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clauses C1, . . . ,Cm with weights w1, . . . ,wm.
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is maximized.

Variable or negated variable – e.g., x1, x1.

Clause: Disjunction of literals – e.g., x1 ∨ x2 ∨ x3.

Problem is NP-hard since Satisfiability (Sat) is NP-hard:
Is a given formula in conjunctive normal form satisfiable?
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Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi
and a clause Cj .

If Cj is already satisfied, then it contributes exactly wj to
E[W | x1 = b1, . . . , xi = bi ].

If Cj is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[Cj is satisfied] to
E[W | x1 = b1, . . . , xi = bi ], that is,

The conditional expectation is simply the sum of the
contributions from each clause.

wj(1− (1/2)k).
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Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

The algorithm iteratively sets the variables and greedily decides
for the locally best assignment.

Global optimization?
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Lecture 11:
MaxSat via Randomized Rounding

Part V:
Randomized Rounding – Proof

Approximation Algorithms
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Theorem. The previous algorithm can be derandomized by
the method of conditional expectation.



Lecture 11:
MaxSat via Randomized Rounding

Part VI:
Combining the Algorithms

Approximation Algorithms
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The better solution is at least as good as the expectation of
the above randomized algorithm.

Proof.
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– Randomized LP-rounding is better for small values of ℓj
⇒ higher probability of satisfying clause Cj .

The mean of the two
solutions is at least 3/4
for integer ℓj .

The maximum is at
least as large as the mean.

This algorithm, too,
can be derandomized by
conditional expectation.
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