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Alexander Wolff Winter term 2025

Lecture 12:
SteinerForest via Primal–Dual

Part I:
SteinerForest

Approximation Algorithms
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ShortestPath (R = {s, t})

MinSpannTree (R = E (G ))
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A graph G with edge costs c : E (G )→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

Find an edge set F ⊆ E (G ) of minimum total cost
c(F ) such that the subgraph (V (G ),F ) connects all
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Computational Approaches?

• Merge k shortest si–ti paths

• SteinerTree on the set of terminals

Homework: Both above approaches perform poorly :-(

Difficulty:
Which terminals belong to the same tree of the forest?
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Lecture 12:
SteinerForest via Primal–Dual

Part II:
Primal and Dual LP

Approximation Algorithms
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minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G )

where Si := {S ⊆ V (G ) : si ∈ S , ti ̸∈ S}

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E (G ) : u ∈ S and v /∈ S}

⇒ exponentially many constraints!
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Complementary Slackness (Reminder)

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
For each j = 1, . . . , n: either xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: either yi = 0 or

∑n
j=1 ai jxj = bi

Theorem.
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A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (
∑

e∈δ(S) xe < 1)

• Consider related connected component C !

How do we iteratively improve the dual solution?

• Increase yC (until some edge in δ(C ) becomes critical)!

∑
S : e∈δ(S) yS = ce .
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A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G ),F ) do

C ← component in (V (G ),F ) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C ).

F ← F ∪ {e′}
return F
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∑
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Trick: Handle all yS with yS = 0 implicitly.
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|δ(S) ∩ F | · yS .

Compare to the value of the dual objective function
∑

S yS .

There are examples with |δ(S) ∩ F | = k for each yS > 0 :-(

But: Average degree of “active components” is less than 2.

⇒ Increase yC for all active components C simultaneously!

(Homework!)
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Approximation Algorithms
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until
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yS = ceℓ for some eℓ ∈ δ(C ), C ∈ C.
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F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}
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Approximation Algorithms
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Lecture 12:
SteinerForest via Primal–Dual

Part VI:
Analysis

Approximation Algorithms
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Is our analysis tight?

ALG = (2− ε)(n − 1)t3 = s2
OPT= n

Can we do better?
No better approximation factor is known. :-(

The integrality gap is 2− 1/n.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

SteinerForest (as SteinerTree) cannot be approximated
within factor 96

95 ≈ 1.0105 (unless P=NP). [Chleb́ık, Chleb́ıková ’08]
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