

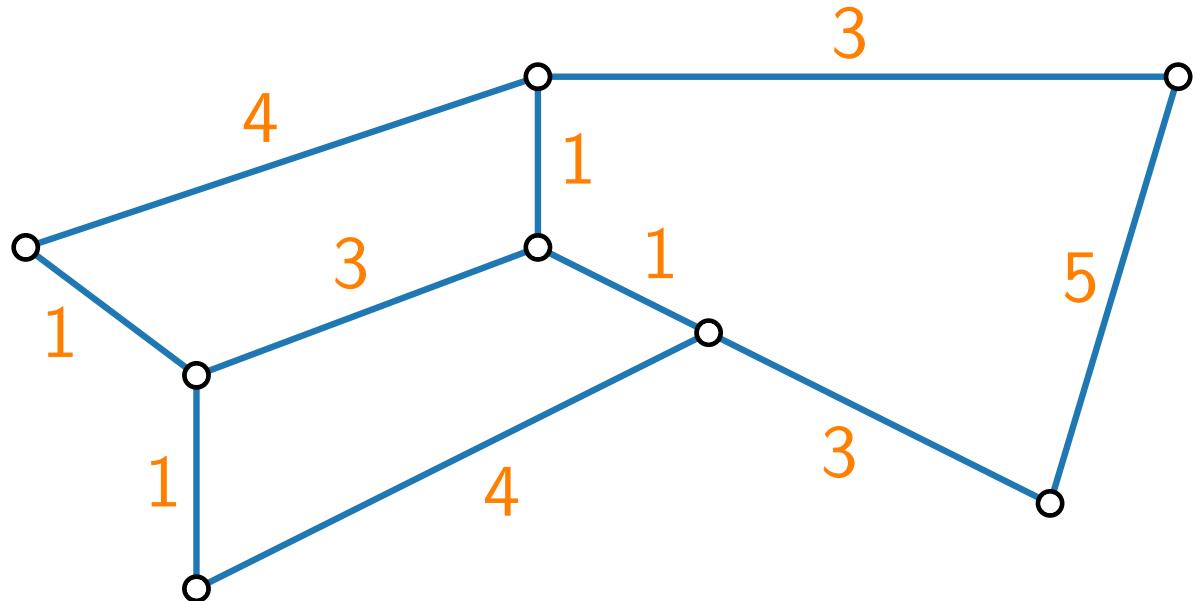
Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal–Dual

Part I:
STEINERFOREST

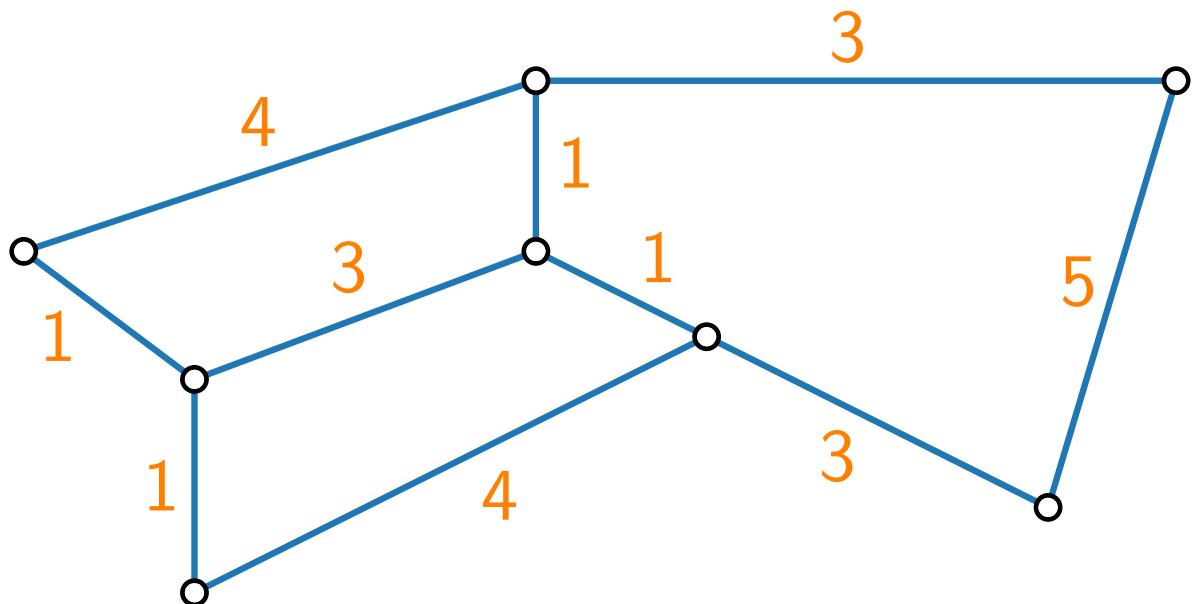
STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$



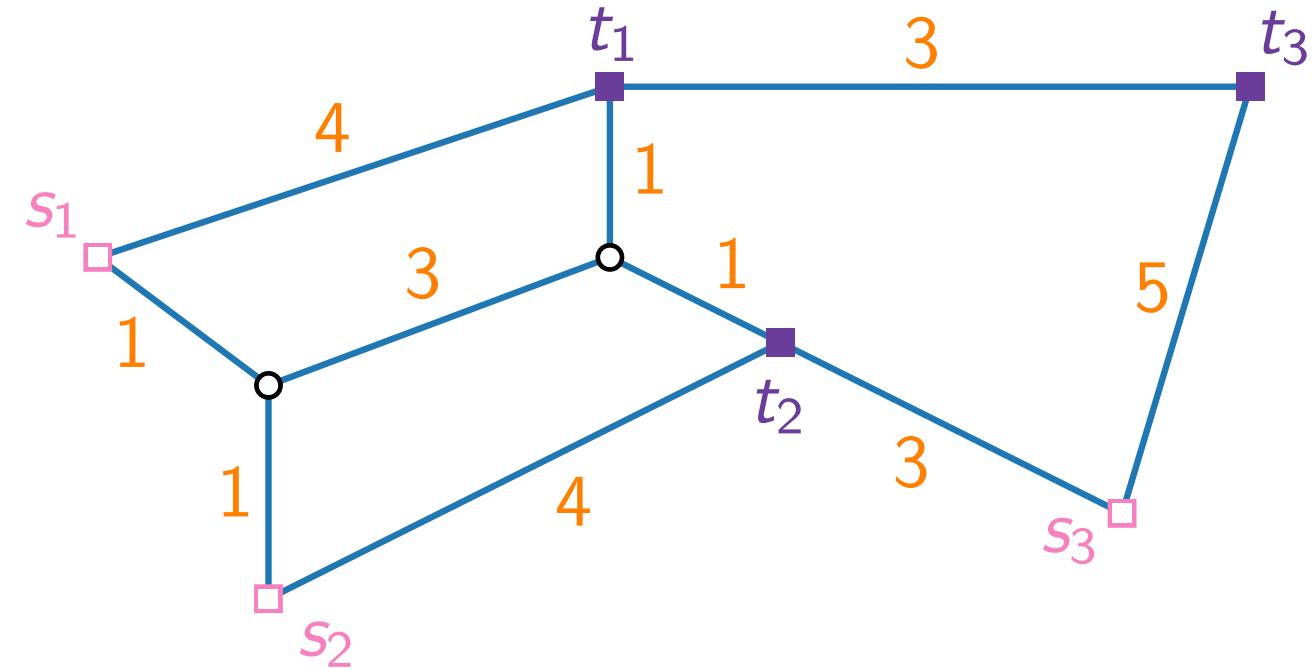
STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.



STEINER FOREST

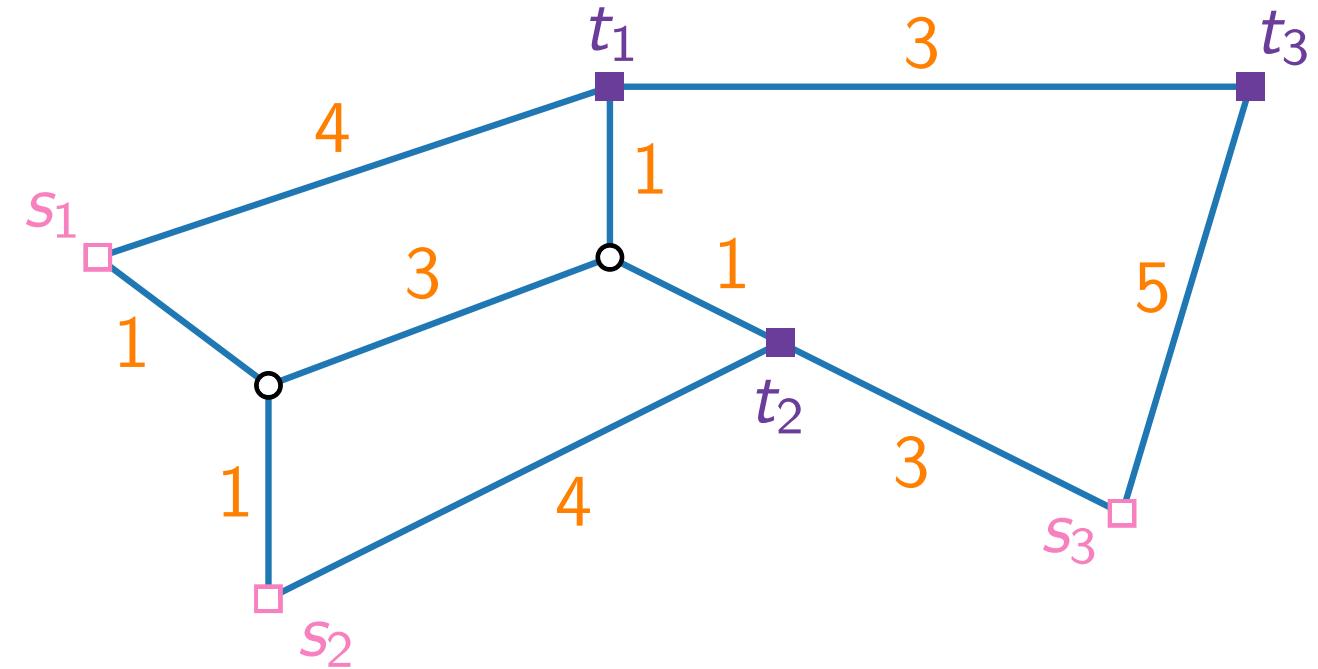
Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.



STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

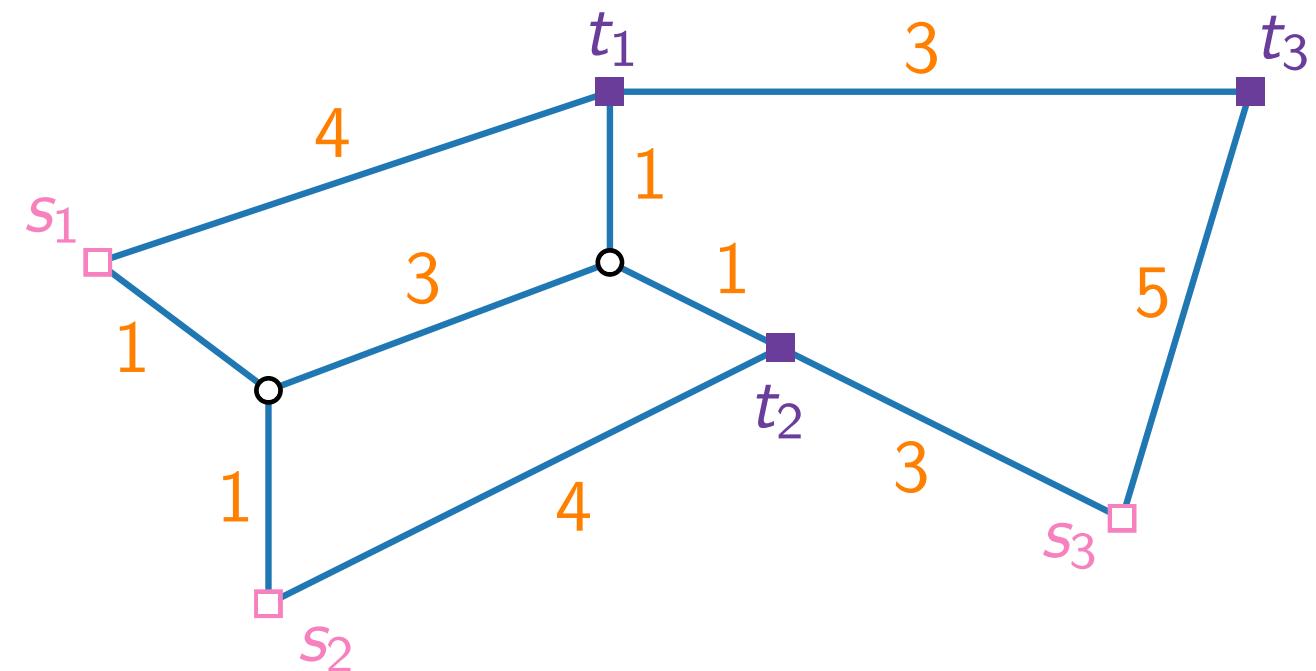
Task: Find an edge set $F \subseteq E(G)$ of minimum total cost



STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

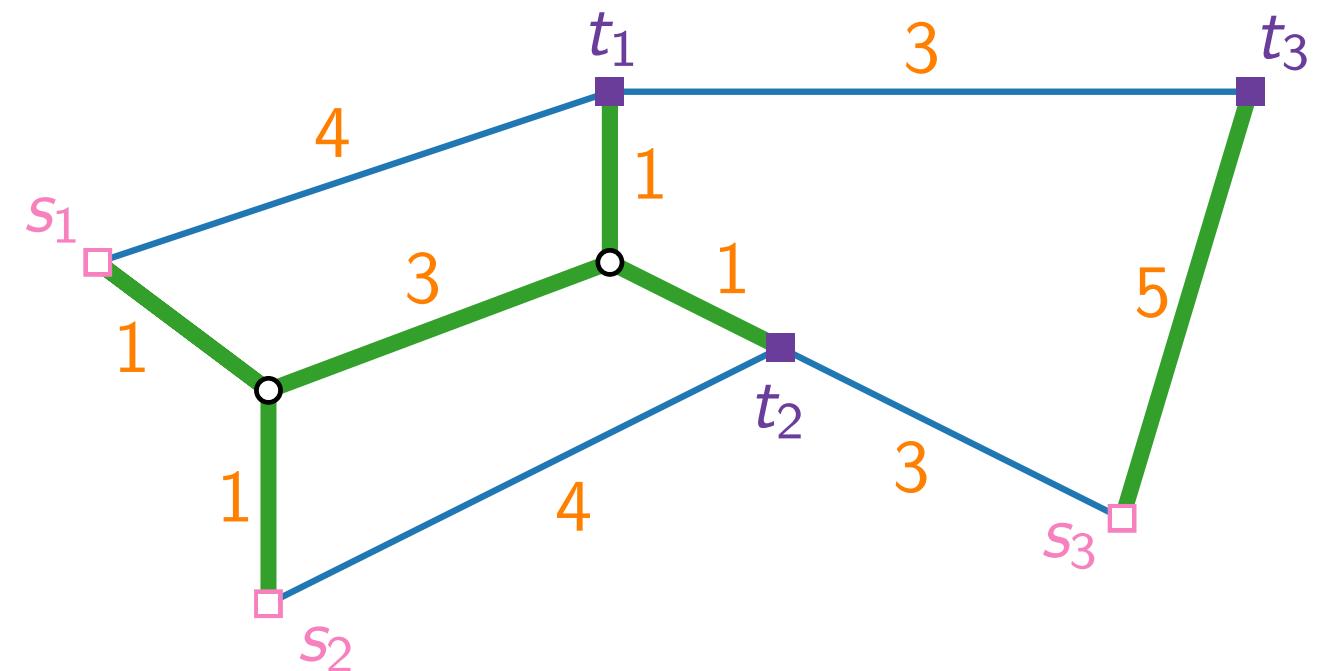
Task: Find an edge set $F \subseteq E(G)$ of minimum total cost $c(F)$ such that the subgraph $(V(G), F)$ connects all vertex pairs $(s_1, t_1), \dots, (s_k, t_k)$.



STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

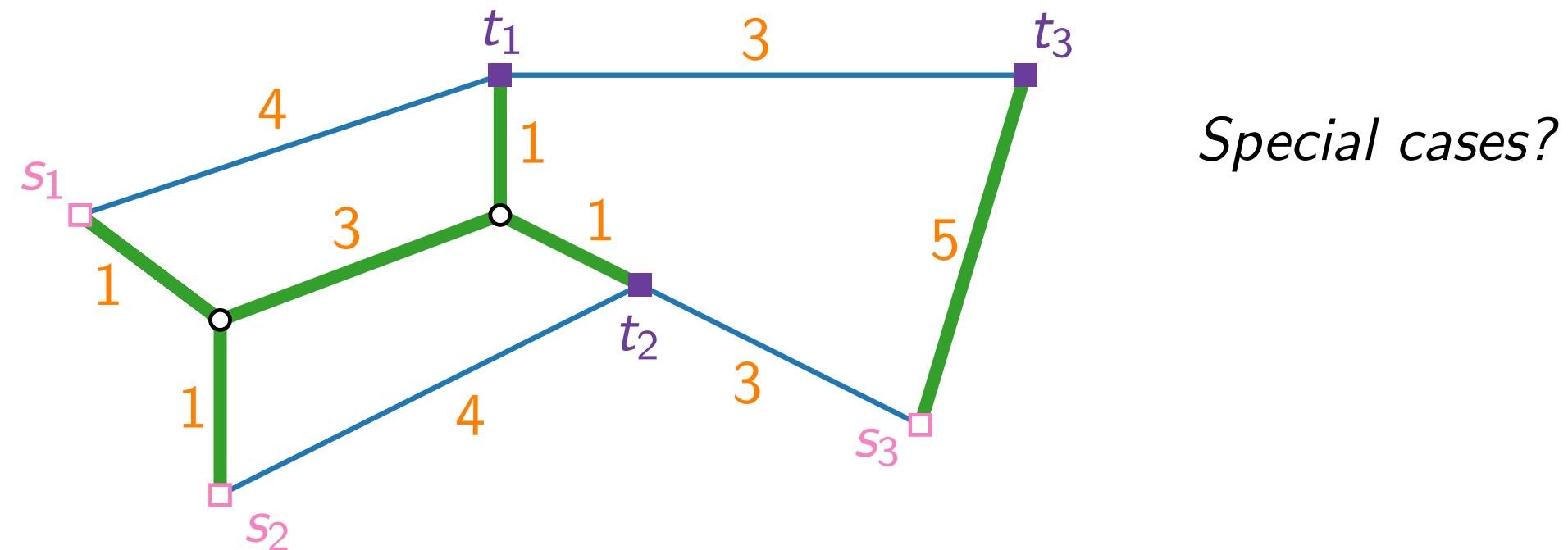
Task: Find an edge set $F \subseteq E(G)$ of minimum total cost $c(F)$ such that the subgraph $(V(G), F)$ connects all vertex pairs $(s_1, t_1), \dots, (s_k, t_k)$.



STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

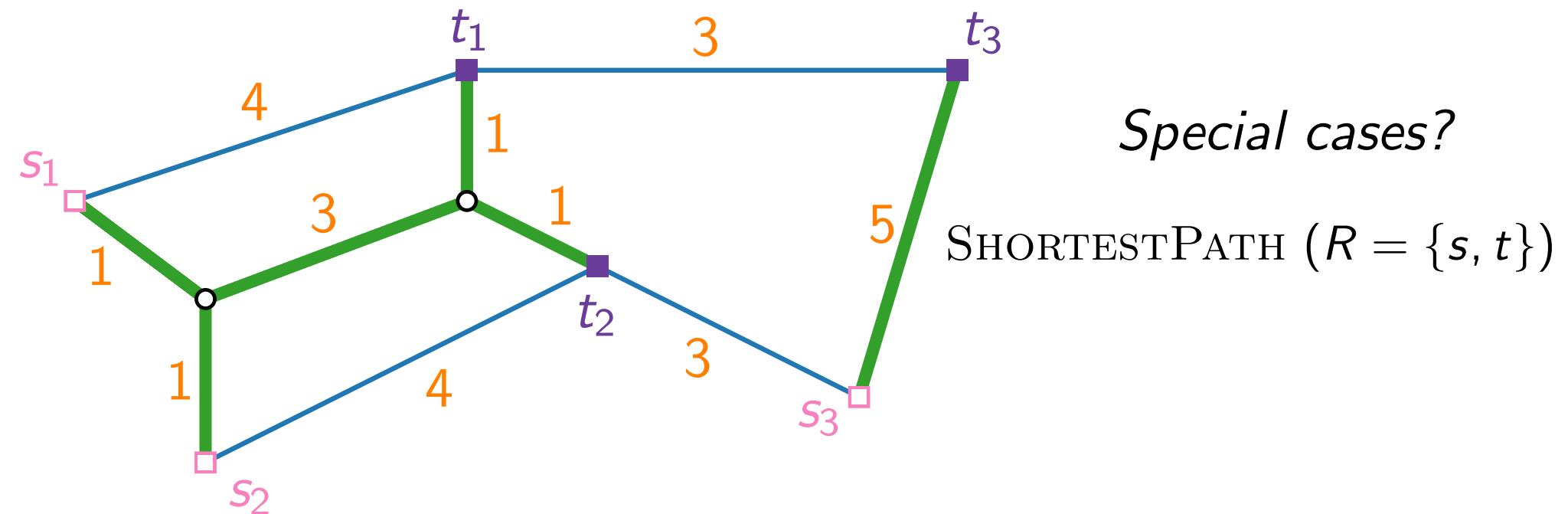
Task: Find an edge set $F \subseteq E(G)$ of minimum total cost $c(F)$ such that the subgraph $(V(G), F)$ connects all vertex pairs $(s_1, t_1), \dots, (s_k, t_k)$.



STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

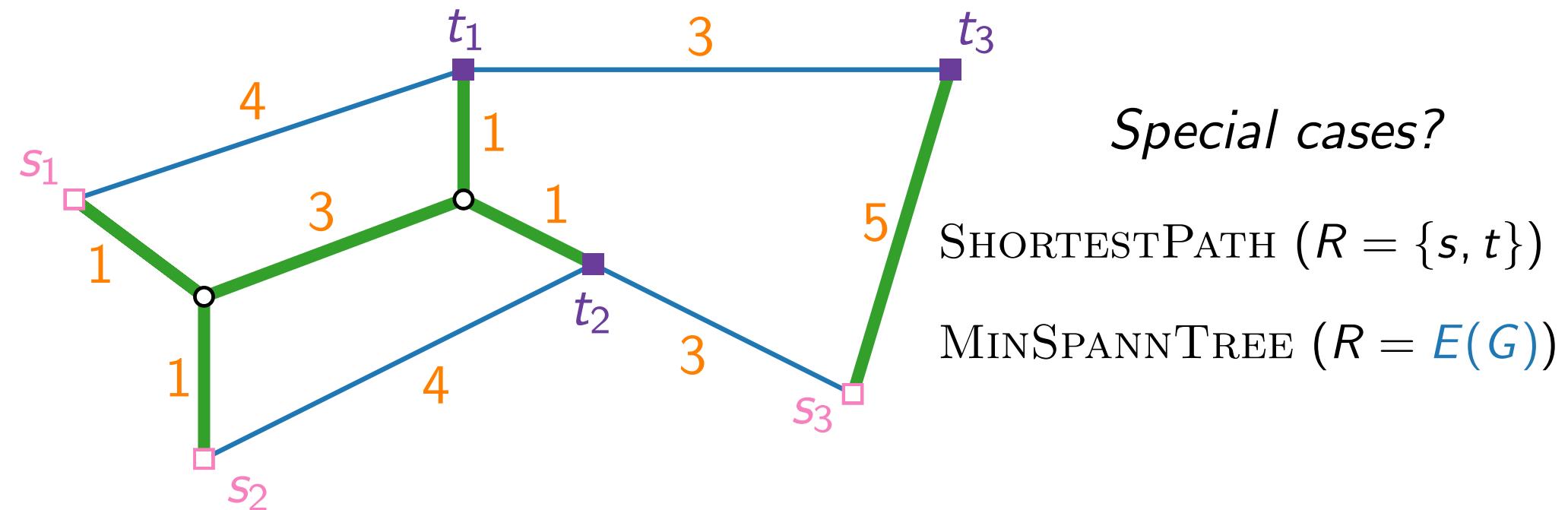
Task: Find an edge set $F \subseteq E(G)$ of minimum total cost $c(F)$ such that the subgraph $(V(G), F)$ connects all vertex pairs $(s_1, t_1), \dots, (s_k, t_k)$.



STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

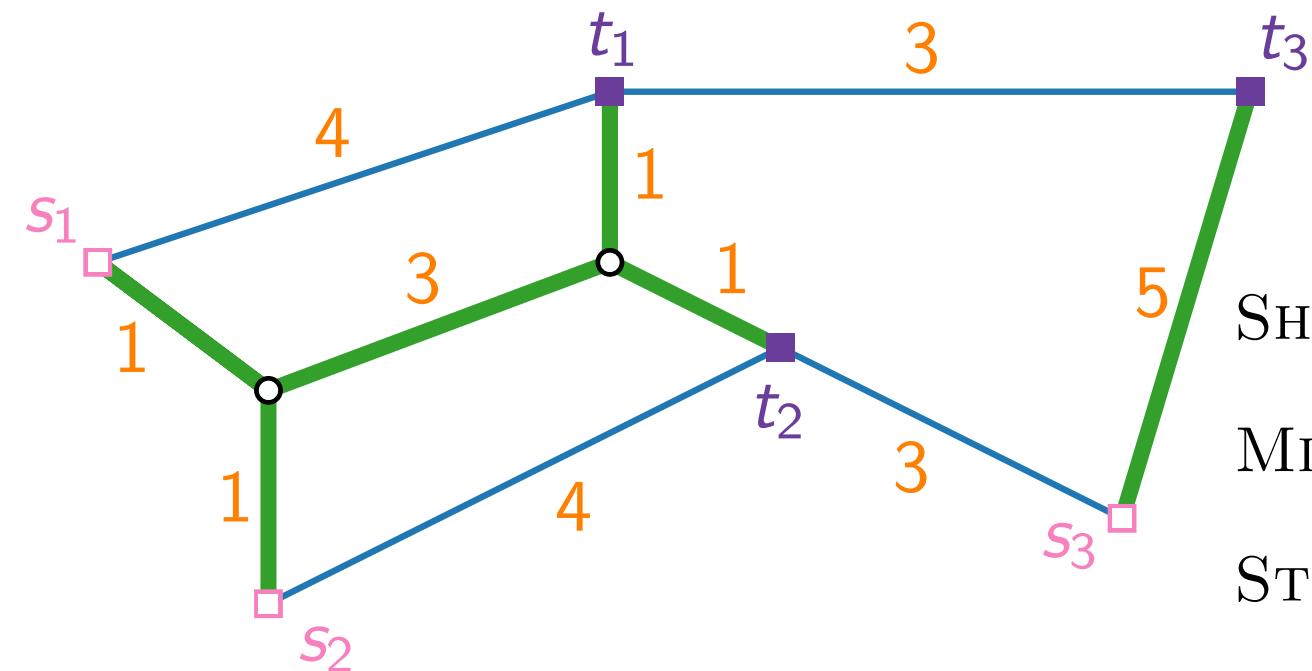
Task: Find an edge set $F \subseteq E(G)$ of minimum total cost $c(F)$ such that the subgraph $(V(G), F)$ connects all vertex pairs $(s_1, t_1), \dots, (s_k, t_k)$.



