LISP

A Programmable Programming Language

Christoph Mdller
25.01.2017

Offenes Kolloquium fir Informatik

1. Why Lisp?

2. The Basics of Lisp

3. Macros in Action

4. Tools and Platforms

5. Literature and more obscure Lisp dialects
6. Why it never (really) caught on

7. Bonus - A bit of History

Why Lisp?

- When we talk about Lisp we talk about a language family
- One of the oldest (~ 1958) language families still in use today

(only Fortran is older)
- The Syntax is by its very nature timeless

Timeline of Lisp dialects(d! &)
1955 | 1960 1965 1970 | 1975 1980 1985 1990 1995 2000 2005 | 2010 | 2015

Lisp 1.5 Lisp15
Maclisp Maclisp
Interlisp
Lisp Machine Lisp

Scheme

Interlisp
ZetaLisp
Scheme

NIL NIL

Common Lisp Common Lisp

T
Emacs Lisp
AutoLISP
ISLISP
EuLisp
PicoLisp

Emacs Lisp
AutoLISP
ISLISP
EuLisp
PicoLisp
Racket Racket
Arc Arc
Clojure Clojure
LFE LFE
Hy Hy 2

Innovator

- Garbage Collection

- Homoiconicity (Code is Data)

- Higher Order Functions

- Dynamic Typing

- Read Evaluate Print Loop (REPL)
- Multiple Dispatch

- And many more ...

Scheme - A Language for Teaching

- Scheme was used as an introductory Language in famous
Universities like MIT (6.001)

- Extremely small language core

- Great for learning to build your own abstractions

Picking a Language for this Talk

Lets look at the most popular Lisp dialects on GitHub (provided by

GitHut):
GitHub Popuplarity Rank | Language
20 Emacs Lisp
23 Clojure
40 Scheme
42 Common Lisp
48 Racket

Clojure with its JVM heritage and Scheme with its focus on a small
core will be used throughout this talk.

The Basics of Lisp

The name giving lists

- The basis of lisp is the s(ymbolic)-expression

- Either a atom or a list

- Atoms are either symbols or literals

- Every element of a list is either an atom or another list

- Elements are separated by whitespace and surrounded with
parentheses

- The first element of a (to be evaluated) list has to be what we
will call a verb in this talk

;atoms

X

12

;lists

(+ 12 3)

(+ (x 2 3) 3)

What is a verb?

- Averb is either a

- A function
- A macro
- A special form

- Special forms include if, fn, loop, recur etc.
- They are built into the language and cannot be user defined
- On the other hand functions and macros can be

- Since functions are familiar to most people we will start with
them

Calling Functions

- The arguments of functions are evaluated before they are
passed to the function

- This is an important distinction from macros/special forms

- Calling functions in a prefix manner might feel strange in the
beginning

;the + function called as a

;jprefix and not as an infix function
(+ 12 3)

;the infamous

(println "hello world")

Calling Java Methods - Clojure Only

- Since Clojure runs on the JVM, interop with Java is necessary to
make use of existing libraries

- Java Methods are called like (.instanceMember instance args*)

(.toUpperCase "Hello World")
-> "HELLO WORLD"

- Creating a new Instance will be very familiar to Java Developers

- There is however a short form for creating new instances

(new String "hello world")
-> "hello world"

(String. "hello world")

-> "hello world"

Just a bit more Syntax

- Before we will learn how to create our own functions, a bit more
syntactic sugar

- Vectors are the data structure in Clojure that are used to define
the arguments of a function

[1 2 3]

-> [1 2 3]
(vector 1 2 3)
-> [1 2 3]

- Maps/Dictionaries are created via the curly brace literal

{"a" 1 "b" 2 "c" 3}; or (hash-map ...)
-> {uau 1' nbu 2' "C" 3}
; note the comma, comma is whitespace in Clojure

- These are implemented via so called reader macros we will
learn about them in the macro section

Define your own Functions - 1

- The special form fn is used to create functions

(fn [x] (* x x))

-> #ifunction[user/evall0725/fn--10726]
((fn [x] (* x x)) 12)

