
1/22

Alexander Wolff Winter term 2025

Lecture 12:
SteinerForest via Primal–Dual

Part I:
SteinerForest

Approximation Algorithms

2/22

SteinerForest

Given:

4

41

1
3

1

1

3

3

5

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

2/22

SteinerForest

Given:

4

41

1
3

1

1

3

3

5

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

2/22

SteinerForest

Given:

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

2/22

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

Find an edge set F ⊆ E (G) of minimum total cost
c(F) such that the subgraph (V (G),F) connects all
vertex pairs (s1, t1), . . . , (sk , tk).

2/22

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

Find an edge set F ⊆ E (G) of minimum total cost
c(F) such that the subgraph (V (G),F) connects all
vertex pairs (s1, t1), . . . , (sk , tk).

2/22

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

Find an edge set F ⊆ E (G) of minimum total cost
c(F) such that the subgraph (V (G),F) connects all
vertex pairs (s1, t1), . . . , (sk , tk).

2/22

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

Special cases?

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

Find an edge set F ⊆ E (G) of minimum total cost
c(F) such that the subgraph (V (G),F) connects all
vertex pairs (s1, t1), . . . , (sk , tk).

2/22

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

Special cases?

ShortestPath (R = {s, t})

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

Find an edge set F ⊆ E (G) of minimum total cost
c(F) such that the subgraph (V (G),F) connects all
vertex pairs (s1, t1), . . . , (sk , tk).

2/22

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

Special cases?

ShortestPath (R = {s, t})

MinSpannTree (R = E (G))

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

Find an edge set F ⊆ E (G) of minimum total cost
c(F) such that the subgraph (V (G),F) connects all
vertex pairs (s1, t1), . . . , (sk , tk).

2/22

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

Special cases?

ShortestPath (R = {s, t})

MinSpannTree (R = E (G))

SteinerTree (R = T × T)

A graph G with edge costs c : E (G)→ N
and a set R = {(s1, t1), . . . , (sk , tk)} of k vertex pairs.

Find an edge set F ⊆ E (G) of minimum total cost
c(F) such that the subgraph (V (G),F) connects all
vertex pairs (s1, t1), . . . , (sk , tk).

3/22

Computational Approaches?

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

3/22

Computational Approaches?

• Merge k shortest si–ti paths

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

3/22

Computational Approaches?

• Merge k shortest si–ti paths

• SteinerTree on the set of terminals

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

3/22

Computational Approaches?

• Merge k shortest si–ti paths

• SteinerTree on the set of terminals

Homework: Both above approaches perform poorly :-(

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

3/22

Computational Approaches?

• Merge k shortest si–ti paths

• SteinerTree on the set of terminals

Homework: Both above approaches perform poorly :-(

Difficulty:
Which terminals belong to the same tree of the forest?

s1

t1

s2

t2

s3

t3
4

41

1
3

1

1

3

3

5

4/22

Lecture 12:
SteinerForest via Primal–Dual

Part II:
Primal and Dual LP

Approximation Algorithms

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

si

ti

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

si

ti

S

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

si

ti

S

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

si

ti

S

δ(S)

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E (G) : u ∈ S and v /∈ S}

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E (G) : u ∈ S and v /∈ S}

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E (G) : u ∈ S and v /∈ S}

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E (G) : u ∈ S and v /∈ S}

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

where Si := {S ⊆ V (G) : si ∈ S , ti ̸∈ S}

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E (G) : u ∈ S and v /∈ S}

5/22

An ILP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E (G)

where Si := {S ⊆ V (G) : si ∈ S , ti ̸∈ S}

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E (G) : u ∈ S and v /∈ S}

⇒ exponentially many constraints!

6/22

LP-Relaxation and Dual LP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E (G)

6/22

LP-Relaxation and Dual LP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E (G)

(yS)

6/22

LP-Relaxation and Dual LP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E (G)

(yS)

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

6/22

LP-Relaxation and Dual LP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E (G)

(yS)

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

6/22

LP-Relaxation and Dual LP

minimize
∑

e∈E(G)

cexe

subject to
∑

e∈δ(S)

xe ≥ 1 S ∈ Si , i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E (G)

(yS)

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

S

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

S

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

S

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

S

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

ce

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

ce
yS

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

ce
yS

yS′

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

ce
yS

yS′

yS′′

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

ce
yS

yS′

yS′′

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

ce
yS

yS′

yS′′

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

ce
yS

yS′

yS′′

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

7/22

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

ce
yS

yS′

yS′′

maximize
∑
S∈Si

i∈{1,...,k}

yS

subject to
∑

S : e∈δ(S)

yS ≤ ce e ∈ E (G)

yS ≥ 0 S ∈ Si , i ∈ {1, . . . , k}

8/22

Lecture 12:
SteinerForest via Primal–Dual

Part III:
A First Primal–Dual Approach

Approximation Algorithms

9/22

Complementary Slackness (Reminder)

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

9/22

Complementary Slackness (Reminder)

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
For each j = 1, . . . , n: either xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: either yi = 0 or

∑n
j=1 ai jxj = bi

Theorem.