STEINER FOREST

Given: A graph G with edge costs $c: E(G) \rightarrow \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of k vertex pairs.

Task: Find an edge set $F \subseteq E(G)$ of minimum total cost $c(F)$ such that the subgraph $(V(G), F)$ connects all vertex pairs $(s_1, t_1), \dots, (s_k, t_k)$.



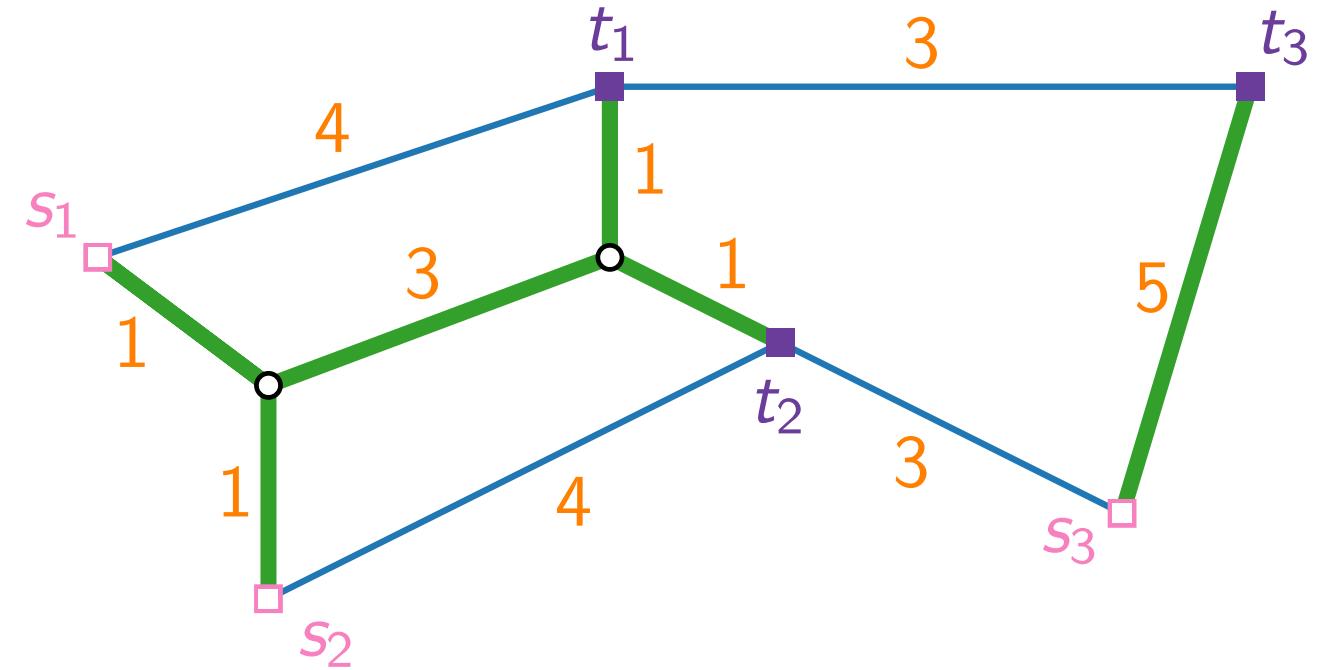
Special cases?

SHORTESTPATH ($R = \{s, t\}$)

MINSPANNTREE ($R = E(G)$)

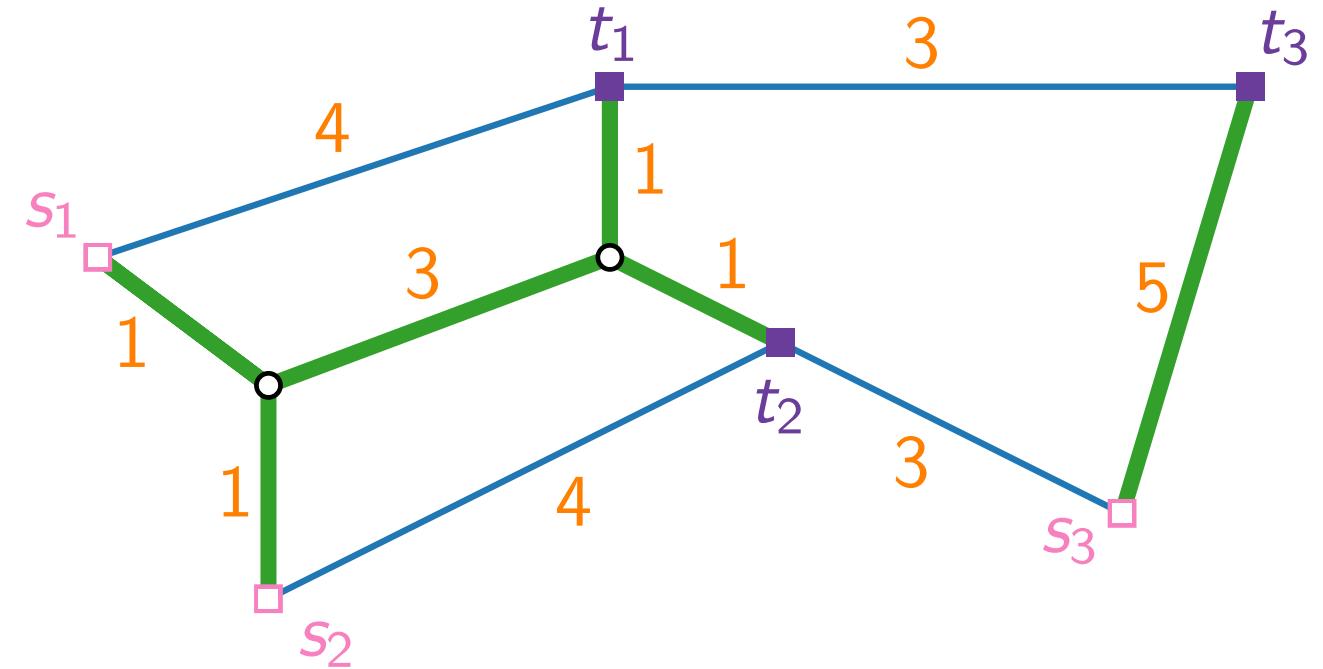
STEINERTREE ($R = T \times T$)

Computational Approaches?



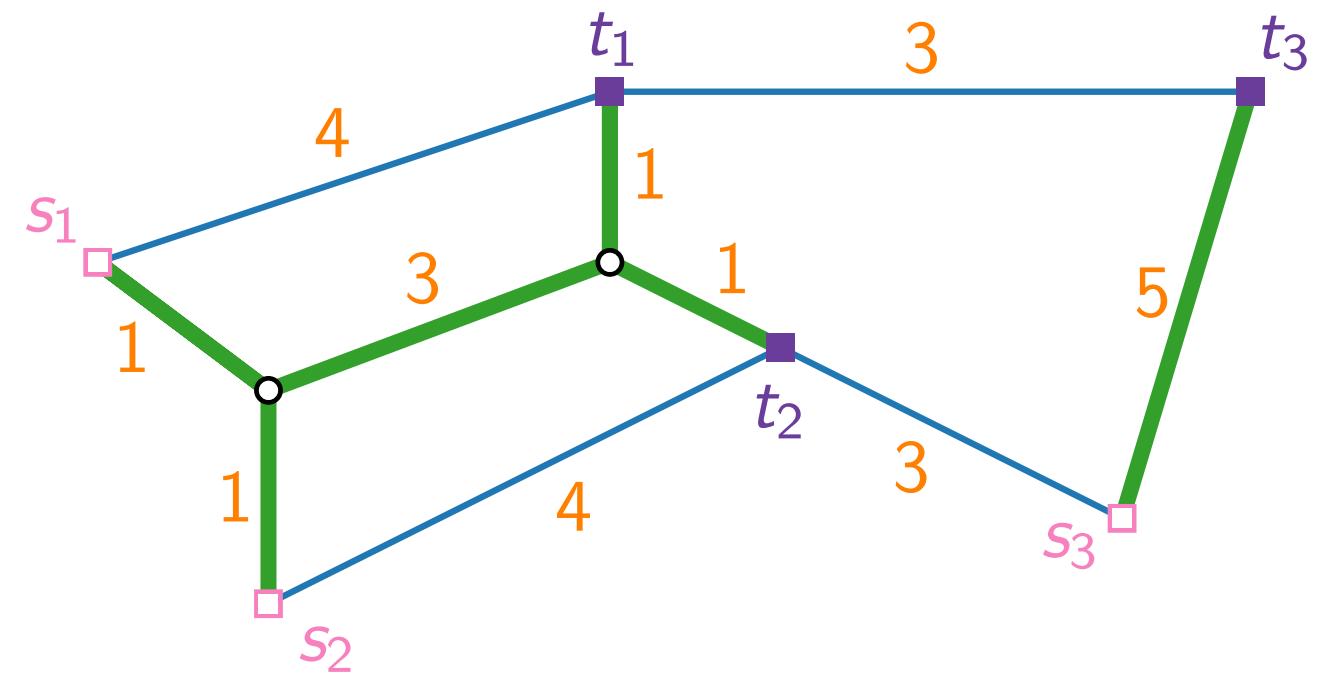
Computational Approaches?

- Merge k shortest s_i-t_i paths



Computational Approaches?

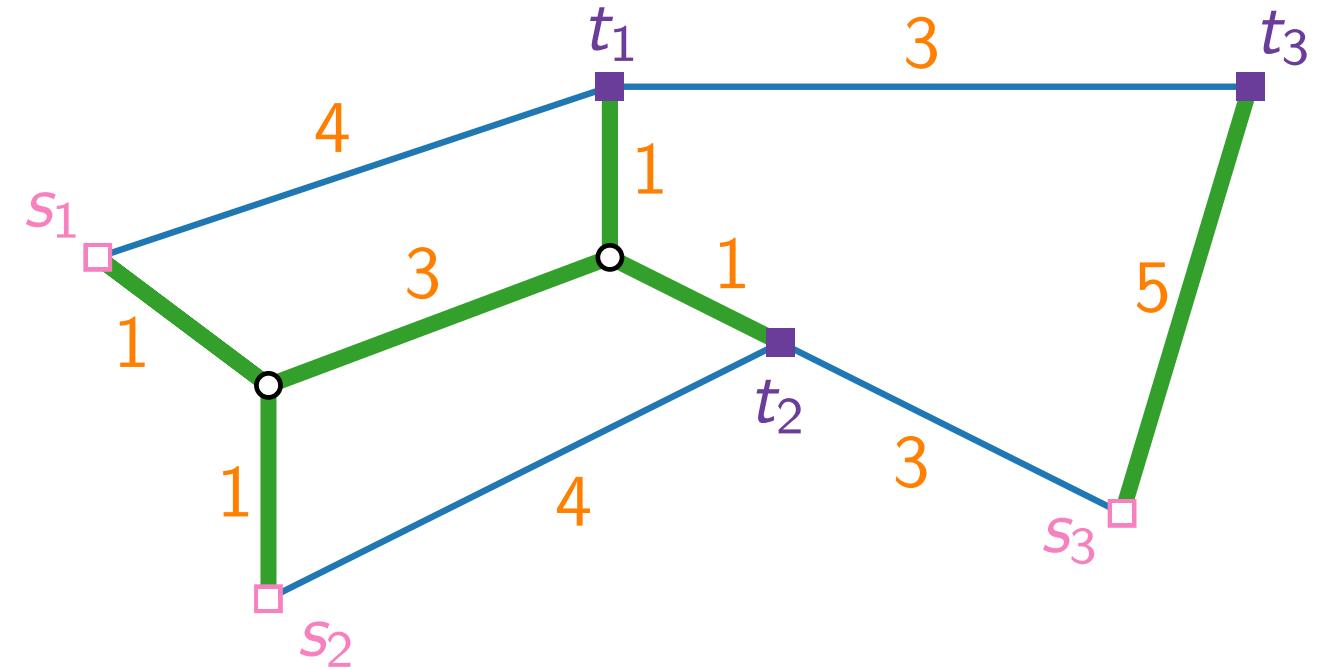
- Merge k shortest s_i-t_i paths
- STEINERTREE on the set of terminals



Computational Approaches?

- Merge k shortest s_i-t_i paths
- STEINERTREE on the set of terminals

Homework: Both above approaches perform poorly :-(



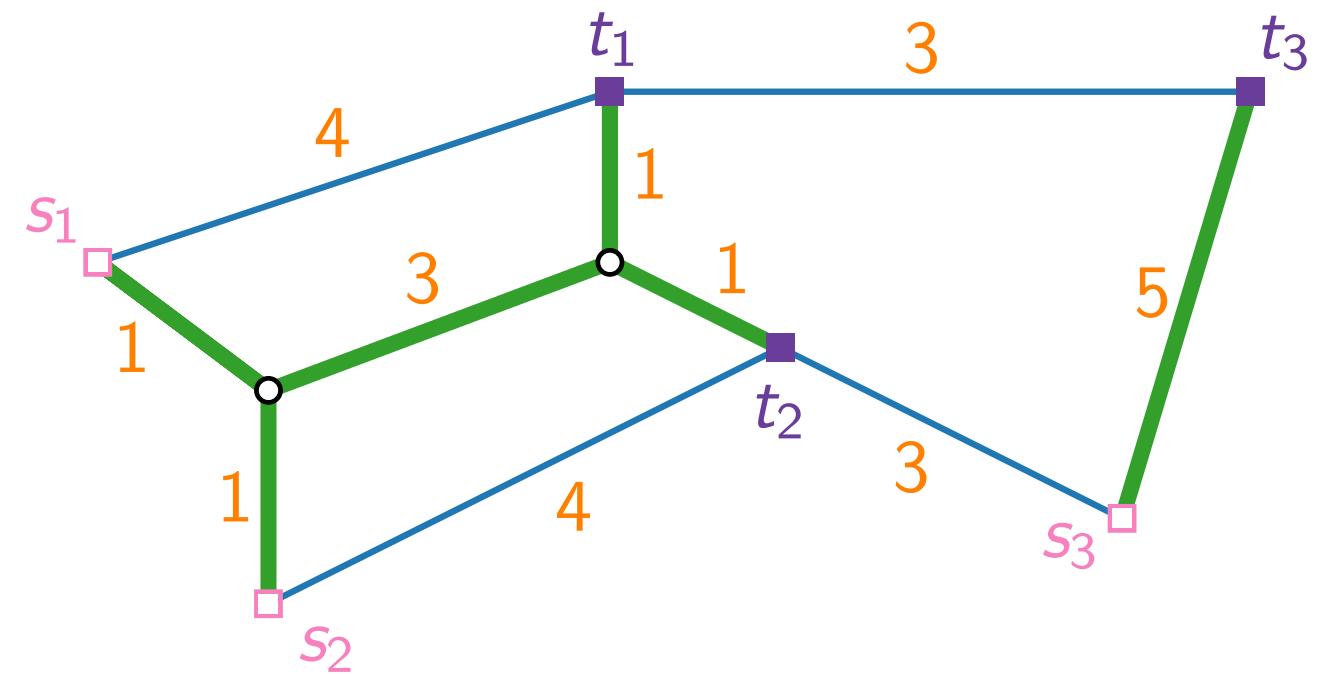
Computational Approaches?

- Merge k shortest s_i-t_i paths
- STEINERTREE on the set of terminals

Homework: Both above approaches perform poorly :-(

Difficulty:

Which terminals belong to the same tree of the forest?



Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal–Dual

Part II:
Primal and Dual LP

An ILP

minimize

subject to

An ILP

minimize

subject to

$$x_e \in \{0, 1\} \quad e \in E(G)$$

An ILP

$$\text{minimize} \quad \sum_{e \in E(G)} c_e x_e$$

subject to

$$x_e \in \{0, 1\} \quad e \in E(G)$$

An ILP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to

$$x_e \in \{0, 1\} \quad e \in E(G)$$

■ t_i

□ s_i

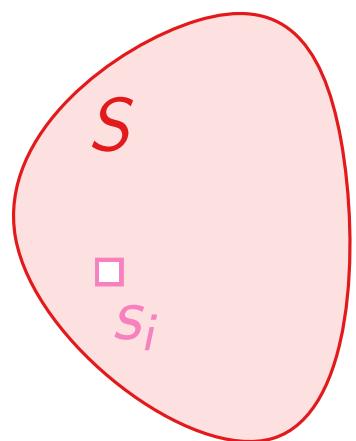
An ILP

$$\text{minimize} \quad \sum_{e \in E(G)} c_e x_e$$

subject to

$$x_e \in \{0, 1\} \quad e \in E(G)$$

■ t_i

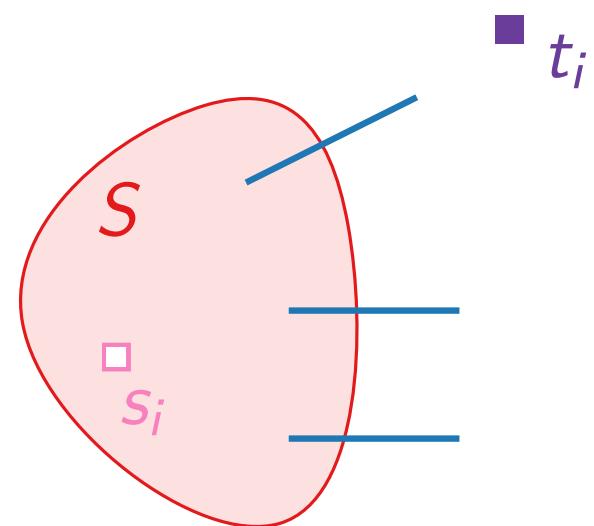


An ILP

$$\text{minimize} \quad \sum_{e \in E(G)} c_e x_e$$

subject to

$$x_e \in \{0, 1\} \quad e \in E(G)$$

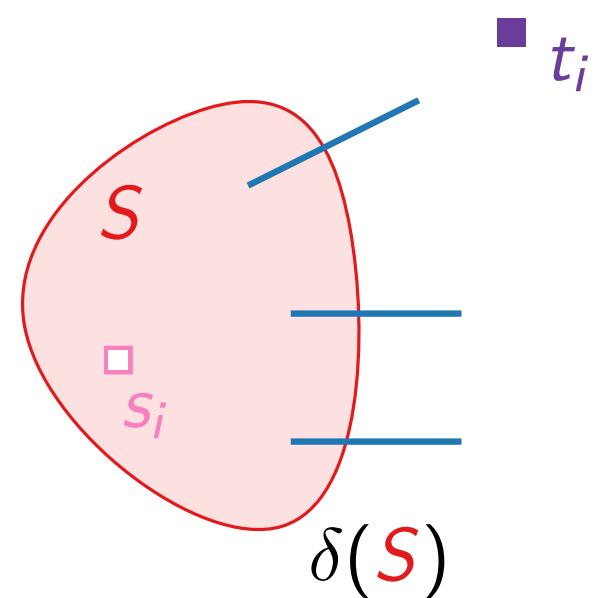


An ILP

$$\text{minimize} \quad \sum_{e \in E(G)} c_e x_e$$

subject to

$$x_e \in \{0, 1\} \quad e \in E(G)$$



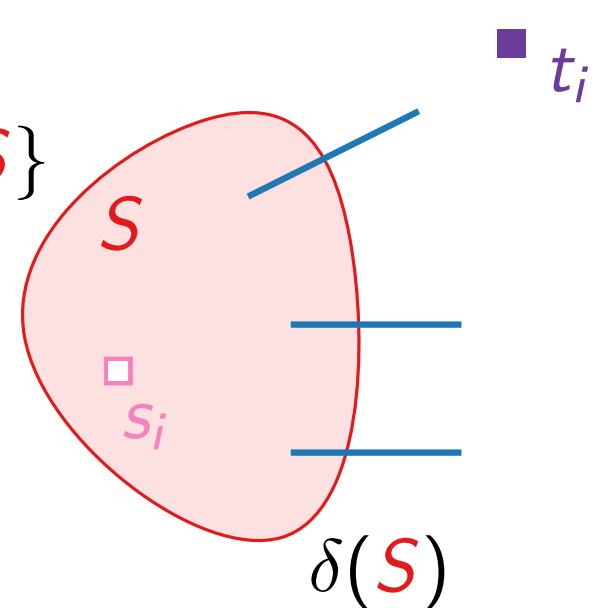
An ILP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to

$$x_e \in \{0, 1\} \quad e \in E(G)$$

$$\delta(S) := \{(u, v) \in E(G) : u \in S \text{ and } v \notin S\}$$



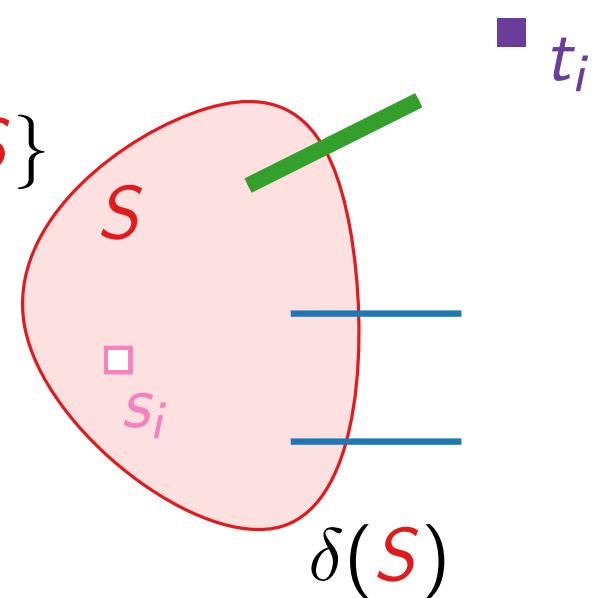
An ILP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to

$$x_e \in \{0, 1\} \quad e \in E(G)$$

$$\delta(S) := \{(u, v) \in E(G) : u \in S \text{ and } v \notin S\}$$



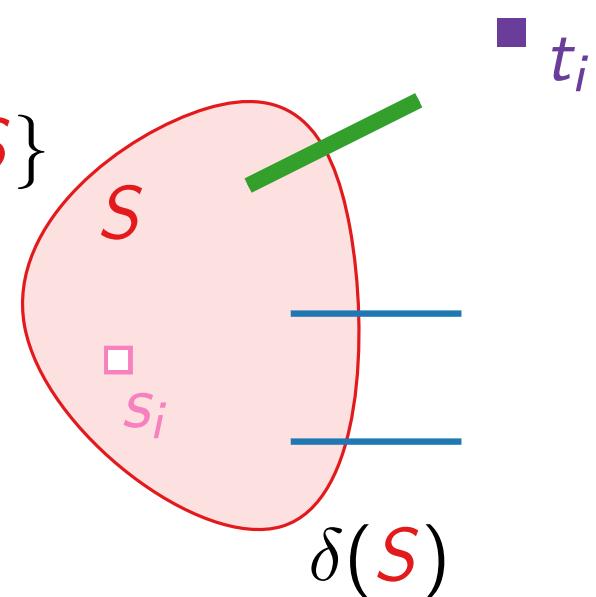
An ILP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to $\sum_{e \in \delta(S)} x_e \geq 1$

$$x_e \in \{0, 1\} \quad e \in E(G)$$

$\delta(S) := \{(u, v) \in E(G) : u \in S \text{ and } v \notin S\}$



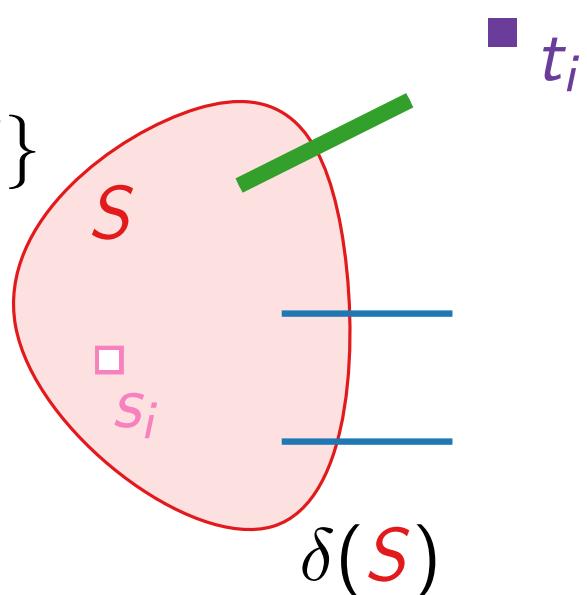
An ILP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to $\sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

$x_e \in \{0, 1\} \quad e \in E(G)$

$\delta(S) := \{(u, v) \in E(G) : u \in S \text{ and } v \notin S\}$



An ILP

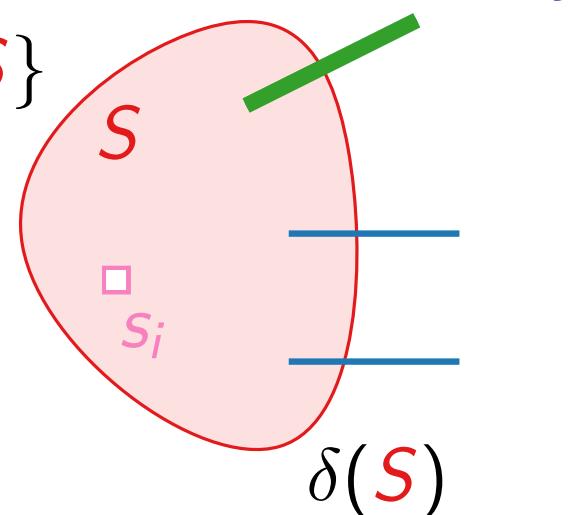
minimize $\sum_{e \in E(G)} c_e x_e$

subject to $\sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

$x_e \in \{0, 1\} \quad e \in E(G)$

where $\mathcal{S}_i := \{S \subseteq V(G) : s_i \in S, t_i \notin S\}$

and $\delta(S) := \{(u, v) \in E(G) : u \in S \text{ and } v \notin S\}$



An ILP

minimize $\sum_{e \in E(G)} c_e x_e$

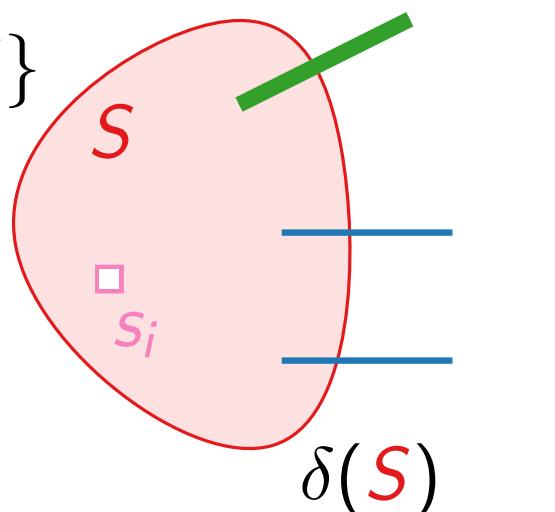
subject to $\sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

$x_e \in \{0, 1\} \quad e \in E(G)$

where $\mathcal{S}_i := \{S \subseteq V(G) : s_i \in S, t_i \notin S\}$

and $\delta(S) := \{(u, v) \in E(G) : u \in S \text{ and } v \notin S\}$

\Rightarrow exponentially many constraints!



