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STEINERFOREST

Given: A graph G with edge costs ¢: E(G) -+ N
and aset R={(s,t1),..., (5., te)} of k vertex pairs.

Task:  Find an edge set F C E(G) of minimum total cost

c(F) such that the subgraph (V(G), F) connects all
vertex pairs (s, t1),..., (sr, tr).

Special cases?

°f SHORTESTPATH (R={s,t})

MINSPANNTREE (R = E(G))

STEINERTREE (R=T x T)
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Computational Approaches?

e Merge k shortest s,—t; paths

e STEINERTREE on the set of terminals

Homework: Both above approaches perform poorly :-(

Difficulty:
Which terminals belong to the same tree of the forest?

t1 i3
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An ILP

minimize E CeXe
ecE(G)

subject to Z Xe > 1 Ses;,iedl
e€d(S)

x. €{0,1} ec E(G)

where S; :={S C V(G): s € 5,t; ¢ S5} »
and 0(S) :={(u,v) e E(G): ue Sand v & S}

= exponentially many constraints!
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Complementary Slackness (Reminder)

minimize cTx maximize bTy

subject to  Ax subject to ATy
X y

Theorem. Let x = (x1,...,x,) and vy = (y1, ..., ¥m) be valid solutions
for the primal and dual program (resp.). Then x and y are

optimal if and only if the following conditions are met:

Primal CS:
For each j=1,...,n: either x; =0 or > 7, ajjyi = ¢;

Dual CS:
For each i =1, ..., m: either y; =0 or Zf:l ajjxj = bj
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A First Primal-Dual Approach

Complementary slackness: x>0 = > 5 .c55) Vs =

= Pick “critical” edges (and only these)!

|dea: lteratively build a feasible integral primal solution.

How to find a violated primal constraint? (2ces(s) Xe < 1)
e Consider related connected component C!

How do we iteratively improve the dual solution?

e Increase yc (until some edge in §(C) becomes critical)!
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A First Primal-Dual Approach

PrimalDualSteinerForestNaive(graph G, costs ¢, pairs R)

y<+0,F <0

while 9( , ) € R not connected in (V(G), ) do

C < component in (V(G), F) with [CNn{ ,t}| =1
Increase y¢

until Z ys = .. for some e’ € §(C).

Running time??
Trick: Handle all ys with ys = 0 implicitly.
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Analysis

The cost of the solution F can be written as

D=2 X ys=D l)NFlys

eck eck S:ecd(S)
Compare to the value of the dual objective function } . ys.

There are examples with |0(S) N F| = k for each ys >0 :-(
(Homework!)

But: Average degree of “active components” is less than 2.

= Increase y¢ for all active components C simultaneously!
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Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(graph G, edge costs ¢, pairs R)

y<0,F+ 0,40

while 3( , t) € R not connected in (V(G), F) do

(C+—0+1

C < {component C in (V(G), F) with |[CN{ ,t}| =1 for some i}
Increase yc for all C € C simultaneously

until Z ys = c., for some ¢, € §(C), C € C.
S: eg€5(5)
B F <+ FU {eg}

F' — F

for j + ¢ downto 1 do
L if /' \ {e;} is feasible solution then

| F =P\ {e}

return [’/
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G = Kg with Euclidean edge costs
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Lemma. In any iteration of the algorithm, it holds that
Y Is(C)n Fl <2/
cec

Proof.

First the intuition. ..

Every connected component C of F is a forest in F’.
= average degree < 2

Difficulty: Some comp. are not in C;
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Lemma. In any iteration of the algorithm, it holds that
Y Is(C)n Fl <2/
cec

Proof.

First the intuition. ..

Every connected component C of F is a forest in F’.
= average degree < 2
Difficulty: Some comp. are not in C;

they are “inactive’.

C/)

- ’J////////
=== =",
= ny
Ao = m
( = / T = Iy,
R 5 ( ) [ ] \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ = ///////////////////////////
= Ty,
/ =
F'nC
........ F F / O
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Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that
Y Is(C)n Fl <2/
ceC
Proof.
Forie{l,..., ¢}, consider the i-th iteration (when e; was added to F)
Let F; = e, ...,

e,-}, G, = (\/, F,'), and G,->|< = (V, Fi U F’).

0

)

) )
\\\\\\\\\\\H\\\\\\M

}nm

!
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Proof of the Structure Lemma

Lemma. In any iteration of the algorithm, it holds that
Y Is(C)n Fl <2/
cec

Proof.

Foried{l,..., ¢}, consider the i-th iteration (when e; was added to F)
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From that, the claim of the theorem follows.
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Proof. D IS)NF - ys <2 ys. (%)
S S

Base case trivial since we start with ys = 0 for every S.

Assume that (*) holds at the start of the current iteration.

In the current iteration, we increase yc for every C € C by the
same amount, say € > 0.

This increases the left side of (%) by - Z 16(C) N F'
and the right side by € - 2|C|. cec

Structure lemma = (x) also holds after the current iteration.
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Summary

Theorem. The Primal-Dual algorithm with
synchronized increases yields a 2-approximation for

STEINERFOREST.
Is our analysis tight? e
b =51 1
o th = Sp—1
= s ALG=(2—¢)(n—1)
= n

Can we do better?
No better approximation factor is known. :-(

The integrality gap is 2 — 1/n.

STEINERFOREST (as STEINERTREE) cannot be approximated
within factor g2 ~ 1.0105 (unless P =NP). [Chiebik, Chlebikova ‘08
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