-> 144

- An optional name can be given to the function to make non tail
recursive calls

((fn foo [x] (if (< x 1) x (foo (dec x)))) 10)
-> 0

i

Define your own Functions - 2

- to make a tail recursive call the recur special form is used
((fn [x] (if (< x 1) x (recur (dec x)))) 10)

- Since functions will often be bound to a global variable (inside a
namespace) the following syntax will be seen often

(defn foo "doc string here" [x]
(if (< x 1)
X
(foo (dec x))))
-> #'user/foo
(foo 10)
-> 0

Define your own Functions - 3

- For short lambda functions there is an even more compact
notation

- inside the lambda function % is used to for arguments

- % and %1 are used for the first argument, %2 ... for the rest

#(* % %)

-> #function[user/evall0725/fn--10726]
(map #(* % %) (range 10))

-> (0 14 9 16 25 36 49 64 81)

- We have already seen the if special form

- It consists of a test, a then expression and an optional else
expression

- if can be used like a ternary expression in Java

(println (if (< 4 3) "hello" "world"))
-> world

System.out.println(4 < 3 ? "hello" : "world")

14

do multiple things

- Evaluates multiple expressions and returns the value of the last
one (or nil)

(if (< 3 4)
(do
(println "hello world")
(println "and again")))
-> hello world
and again

- Of course we also need to bind local variables inside
expressions

- The let special form is used for that
- It uses pairs inside a vector for that purpose

- Has support for Destructering

(let [x 11 x)

-> 1

;basic Destructering

(ltet [[x yI [1 211 (+ x y))
-> 3

Loop with ... well ... loop

- We have seen recursion, now we will cover iteration with the
loop special form

- The loop form is very similiar to a let binding

- To repeat we use recur just like when working with tail recursion
earlier

(loop [x 10]
(if (> x 1)
(recur (- x 2))))

- There are other types of loops in clojure, like for and while, but
they are implemented as macros

- loop and recur is therefore all we need!

Your new best friends doc and source

- doc will show you the docstring of a given function, macro or
special form

(doc +)

-> ([1 [x] [x y] [xy & morel)
Returns the sum of nums. (+) returns 0.
Does not auto-promote longs,
will throw on overflow. See also +'

- source will show you the source code of a given function or
macro

(source when)

-> (defmacro when
".. doc string ...
[test & body]
(list 'if test (cons 'do body)))

n

Macros in Action

Kinds of Macros

Macros can be grouped in different Categories

- Syntactic Sugar Macros - Using simple pattern matching and
templates

- Complex Transformations - The most demanding and the most
rewarding

- Reader Macros - Syntactic sugar on the reader level, not to be
confused with the other two

19

Yes Code really is Data

- Code really is nothing more than a linked list

(type '(+ 1 2 3))
-> clojure.lang.PersistentlList

- The'is used to prevent evaluation, it is equivalent to (quote ...)

- The function eval (may be familiar from a lot of scripting
languages) takes a s-expression, not a string!

(eval '(+ 1 2 3))
-> 6

20

Reader Macros

- To get s-expression from a string, the read-string function can
be used

(eval (read-string "(+ 1 2 3)"))
-> 6

- The reader uses read macros to parse special syntax like [], the”’
or the lambda #() syntax

- Clojure has a set of predefined reader macros, they can not be
user defined

- Some lisps (e.g. Common Lisp or Racket) don't suffer from this
restriction

- That means that theses lisp dialects have compile time + parse
time macros

21

Macros

- Macros are arbitrary lisp code executed at compile time

- Normally only code transformation is done, but it is not limited
to transformations

- One could for instance query a database or perform
computation of all sorts

(defmacro foo [] (+ 1 2))
-> 3

22

The syntax quote

- Before we will look at an example, we will introduce the
syntax-quote

- It helps us evaluating things in nested quoted structeres

; 1s a syntax quote

; ~ evaluates inside such quote
“(foo ~(+ 1 2 3))

-> (user/foo 6)

- Everything that is not evaluated through the tilde character will
be left alone (only the appropriate namespace is added)

23

- Let’s look at the simple when macro with (source when)
(defmacro when

[test & body]
(list 'if test (cons 'do body)))
;or “(if ~test ~(cons 'do body)))

- The ampersand just stands for the rest, so body are all
expressions after test.