LP-Relaxation and Dual LP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to $\sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

$$x_e \geq 0 \quad e \in E(G)$$

LP-Relaxation and Dual LP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to $\sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\} \quad (ys)$

$$x_e \geq 0 \quad e \in E(G)$$

LP-Relaxation and Dual LP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to $\sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\} \quad (ys)$

$x_e \geq 0 \quad e \in E(G)$

maximize

subject to

$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

LP-Relaxation and Dual LP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to $\sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\} \quad (y_S)$

$x_e \geq 0 \quad e \in E(G)$

maximize $\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$

subject to

$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

LP-Relaxation and Dual LP

minimize $\sum_{e \in E(G)} c_e x_e$

subject to $\sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\} \quad (y_S)$

$x_e \geq 0 \quad e \in E(G)$

maximize $\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$

subject to $\sum_{\substack{S: e \in \delta(S)}} y_S \leq c_e \quad e \in E(G)$

$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.

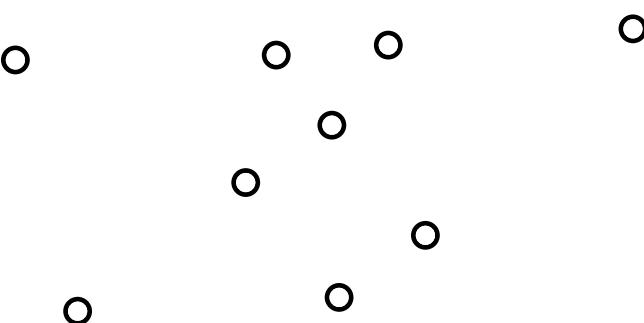
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



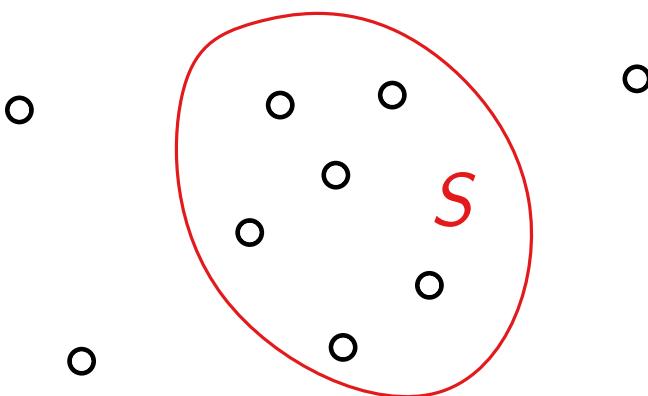
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



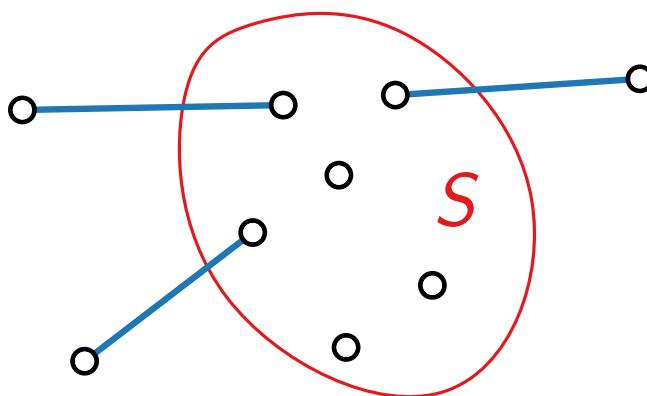
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



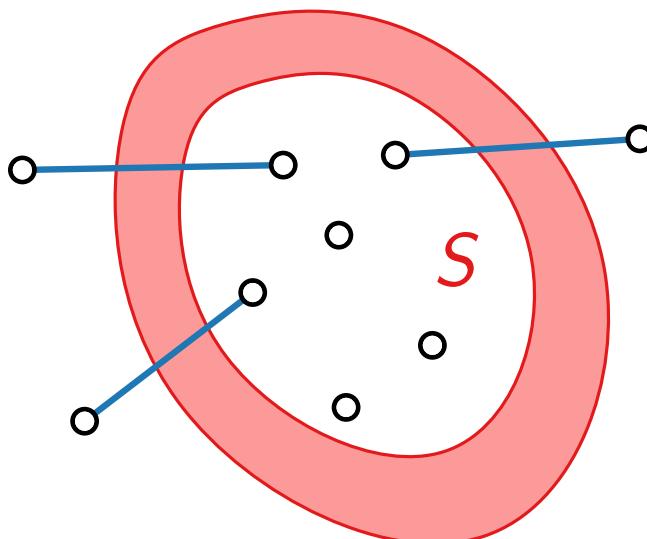
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



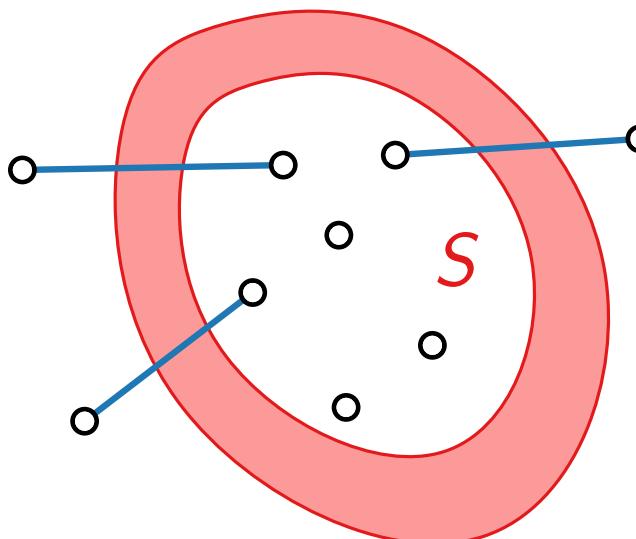
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S)$ = set of edges / bridges over the moat around S

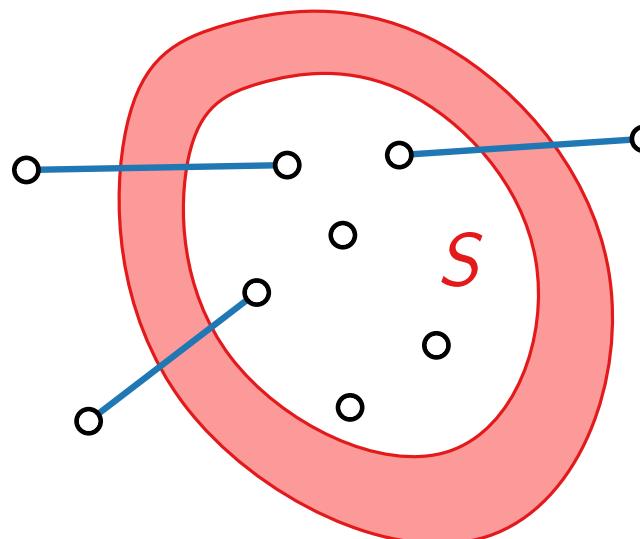
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S)$ = set of edges / bridges over the moat around S

y_S = width of the **moat** around S

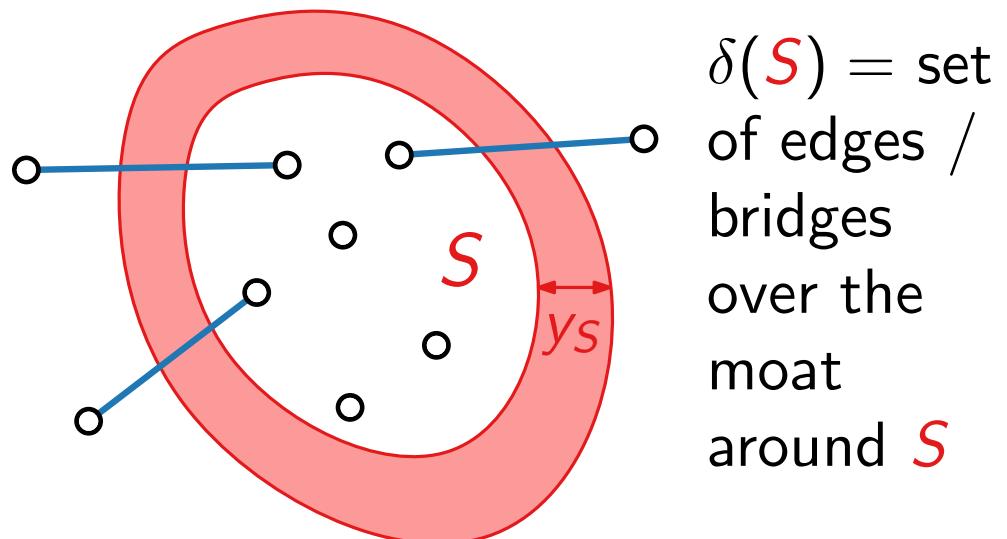
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



y_S = width of the **moat** around S

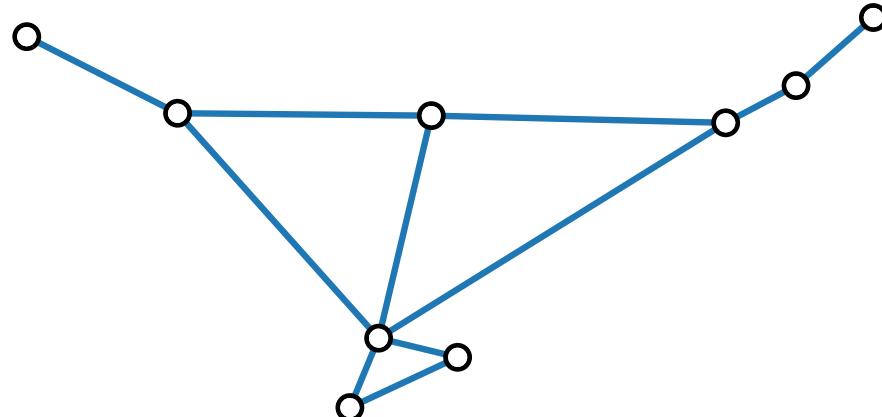
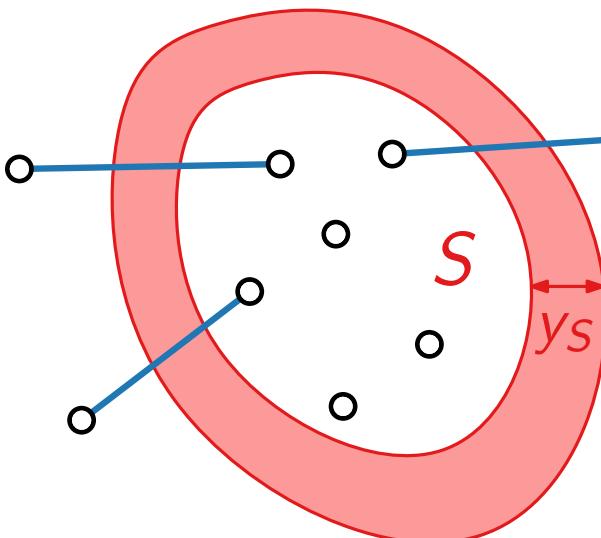
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S) =$ set of edges / bridges over the moat around S

y_S = width of the **moat** around S

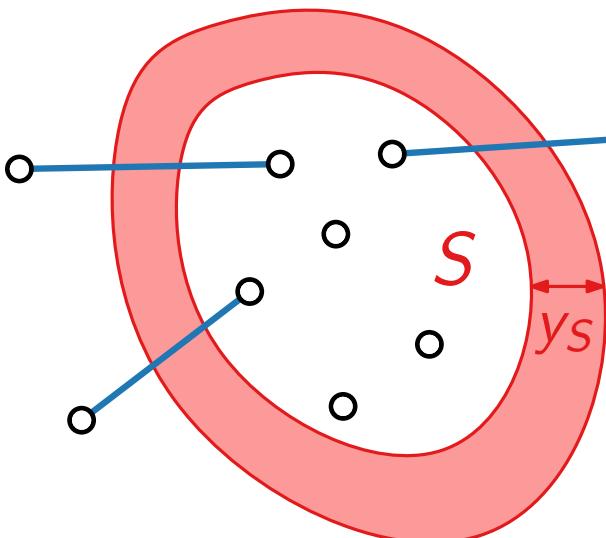
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S)$ = set of edges / bridges over the moat around S

y_S = width of the **moat** around S

Intuition for the Dual

maximize

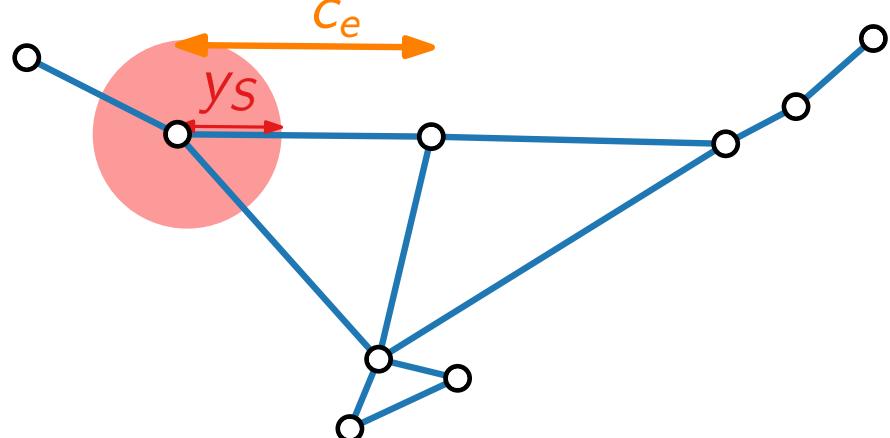
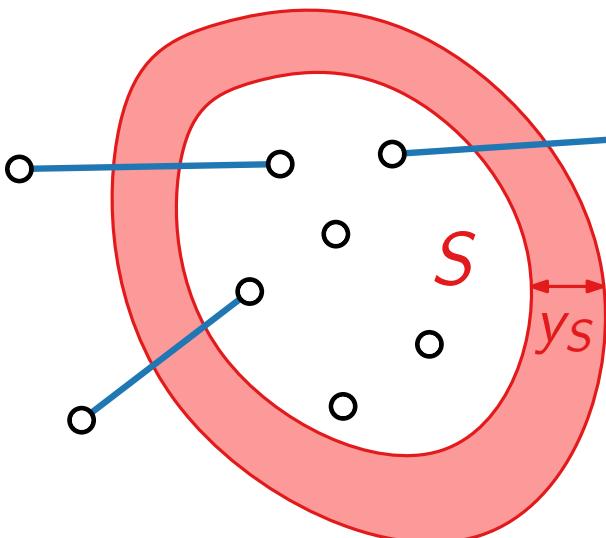
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to

$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S)$ = set of edges / bridges over the moat around S

y_S = width of the **moat** around S

Intuition for the Dual

maximize

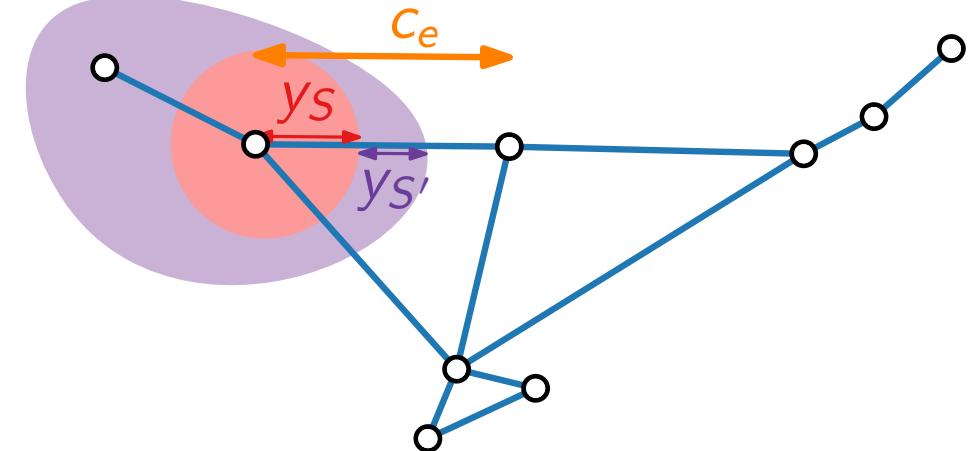
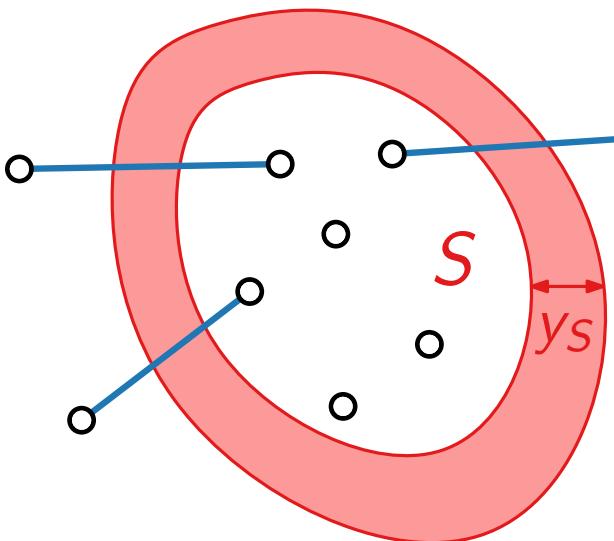
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to

$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S)$ = set of edges / bridges over the moat around S

y_S = width of the **moat** around S

Intuition for the Dual

maximize

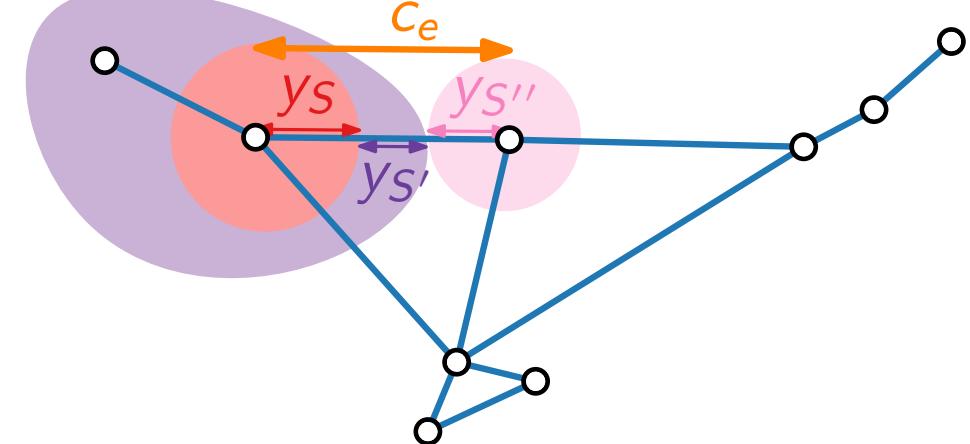
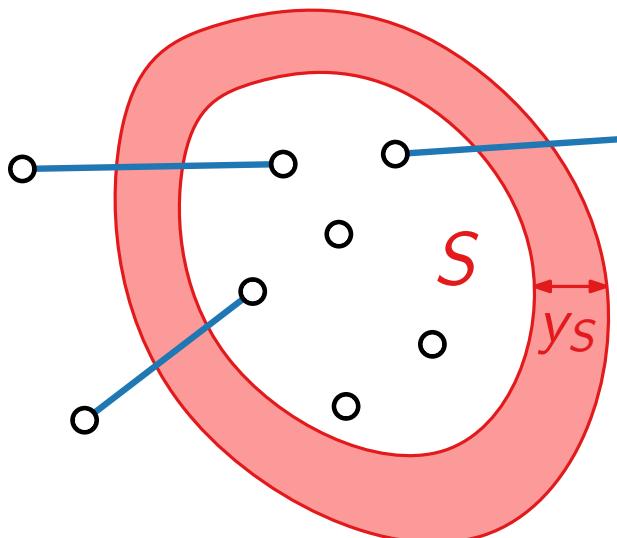
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to

$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S)$ = set of edges / bridges over the moat around S

y_S = width of the **moat** around S

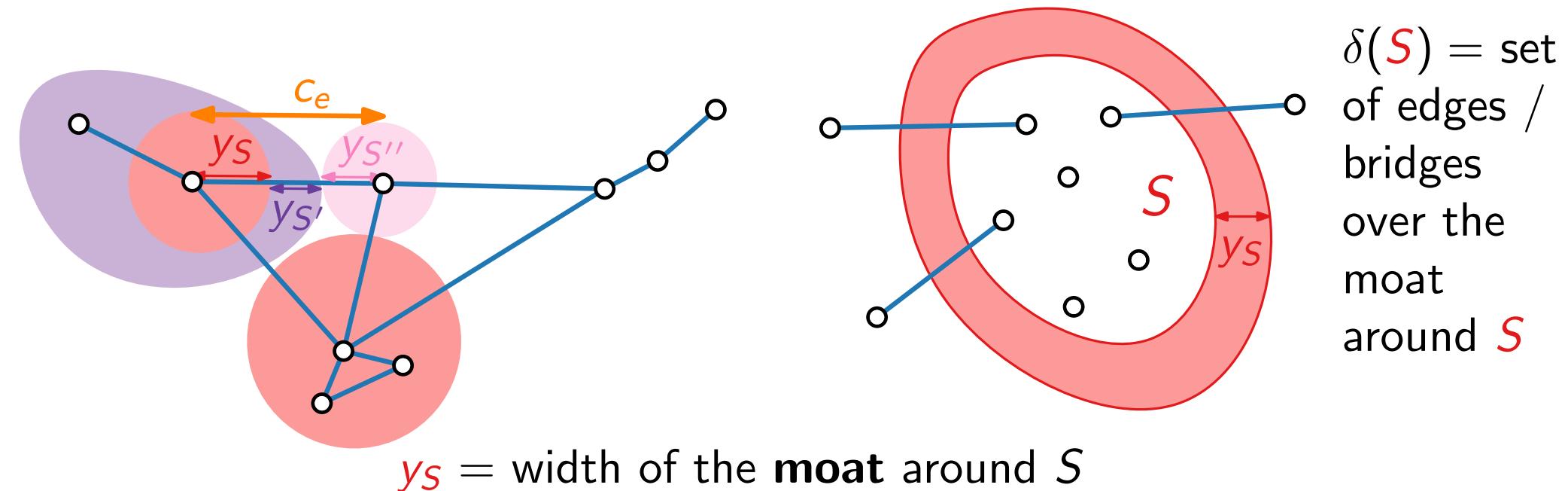
Intuition for the Dual

maximize
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to
$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$

The graph is a network of **bridges**, spanning the **moats**.



Intuition for the Dual

maximize

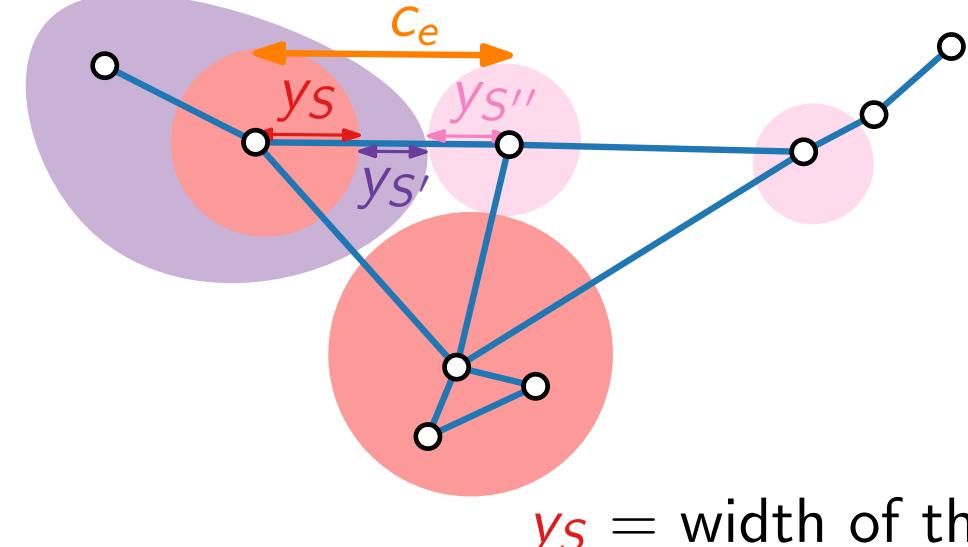
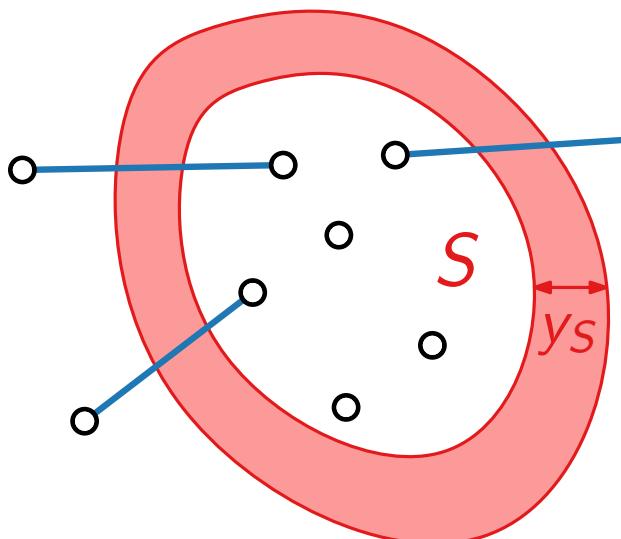
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to