10/22

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

10/22

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒
∑

S : e∈δ(S) yS = ce .

10/22

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ Pick “critical” edges (and only these)!

∑
S : e∈δ(S) yS = ce .

10/22

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

∑
S : e∈δ(S) yS = ce .

10/22

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (
∑

e∈δ(S) xe < 1)

∑
S : e∈δ(S) yS = ce .

10/22

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (
∑

e∈δ(S) xe < 1)

• Consider related connected component C !

∑
S : e∈δ(S) yS = ce .

10/22

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (
∑

e∈δ(S) xe < 1)

• Consider related connected component C !

How do we iteratively improve the dual solution?

∑
S : e∈δ(S) yS = ce .

10/22

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ Pick “critical” edges (and only these)!

Idea: Iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (
∑

e∈δ(S) xe < 1)

• Consider related connected component C !

How do we iteratively improve the dual solution?

• Increase yC (until some edge in δ(C) becomes critical)!

∑
S : e∈δ(S) yS = ce .

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

Running time??

11/22

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G , costs c, pairs R)

y ← 0,F ← ∅
while ∃(s, t) ∈ R not connected in (V (G),F) do

C ← component in (V (G),F) with |C ∩ {s, t}| = 1
Increase yC

until
∑

S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

Running time??

Trick: Handle all yS with yS = 0 implicitly.

12/22

Analysis

The cost of the solution F can be written as

12/22

Analysis

The cost of the solution F can be written as∑
e∈F

ce
CS
=

∑
e∈F

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F | · yS .

12/22

Analysis

The cost of the solution F can be written as∑
e∈F

ce
CS
=

∑
e∈F

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F | · yS .

12/22

Analysis

The cost of the solution F can be written as∑
e∈F

ce
CS
=

∑
e∈F

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F | · yS .

12/22

Analysis

The cost of the solution F can be written as∑
e∈F

ce
CS
=

∑
e∈F

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F | · yS .

12/22

Analysis

The cost of the solution F can be written as∑
e∈F

ce
CS
=

∑
e∈F

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F | · yS .

Compare to the value of the dual objective function
∑

S yS .

12/22

Analysis

The cost of the solution F can be written as∑
e∈F

ce
CS
=

∑
e∈F

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F | · yS .

Compare to the value of the dual objective function
∑

S yS .

There are examples with |δ(S) ∩ F | = k for each yS > 0 :-(

(Homework!)

12/22

Analysis

The cost of the solution F can be written as∑
e∈F

ce
CS
=

∑
e∈F

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F | · yS .

Compare to the value of the dual objective function
∑

S yS .

There are examples with |δ(S) ∩ F | = k for each yS > 0 :-(

But: Average degree of “active components” is less than 2.

(Homework!)

12/22

Analysis

The cost of the solution F can be written as∑
e∈F

ce
CS
=

∑
e∈F

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F | · yS .

Compare to the value of the dual objective function
∑

S yS .

There are examples with |δ(S) ∩ F | = k for each yS > 0 :-(

But: Average degree of “active components” is less than 2.

⇒ Increase yC for all active components C simultaneously!

(Homework!)

13/22

Lecture 12:
SteinerForest via Primal–Dual

Part IV:
Primal–Dual with Synchronized Increases

Approximation Algorithms

14/22

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c, pairs R)

y ← 0,F ← ∅, ℓ← 0
while ∃(s, t) ∈ R not connected in (V (G),F) do

ℓ← ℓ+ 1
C ← {component C in (V (G),F) with |C ∩ {si , ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until
∑

S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}

return F ′

14/22

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c, pairs R)

y ← 0,F ← ∅, ℓ← 0
while ∃(s, t) ∈ R not connected in (V (G),F) do

ℓ← ℓ+ 1
C ← {component C in (V (G),F) with |C ∩ {si , ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until
∑

S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}

return F ′

14/22

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c, pairs R)

y ← 0,F ← ∅, ℓ← 0
while ∃(s, t) ∈ R not connected in (V (G),F) do

ℓ← ℓ+ 1
C ← {component C in (V (G),F) with |C ∩ {si , ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until
∑