- Here we create code by creating a list

- Using the list function is basically the inverse of a syntax quote,
everything is evaluated except quoted expressions

24

macroexpand to the rescue

- The function macroexpand helps us to understand what is going
on by expanding the macro one layer

- Let's look at a simple example using when

(macroexpand
"(when (< 3 &)
(println "hello")
(println "world")))
->
(if (< 3 4)
(do (println "hello")
(println "world")))

25

The while loop

- The while loop ships with Clojure, here is the source

(defmacro while

[test & body]
“(loop [1
(when ~test
~abody
(recur))))

- The loop does not need bindings, since were ware dealing with
a while and not a for loop

- The @-sign in front of body unpacks the body list into its
elements

- S01234..insteadof (1234 ..)

26

The while loop

(macroexpand
"(while (< 3 4)
(println "hello world")))
->
(loop []
(clojure.core/when (< 3 4)
(println "hello world") (recur)))

27

Pattern Matching in Scheme

- Scheme provides an even more elegant syntax for simple
macros with syntax-rules

(define-syntax for
(syntax-rules (in as)
(
ypattern
(for element in list body ...)
;template
(map (lambda (element) body ...) list)
)
((for list as element body ...)
(for element in list body ...))))

(for 1 in '(1 2 3) (display 1i))

28

Complex Macros

- For time reasons we can't look at more complex macros in detail
- We will look at an example at a higher level

- As an example | have picked the async/await statement from
languages like C# or JS (ECMAScript 2017 draft)

- This much needed feature helps us prevent (among other
things) the so called callback hell

- This is usally done by creating a state machine
- The C# code was decompiled to retrieve the state machine

29

Async in Ctt - Before

static async Task<int> TestAsync()

{

Console.WriteLine("Init test method");

var firstResult = await GetNumberAsync(1);
Console.WritelLine(firstResult);

var secondResult = await GetNumberAsync(2);
Console.WritelLine(secondResult + firstResult);

var thirdResult = await GetNumberAsync(4);

Console.WriteLine("I'm done");
return firstResult - secondResult + thirdResult;

public static async Task<int> GetNumberAsync(int number)

=> await Task.Run(() => number);

30

Async in Ctt - After

The CLR has no extra byte code instructions for async/await,
everything is handled by the compiler

[CompilerGenerated] // shortend
void IAsyncStateMachine.MoveNext()

{
try
{
switch (num)
{
case 0:
taskAwaiter = this.<>u__1;
this.<>u__1 = default(TaskAwaiter<int>);
this.<>1__state = -1;
break;
case 1:

taskAwaiter2 = this.<>u__1;

this.<>u__1 = default(TaskAwaiter<int>);
this.<>1__state = -1;

goto IL 117;

31

Async in Clojure with core.async

- In Clojure we don't need dont to wait until a standard comittee
adds the feature

- We just use the core.async library implemented purely in Clojure

- core.async uses channels in a technique known as
Communicating Sequential Processes

- The syntax will be more familiar to users of the go language

(defn what-is-the-answer [c]
(go
;timeout creates a new channel
(<! (timeout 2.3652E17))
(>! ¢ 42)))

32

Async in Clojure with core.async

The macroexpand function helps us to examine the macro code

(fn state-machine
([state_3730]
(loop [1
(let
[result
(case (int (ioc/aget-object state_3730 1))
3 (let [inst_3728 (ioc/aget-object state_3730 2)
state_3730 state_3730]
(ioc/return-chan state_3730 inst_3728))
2 (let [inst_3725 (ioc/aget-object state_3730 2)
inst_3726 (vector kind query)
state_3730 (ioc/aset-all! state 3730 5 inst_3725)]
(ioc/put! state_3730 3 c inst_3726))
1 (let [inst_3722 (rand-int 100)
inst_3723 (timeout inst_3722)
state_3730 state_3730]
(ioc/take! state_3730 2 inst_3723)))]

33

Deep Understanding

Clojure provides a deep understanding of the language through
macros and functions like doc, source and macroexpand. This
should not be taken for granted, especially when compared to
languages like e.g. C++.