$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S)$ = set of edges / bridges over the moat around S

y_S = width of the **moat** around S

Intuition for the Dual

maximize

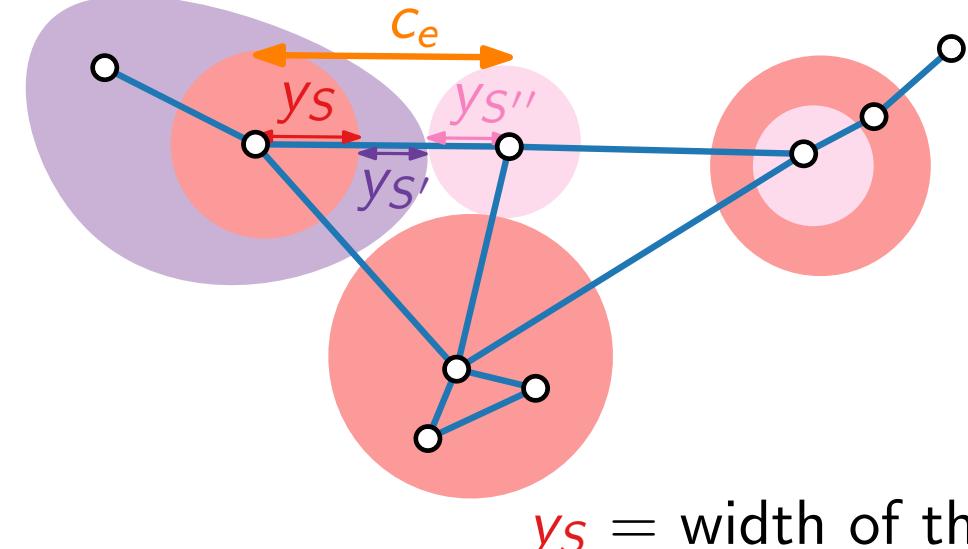
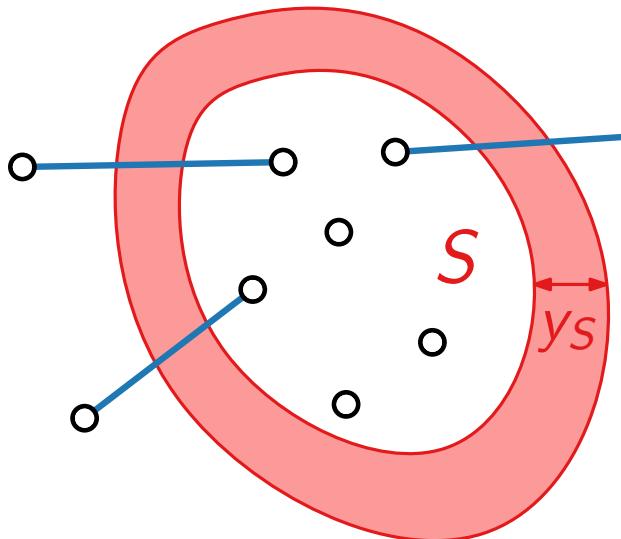
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to

$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



$\delta(S)$ = set of edges / bridges over the moat around S

y_S = width of the **moat** around S

Intuition for the Dual

maximize

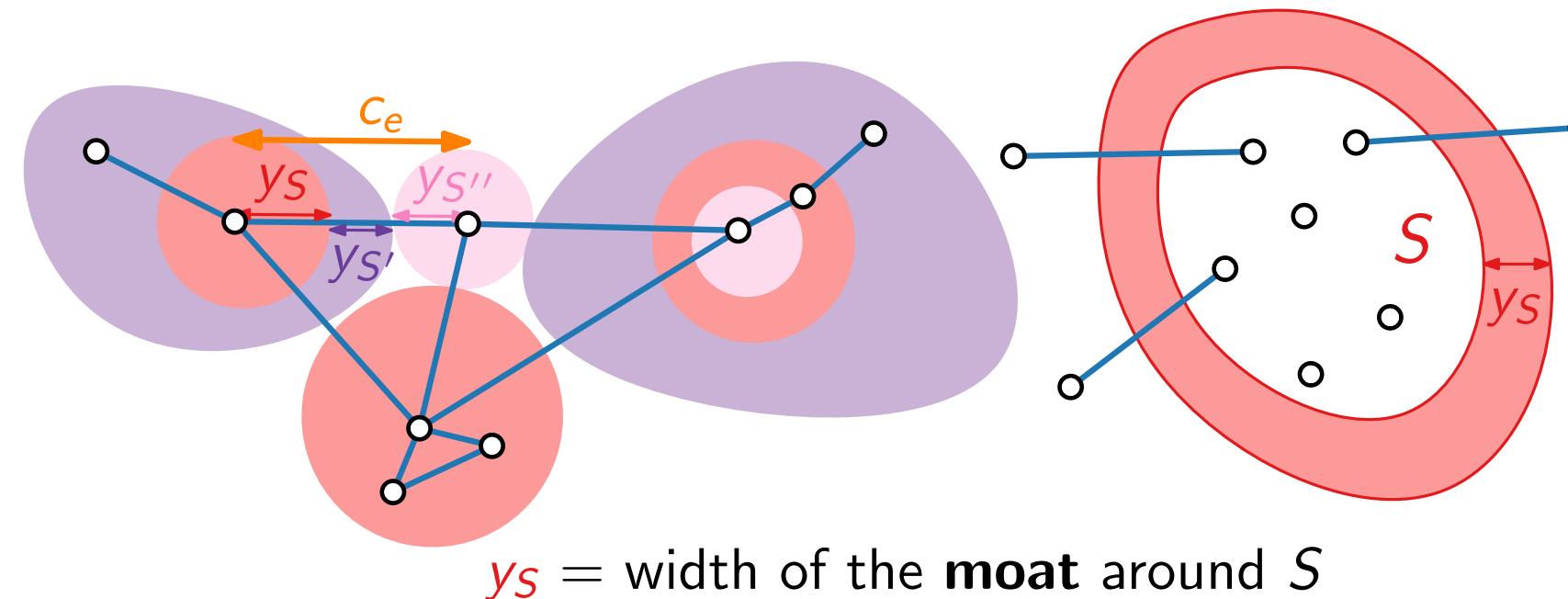
$$\sum_{\substack{S \in \mathcal{S}_i \\ i \in \{1, \dots, k\}}} y_S$$

subject to

$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E(G)$$

$$y_S \geq 0 \quad S \in \mathcal{S}_i, i \in \{1, \dots, k\}$$

The graph is a network of **bridges**, spanning the **moats**.



Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal–Dual

Part III:
A First Primal–Dual Approach

Complementary Slackness (Reminder)

$$\begin{array}{ll}\text{minimize} & c^T \mathbf{x} \\ \text{subject to} & A \mathbf{x} \geq b \\ & \mathbf{x} \geq 0\end{array}$$

$$\begin{array}{ll}\text{maximize} & b^T \mathbf{y} \\ \text{subject to} & A^T \mathbf{y} \leq c \\ & \mathbf{y} \geq 0\end{array}$$

Complementary Slackness (Reminder)

minimize $c^T \textcolor{blue}{x}$
subject to $A\textcolor{blue}{x} \geq b$
 $\textcolor{blue}{x} \geq 0$

maximize $b^T \textcolor{red}{y}$
subject to $A^T \textcolor{red}{y} \leq c$
 $\textcolor{red}{y} \geq 0$

Theorem. Let $\textcolor{blue}{x} = (x_1, \dots, x_n)$ and $\textcolor{red}{y} = (y_1, \dots, y_m)$ be valid solutions for the **primal** and **dual** program (resp.). Then $\textcolor{blue}{x}$ and $\textcolor{red}{y}$ are optimal if and only if the following conditions are met:

Primal CS:

For each $j = 1, \dots, n$: either $\textcolor{blue}{x}_j = 0$ or $\sum_{i=1}^m a_{ij} \textcolor{red}{y}_i = c_j$

Dual CS:

For each $i = 1, \dots, m$: either $\textcolor{red}{y}_i = 0$ or $\sum_{j=1}^n a_{ij} \textcolor{blue}{x}_j = b_i$

A First Primal–Dual Approach

Complementary slackness: $x_e > 0 \Rightarrow$

A First Primal–Dual Approach

Complementary slackness: $x_e > 0 \Rightarrow \sum_{S: e \in \delta(S)} y_S = c_e$.

A First Primal–Dual Approach

Complementary slackness: $x_e > 0 \Rightarrow \sum_{S: e \in \delta(S)} y_S = c_e$.

\Rightarrow Pick “critical” edges (and only these)!

A First Primal–Dual Approach

Complementary slackness: $x_e > 0 \Rightarrow \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

A First Primal–Dual Approach

Complementary slackness: $x_e > 0 \Rightarrow \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

A First Primal–Dual Approach

Complementary slackness: $x_e > 0 \Rightarrow \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

- Consider related connected component C !

A First Primal–Dual Approach

Complementary slackness: $x_e > 0 \Rightarrow \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

- Consider related connected component C !

How do we iteratively improve the dual solution?

A First Primal–Dual Approach

Complementary slackness: $x_e > 0 \Rightarrow \sum_{S: e \in \delta(S)} y_S = c_e$.

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

- Consider related connected component C !

How do we iteratively improve the dual solution?

- Increase y_C (until some edge in $\delta(C)$ becomes critical)!

A First Primal–Dual Approach

```
PrimalDualSteinerForestNaive(graph  $G$ , costs  $\mathbf{c}$ , pairs  $R$ )
```

A First Primal–Dual Approach

```
PrimalDualSteinerForestNaive(graph  $G$ , costs  $\mathbf{c}$ , pairs  $R$ )
```

```
     $y \leftarrow 0, \mathcal{F} \leftarrow \emptyset$ 
```

```
    return  $\mathcal{F}$ 
```

A First Primal–Dual Approach

```
PrimalDualSteinerForestNaive(graph  $G$ , costs  $\mathbf{c}$ , pairs  $R$ )
```

```
 $y \leftarrow 0, \mathcal{F} \leftarrow \emptyset$ 
```

```
while  $\exists(s, t) \in R$  not connected in  $(V(G), \mathcal{F})$  do
```

```
    return  $\mathcal{F}$ 
```

A First Primal–Dual Approach

```
PrimalDualSteinerForestNaive(graph  $G$ , costs  $\mathbf{c}$ , pairs  $R$ )
```

```
 $y \leftarrow 0, \mathcal{F} \leftarrow \emptyset$ 
```

```
while  $\exists(s, t) \in R$  not connected in  $(V(G), \mathcal{F})$  do
```

```
     $C \leftarrow$  component in  $(V(G), \mathcal{F})$  with  $|C \cap \{s, t\}| = 1$ 
```

```
return  $\mathcal{F}$ 
```

A First Primal–Dual Approach

```
PrimalDualSteinerForestNaive(graph  $G$ , costs  $\mathbf{c}$ , pairs  $R$ )
```

```
 $y \leftarrow 0, \mathcal{F} \leftarrow \emptyset$ 
```

```
while  $\exists(s, t) \in R$  not connected in  $(V(G), \mathcal{F})$  do
```

```
     $C \leftarrow$  component in  $(V(G), \mathcal{F})$  with  $|C \cap \{s, t\}| = 1$ 
```

```
    Increase  $y_C$ 
```

```
return  $\mathcal{F}$ 
```

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs \mathbf{c} , pairs R)

$y \leftarrow 0, \mathcal{F} \leftarrow \emptyset$

while $\exists(s, t) \in R$ not connected in $(V(G), \mathcal{F})$ **do**

$C \leftarrow$ component in $(V(G), \mathcal{F})$ with $|C \cap \{s, t\}| = 1$

Increase y_C

until $\sum_{S: e' \in \delta(S)} y_S = c_{e'}$ for some $e' \in \delta(C)$.

return \mathcal{F}

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs \mathbf{c} , pairs R)

$y \leftarrow 0, \mathcal{F} \leftarrow \emptyset$

while $\exists(s, t) \in R$ not connected in $(V(G), \mathcal{F})$ **do**

$C \leftarrow$ component in $(V(G), \mathcal{F})$ with $|C \cap \{s, t\}| = 1$

Increase y_C

until $\sum_{S: e' \in \delta(S)} y_S = c_{e'}$ for some $e' \in \delta(C)$.

$\mathcal{F} \leftarrow \mathcal{F} \cup \{e'\}$

return \mathcal{F}

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs \mathbf{c} , pairs R)

$y \leftarrow 0, \mathcal{F} \leftarrow \emptyset$

while $\exists(s, t) \in R$ not connected in $(V(G), \mathcal{F})$ **do**

$C \leftarrow$ component in $(V(G), \mathcal{F})$ with $|C \cap \{s, t\}| = 1$

Increase y_C

until $\sum_{S: e' \in \delta(S)} y_S = c_{e'}$ for some $e' \in \delta(C)$.

$\mathcal{F} \leftarrow \mathcal{F} \cup \{e'\}$

return \mathcal{F}

Running time??

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs \mathbf{c} , pairs R)

$y \leftarrow 0, \mathcal{F} \leftarrow \emptyset$

while $\exists(s, t) \in R$ not connected in $(V(G), \mathcal{F})$ **do**

$C \leftarrow$ component in $(V(G), \mathcal{F})$ with $|C \cap \{s, t\}| = 1$

Increase y_C

until $\sum_{S: e' \in \delta(S)} y_S = c_{e'}$ for some $e' \in \delta(C)$.

$\mathcal{F} \leftarrow \mathcal{F} \cup \{e'\}$

return \mathcal{F}

Running time??

Trick: Handle all y_S with $y_S = 0$ implicitly.

Analysis

The cost of the solution F can be written as

Analysis

The cost of the solution F can be written as

$$\sum_{e \in F} c_e =$$

Analysis

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F}$$

Analysis

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S =$$

Analysis

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S.$$

Analysis

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_S y_S$.

Analysis

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_S y_S$.

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:-)
(Homework!)

Analysis

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_S y_S$.

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:-)
(Homework!)

But: Average degree of “active components” is less than 2.

Analysis

The cost of the solution F can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_S y_S$.

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:-)
(Homework!)

But: Average degree of “active components” is less than 2.

⇒ Increase y_C for all active components C simultaneously!

Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal–Dual

Part IV:
Primal–Dual with Synchronized Increases

Primal–Dual with Synchronized Increases

```
PrimalDualSteinerForest(graph  $G$ , edge costs  $\mathbf{c}$ , pairs  $R$ )
```

```
 $y$   $\leftarrow 0$ ,  $\mathcal{F} \leftarrow \emptyset$ ,  $\ell \leftarrow 0$ 
```

```
while  $\exists (s, t) \in R$  not connected in  $(V(G), \mathcal{F})$  do
```

```
     $\ell \leftarrow \ell + 1$ 
```

```
     $\mathcal{F} \leftarrow \mathcal{F} \cup \{e_\ell\}$ 
```

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs \mathbf{c} , pairs R)

$y \leftarrow 0, \mathcal{F} \leftarrow \emptyset, \ell \leftarrow 0$

while $\exists (s, t) \in R$ not connected in $(V(G), \mathcal{F})$ **do**

$\ell \leftarrow \ell + 1$

$\mathcal{C} \leftarrow \{\text{component } C \text{ in } (V(G), \mathcal{F}) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$

$\mathcal{F} \leftarrow \mathcal{F} \cup \{e_\ell\}$

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs \mathbf{c} , pairs R)

$y \leftarrow 0, \mathcal{F} \leftarrow \emptyset, \ell \leftarrow 0$

while $\exists (s, t) \in R$ not connected in $(V(G), \mathcal{F})$ **do**

$\ell \leftarrow \ell + 1$

$\mathcal{C} \leftarrow \{\text{component } C \text{ in } (V(G), \mathcal{F}) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$

 Increase y_C for all $C \in \mathcal{C}$ simultaneously

$\mathcal{F} \leftarrow \mathcal{F} \cup \{e_\ell\}$

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c , pairs R)

$y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$

while $\exists (s, t) \in R$ not connected in $(V(G), F)$ **do**

$\ell \leftarrow \ell + 1$

$\mathcal{C} \leftarrow \{\text{component } C \text{ in } (V(G), F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$

Increase y_C for all $C \in \mathcal{C}$ simultaneously

until $\sum_{S: e_\ell \in \delta(S)} y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C)$, $C \in \mathcal{C}$.

$F \leftarrow F \cup \{e_\ell\}$

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c , pairs R)

$y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$

while $\exists (s, t) \in R$ not connected in $(V(G), F)$ **do**

$\ell \leftarrow \ell + 1$

$\mathcal{C} \leftarrow \{\text{component } C \text{ in } (V(G), F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$

Increase y_C for all $C \in \mathcal{C}$ simultaneously

until $\sum_{S: e_\ell \in \delta(S)} y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C)$, $C \in \mathcal{C}$.

$F \leftarrow F \cup \{e_\ell\}$

$F' \leftarrow F$

return F'

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c , pairs R)

$y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$

while $\exists (s, t) \in R$ not connected in $(V(G), F)$ **do**

$\ell \leftarrow \ell + 1$

$\mathcal{C} \leftarrow \{\text{component } C \text{ in } (V(G), F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$

Increase y_C for all $C \in \mathcal{C}$ simultaneously

until $\sum_{S: e_\ell \in \delta(S)} y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C)$, $C \in \mathcal{C}$.

$F \leftarrow F \cup \{e_\ell\}$

$F' \leftarrow F$

// Pruning

for $j \leftarrow \ell$ **downto** 1 **do**

return F'

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c , pairs R)

$y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$

while $\exists (s, t) \in R$ not connected in $(V(G), F)$ **do**

$\ell \leftarrow \ell + 1$

$\mathcal{C} \leftarrow \{\text{component } C \text{ in } (V(G), F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$

 Increase y_C for all $C \in \mathcal{C}$ simultaneously

 until $\sum_{S: e_\ell \in \delta(S)} y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C)$, $C \in \mathcal{C}$.

$F \leftarrow F \cup \{e_\ell\}$

$F' \leftarrow F$

 // Pruning

for $j \leftarrow \ell$ **downto** 1 **do**

return F'

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c , pairs R)

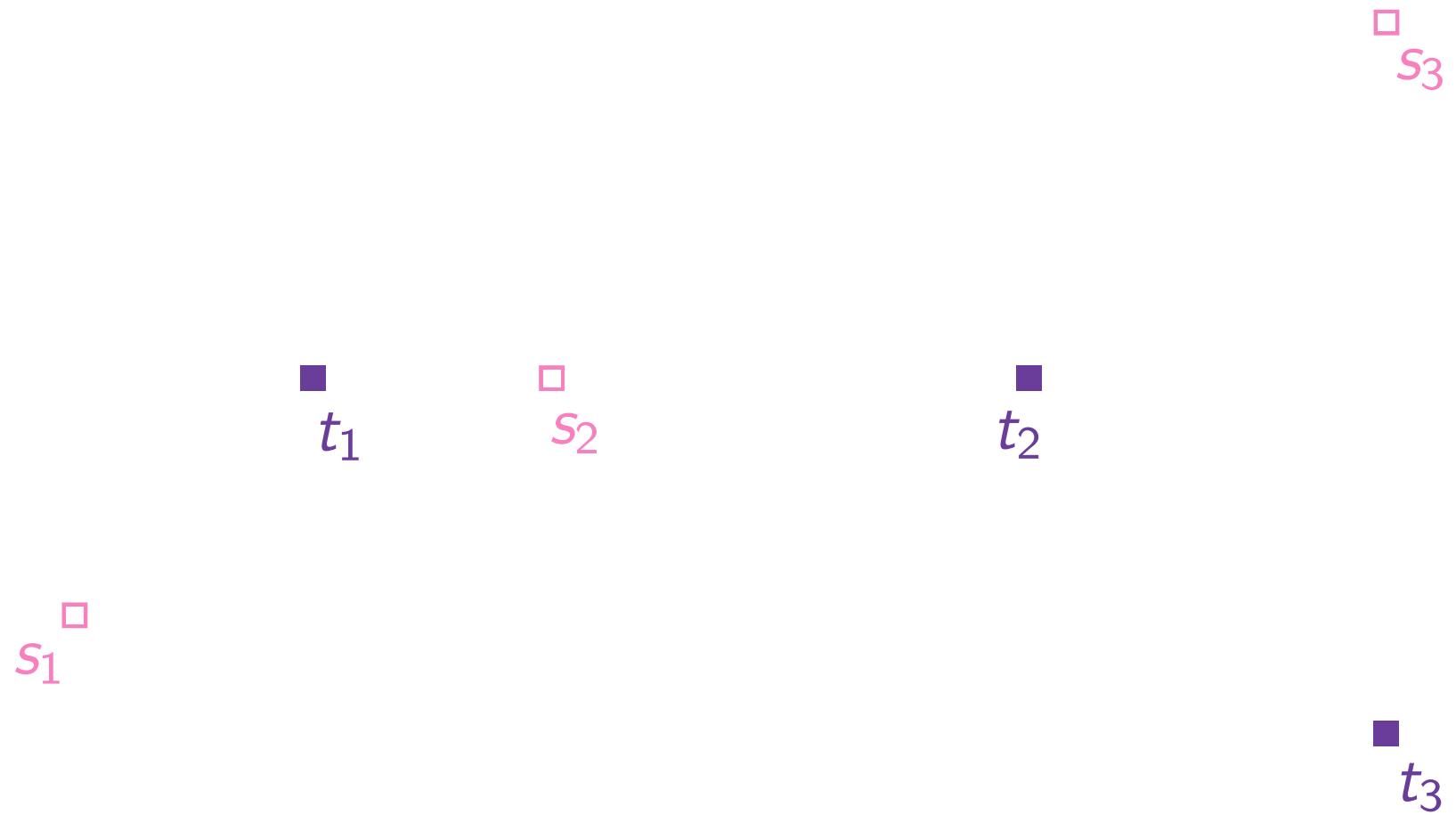
```

 $y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ 
while  $\exists (s, t) \in R$  not connected in  $(V(G), F)$  do
   $\ell \leftarrow \ell + 1$ 
   $\mathcal{C} \leftarrow \{\text{component } C \text{ in } (V(G), F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$ 
  Increase  $y_C$  for all  $C \in \mathcal{C}$  simultaneously
  until  $\sum_{S: e_\ell \in \delta(S)} y_S = c_{e_\ell}$  for some  $e_\ell \in \delta(C)$ ,  $C \in \mathcal{C}$ .
   $F \leftarrow F \cup \{e_\ell\}$ 
 $F' \leftarrow F$ 
// Pruning
for  $j \leftarrow \ell$  downto 1 do
  if  $F' \setminus \{e_j\}$  is feasible solution then
     $F' \leftarrow F' \setminus \{e_j\}$ 
return  $F'$ 

