
Alexander Wolff Winter term 2025

Lecture 11:
MaxSat via Randomized Rounding

Part I:
Maximum Satisfiability (MaxSat)

Approximation Algorithms

Maximum Satisfiability (MaxSat)

Given: Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Maximum Satisfiability (MaxSat)

Given: Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Maximum Satisfiability (MaxSat)

Given:

E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Maximum Satisfiability (MaxSat)

Given:

E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Maximum Satisfiability (MaxSat)

Given:

Task:

E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Maximum Satisfiability (MaxSat)

Given:

Task:

E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Maximum Satisfiability (MaxSat)

Given:

Task:

Literal:

E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negated variable – e.g., x1, x1.

Maximum Satisfiability (MaxSat)

Given:

Task:

Literal:

E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negated variable – e.g., x1, x1.

Clause: Disjunction of literals – e.g., x1 ∨ x2 ∨ x3.

Maximum Satisfiability (MaxSat)

Given:

Task:

Literal:

Length of a clause = number of literals.

E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negated variable – e.g., x1, x1.

Clause: Disjunction of literals – e.g., x1 ∨ x2 ∨ x3.

Maximum Satisfiability (MaxSat)

Given:

Task:

Literal:

Length of a clause = number of literals.

E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn and
clauses C1, . . . ,Cm with weights w1, . . . ,wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negated variable – e.g., x1, x1.

Clause: Disjunction of literals – e.g., x1 ∨ x2 ∨ x3.

Problem is NP-hard since Satisfiability (Sat) is NP-hard:
Is a given formula in conjunctive normal form satisfiable?

Lecture 11:
MaxSat via Randomized Rounding

Part II:
A Simple Randomized Algorithm

Approximation Algorithms

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

ℓj := length(Cj) ⇒ Pr[Cj satisfied] = 1− (1/2)ℓj ≥ 1/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

ℓj := length(Cj) ⇒ Pr[Cj satisfied] = 1− (1/2)ℓj ≥ 1/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

ℓj := length(Cj) ⇒ Pr[Cj satisfied] = 1− (1/2)ℓj ≥ 1/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

ℓj := length(Cj) ⇒ Pr[Cj satisfied] = 1− (1/2)ℓj ≥ 1/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

ℓj := length(Cj) ⇒ Pr[Cj satisfied] = 1− (1/2)ℓj ≥ 1/2.

Thus, E[W] ≥ 1
2

∑m
j=1 wj ≥ OPT/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

ℓj := length(Cj) ⇒ Pr[Cj satisfied] = 1− (1/2)ℓj ≥ 1/2.

Thus, E[W] ≥ 1
2

∑m
j=1 wj ≥ OPT/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj .

E[W] = E

 m∑
j=1

wjYj

 =
m∑
j=1

wjE[Yj] =
m∑
j=1

wjPr[Cj satisfied]

ℓj := length(Cj) ⇒ Pr[Cj satisfied] = 1− (1/2)ℓj ≥ 1/2.

Thus, E[W] ≥ 1
2

∑m
j=1 wj ≥ OPT/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.

Lecture 11:
MaxSat via Randomized Rounding

Part III:
Derandomization by Conditional Expectation

Approximation Algorithms

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

E[W] =

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

E[W] =
(
E[W | x1 = 0] + E[W | x1 = 1]

)/
2.

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

E[W] =
(
E[W | x1 = 0] + E[W | x1 = 1]

)/
2. [because of the originally

random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W | x1 = b1] ≥ E[W] ≥ OPT/2.

(
E[W | x1 = 0] + E[W | x1 = 1]

)/
2. [because of the originally

random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W | x1 = b1] ≥ E[W] ≥ OPT/2.

(
E[W | x1 = 0] + E[W | x1 = 1]

)/
2. [because of the originally

random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W | x1 = b1] ≥ E[W] ≥ OPT/2.

(
E[W | x1 = 0] + E[W | x1 = 1]

)/
2. [because of the originally

random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Proof.

For now, we set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W | x1 = b1] ≥ E[W] ≥ OPT/2.