34

C++ - The worst Offender

Help me sort out the meaning of "{}" as a constructor

argument

class Widget{
public:

- Scott Meyers, Author of Effective C++

// default ctor
widget();
// std::initializer_list ctor

Widget(std::initializer_list<int> il);

b8

widget wi;
widget w2{};
Widget w3();

widget wa({});
widget w5{{}};

!/
//
//

//
//

calls default ctor
also calls default ctor
most vexing parse! declares a function!

calls std::initializer_list ctor with empty list
ditto -- ... not so fast Dr. Meyers

35

C++ - The worst Offender

- The specific example can be looked up on Scott Meyers Blog
- The last call does not create an empty list

- Even a seasoned C++ expert and book author can't figure out
seemingly simple examples

- -> Please don't take the tools Clojure provides for granted

36

Be carefull with Macros

- Use them only when a function won't do

- Macros tend to “creep” up the call chain

- Writing good Macros takes quite a bit of practice

- Good Error messages (hello Rust) are now your responsibility

- Since you are now the “compiler engineer”

37

Tools and Platforms

Emacs

- The most important IDE for Lisp is of course emacs

- Written in EmacsLisp and with support for pretty much every
Lisp dialect

- Since very early on, emacs provided support for structural
editing (working on the source tree instead of text)

- For Clojure the cider package is recommended

38

Emacs

as cljs|
ava :as faval
misc 1as ul
as cljs-infol
as tronpors

et-descriptor!]]
refer [respossectoctis)

I
I
I o ’
I as repll
I
I
I
I
data saybe-protocol
fol
(if-tet prot-s weta (neta (iprotocol, info))]
(sirge info {:file (:file prot-neta

+Line prot-neta)})
info))

(dot var-seta-whitelist
[ins sname doc +file sarglists macro :protacol :line
el)

tcolumn 1static
<

(ot map-sea (x]
G Gseq

)

(dotn var-neta
v

(= v neta maybe-protocol. (select-keys var-seta-whitelist) map-seq))

esolve-var

ns (tindns ns))
ns-resolve ns sy

(eateh Cladsos
il

(catch £
aU))

(dotn resolve-altases
Tns)
(if-tat ns (find-ns ns))
info.c
reset!: (laton newall)

tadded

olur.ore/merae
(16 maps])

Returns a map that consists of the rest of the maps conj-ed on
the Tiest. 11 o'y occurs T ore than one mapthe mopping troa
the latter (left-to-right) will be the Rapping in the re

scider-docs

claer.rept Mifioare.infe, (r-ests o'amste-gro
{icotimn 1, +Line 1 Usts ([infol), :file
-ea\/mmdkuwe/mm C1j", :nane maybe-pro

clder. nrept.widdleware. info> (res]
Feset-netal

Tusers vozhidar/profects/c1der-nrep\/src/cider/ar
tocol, :ns s<lamespace cider.nrepl.niddlevare. info>)

resolve
Fesolve-aliases
resp

restart-agent

wcider-repl cider-nrepls

Clojure IDE Support

- For Clojure the two famous IDEs Eclipse and Intelli) both have
support via plugins

- Eclipse has the Counter Clockwise Wise Plugin

- Intelli) has the (commercial) Cursive IDE

40

Eclipse

Clojure - instaweb.sample/srefsample/page.cl) - Edlipse
File Edit Navigate Search Project Clojure Run Window Help
2 P

| Bmwmaialirn A oe|

& sample page X

Namespace sample.page
nap #(vector

defn address

{panel Address® s
[itextfield & quired Lrue
@ formgen.cl) (textfield
(textficld

A formLal (textfiela
pi

{checkbox it auay? TG
: ! nack Donald Di

» 2} Referenced Lib:

¥ 24 Lelningen depe: o
Ly 3 [
e Lable *Addres

; (calunn

(coLunn

(colunn

(column

defn make-content

@ project.cl
e TEEREANHENE] (address- panel
(generate data |addresses-table))

oblems & Javadoc B Declaration = Console = Debug

server started on port 48388 on host 127.8.8.1 -

108:38 trict/paredit edit made

Intelli)

eve hello-csc.core - hello-clisc - (~/dev/hello-cljsc] - IntelliJ IDEA (Minerva) 1U-145.184.1
£ Project O el (reader/read-string "(+ 1 (2 3] {12} #(1 2} #_{1 23 3))") REPL Local:hello-clsc.core e
tructures that we canbemani b @ + $ S H O BB W G X o

{map type (reader/read-string *(+ 1 12 31 {1 2} #(1 20"

Cahello-clisc ~/dev/hello-clsc
idea

mages (J:\nju{e Lang. synbol
roJectfil ava. ang.Long
:p ojectrilestackup : ng. PersistentVector
aresources e e L Clojure. lang. PersistentArraytap
ve define a se vhich will simpUifyl] - lojure Lang. PersistentHashSet)
(defn enit-str [ast]
(with-out-str (c/enit ast)))

jure. Lar

our interactions with t and compiler

st
E3hello_cljsc

D core.cl 4 simple helper to LojureScript conpiled to Javascript

S e i Cloj J = #'hello-cljsc. core/enit-str
arge o S ast] (defn enit-str (ast]

Dtest ?w: i (s :r est] st (with-out=str (c/emit ast)))

© gltignore out-str (c/enit as = #'hello-clsc. core/enit-str

nrepl-port 14 sinpte netper uhich all to read ClojureScript source from a string

to bother with (clojure. lang. LineNunber ingPushbackReader. (java. io. StringRea
g Corher it rHes = #'hello-cljsc. core/string-reader

ahello-clisc.imi 2d of havin
{defn string-reader (5]
O project.clj (defn forms-seq_[strean]
README.md {Rladuem,1aoa, s {mmdn.SScingbesdars 8))) (et (rdr (readers/indexing-push-back-reader strean 1)
i External Libraries A simple helpe takes a strean and returns a lazy sequences of (in forms-seqs 1
e Vg AL (if-let [form (reader/read rdr nil nil)
{defn forms-seq_ [strean] et [forn (readeryre
args4j:2.026 (et [rdr (readers/indexing-push-back-reader strean 1) Ctoms-sean)) (cons forn (forms-seq)))))}
clojure-complet forns-seqe (fn fornsoaeas (] (forns-seqe
<om.google.cod: omyeses = #hello-cljsc.core/formeseq
P oo e e R — Goresg Glrraser (01 20
com.google java (forns-seqs))) fcuns form (forms-seqs) 1)1 (forns-seq (string-reader “(+ 12) (+ 3 4)"))
com.google java = ((+12) (+34) N
e o of s (rapst Uores-seq Gtring-resder *(+ 12) (+3.4)))
com.google.prot Getting (i

oo/t (forms-aeq (string-reader "(+ 1 2)°))

org.clojure/clojt + Evaluate the fol
org.clojure/data

org.clojure/goog
org.clojure/goog
org.clojure/toolt ;; The first form is (+12
org.clojure/tool: (first (forms-seq (string-reader "(+ 12) (+3 4

{fomé-seq (stringoreader »(s 1 2) (o 3 417)

CaLeining m
btools.reader-0.8.10 jar)
Eqclojuretools {arst (forms-seq (stringoreader "(1n [x yI\(s x y))")))
Egreader
Qreader.clj first x y)) is a symbol
EMETASINF {first (formscsea.(stringoreader ~(n (< yI\n(s x v))")))
ingen: org.json/json:2C econd form in (fn [x y] (+
ngen: org.mozila/thin (second (1irt (forms-seq (otring-reader "(fn [x yinte x)1
e ————

42

- Itis of course heresy to use Vim for Lisp, but | do it anyway
- Tim Pope has written the great fireplace.vim plugin