S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}

return F ′

14/22

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c, pairs R)

y ← 0,F ← ∅, ℓ← 0
while ∃(s, t) ∈ R not connected in (V (G),F) do

ℓ← ℓ+ 1
C ← {component C in (V (G),F) with |C ∩ {si , ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until
∑

S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}

return F ′

14/22

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c, pairs R)

y ← 0,F ← ∅, ℓ← 0
while ∃(s, t) ∈ R not connected in (V (G),F) do

ℓ← ℓ+ 1
C ← {component C in (V (G),F) with |C ∩ {si , ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until
∑

S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}

return F ′

14/22

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c, pairs R)

y ← 0,F ← ∅, ℓ← 0
while ∃(s, t) ∈ R not connected in (V (G),F) do

ℓ← ℓ+ 1
C ← {component C in (V (G),F) with |C ∩ {si , ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until
∑

S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}

return F ′

14/22

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c, pairs R)

y ← 0,F ← ∅, ℓ← 0
while ∃(s, t) ∈ R not connected in (V (G),F) do

ℓ← ℓ+ 1
C ← {component C in (V (G),F) with |C ∩ {si , ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until
∑

S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}

return F ′

14/22

Primal–Dual with Synchronized Increases

PrimalDualSteinerForest(graph G , edge costs c, pairs R)

y ← 0,F ← ∅, ℓ← 0
while ∃(s, t) ∈ R not connected in (V (G),F) do

ℓ← ℓ+ 1
C ← {component C in (V (G),F) with |C ∩ {si , ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until
∑

S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F ′ ← F
// Pruning
for j ← ℓ downto 1 do

if F ′ \ {ej} is feasible solution then
F ′ ← F ′ \ {ej}

return F ′

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15/22

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

16/22

Lecture 12:
SteinerForest via Primal–Dual

Part V:
Structure Lemma

Approximation Algorithms

17/22

Structure Lemma

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

F ′ ∩ C

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

F ′ ∩ C

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

F ′ ∩ C

F − F ′

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

F ′ ∩ C

F − F ′

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F ′

F ′ ∩ C

F − F ′

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F ′

F ′ ∩ C

F − F ′

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F ′

F ′ ∩ C

F − F ′

Every connected component C of F is a forest in F ′.
⇒ average degree ≤ 2

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F ′

F ′ ∩ C

F − F ′

Every connected component C of F is a forest in F ′.
⇒ average degree ≤ 2

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F ′

F ′ ∩ C

F − F ′

Every connected component C of F is a forest in F ′.
⇒ average degree ≤ 2

Difficulty: Some comp. are not in C;

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

17/22

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F ′

F ′ ∩ C

F − F ′

Every connected component C of F is a forest in F ′.
⇒ average degree ≤ 2

Difficulty: Some comp. are not in C;

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

they are “inactive”.

18/22

Proof of the Structure Lemma

Proof.

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Gi

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

G∗
i

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

G∗
i

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

G∗
i

G ′
i

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

Claim. G ′
i is a forest.

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

Claim. G ′
i is a forest.

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

Claim. G ′
i is a forest.

= 2|E (G ′
i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

active

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G∗
i

G ′
i

active

inactive

G∗
i

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G ′
i

active

inactive

G∗
iClaim. Inactive vertices have degree ≥ 2.

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

⇒
∑

v active degG ′
i
(v) ≤

2 · |V (G ′
i)| − 2 ·#(inactive) = 2|C|.

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G ′
i

active

inactive

G∗
iClaim. Inactive vertices have degree ≥ 2.

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

⇒
∑

v active degG ′
i
(v) ≤

2 · |V (G ′
i)| − 2 ·#(inactive) = 2|C|.

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G ′
i

active

inactive

G∗
iClaim. Inactive vertices have degree ≥ 2.

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

18/22

Proof of the Structure Lemma

Proof.
For i ∈ {1, . . . , ℓ}, consider the i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V ,Fi), and G∗
i = (V ,Fi ∪ F ′).

Contract every component C of Gi in G∗
i to a single vertex ⇝ G ′

i .

Note:
∑

C comp. |δ(C) ∩ F ′| =
∑

v∈V (G ′
i)
degG ′

i
(v)

⇒
∑

v active degG ′
i
(v) ≤

2 · |V (G ′
i)| − 2 ·#(inactive) = 2|C|.

(Ignore components C with δ(C) ∩ F ′ = ∅.)

G ′
i

active

inactive

G∗
iClaim. Inactive vertices have degree ≥ 2.

Claim. G ′
i is a forest.

= 2|E (G ′
i)| < 2|V (G ′

i)|

Lemma. In any iteration of the algorithm, it holds that∑
C∈C

|δ(C) ∩ F ′| ≤ 2|C| .