(
E[W | x1 = 0] + E[W | x1 = 1]

)/
2. [because of the originally

random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to b1, . . . , bi
such that

E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to b1, . . . , bi
such that

E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to b1, . . . , bi
such that

E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similarly to the base case):

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to b1, . . . , bi
such that

E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similarly to the base case):(
E[W | x1 = b1, . . . , xi = bi , xi+1 = 0]

+E[W | x1 = b1, . . . , xi = bi , xi+1 = 1]
)/

2

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to b1, . . . , bi
such that

E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similarly to the base case):(
E[W | x1 = b1, . . . , xi = bi , xi+1 = 0]

+E[W | x1 = b1, . . . , xi = bi , xi+1 = 1]
)/

2

= E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to b1, . . . , bi
such that

E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similarly to the base case):(
E[W | x1 = b1, . . . , xi = bi , xi+1 = 0]

+E[W | x1 = b1, . . . , xi = bi , xi+1 = 1]
)/

2

= E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

So we set xi+1 = 1 ⇔

Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to b1, . . . , bi
such that

E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similarly to the base case):(
E[W | x1 = b1, . . . , xi = bi , xi+1 = 0]

+E[W | x1 = b1, . . . , xi = bi , xi+1 = 1]
)/

2

= E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

So we set xi+1 = 1 ⇔
E[W | x1 = b1, . . . , xi = bi , xi+1 = 1]

≥ E[W | x1 = b1, . . . , xi = bi , xi+1 = 0]

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi
and a clause Cj .

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi
and a clause Cj .

If Cj is already satisfied, then it contributes exactly wj to
E[W | x1 = b1, . . . , xi = bi].

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi
and a clause Cj .

If Cj is already satisfied, then it contributes exactly wj to
E[W | x1 = b1, . . . , xi = bi].

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi
and a clause Cj .

If Cj is already satisfied, then it contributes exactly wj to
E[W | x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[Cj is satisfied] to
E[W | x1 = b1, . . . , xi = bi], that is,

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi
and a clause Cj .

If Cj is already satisfied, then it contributes exactly wj to
E[W | x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[Cj is satisfied] to
E[W | x1 = b1, . . . , xi = bi], that is,

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi
and a clause Cj .

If Cj is already satisfied, then it contributes exactly wj to
E[W | x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[Cj is satisfied] to
E[W | x1 = b1, . . . , xi = bi], that is, wj(1− (1/2)k).

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized –
if the conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi
and a clause Cj .

If Cj is already satisfied, then it contributes exactly wj to
E[W | x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[Cj is satisfied] to
E[W | x1 = b1, . . . , xi = bi], that is,

The conditional expectation is simply the sum of the
contributions from each clause.

wj(1− (1/2)k).

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

The algorithm iteratively sets the variables and greedily decides
for the locally best assignment.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

The algorithm iteratively sets the variables and greedily decides
for the locally best assignment.

Global optimization?

Lecture 11:
MaxSat via Randomized Rounding

Part IV:
Randomized Rounding

Approximation Algorithms

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1},

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1}, 0 ≤ yi ≤ 1

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1}, 0 ≤ yi ≤ 1

. . . and Its Relaxation

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1}, 0 ≤ yi ≤ 1

. . . and Its Relaxation

Theorem. Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each
variable xi to 1 with probability y∗

i provides a
(1− 1/e)-approximation for MaxSat.

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1}, 0 ≤ yi ≤ 1

. . . and Its Relaxation

Theorem. Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each
variable xi to 1 with probability y∗

i provides a
(1− 1/e)-approximation for MaxSat.

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1}, 0 ≤ yi ≤ 1

. . . and Its Relaxation

Theorem. Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each
variable xi to 1 with probability y∗

i provides a
(1− 1/e)-approximation for MaxSat.

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1}, 0 ≤ yi ≤ 1

. . . and Its Relaxation

Theorem. Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each
variable xi to 1 with probability y∗

i provides a
(1− 1/e)-approximation for MaxSat.

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1}, 0 ≤ yi ≤ 1

. . . and Its Relaxation

Theorem. Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each
variable xi to 1 with probability y∗

i provides a
(1− 1/e)-approximation for MaxSat.