- It connects over network to an already existing repl

- Will not be considered a full blown IDE by most people

43

-+ Most Lisps have tools for project and package/dependency
management

- For Clojure there is leiningen and boot, with leiningen being the
older and more popular tool

- The key difference is the declarative approach with leiningen,
while boot just uses plain clojure logic

- For the web developers there is an analogy: leiningen -> grunt,
boot -> gulp

A

Literature and more obscure Lisp
dialects

Books on

The left one is available for free from clojure-buch.de

seetan Kamphausen « Tim Clive K stering Clojure
setan Kampha \T m Ciives Kaker lvﬁacrosg)
Write Cleaner, Faster,
OJI Ire Smarter Code

g

A Ay
A’é})\ ax

« Grandiagen
- Concurient Eragramming ‘L {
= lava r\y‘

daunklilag Colin Jones

Eded by Fatvnida Y. Rashid

45

clojure-buch.de

Shen Language

- If clojure and scheme are not enough for you, take a look at
shenlanguage.org

- We will briefly look at a few features

- Static type checking based on the sequent calculus

- Integrated fully functional Prolog (defprolog ...)

- Inbuilt compiler-compiler (Shen-YACC) based on BNF notation

- Can be used to develop efficient compilers for programming
languages and transducers for natural language processing

- ..The “Everything but the kitchen sink”-Lisp

46

shenlanguage.org

Why it never (really) caught on

Performance

A Lisp programmer knows the value of everything, but the
cost of nothing.

— Alan Perlis, American Computer Scientist

- Historically a lot of Lisps features required quite a bit of
processing power or special hardware support (see Lisp
machines)

- Today that argument is mostly moot

- The performance of e.g. Clojure is in the same ballpark as most
dynamic JVM languages

47

One of the ideas | keep stressing in the design of Perl is
that things that ARE different should LOOK different. The
reason many people hate programming in Lisp is because
everything looks the same. I've said it before, and I'll say it
again: Lisp has all the visual appeal of oatmeal with
fingernail clippings mixed in. (Other than that, it's quite a
nice language.)

— Larry Wall, Creator of the Perl Language

48

- Maybe a gate keeper for language features (a committee or a
“benevolent dictator”) is exactly what you want

- In real businesses it is important that existing code can be
understood and altered quickly and cost effectively

- Evolving languages with fixed feature sets may help in the hiring
process

49

- A lot of Lisp dialects (especially Scheme implementations) tend
to isolate themselves from other eco systems

- Most people are not interested in calling C libraries using some
FFI

- That only leaves the existing libraries written in that particular
dialect

- They have at best emacs support, which just does not cut it
anymore in 2017 for most developers

- Refactoring, Linting and Formatting tools (like in languages like
go) are often missing

50

- The so called “Smug Lisp Weenie”:
Someone who is always eager to let you know that
whatever it is you're doing would be done better in Lisp.

- Lets just say they have “strong opinions”

51

Thank You!

opencollog@informatik.uni-wuerzburg.de

52

mailto:opencolloq@informatik.uni-wuerzburg.de

Bonus - A bit of History

The Cons Cell

- In most Lisp Dialects (not Clojure though) the linked list is not a
primitive data type, but implemented using the cons cell

- A cons cell can be thought of as a pair, denoted like (1. 2)

- Nested cons cells result in a linked list: (1. (2. (3. NIL)))

- The most important operations on cons cell are cons, car and
cdr (pronounced could-er)

- The names stem from assembler macros on the IBM 704 from
the late 50s

(car (cdr '(1 2 3)))

; (first (rest '(1 2 3))) -> 2
(cons 1 2); -> (1 . 2)

53

- John McCarthy originally thought of so
called M(eta)-Expressions

- Data represented as S-Expressions were
to be manipulated by M-Expressions

- car[consl[(A . B); x]], square brackets were
used for argument lists

- In the first working Lisp implementation,

M-Expressions were encoded as
S-Expressions

- They never caught on and eventually
faded

54

	Why Lisp?
	The Basics of Lisp
	Macros in Action
	Tools and Platforms
	Literature and more obscure Lisp dialects
	Why it never (really) caught on
	Bonus - A bit of History

