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Task: Find an assignment of the variables xq, ..., x,
such that the of the satisfied clauses

IS maximized.

Literal: Variable or negated variable — e.g., x1, X1.
Clause: Disjunction of literals —e.g., x; VX V x3.
Length of a clause = number of literals.

Problem is NP-hard since SATISFIABILITY (SAT) is NP-hard:
Is a given formula in conjunctive normal form satisfiable?

E.g., (X1 \/X_Q\/X3) N\ (X2 \/X_3\/X4) /N\ (X1 \/X_4)
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Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assighment x; = by, ..., x; = b;
and a clause C;.

It C; is already satisfied, then it contributes exactly w; to
E[W ‘ X1 =— bl,...,X,' — b,]

If C; is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[C; is satisfied] to
E[W\xlzbl,...,x,-:b,-],that iS, (1—(1/2)k)

The conditional expectation is simply the sum of the
contributions from each clause.




Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.



Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.



Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.



Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.



Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

The algorithm iteratively sets the variables and greedily decides
for the locally best assignment.



Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

The algorithm iteratively sets the variables and greedily decides
for the locally best assignment.

Global optimization?
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Therefore

E[W] = zm: Pr[C; satisfied] -

Jj=1

1 m LP objective function
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€

Theorem. The previous algorithm can be derandomized by
the method of conditional expectation.
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Proof.
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The better solution is at least as good as the expectation of
the above randomized algorithm.
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This algorithm, too,
can be derandomized by ,
conditional expectation. 9>
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