An ILP

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for j = 1, . . . ,m

for i = 1, . . . , n

for j = 1, . . . ,m

Let Cj =
∨

i∈Pj
xi ∨

∨
i∈Nj

x̄i for j = 1, . . . ,m.

0 ≤ zj ≤ 1zj ∈ {0, 1},
yi ∈ {0, 1}, 0 ≤ yi ≤ 1

. . . and Its Relaxation

Theorem. Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each
variable xi to 1 with probability y∗

i provides a
(1− 1/e)-approximation for MaxSat.0.63 ≈

Lecture 11:
MaxSat via Randomized Rounding

Part V:
Randomized Rounding – Proof

Approximation Algorithms

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

0 1

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

0 1

f

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

0 1

f

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

0 1

f

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

0 1

f

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

a+ b

0 1

f

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

a+ b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

a+ b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

a+ b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic–Geometric Mean Inequality (AGMI):

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

a+ b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic–Geometric Mean Inequality (AGMI):

For all non-negative numbers a1, . . . , ak :(
k∏

i=1

ai

)1/k
≤ 1

k

(
k∑

i=1

ai

)

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

a+ b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic–Geometric Mean Inequality (AGMI):

For all non-negative numbers a1, . . . , ak :(
k∏

i=1

ai

)1/k
≤ 1

k

(
k∑

i=1

ai

)

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a+ b

a

a+ b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic–Geometric Mean Inequality (AGMI):

For all non-negative numbers a1, . . . , ak :(
k∏

i=1

ai

)1/k
≤ 1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

︸ ︷︷ ︸
≥ z∗j

AGMI

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

︸ ︷︷ ︸
≥ z∗j

AGMI

by LP constraints

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

︸ ︷︷ ︸
≥ z∗j

AGMI

by LP constraints

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

Consider a fixed clause Cj of length ℓj . Then we have:

Pr[Cj not sat.] =
∏
i∈Pj

(1− y∗
i)
∏
i∈Nj

y∗
i

≤

 1

ℓj

∑
i∈Pj

(1− y∗
i) +

∑
i∈Nj

y∗
i

ℓj

=

1− 1

ℓj

∑
i∈Pj

y∗
i +

∑
i∈Nj

(1− y∗
i)

ℓj

≤
(
1−

z∗j
ℓj

)ℓj

︸ ︷︷ ︸
≥ z∗j

AGMI

by LP constraints

(
k∏

i=1

ai

)1/k

≤
1

k

(
k∑

i=1

ai

)

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

[
1−

(
1− 1

ℓj

)ℓj
]
z∗j

≥
(
1− 1

e

)
z∗j

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

[
1−

(
1− 1

ℓj

)ℓj
]
z∗j

≥
(
1− 1

e

)
z∗j

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

[
1−

(
1− 1

ℓj

)ℓj
]
z∗j

≥
(
1− 1

e

)
z∗j

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

[
1−

(
1− 1

ℓj

)ℓj
]
z∗j

≥
(
1− 1

e

)
z∗j

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

[
1−

(
1− 1

ℓj

)ℓj
]
z∗j

≥
(
1− 1

e

)
z∗j

1 + x ≤ ex

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

[
1−

(
1− 1

ℓj

)ℓj
]
z∗j

≥
(
1− 1

e

)
z∗j

1 + x ≤ ex

x = − 1
ℓj
⇒

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

[
1−

(
1− 1

ℓj

)ℓj
]
z∗j

≥
(
1− 1

e

)
z∗j

1 + x ≤ ex

x = − 1
ℓj
⇒ 1− 1

ℓj
≤ e−1/ℓj

Randomized Rounding (Proof)

The function f (z∗j) = 1−
(
1− z∗j

ℓj

)ℓj
is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j) ≥ f (1) · z∗j + f (0)

≥

[
1−

(
1− 1

ℓj

)ℓj
]
z∗j

≥
(
1− 1

e

)
z∗j

1 + x ≤ ex

x = − 1
ℓj
⇒ 1− 1

ℓj
≤ e−1/ℓj

Randomized Rounding (Proof)