```

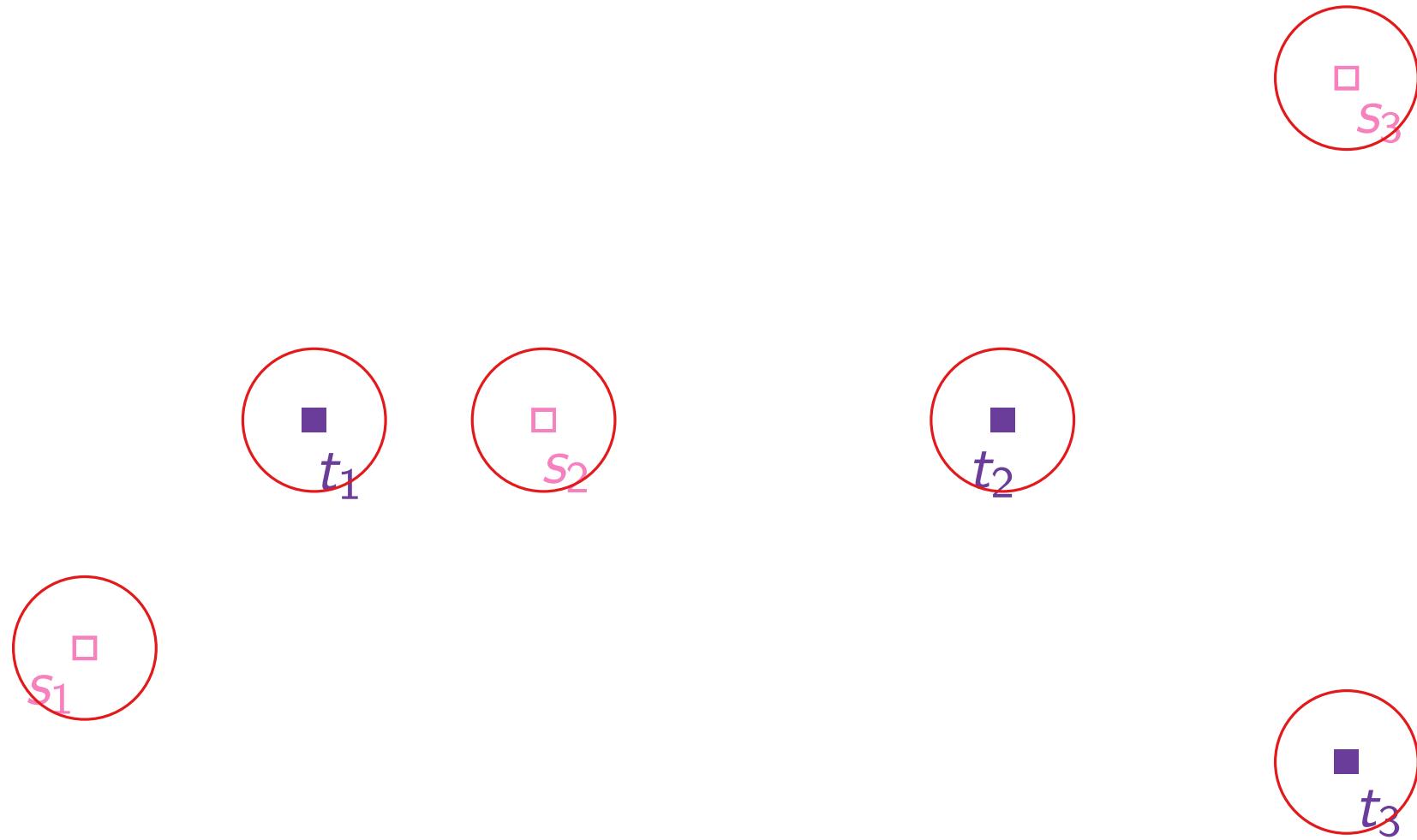
Illustration

$G = K_6$ with Euclidean edge costs



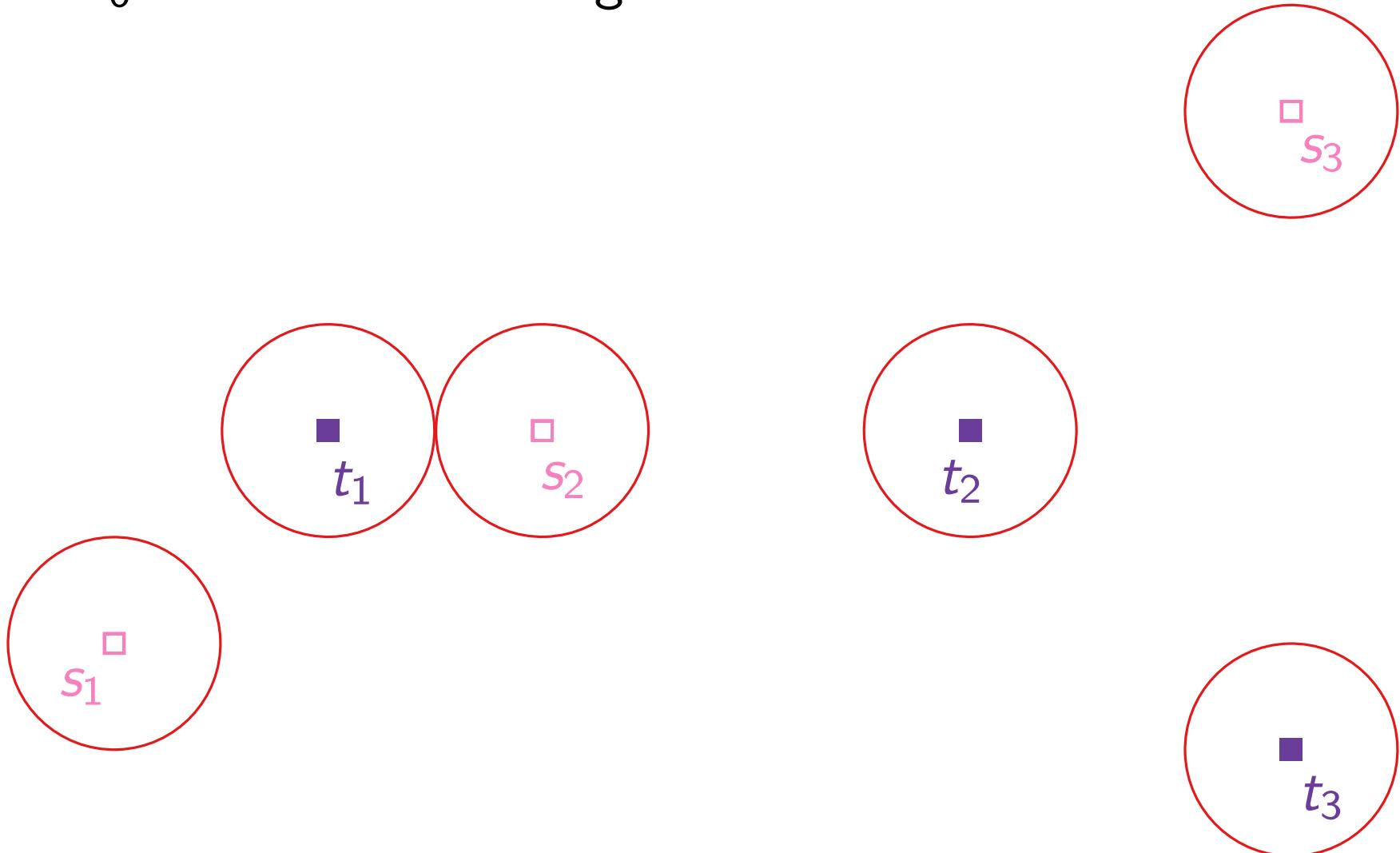
Illustration

$G = K_6$ with Euclidean edge costs



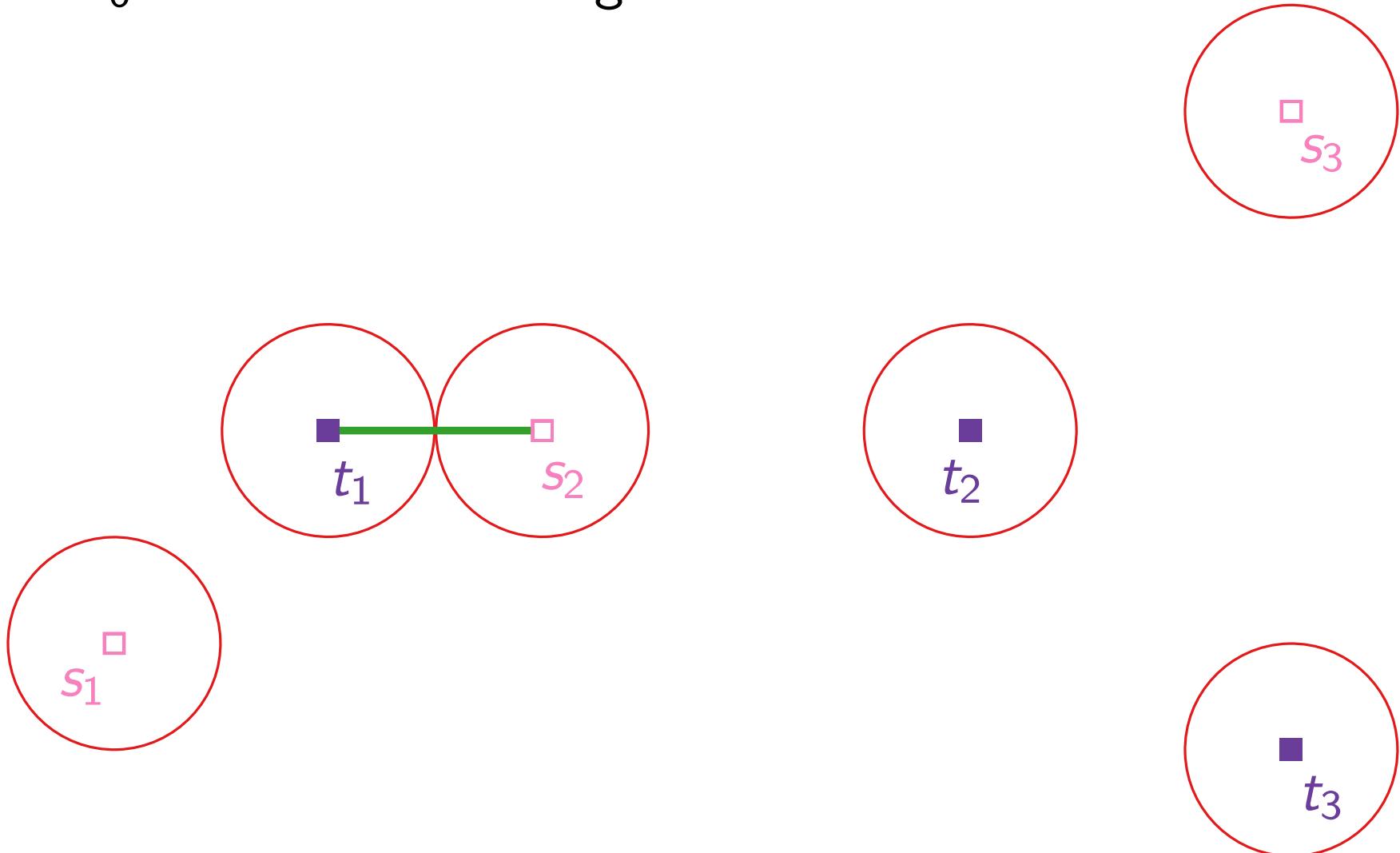
Illustration

$G = K_6$ with Euclidean edge costs



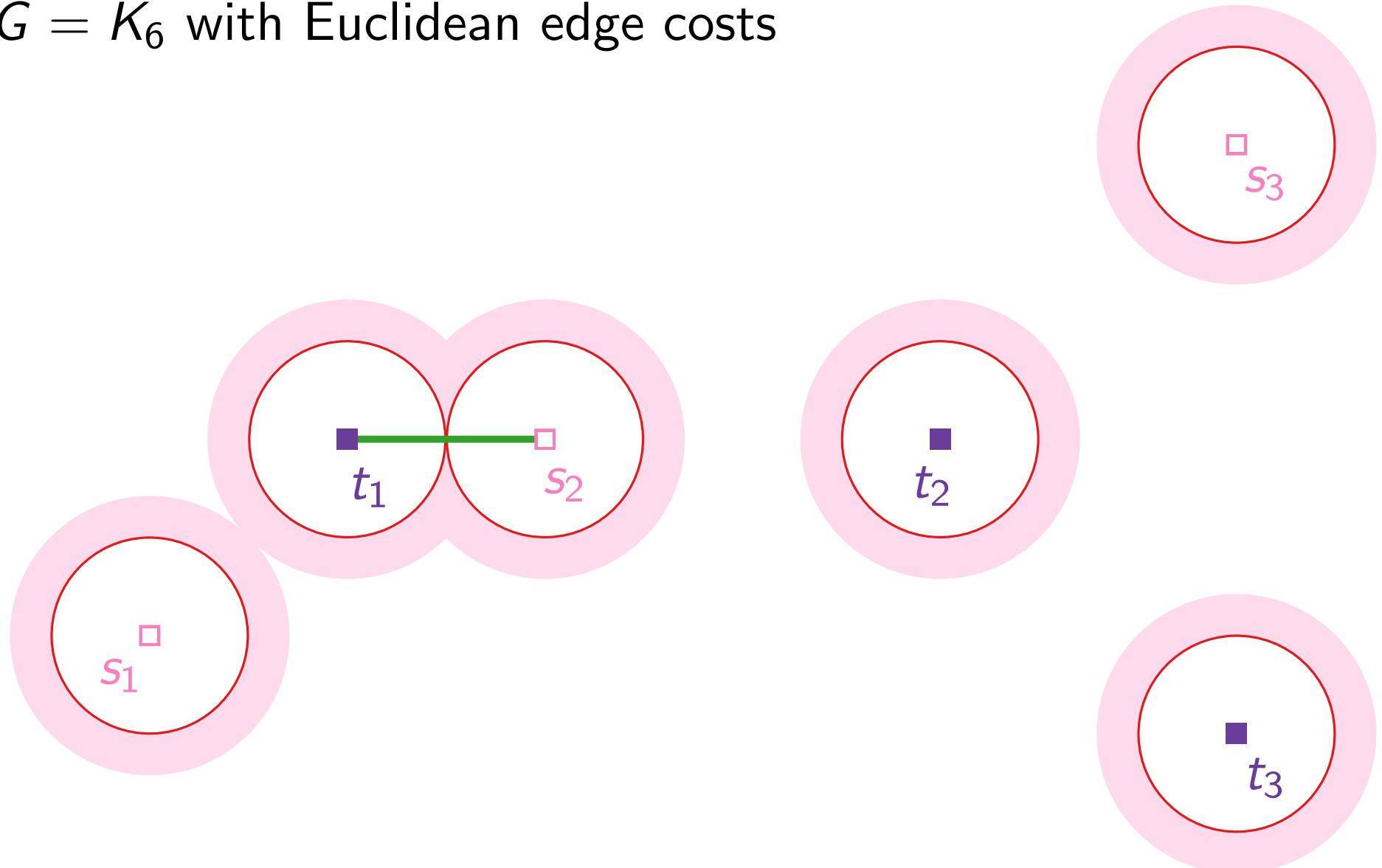
Illustration

$G = K_6$ with Euclidean edge costs



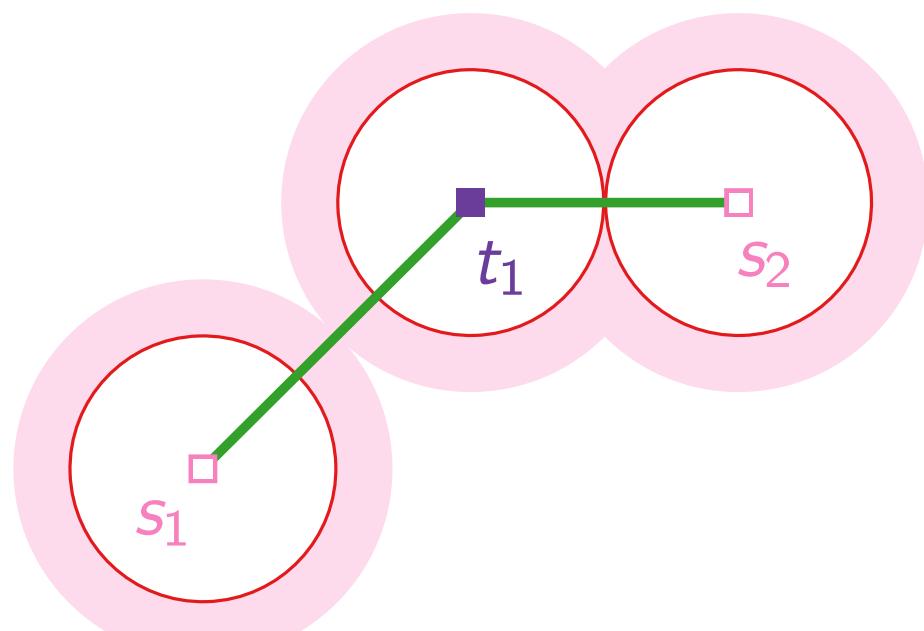
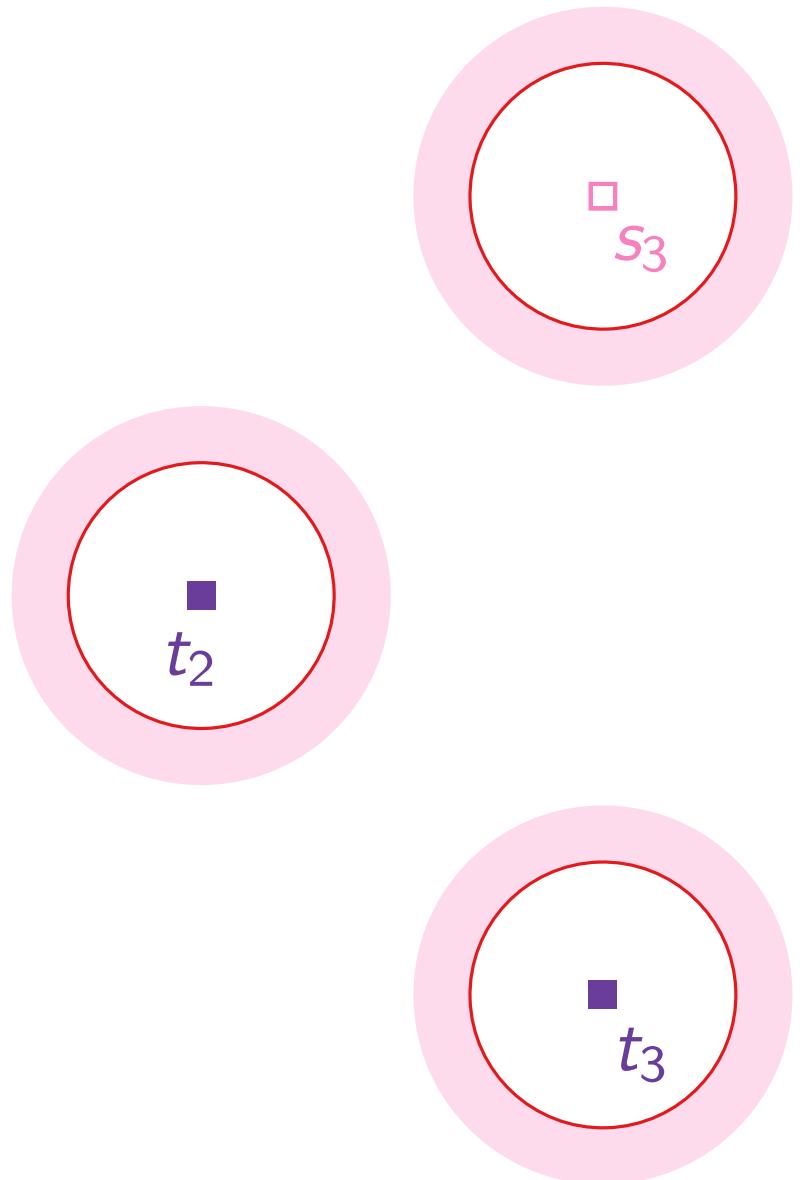
Illustration

$G = K_6$ with Euclidean edge costs



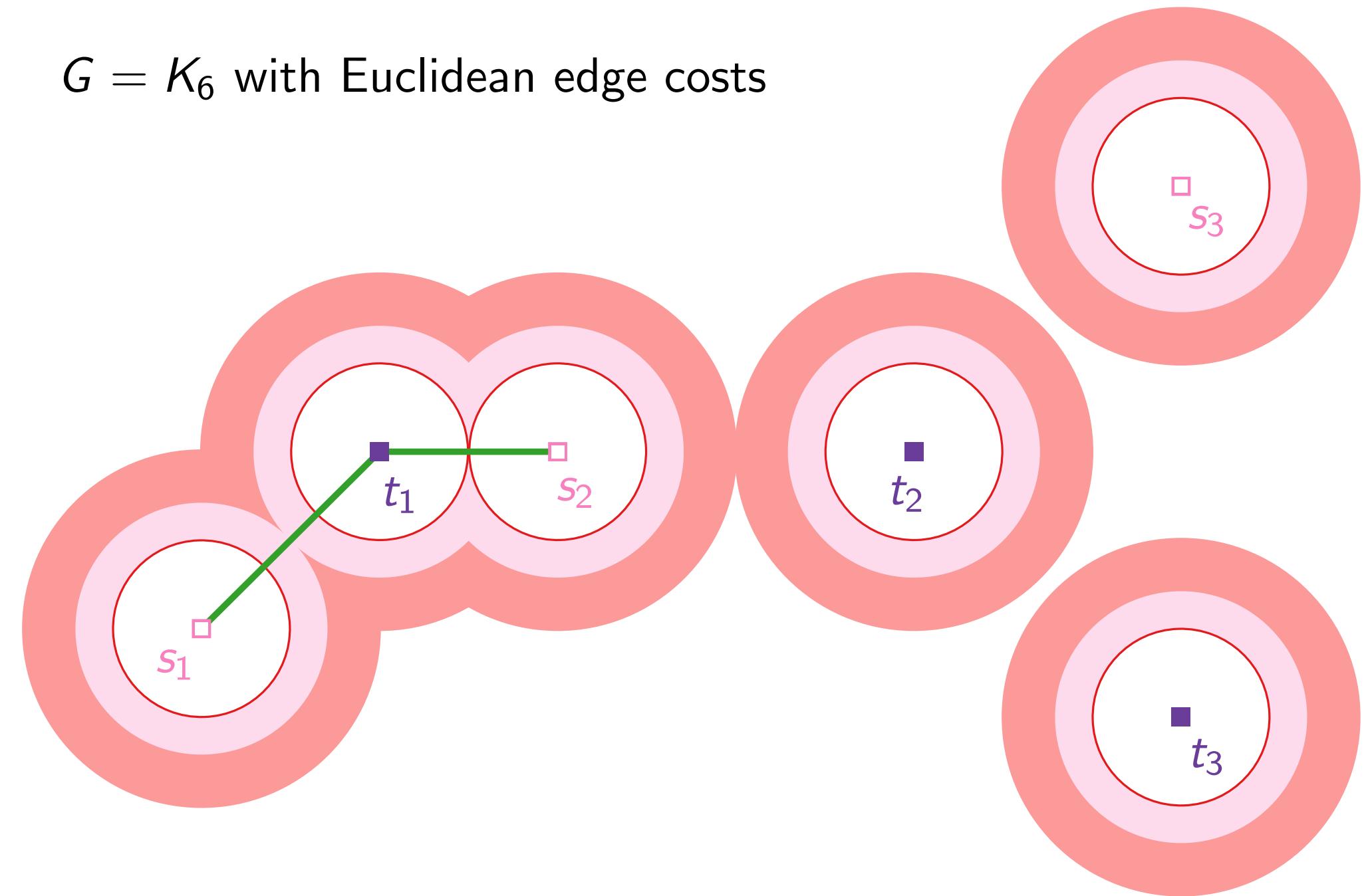
Illustration

$G = K_6$ with Euclidean edge costs



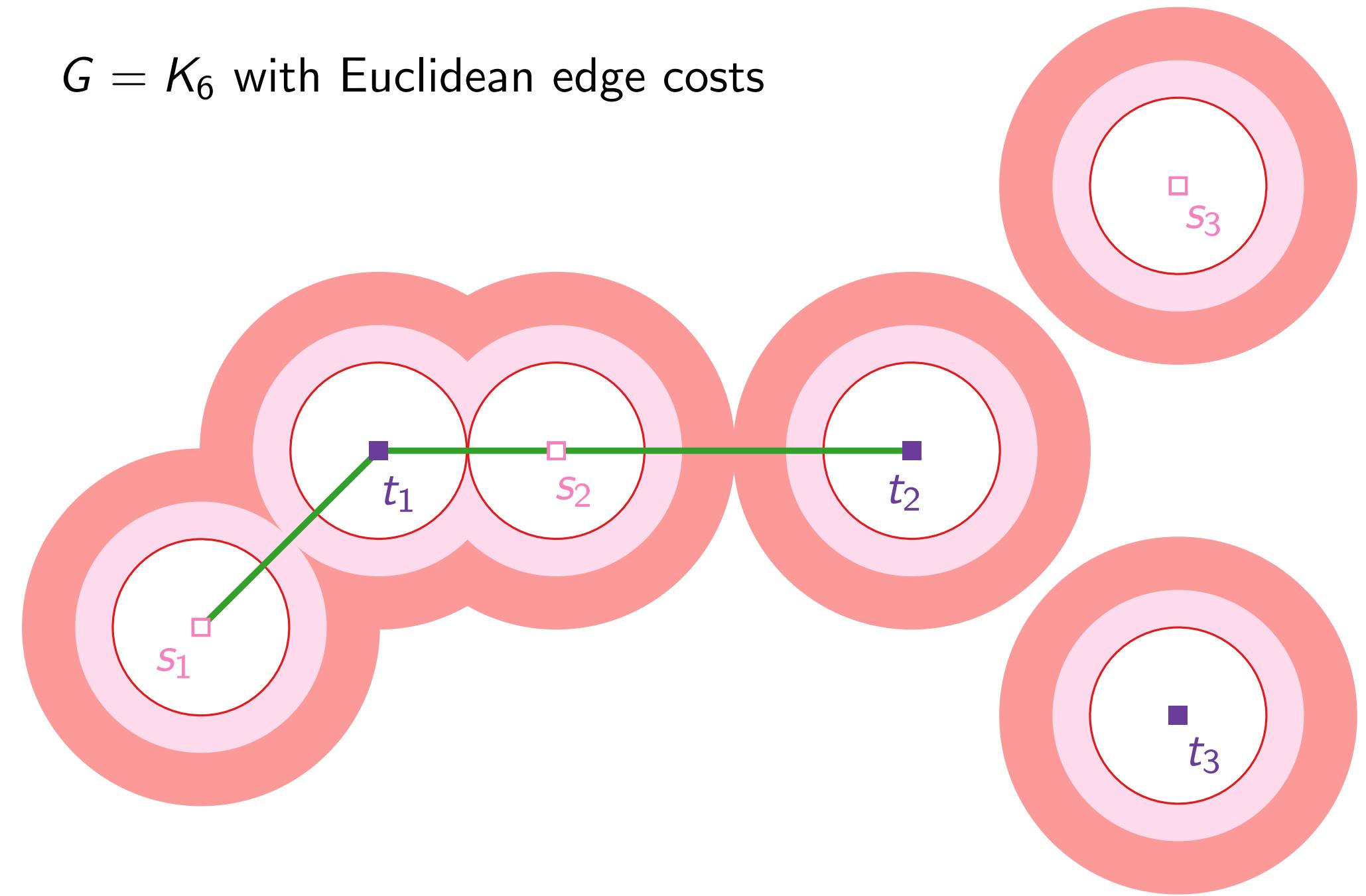
Illustration

$G = K_6$ with Euclidean edge costs



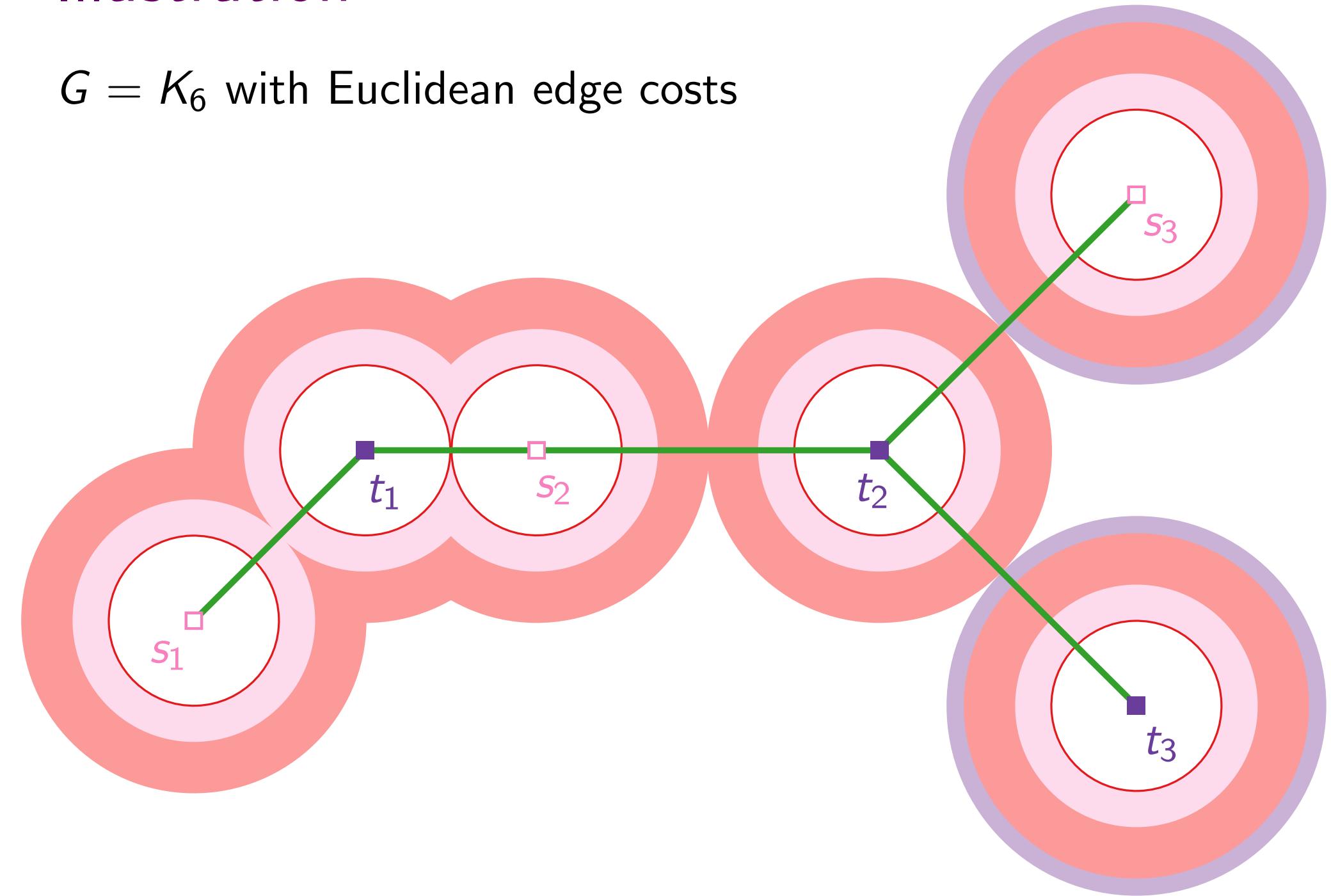
Illustration

$G = K_6$ with Euclidean edge costs



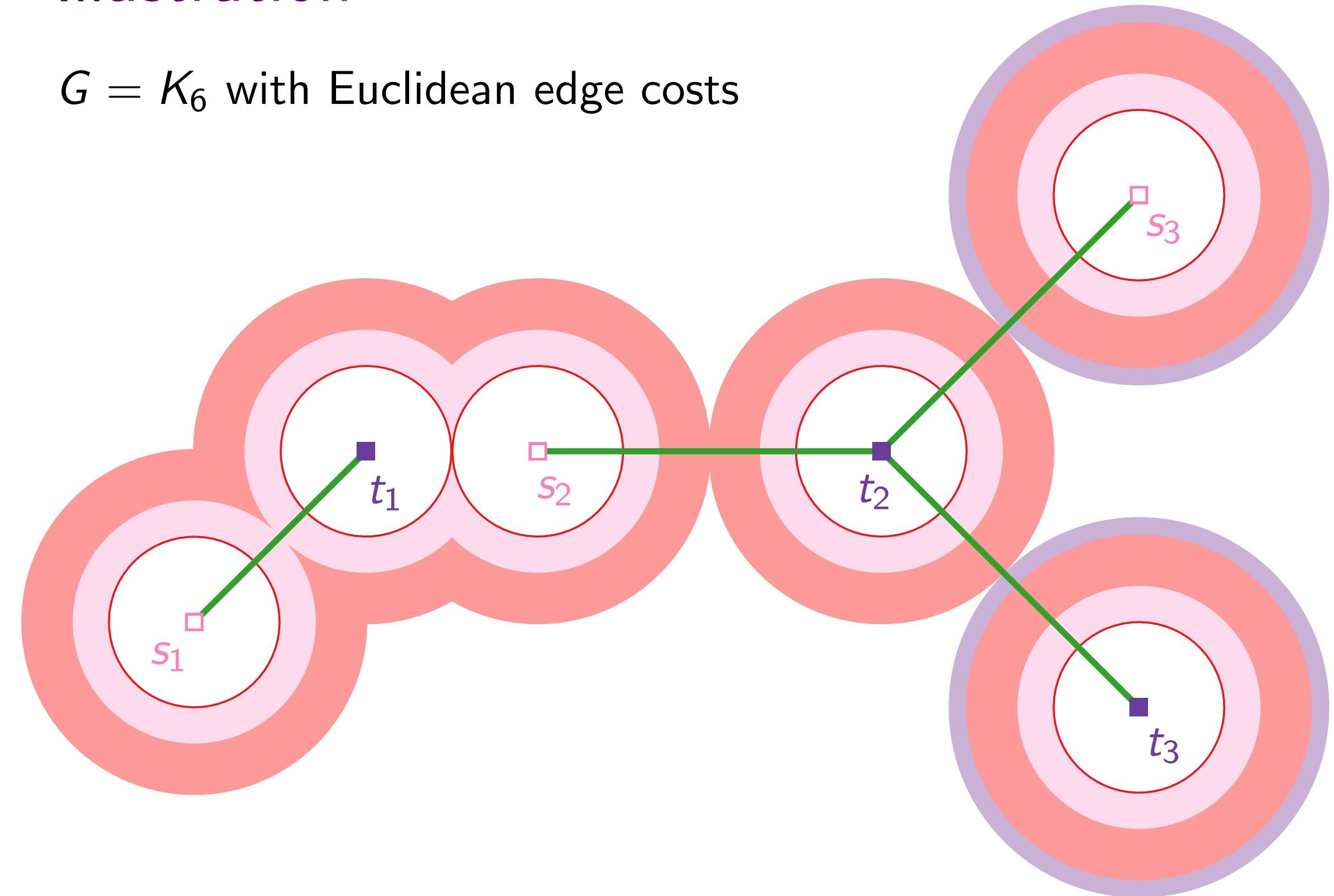
Illustration

$G = K_6$ with Euclidean edge costs



Illustration

$G = K_6$ with Euclidean edge costs



Approximation Algorithms

Lecture 12: STEINERFOREST via Primal–Dual

Part V:
Structure Lemma

Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq$$

Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap \mathcal{F}'| \leq 2|C|.$$