19/22

Lecture 12:
SteinerForest via Primal–Dual

Part VI:
Analysis

Approximation Algorithms

20/22

Analysis

Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

20/22

Analysis

Proof.

As mentioned before,∑
e∈F ′

ce
CS
=

∑
e∈F ′

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F ′| · yS .

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

20/22

Analysis

Proof.

As mentioned before,∑
e∈F ′

ce
CS
=

∑
e∈F ′

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F ′| · yS .

We prove by induction over the number of iterations of the
algorithm that

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

20/22

Analysis

Proof.

As mentioned before,∑
e∈F ′

ce
CS
=

∑
e∈F ′

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F ′| · yS .

We prove by induction over the number of iterations of the
algorithm that ∑

S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS . (∗)

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

20/22

Analysis

Proof.

As mentioned before,∑
e∈F ′

ce
CS
=

∑
e∈F ′

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F ′| · yS .

We prove by induction over the number of iterations of the
algorithm that ∑

S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS . (∗)

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

20/22

Analysis

Proof.

As mentioned before,∑
e∈F ′

ce
CS
=

∑
e∈F ′

∑
S : e∈δ(S)

yS =
∑
S

|δ(S) ∩ F ′| · yS .

We prove by induction over the number of iterations of the
algorithm that ∑

S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS . (∗)

From that, the claim of the theorem follows.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS . (∗)Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

(∗)Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

Assume that (∗) holds at the start of the current iteration.

(∗)Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by the
same amount, say ε ≥ 0.

Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by the
same amount, say ε ≥ 0.

This increases the left side of (∗) by ε ·
∑
C∈C

|δ(C) ∩ F ′|

Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by the
same amount, say ε ≥ 0.

This increases the left side of (∗) by ε ·
∑
C∈C

|δ(C) ∩ F ′|

Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by the
same amount, say ε ≥ 0.

This increases the left side of (∗) by ε ·
∑
C∈C

|δ(C) ∩ F ′|
and the right side by ε · 2|C|.

Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by the
same amount, say ε ≥ 0.

This increases the left side of (∗) by ε ·
∑
C∈C

|δ(C) ∩ F ′|
and the right side by ε · 2|C|.

Proof.

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by the
same amount, say ε ≥ 0.

This increases the left side of (∗) by ε ·
∑
C∈C

|δ(C) ∩ F ′|
and the right side by ε · 2|C|.

Proof.

⇒

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

Structure lemma

21/22

Analysis

∑
S

|δ(S) ∩ F ′| · yS ≤ 2
∑
S

yS .

Base case trivial since we start with yS = 0 for every S .

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by the
same amount, say ε ≥ 0.

This increases the left side of (∗) by ε ·
∑
C∈C

|δ(C) ∩ F ′|
and the right side by ε · 2|C|.

Proof.

(∗) also holds after the current iteration.⇒

Theorem. The Primal–Dual algorithm with synchronized
increases yields a 2-approximation for
SteinerForest.

Structure lemma

22/22

Summary

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

Is our analysis tight?

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1
2− ε

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1
2− ε

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n − 1)t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1
2− ε

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n − 1)t3 = s2
OPT= n

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1
2− ε

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n − 1)t3 = s2
OPT= n

Can we do better?

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1
2− ε

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n − 1)t3 = s2
OPT= n

Can we do better?
No better approximation factor is known. :-(

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1
2− ε

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n − 1)t3 = s2
OPT= n

Can we do better?
No better approximation factor is known. :-(

The integrality gap is 2− 1/n.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

22/22

Summary

1
2− ε

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n − 1)t3 = s2
OPT= n

Can we do better?
No better approximation factor is known. :-(

The integrality gap is 2− 1/n.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a 2-approximation for
SteinerForest.

SteinerForest (as SteinerTree) cannot be approximated
within factor 96

95 ≈ 1.0105 (unless P=NP). [Chleb́ık, Chleb́ıková ’08]

	SteinerForest
	Computational Approaches?
	Computational Approaches?

	Primal and Dual LP
	An ILP
	LP-Relaxation and Dual LP
	Intuition for the Dual

	A First Primal-Dual Approach
	Complementary Slackness (Reminder)
	Complementary Slackness (Reminder)

	A First Primal--Dual Approach
	A First Primal--Dual Approach

	A First Primal--Dual Approach
	Analysis

	Primal-Dual with Synchronized Increases
	Primal--Dual with Synchronized Increases
	Illustration

	Structure Lemma
	Proof of the Structure Lemma
	Proof of the Structure Lemma

	Analysis
	Summary