Therefore

E[W] =
m∑
j=1

Pr[Cj satisfied] · wj

≥
(
1− 1

e

) m∑
j=1

wjz
∗
j

=

(
1− 1

e

)
OPTLP

≥
(
1− 1

e

)
OPT

Randomized Rounding (Proof)

Therefore

E[W] =
m∑
j=1

Pr[Cj satisfied] · wj

≥
(
1− 1

e

) m∑
j=1

wjz
∗
j

=

(
1− 1

e

)
OPTLP

≥
(
1− 1

e

)
OPT

Randomized Rounding (Proof)

Therefore

E[W] =
m∑
j=1

Pr[Cj satisfied] · wj

≥
(
1− 1

e

) m∑
j=1

wjz
∗
j

=

(
1− 1

e

)
OPTLP

≥
(
1− 1

e

)
OPT

LP objective function

Randomized Rounding (Proof)

Therefore

E[W] =
m∑
j=1

Pr[Cj satisfied] · wj

≥
(
1− 1

e

) m∑
j=1

wjz
∗
j

=

(
1− 1

e

)
OPTLP

≥
(
1− 1

e

)
OPT

LP objective function

Randomized Rounding (Proof)

Therefore

E[W] =
m∑
j=1

Pr[Cj satisfied] · wj

≥
(
1− 1

e

) m∑
j=1

wjz
∗
j

=

(
1− 1

e

)
OPTLP

≥
(
1− 1

e

)
OPT

LP objective function

Randomized Rounding (Proof)

Therefore

E[W] =
m∑
j=1

Pr[Cj satisfied] · wj

≥
(
1− 1

e

) m∑
j=1

wjz
∗
j

=

(
1− 1

e

)
OPTLP

≥
(
1− 1

e

)
OPT

LP objective function

Theorem. The previous algorithm can be derandomized by
the method of conditional expectation.

Lecture 11:
MaxSat via Randomized Rounding

Part VI:
Combining the Algorithms

Approximation Algorithms

Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a 3/4 -approximation for
MaxSat.

Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a 3/4 -approximation for
MaxSat.

Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a 3/4 -approximation for
MaxSat.

We use another probabilistic argument.
With probability 1/2, choose the solution of the first
algorithm; otherwise the solution of the second algorithm.

Proof.

Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a 3/4 -approximation for
MaxSat.

We use another probabilistic argument.
With probability 1/2, choose the solution of the first
algorithm; otherwise the solution of the second algorithm.

The better solution is at least as good as the expectation of
the above randomized algorithm.

Proof.

Take the better of the two solutions!

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

Take the better of the two solutions!

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

LP-rounding

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

︸ ︷︷ ︸
rand. alg.LP-rounding

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

︸ ︷︷ ︸
rand. alg.LP-rounding

z∗j

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

︸ ︷︷ ︸
rand. alg.LP-rounding

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

For ℓj ∈ {1, 2}, a simple calculation yields exactly 3
4z

∗
j .

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

For ℓj ∈ {1, 2}, a simple calculation yields exactly 3
4z

∗
j .

For ℓj ≥ 3, 1− (1− 1/ℓj)
ℓj ≥ (1− 1/e) and 1− 2−ℓj ≥

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

For ℓj ∈ {1, 2}, a simple calculation yields exactly 3
4z

∗
j .

For ℓj ≥ 3, 1− (1− 1/ℓj)
ℓj ≥ (1− 1/e) and 1− 2−ℓj ≥

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

For ℓj ∈ {1, 2}, a simple calculation yields exactly 3
4z

∗
j .

For ℓj ≥ 3, 1− (1− 1/ℓj)
ℓj ≥ (1− 1/e) and 1− 2−ℓj ≥

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

7
8 .

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

For ℓj ∈ {1, 2}, a simple calculation yields exactly 3
4z

∗
j .

For ℓj ≥ 3, 1− (1− 1/ℓj)
ℓj ≥ (1− 1/e) and 1− 2−ℓj ≥

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

Thus, we have at least:

1

2

[(
1− 1

e

)
+

7

8

]
z∗j ≈ 0.753z∗j ≥ 3

4
z∗j

7
8 .

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

For ℓj ∈ {1, 2}, a simple calculation yields exactly 3
4z

∗
j .