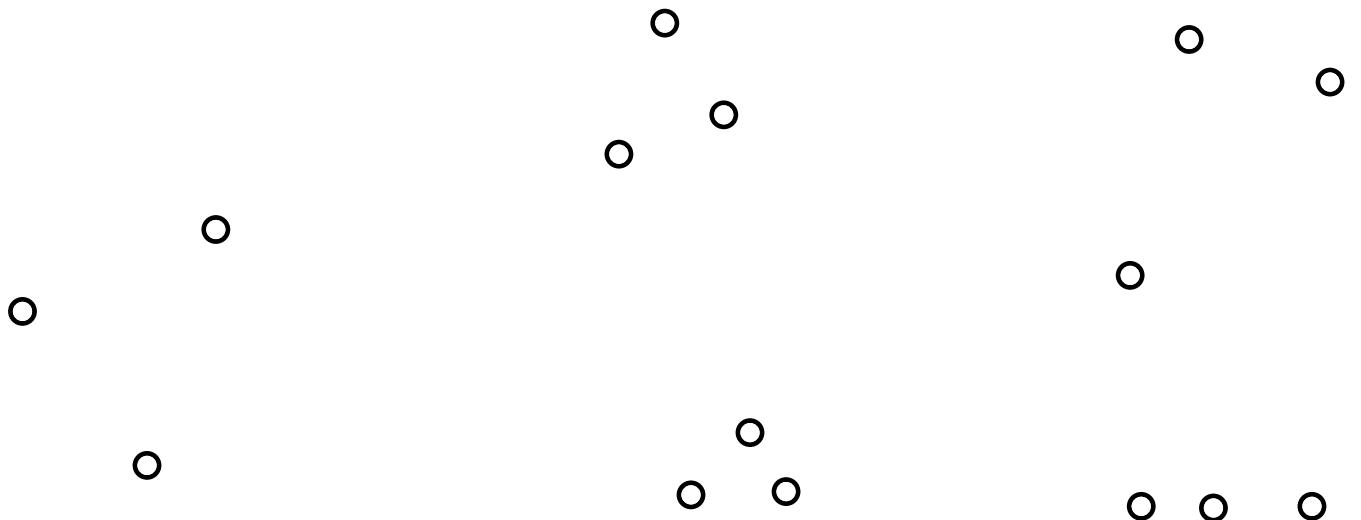
Proof. First the intuition...

Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...

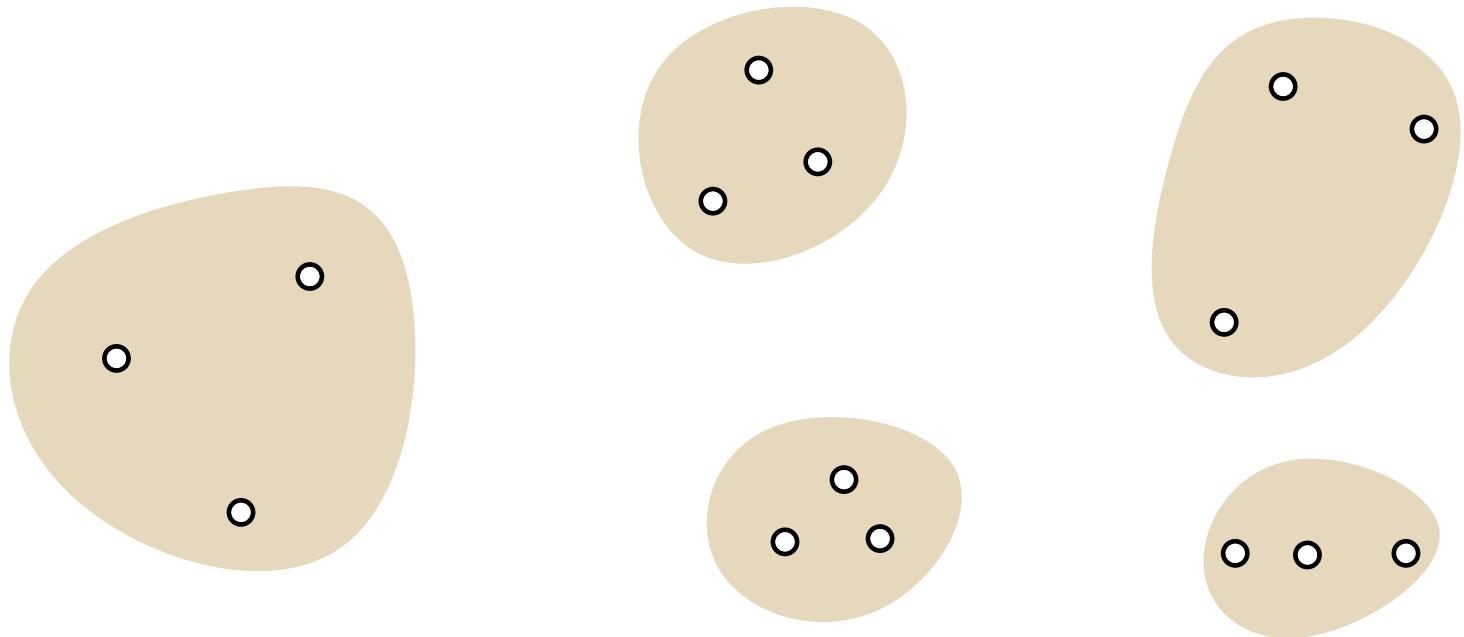


Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...

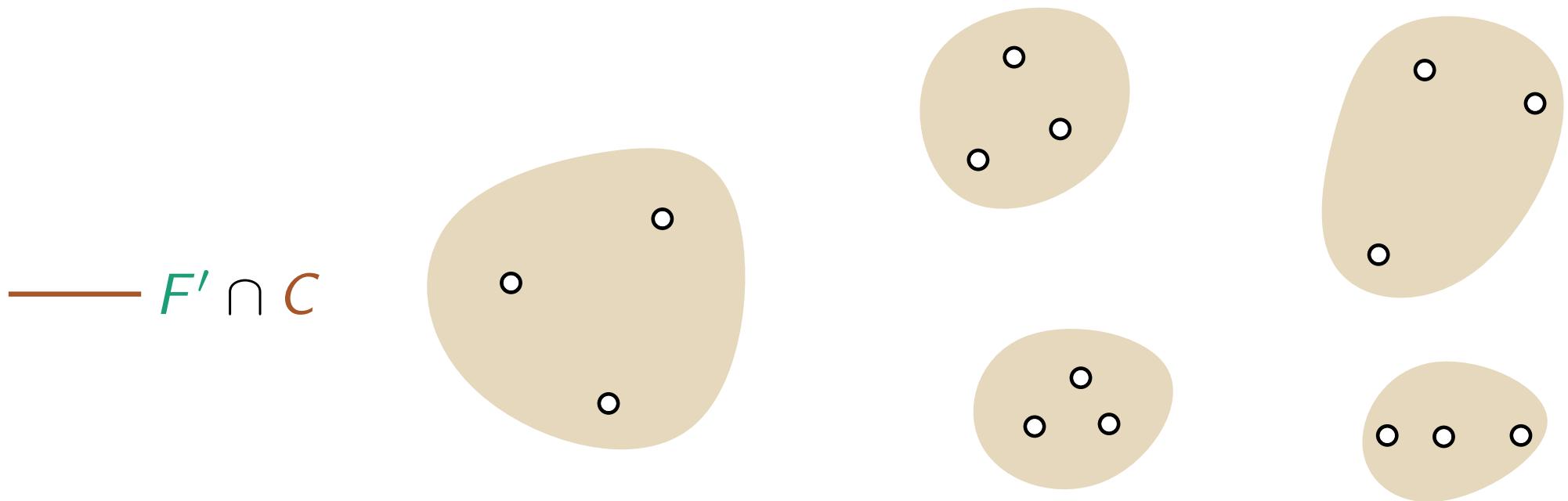


Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...



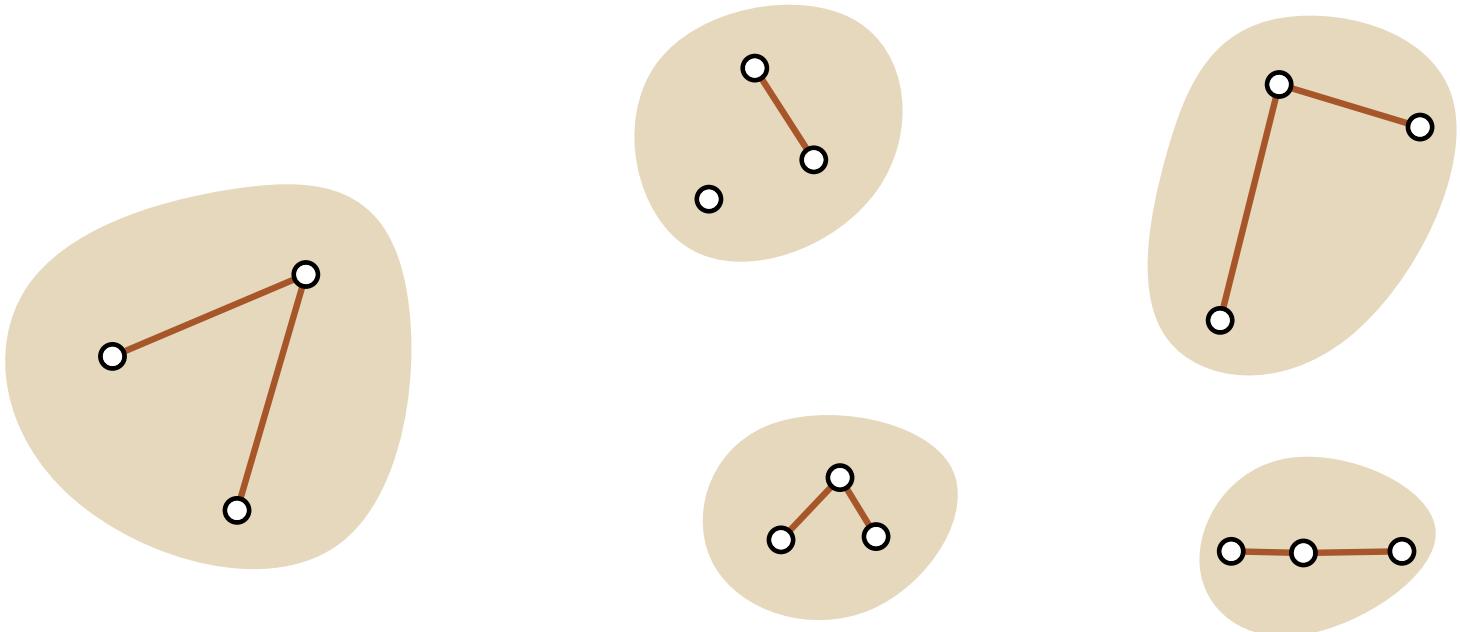
Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...

— $F' \cap C$



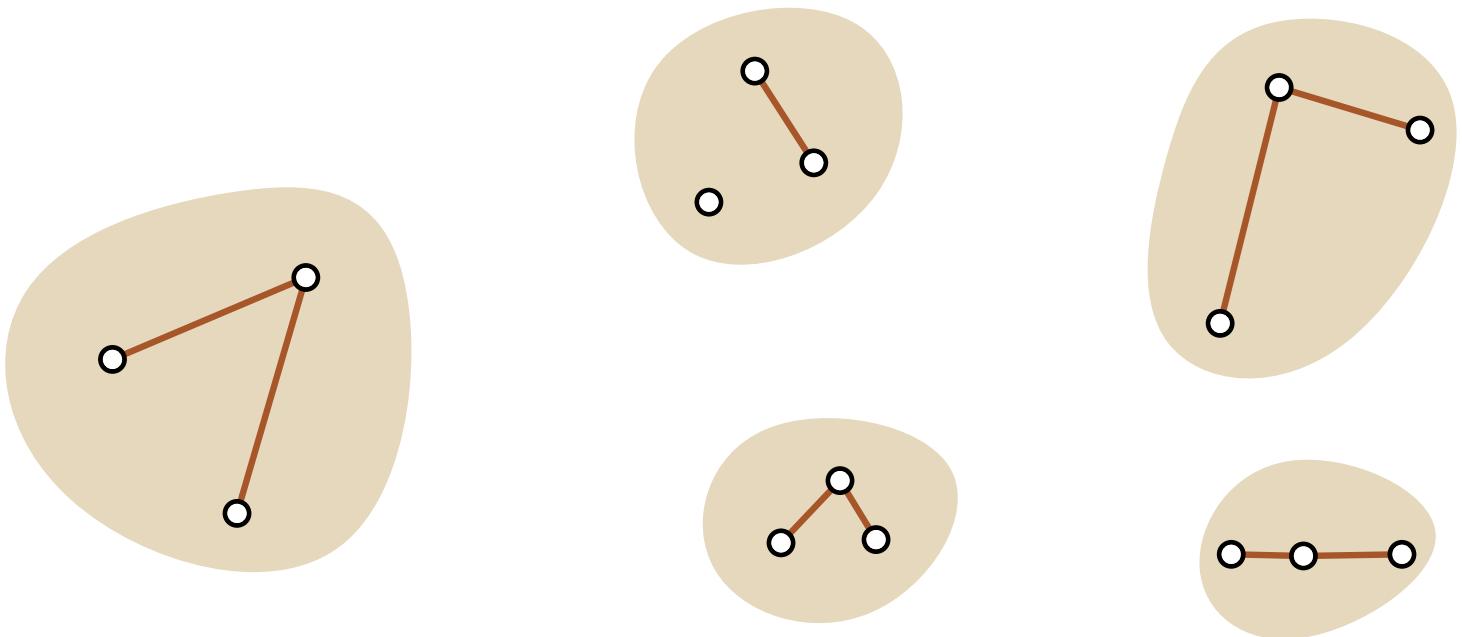
Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...

— $F' \cap C$
····· $F - F'$



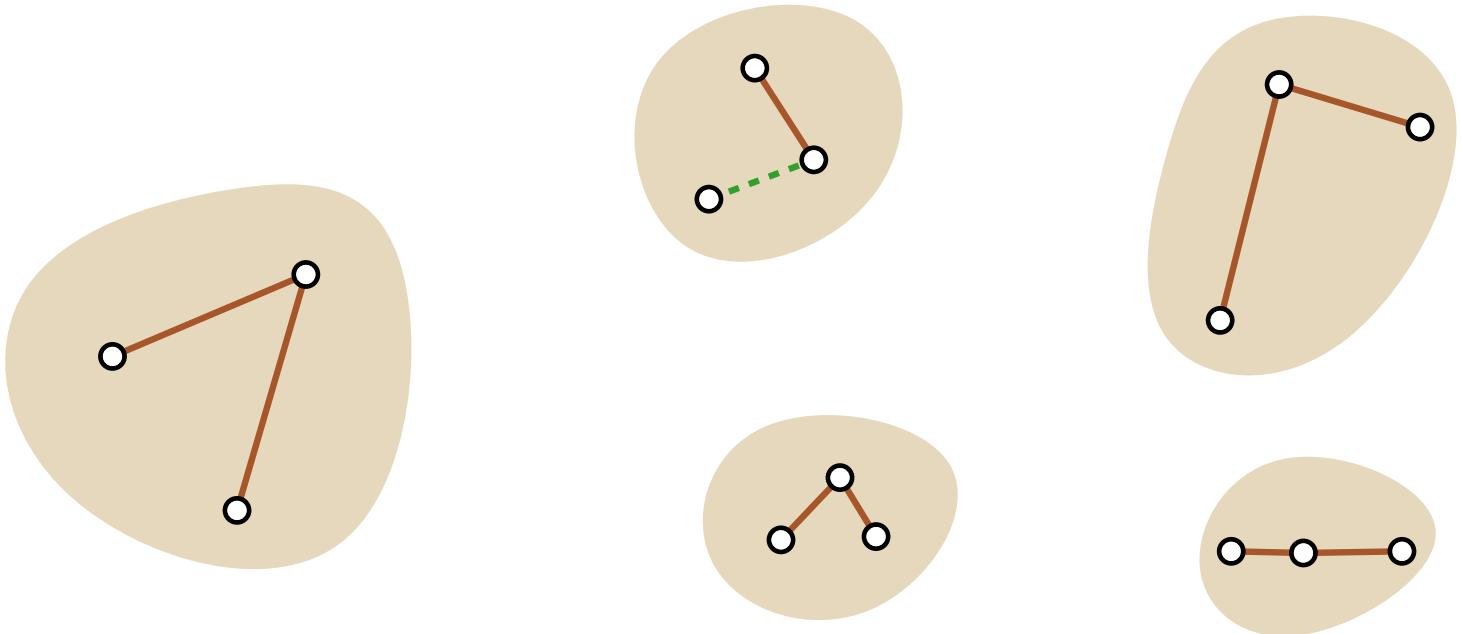
Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...

— $F' \cap C$
--- $F - F'$



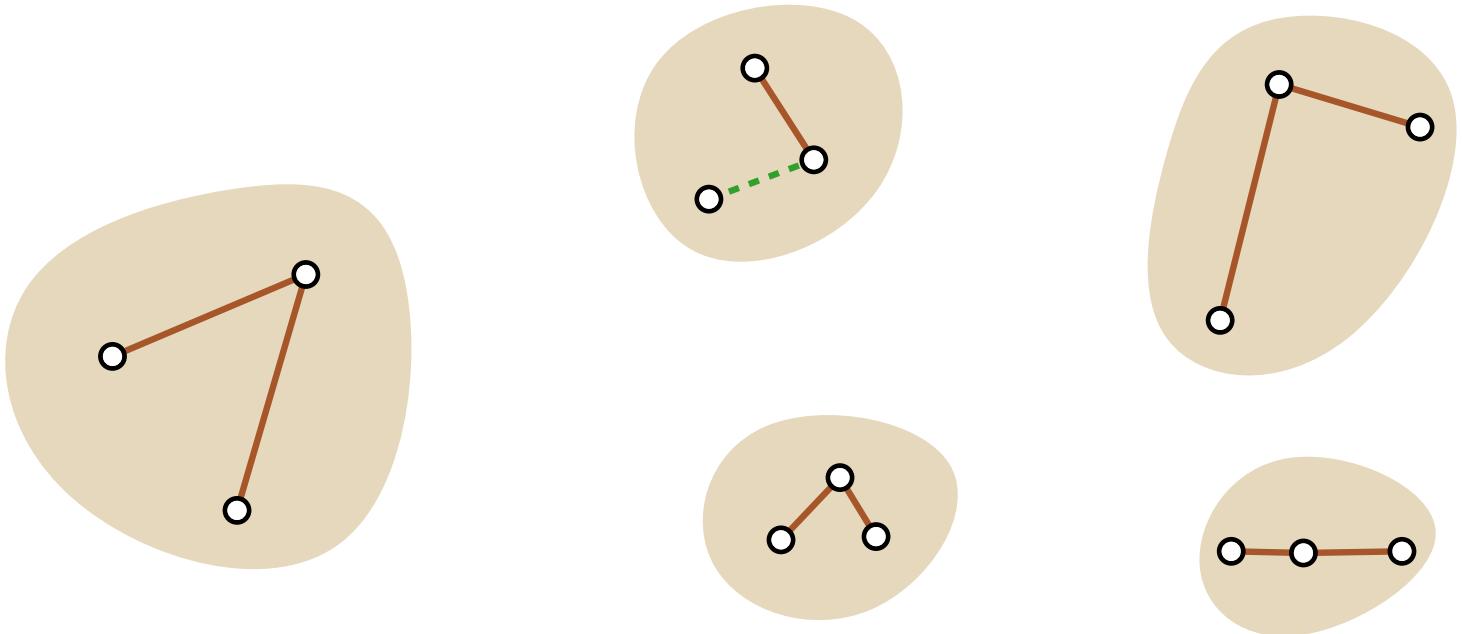
Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...

- $\delta(C) \cap F'$
- $F' \cap C$
- $F - F'$

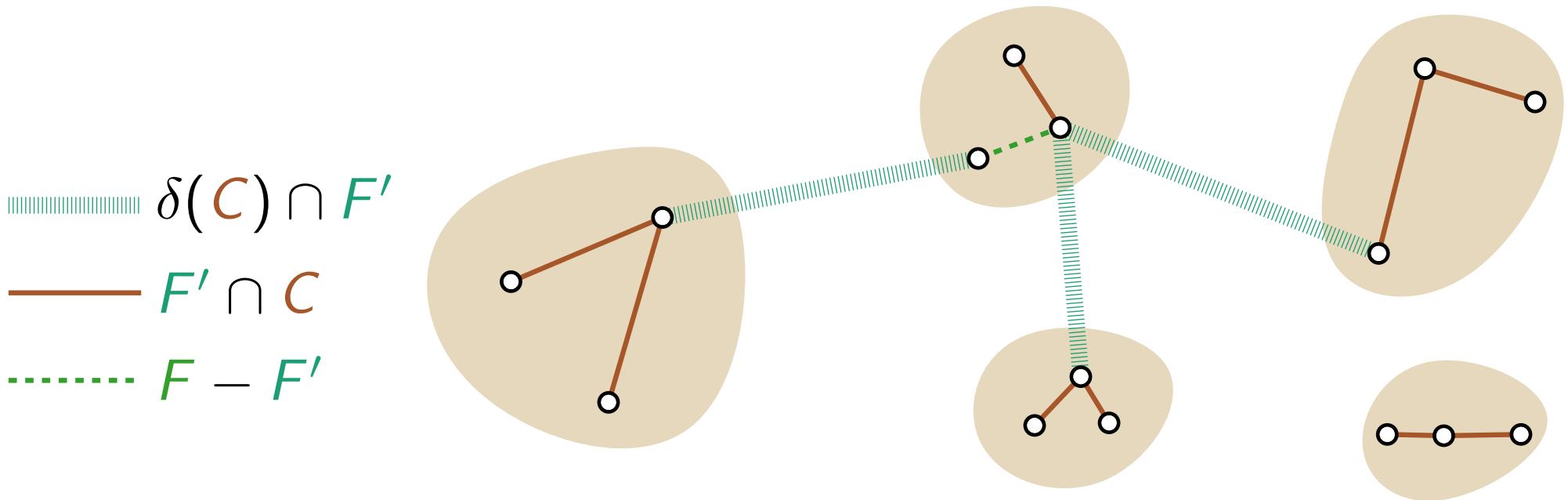


Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...



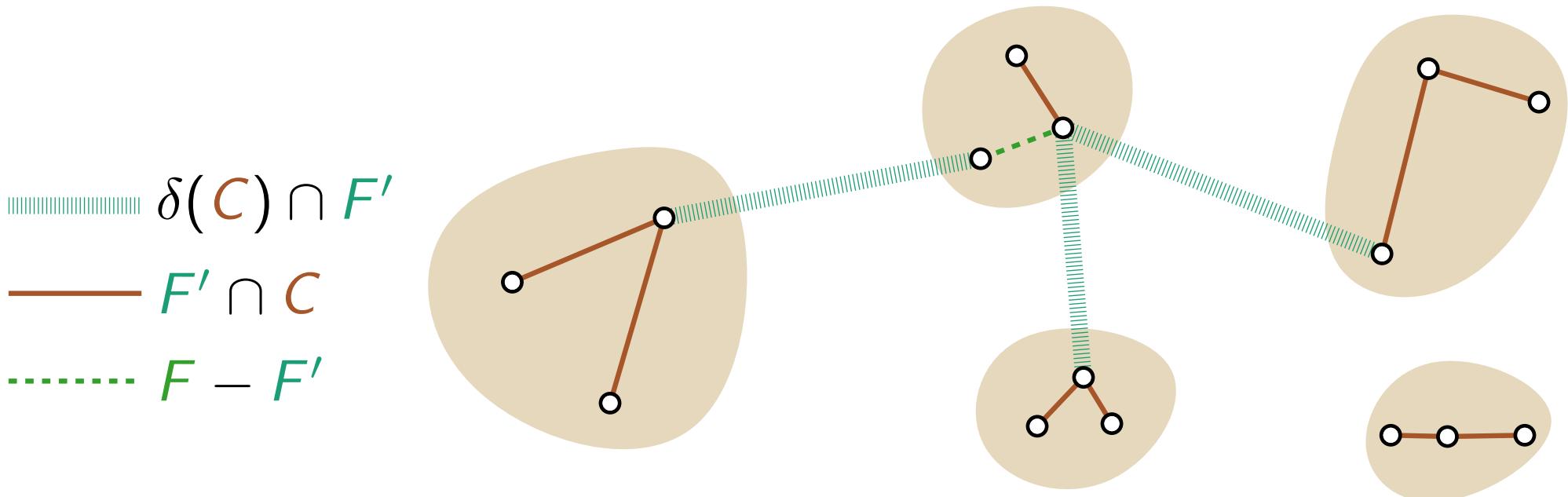
Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...

