous because it also appears in
various styles in other cultures like India or in Islamic and European countries).
It originally is stated as follows:

”A rooster is worth 5 coins, a hen 3 coins, and 3 chicks 1 coin. With
100 coins we buy 100 of the fowls. How many roosters, hens and
chicks are there?”
[Katz, p. 223]

He gave the correct answer but only hinted at his methods for obtaining it.
All in all, we can see that the Chinese mathematicians were familiar with such
remainder problems.
A strategy for the general solution of Sun Zi’s problem was given only in 1247,
in the Mathematical Treatise in Nine Sections by Qin Jiushao. This depended
heavily on finding inverses by the Euclidean algorithm, a method he called
”method of finding 1”, [Stilwell, p. 73].
When the Chinese remainder theorem was finally discovered in Europe, Gauss
and Euler utilized it frequently (see chapter Gauss on congruences).

1We say that a ≡ b (mod n) if we can write b as b = cn+a for some integer c or, equivalently,
if n divides (b− a).
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