For ℓj ≥ 3, 1− (1− 1/ℓj)
ℓj ≥ (1− 1/e) and 1− 2−ℓj ≥

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

Thus, we have at least:

1

2

[(
1− 1

e

)
+

7

8

]
z∗j ≈ 0.753z∗j ≥ 3

4
z∗j

7
8 .

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1

2

[(
1−

(
1− 1

ℓj

)ℓj
)
z∗j +

(
1− 2−ℓj

)]
·

For ℓj ∈ {1, 2}, a simple calculation yields exactly 3
4z

∗
j .

For ℓj ≥ 3, 1− (1− 1/ℓj)
ℓj ≥ (1− 1/e) and 1− 2−ℓj ≥

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

Thus, we have at least:

1

2

[(
1− 1

e

)
+

7

8

]
z∗j ≈ 0.753z∗j ≥ 3

4
z∗j

7
8 .

z∗j ≥ 3

4
z∗j .

we claim!
︸ ︷︷ ︸

Visualization and Derandomization

Visualization and Derandomization

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

lj

Visualization and Derandomization

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

lj

Visualization and Derandomization

1−
(
1− 1

ℓj

)ℓj

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

lj

Visualization and Derandomization

– Randomized alg. is better for large values of ℓj .
– Randomized LP-rounding is better for small values of ℓj
⇒ higher probability of satisfying clause Cj .

1−
(
1− 1

ℓj

)ℓj

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

lj

Visualization and Derandomization

– Randomized alg. is better for large values of ℓj .
– Randomized LP-rounding is better for small values of ℓj
⇒ higher probability of satisfying clause Cj .

1−
(
1− 1

ℓj

)ℓj

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

lj

Visualization and Derandomization

– Randomized alg. is better for large values of ℓj .
– Randomized LP-rounding is better for small values of ℓj
⇒ higher probability of satisfying clause Cj .

1−
(
1− 1

ℓj

)ℓj

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

lj

Visualization and Derandomization

– Randomized alg. is better for large values of ℓj .
– Randomized LP-rounding is better for small values of ℓj
⇒ higher probability of satisfying clause Cj .

1−
(
1− 1

ℓj

)ℓj

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

mean

lj

Visualization and Derandomization

– Randomized alg. is better for large values of ℓj .
– Randomized LP-rounding is better for small values of ℓj
⇒ higher probability of satisfying clause Cj .

The mean of the two
solutions is at least 3/4
for integer ℓj .

1−
(
1− 1

ℓj

)ℓj

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

mean

lj

Visualization and Derandomization

– Randomized alg. is better for large values of ℓj .
– Randomized LP-rounding is better for small values of ℓj
⇒ higher probability of satisfying clause Cj .

The mean of the two
solutions is at least 3/4
for integer ℓj .

The maximum is at
least as large as the mean.

1−
(
1− 1

ℓj

)ℓj

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

mean

lj

Visualization and Derandomization

– Randomized alg. is better for large values of ℓj .
– Randomized LP-rounding is better for small values of ℓj
⇒ higher probability of satisfying clause Cj .

The mean of the two
solutions is at least 3/4
for integer ℓj .

The maximum is at
least as large as the mean.

This algorithm, too,
can be derandomized by
conditional expectation.

1−
(
1− 1

ℓj

)ℓj

1−
(
1
2

)ℓj

2

0.5

0.75

1

4 6 8 101 3 5 7 9

Pr[Cj sat.]/z
∗
j

mean

lj

	Maximum Satisfiability (MaxSat)
	A Simple Randomized Algorithm
	Derandomization by Conditional Expectation
	Derandomization by Conditional Expectation (I)
	Derandomization by Conditional Expectation (II)
	Derandomization by Conditional Expectation (III)
	Summary

	Randomized Rounding
	An ILP

	Randomized Rounding - Proof
	Mathematical Toolkit
	Randomized Rounding (Proof) (I)
	Randomized Rounding (Proof) (II)
	Randomized Rounding (Proof) (III)

	Combining the Algorithms
	Take the better of the two solutions!
	Visualization and Derandomization