Every connected component C of F is a forest in F' .
 \Rightarrow average degree \leq



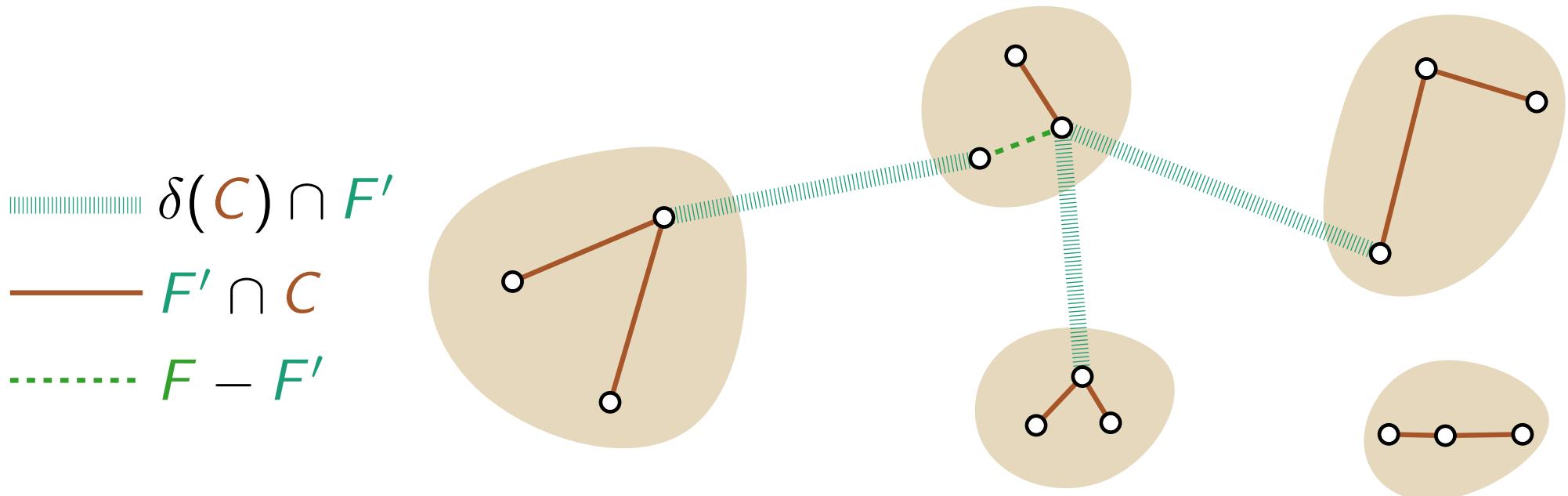
Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof. First the intuition...

Every connected component C of F is a forest in F' .
 \Rightarrow average degree ≤ 2



Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

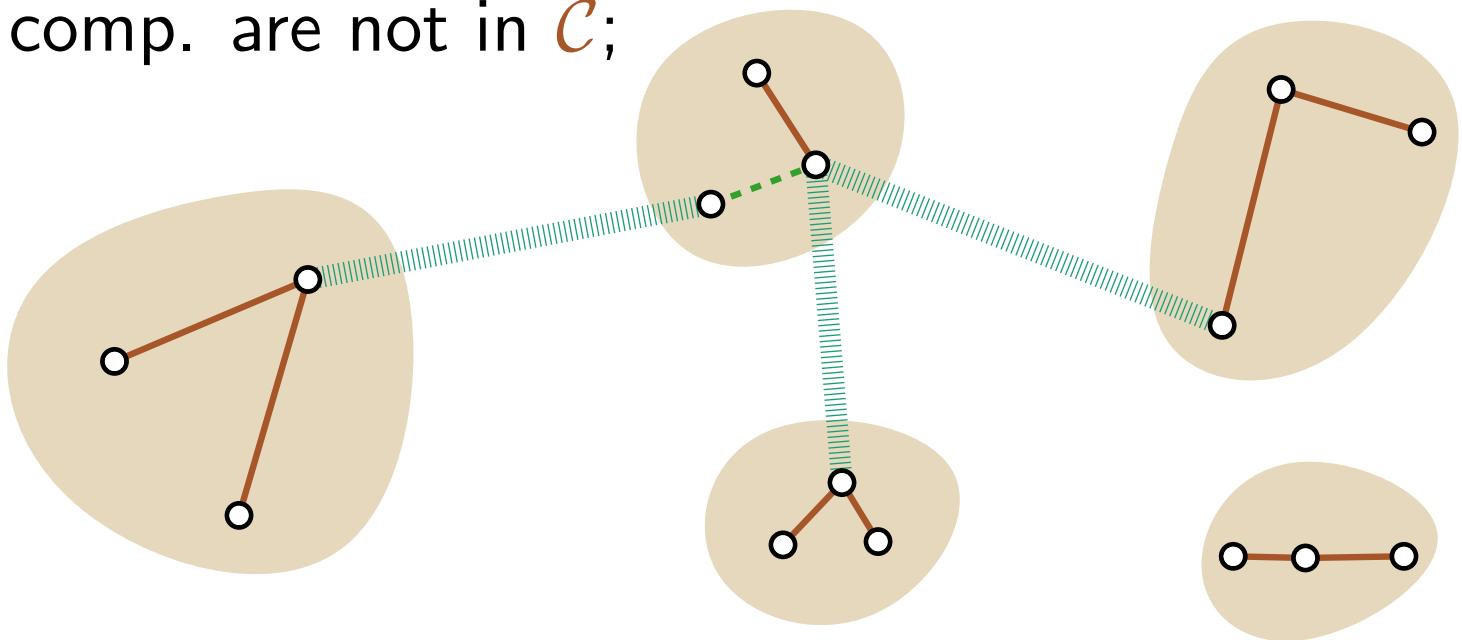
$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$

Proof. First the intuition...

Every connected component C of F is a forest in F' .
 \Rightarrow average degree ≤ 2

Difficulty: Some comp. are not in \mathcal{C} ;

- $\delta(C) \cap F'$
- $F' \cap C$
- $F - F'$



Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

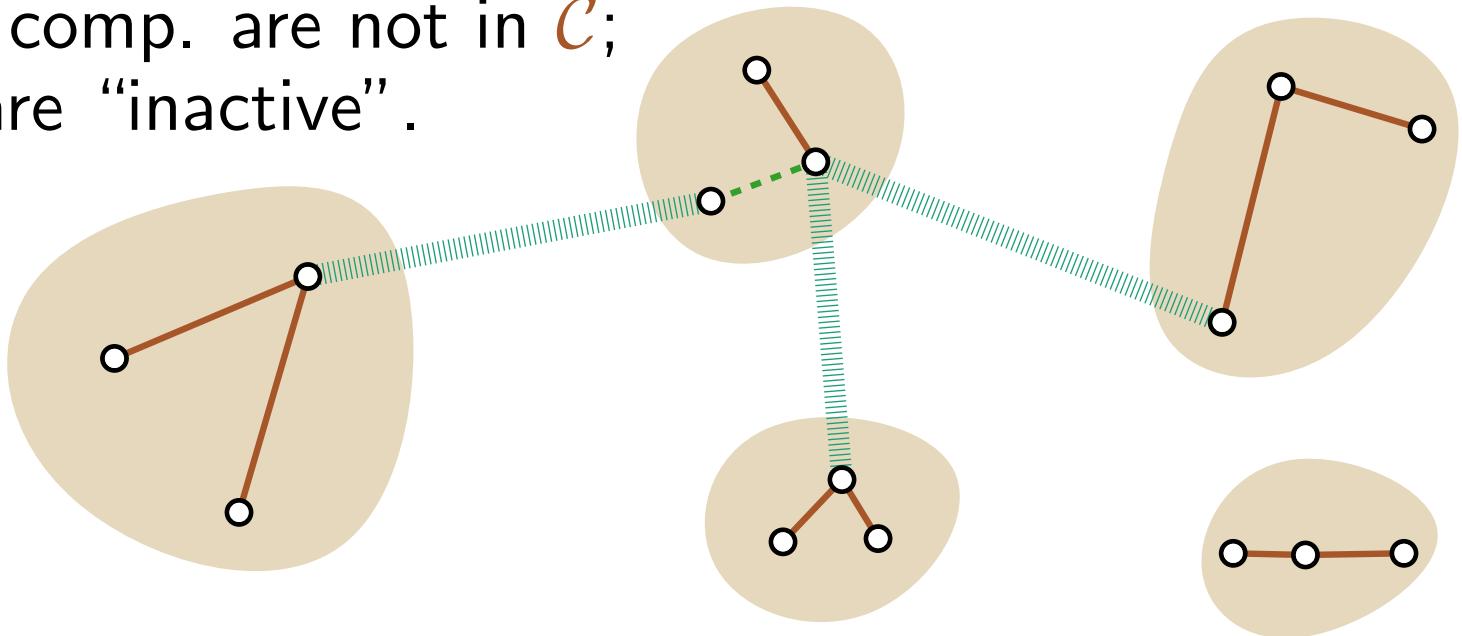
$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|\mathcal{C}|.$$

Proof. First the intuition...

Every connected component C of F is a forest in F' .
 \Rightarrow average degree ≤ 2

Difficulty: Some comp. are not in \mathcal{C} ;
 they are “inactive”.

- $\delta(C) \cap F'$
- $F' \cap C$
- $F - F'$

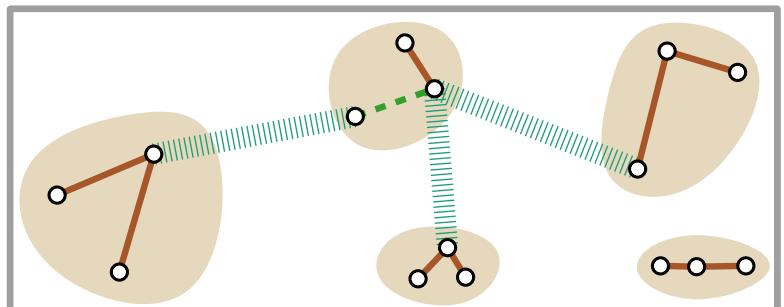


Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.



Proof of the Structure Lemma

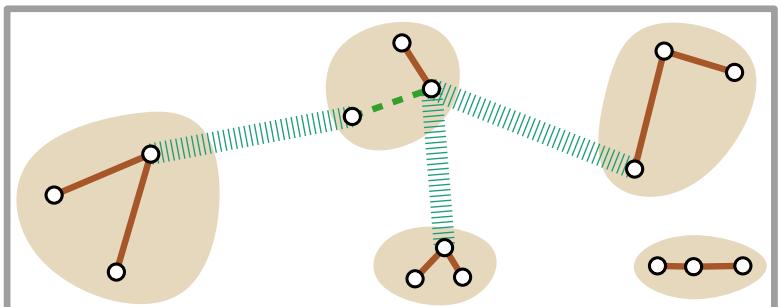
Lemma.

In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).



Proof of the Structure Lemma

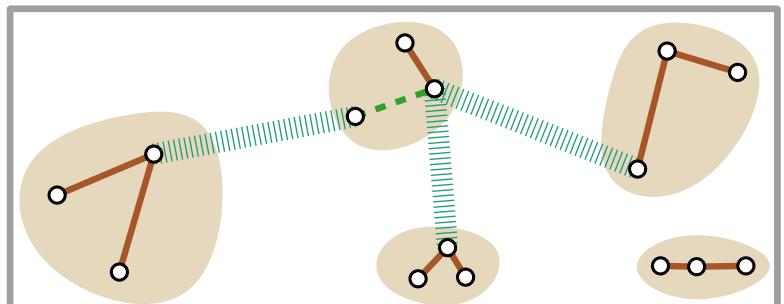
Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$,



Proof of the Structure Lemma

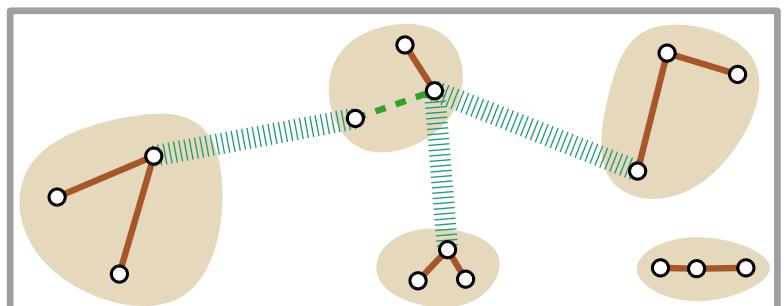
Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$,



Proof of the Structure Lemma

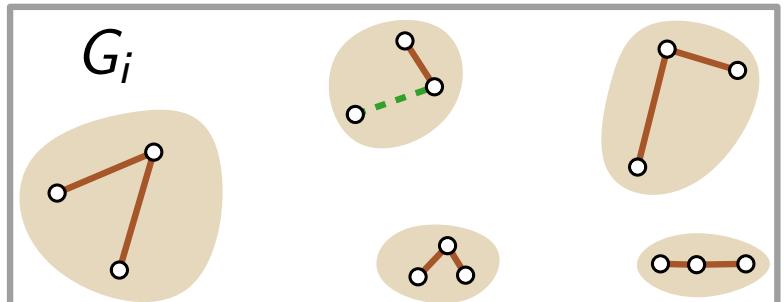
Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$,



Proof of the Structure Lemma

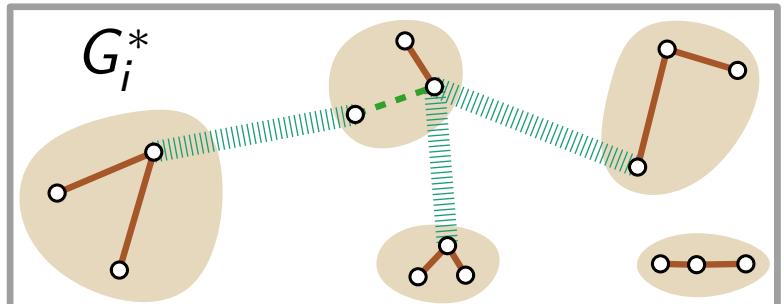
Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

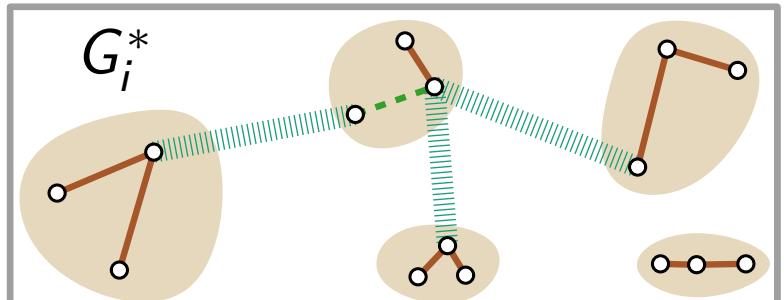
$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

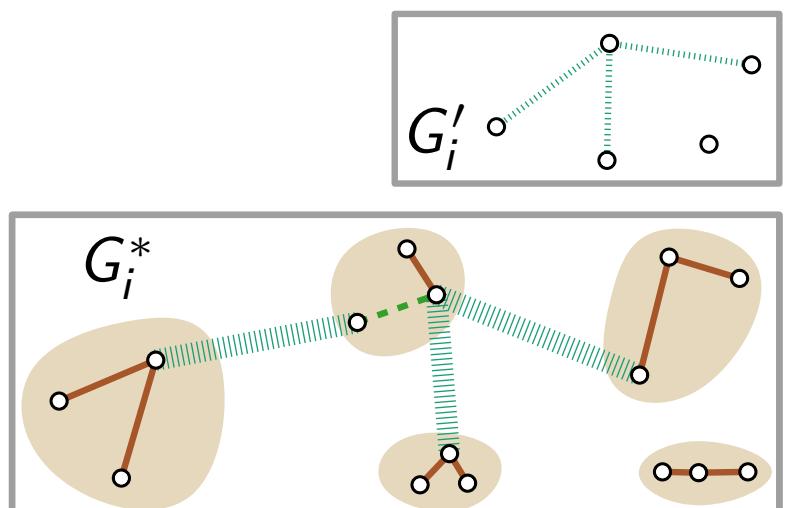
$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.



Proof of the Structure Lemma

Lemma.

In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

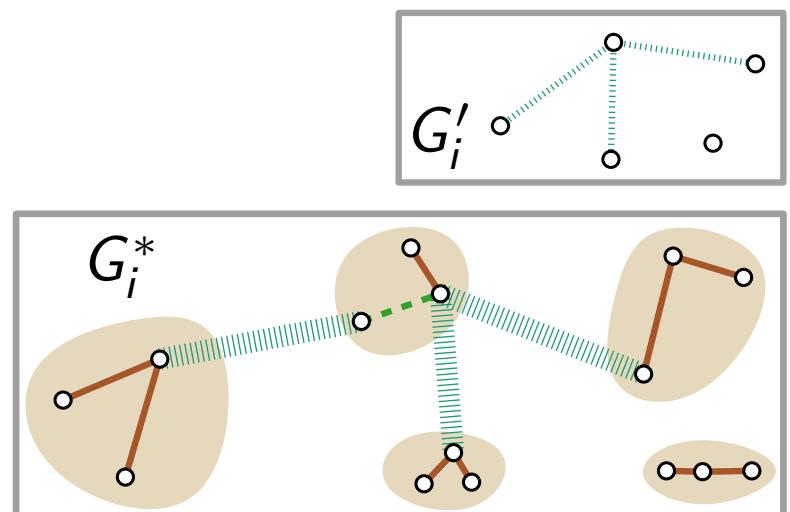
Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

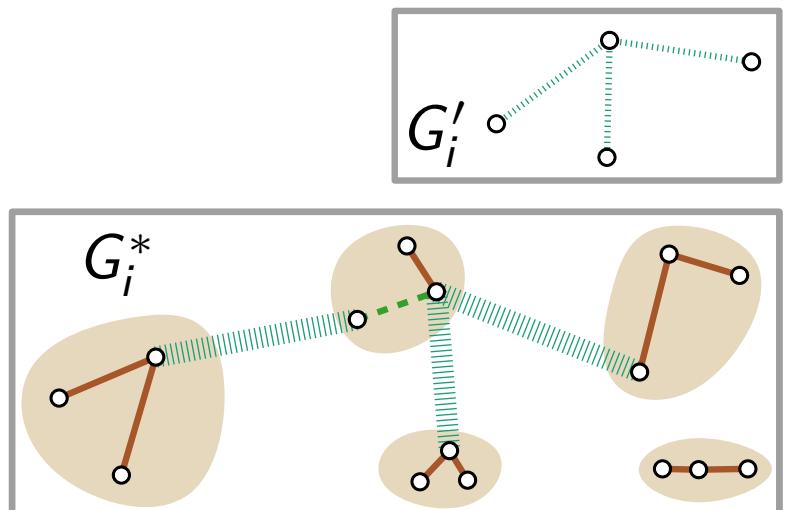
Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

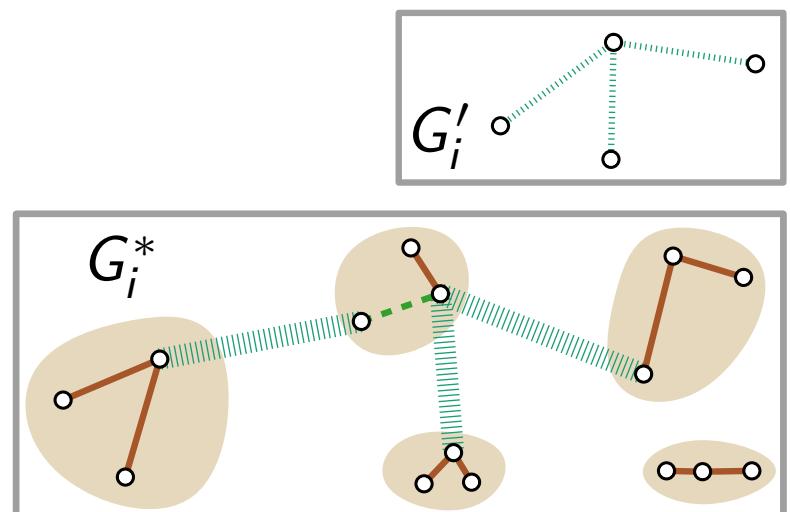
For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)



Proof of the Structure Lemma

Lemma.

In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

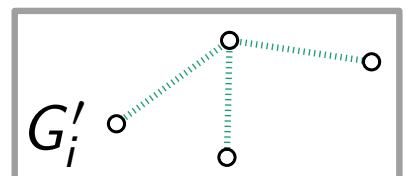
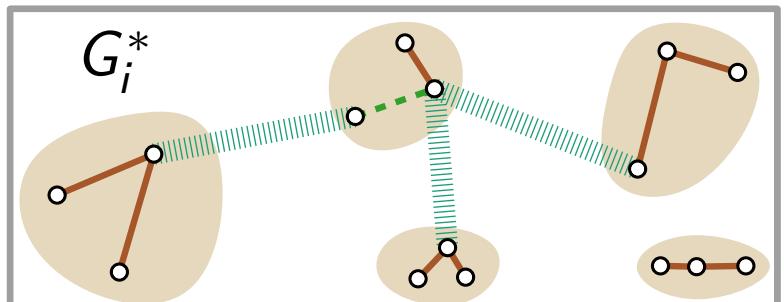
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

Note: $\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$



Proof of the Structure Lemma

Lemma.

In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

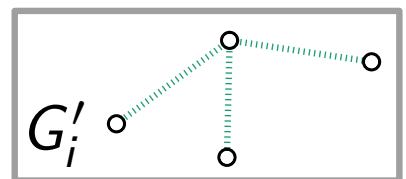
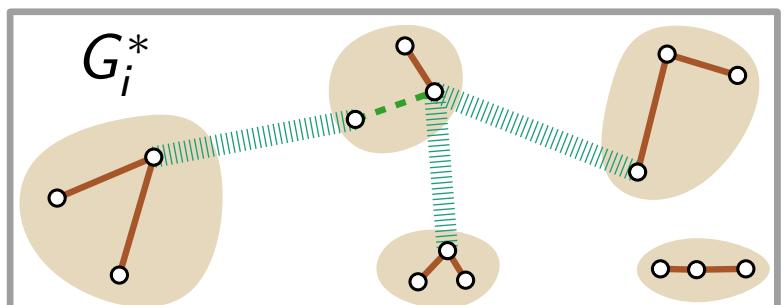
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| \end{aligned}$$



Proof of the Structure Lemma

Lemma.

In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

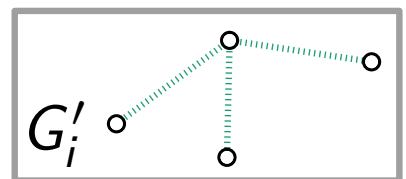
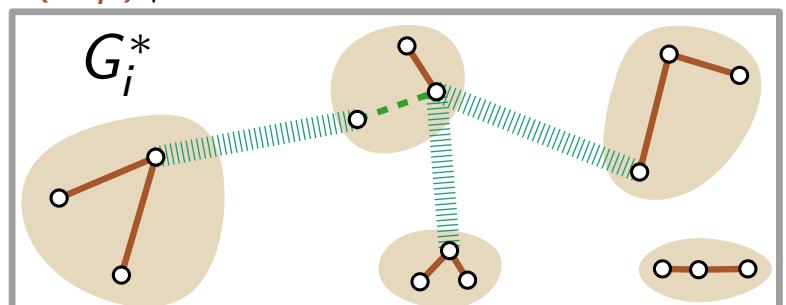
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| < 2|V(G'_i)| \end{aligned}$$



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

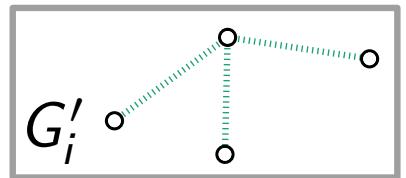
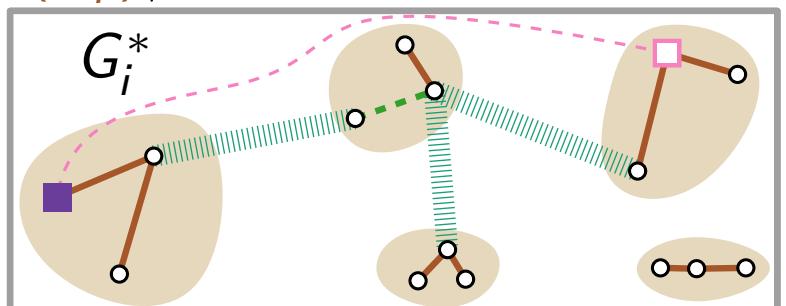
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| < 2|V(G'_i)| \end{aligned}$$



Proof of the Structure Lemma

Lemma.

In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

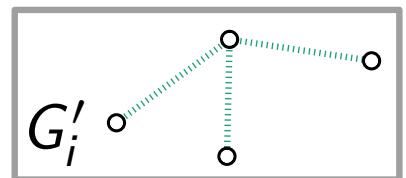
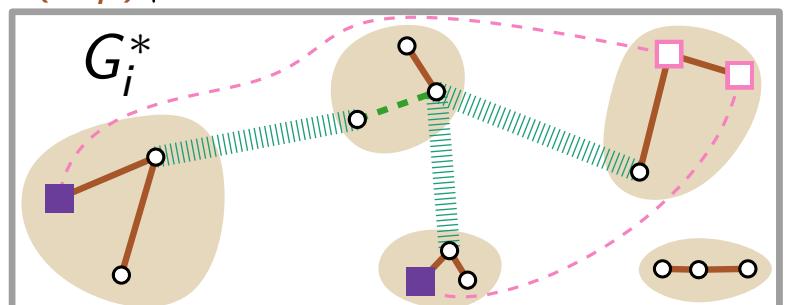
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| < 2|V(G'_i)| \end{aligned}$$



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

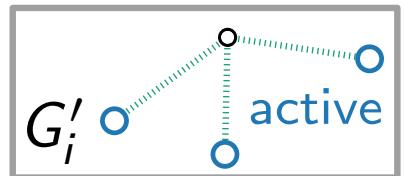
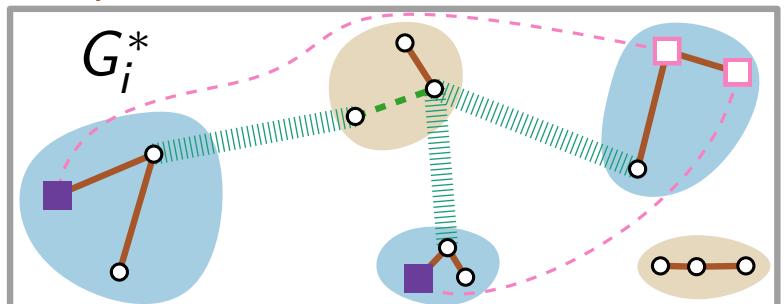
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| < 2|V(G'_i)| \end{aligned}$$



Proof of the Structure Lemma

Lemma.

