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Maximum Satisfiability (MAXSAT)

Given: Boolean variables xi, ..., x, and
clauses Cq, ..., C,, with

Task: Find an assignment of the variables xq, ..., x,
such that the of the satisfied clauses

IS maximized.

Literal: Variable or negated variable — e.g., x1, X1.
Clause: Disjunction of literals —e.g., x; VX V x3.
Length of a clause = number of literals.

Problem is NP-hard since SATISFIABILITY (SAT) is NP-hard:
Is a given formula in conjunctive normal form satisfiable?

E.g., (X1 \/X_Q\/X3) N\ (X2 \/X_3\/X4) /N\ (X1 \/X_4)
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A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of

clause C;.

Let IV be a random variable for the total of the

satisfied clauses.

E[W]=E|) =Y wE[V]=) wPr[( satisfied]
j=1 j=1 j=1

(; = length(C;) = Pr[C; satisfied] = 1 — (1/2)% > 1/2.

Thus, E[W] > 33", w; > OPT /2.
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Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | xx =1] > E[W | x; = 0.
E[W] = (E[W |x2 = 0]+ E[W [x =1]) /2. Farinsg”

If x; was set to b; € {0, 1},



Derandomization by Conditional Expectation

Assume (by induction) that we have set xq, ..., xi to by, ..., b;
such that




Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assighment x; = by, ..., x; = b;
and a clause C;.

It C; is already satisfied, then it contributes exactly w; to
E[W ‘ X1 =— bl,...,X,' — b,]

If C; is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[C; is satisfied] to
E[W\xlzbl,...,x,-:b,-],that iS, (1—(1/2)k)

The conditional expectation is simply the sum of the
contributions from each clause.




Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

The algorithm iteratively sets the variables and greedily decides
for the locally best assignment.

Global optimization?
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An ILP ... and lts Relaxation

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E Z
J=1

subject to Zy; + Z(l —yvi) >z forj=1

iEPj iENj
wyefo1, 0<y, <1 fori=1,...,n
Z—— ,1}7 OSZJS].

Theorem. Let (y*, z") be an optimal solution to the
LP-relaxation. Independently setting each
variable x; to 1 with probability y provides a
063 ~ (1 — 1/e)-approximation for MAXSAT.
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Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b
A = f(x) > bx + a for x € [0, 1].
a—+ b- f

—»

0 1
Arithmetic—Geometric Mean Inequality (AGMI):

For all non-negative numbers a4, ..., aj:

) = (5



Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y) H y:
. icP; i€ N
1))
=1 =1 1 ) )
f_j Z(l -y )+ Z Yi

>

O

=
FAN

I i€ P; i€N; ]
- 6]
= 1—— D v+ (1-y)
IEP el 1
( Zk )EJ 2 Zj by LP constraints
< _ 1L
g



Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].
Thus

Pr[C; satisfied] > f(z") > f(1) - z7 + £(0)

/.
L\’ .

1 *




Randomized Rounding (Proof)

Therefore

E[W] = zm: Pr[C; satisfied] -

Jj=1

1 m LP objective function
> 11— — E ij
€

= (1 — 1) OPTLp
€
1

> (1 — —> OPT
€

Theorem. The previous algorithm can be derandomized by
the method of conditional expectation.
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Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a 3 /4 -approximation for
MAXSAT.

Proof.

We use another probabilistic argument.
With probability 1/2, choose the solution of the first
algorithm; otherwise the solution of the second algorithm.

The better solution is at least as good as the expectation of
the above randomized algorithm.



Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’. i,
1 1\" . 3
“l1-(1-= 1—279) . z& > 2

~ ~~ 7 N— N——

LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

For /; € {1,2}, a simple calculation yields exactly %zf
For (; >3, 1-(1-1/¢))%>(1-1/e)and1—-27% > I

Thus, we have at least:

1 1\ 77 .

J

-I>IUO




Visualization and Derandomization

— Randomized alg. is better for large values of /;.

— Randomized LP-rounding is better for small values of /;

= higher probability of satisfying clause C;. Pr{C; sat]/z
' J

1_I

The mean of the two
solutions is at least 3/4
for integer /;.

The maximum is at 0.75<
least as large as the mean.

This algorithm, too,
can be derandomized by ,
conditional expectation. 9>
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