In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

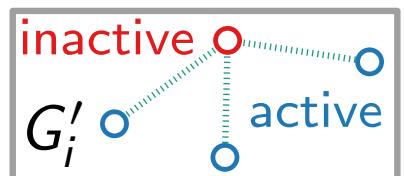
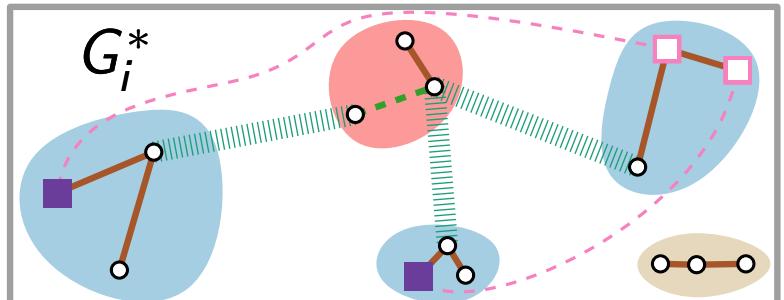
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| < 2|V(G'_i)| \end{aligned}$$



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

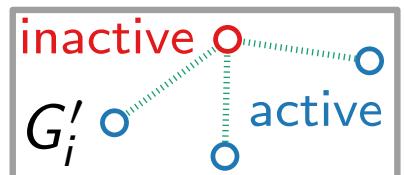
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

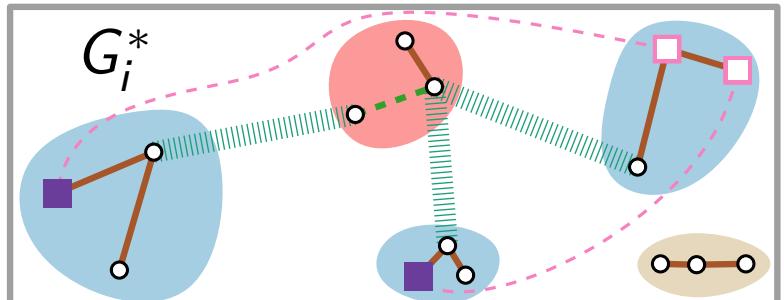
Claim. G'_i is a forest.

(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| < 2|V(G'_i)| \end{aligned}$$



Claim. Inactive vertices have degree ≥ 2 .



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

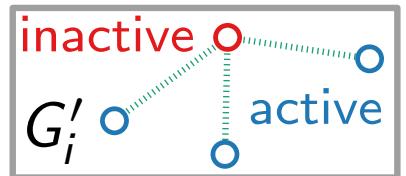
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

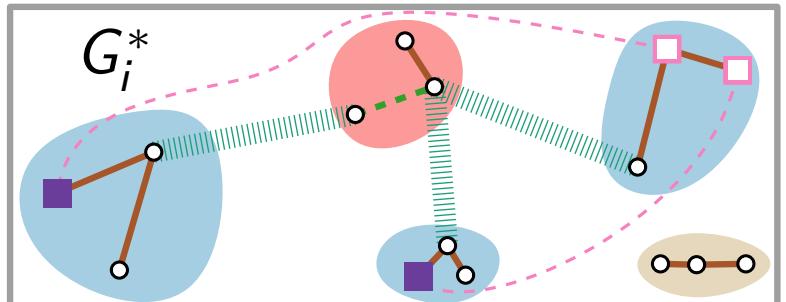
(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| < 2|V(G'_i)| \end{aligned}$$



Claim. Inactive vertices have degree ≥ 2 .

$$\Rightarrow \sum_{v \text{ active}} \deg_{G'_i}(v) \leq$$



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

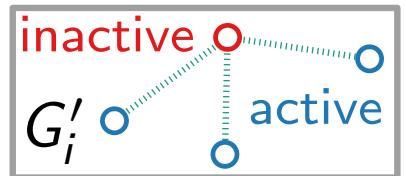
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

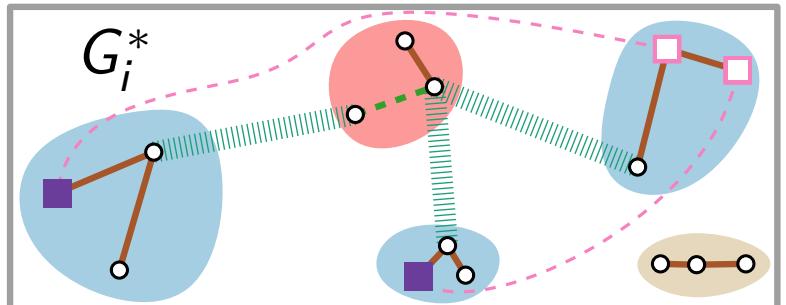
(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

$$\begin{aligned} \text{Note: } \sum_{C \text{ comp.}} |\delta(C) \cap F'| &= \sum_{v \in V(G'_i)} \deg_{G'_i}(v) \\ &= 2|E(G'_i)| < 2|V(G'_i)| \end{aligned}$$



Claim. Inactive vertices have degree ≥ 2 .

$$\Rightarrow \sum_{v \text{ active}} \deg_{G'_i}(v) \leq 2 \cdot |V(G'_i)| - 2 \cdot \#(\text{inactive}) =$$



Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|.$$

Proof.

For $i \in \{1, \dots, \ell\}$, consider the i -th iteration (when e_i was added to F).

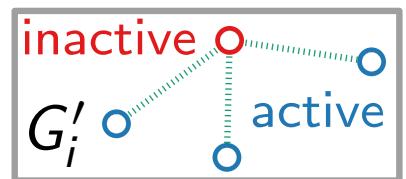
Let $F_i = \{e_1, \dots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$.

Contract every component C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.

Claim. G'_i is a forest.

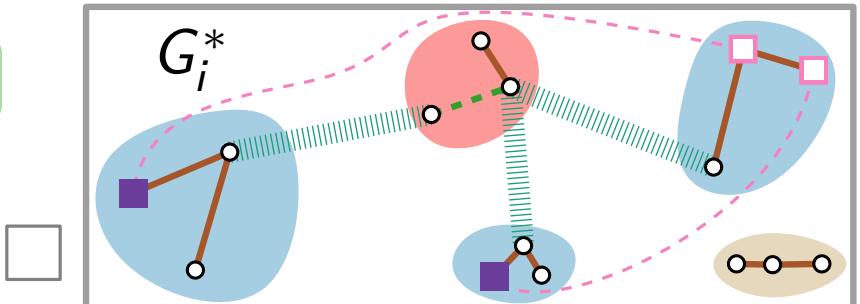
(Ignore components C with $\delta(C) \cap F' = \emptyset$.)

Note: $\sum_{\text{comp.}} |\delta(\textcolor{brown}{C}) \cap \textcolor{teal}{F'}| = \sum_{v \in V(G'_i)} \deg_{G'_i}(v)$
 $= 2|\textcolor{teal}{E}(G'_i)| < 2|\textcolor{brown}{V}(G'_i)|$



Claim. Inactive vertices have degree ≥ 2 .

$$\Rightarrow \sum_{v \text{ active}} \deg_{G'_i}(v) \leq 2 \cdot |V(G'_i)| - 2 \cdot \#(\text{inactive}) = 2|\mathcal{C}|.$$



Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal–Dual

Part VI:
Analysis

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq$$

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq 2 \sum_S y_S. \quad (*)$$

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

As mentioned before,

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq 2 \sum_S y_S. \quad (*)$$

From that, the claim of the theorem follows.

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(\textcolor{red}{S}) \cap \textcolor{teal}{F}'| \cdot \textcolor{red}{y}_S \leq 2 \sum_S \textcolor{red}{y}_S. \quad (*)$$

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(\textcolor{red}{S}) \cap \textcolor{teal}{F}'| \cdot \textcolor{red}{y}_S \leq 2 \sum_S \textcolor{red}{y}_S. \quad (*)$$

Base case trivial since we start with $\textcolor{red}{y}_S = 0$ for every S .

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(\textcolor{red}{S}) \cap \textcolor{teal}{F}'| \cdot \textcolor{red}{y}_S \leq 2 \sum_S \textcolor{red}{y}_S. \quad (*)$$

Base case trivial since we start with $\textcolor{red}{y}_S = 0$ for every $\textcolor{red}{S}$.

Assume that $(*)$ holds at the start of the current iteration.

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(\textcolor{red}{S}) \cap \textcolor{teal}{F}'| \cdot \textcolor{red}{y}_S \leq 2 \sum_S \textcolor{red}{y}_S. \quad (*)$$

Base case trivial since we start with $\textcolor{red}{y}_S = 0$ for every S .

Assume that $(*)$ holds at the start of the current iteration.

In the current iteration, we increase $\textcolor{red}{y}_C$ for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq 2 \sum_S y_S. \quad (*)$$

Base case trivial since we start with $y_S = 0$ for every S .

Assume that $(*)$ holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of $(*)$ by

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq 2 \sum_S y_S. \quad (*)$$

Base case trivial since we start with $y_S = 0$ for every S .

Assume that $(*)$ holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq 2 \sum_S y_S. \quad (*)$$

Base case trivial since we start with $y_S = 0$ for every S .

Assume that $(*)$ holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq 2 \sum_S y_S. \quad (*)$$

Base case trivial since we start with $y_S = 0$ for every S .

Assume that $(*)$ holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by $\varepsilon \cdot 2|\mathcal{C}|$.

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq 2 \sum_S y_S. \quad (*)$$

Base case trivial since we start with $y_S = 0$ for every S .

Assume that $(*)$ holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by $\varepsilon \cdot 2|\mathcal{C}|$.

Structure lemma \Rightarrow

Analysis

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Proof.

$$\sum_S |\delta(S) \cap F'| \cdot y_S \leq 2 \sum_S y_S. \quad (*)$$

Base case trivial since we start with $y_S = 0$ for every S .

Assume that $(*)$ holds at the start of the current iteration.

In the current iteration, we increase y_C for every $C \in \mathcal{C}$ by the same amount, say $\varepsilon \geq 0$.

This increases the left side of $(*)$ by $\varepsilon \cdot \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by $\varepsilon \cdot 2|\mathcal{C}|$.

Structure lemma $\Rightarrow (*)$ also holds after the current iteration.

Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Is our analysis tight?

Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Is our analysis tight?

$$t_2 = s_1 \blacksquare$$

$$\blacksquare t_1 = s_n$$

$$\blacksquare t_n = s_{n-1}$$

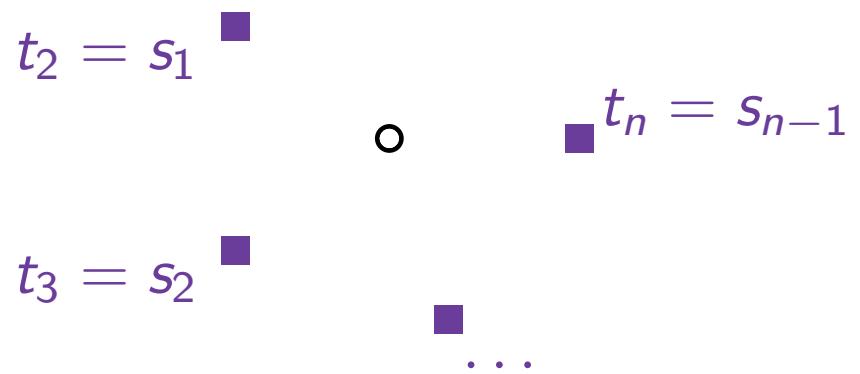
$$t_3 = s_2 \blacksquare$$

$\blacksquare \dots$

Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

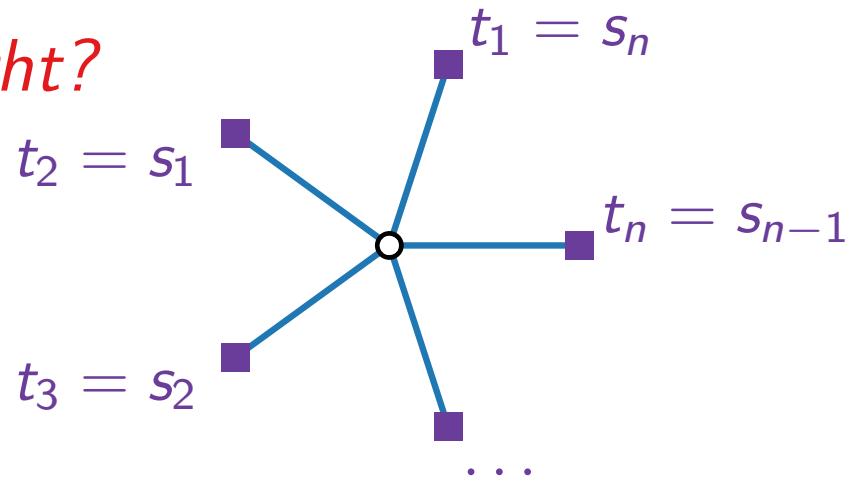
Is our analysis tight?



Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

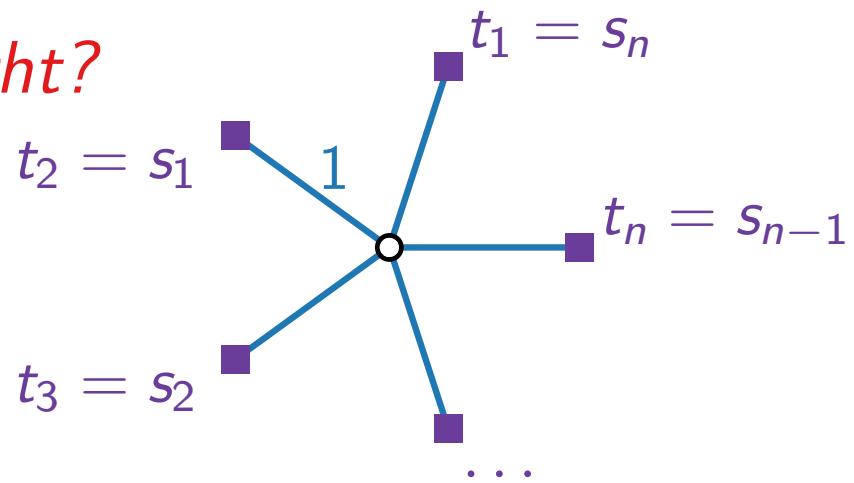
Is our analysis tight?



Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

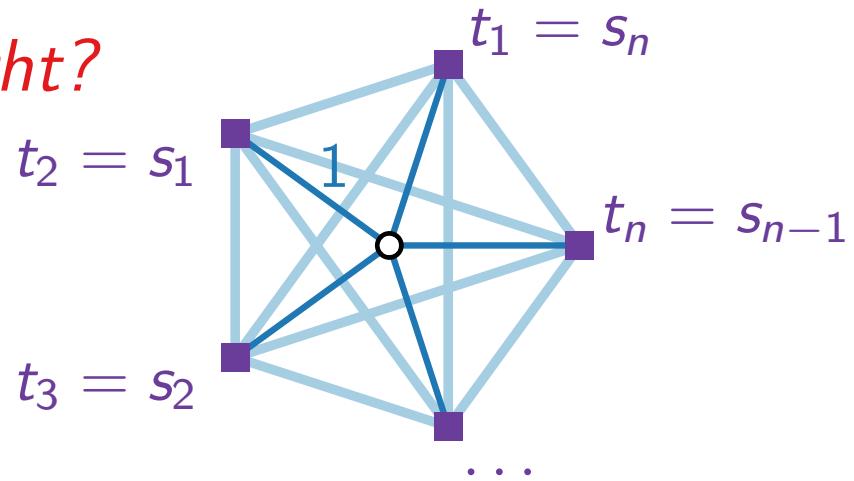
Is our analysis tight?



Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

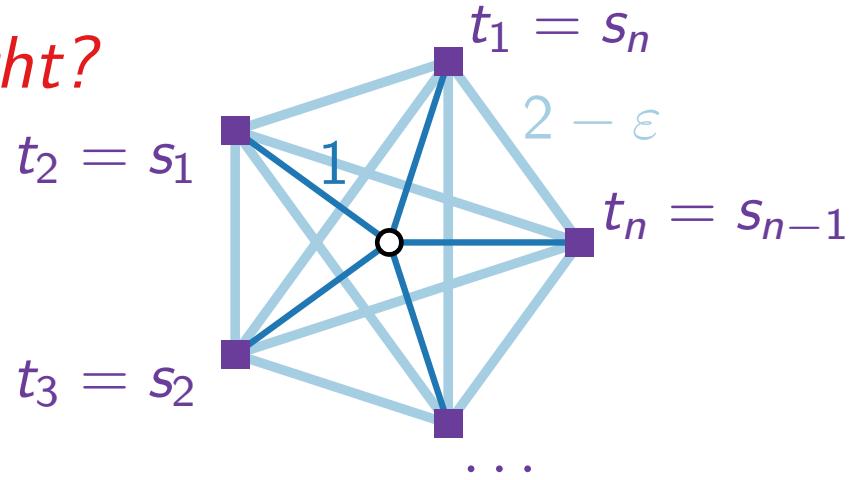
Is our analysis tight?



Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

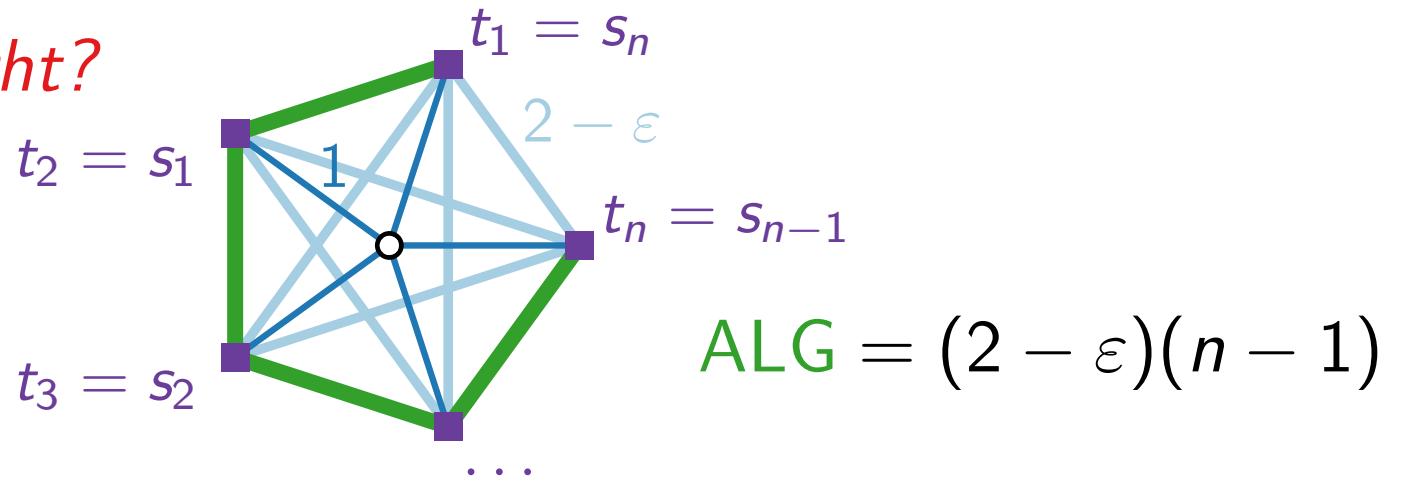
Is our analysis tight?



Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2 -approximation for STEINERFOREST.

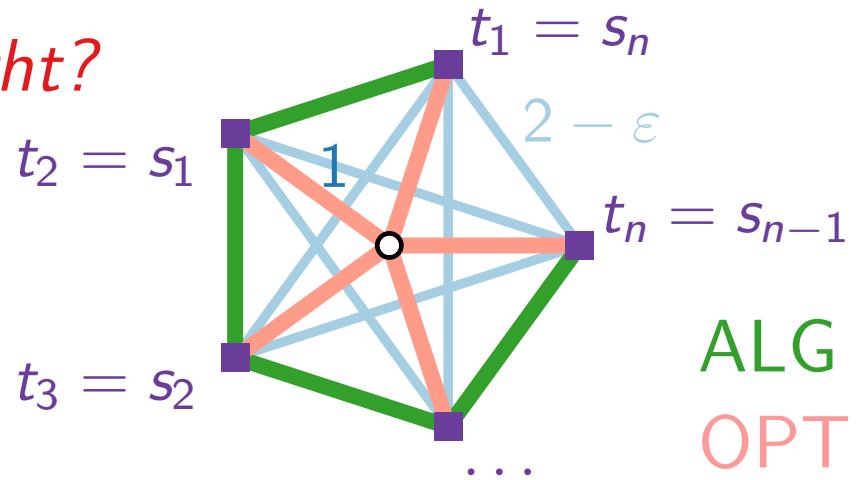
Is our analysis tight?



Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Is our analysis tight?



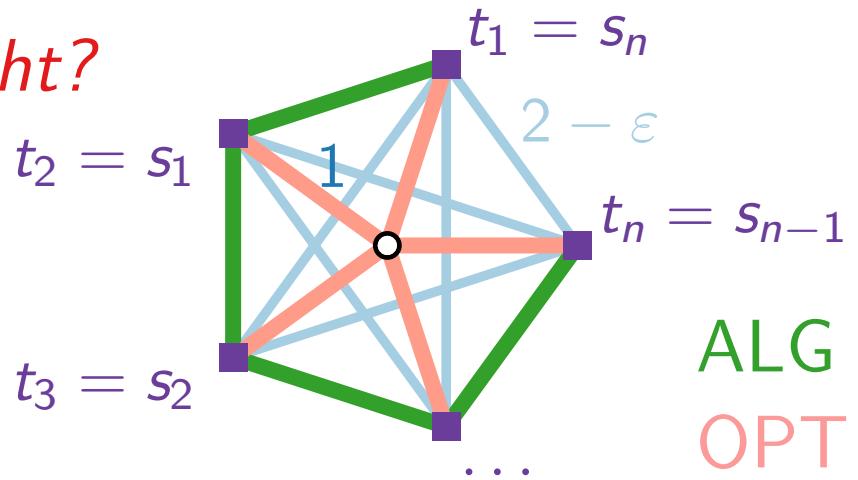
$$\text{ALG} = (2 - \varepsilon)(n - 1)$$

$$\text{OPT} = n$$

Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Is our analysis tight?



$$\text{ALG} = (2 - \varepsilon)(n - 1)$$

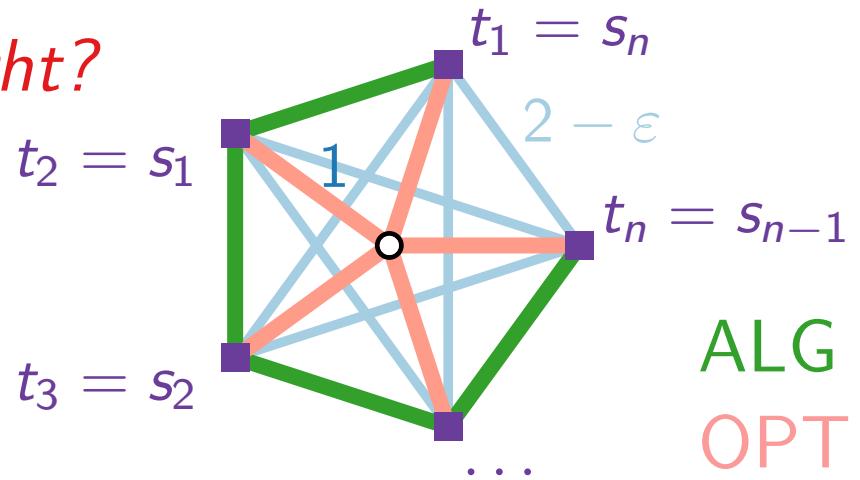
$$\text{OPT} = n$$

Can we do better?

Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Is our analysis tight?



$$\text{ALG} = (2 - \varepsilon)(n - 1)$$

$$\text{OPT} = n$$

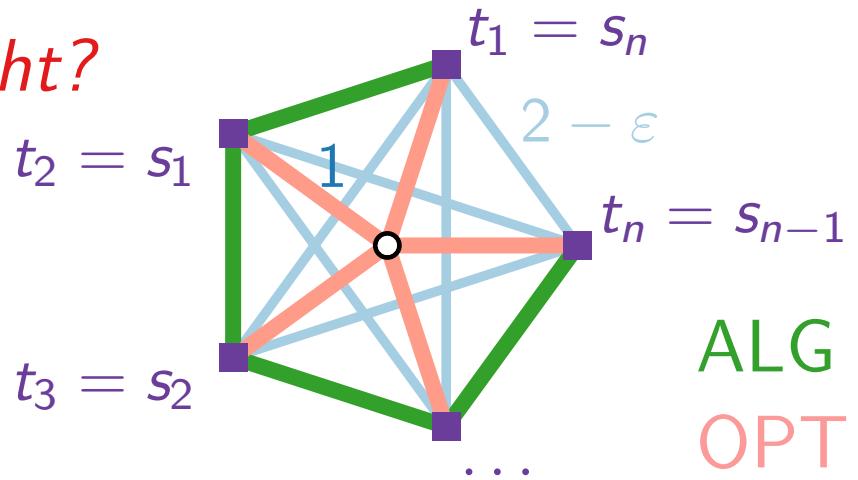
Can we do better?

No better approximation factor is known. :-(
:(

Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Is our analysis tight?



$$\text{ALG} = (2 - \varepsilon)(n - 1)$$

$$\text{OPT} = n$$

Can we do better?

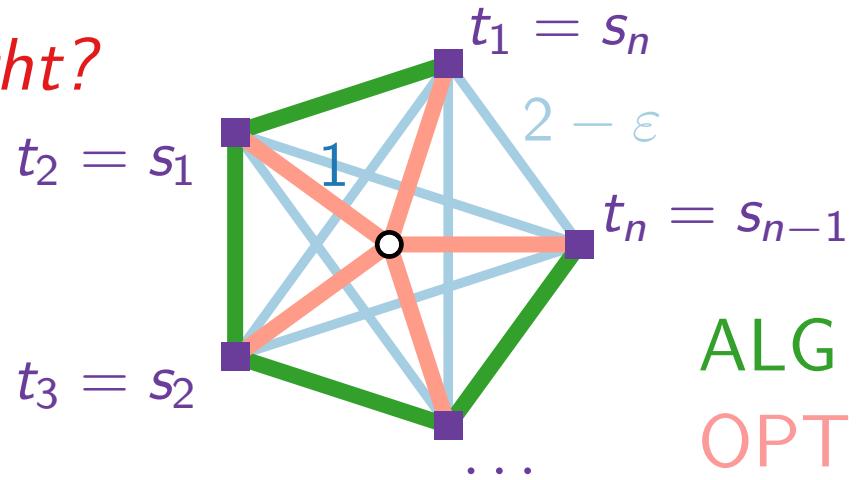
No better approximation factor is known. :-)

The integrality gap is $2 - 1/n$.

Summary

Theorem. The Primal–Dual algorithm with synchronized increases yields a 2-approximation for STEINERFOREST.

Is our analysis tight?



$$\text{ALG} = (2 - \varepsilon)(n - 1)$$

$$\text{OPT} = n$$

Can we do better?

No better approximation factor is known. :-)

The integrality gap is $2 - 1/n$.

STEINERFOREST (as STEINERTREE) cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless P = NP). [Chlebík, Chlebíková '08]