Approximation Algorithms

Lecture 11:
MAXSAT via Randomized Rounding

Part |
Maximum Satisfiability (MAXSAT)

Alexander Wolff Winter term 2025

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xy, ..., X, and

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xy, ..., X, and
clauses (i, ..., Cnm

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xy, ..., X, and
clauses (i, ..., Cnm

Eg., (x1 VX Vx3)A (o VX3V xg)A(x:VXg).

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xy, ..., X, and
clauses (i, ..., Cry with weights wq, ...,

Eg., (x1 VX Vx3)A (o VX3V xg)A(x:VXg).

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xq, ..., X, and
clauses Cq, ..., Cy with weights wq, ..., w,,.
Task: Find an assignment of the variables xq, ..., X,

Eg., (x1 VX Vx3)A (o VX3V xg)A(x:VXg).

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xq, ..., X, and
clauses Cq, ..., Cy with weights wq, ..., w,,.
Task: Find an assignment of the variables xq, ..., X,

such that the total weight of the satisfied clauses
IS maximized.

Eg., (x1 VX Vx3)A (o VX3V xg)A(x:VXg).

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xq, ..., X, and
clauses Cq, ..., Cy with weights wq, ..., w,,.
Task: Find an assignment of the variables xq, ..., X,

such that the total weight of the satisfied clauses
IS maximized.

Literal: Variable or negated variable — e.g., x1, X1.

Eg., (x1 VXV x3)A (0 VX3V xg)A(x1 V).

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xi, ..., x, and
clauses Cq, ..., Cy with weights wq, ..., w,,.
Task: Find an assignment of the variables xq, ..., x,

such that the total weight of the satisfied clauses
IS maximized.

Literal: Variable or negated variable — e.g., x1, X1.

Clause: Disjunction of literals — e.g., x1 VX V Xx3.

E.g., (X1 \/X_Q\/X3) N\ (X2 \/X_3\/X4) /N\ (X1 \/X_4)

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xi, ..., x, and
clauses Cq, ..., Cy with weights wq, ..., w,,.
Task: Find an assignment of the variables xq, ..., x,

such that the total weight of the satisfied clauses
IS maximized.

Literal: Variable or negated variable — e.g., x1, X7.
Clause: Disjunction of literals — e.g., x1 VX V Xx3.

Length of a clause = number of literals.

E.g., (X1 \/X_Q\/X3) N\ (X2 \/X_3\/X4) /N\ (X1 \/X_4)

Maximum Satisfiability (MAXSAT)

Given: Boolean variables xi, ..., x, and
clauses Cq, ..., C,, with

Task: Find an assignment of the variables xq, ..., x,
such that the of the satisfied clauses

IS maximized.

Literal: Variable or negated variable — e.g., x1, X1.
Clause: Disjunction of literals —e.g., x; VX V x3.
Length of a clause = number of literals.

Problem is NP-hard since SATISFIABILITY (SAT) is NP-hard:
Is a given formula in conjunctive normal form satisfiable?

E.g., (X1 \/X_Q\/X3) N\ (X2 \/X_3\/X4) /N\ (X1 \/X_4)

Approximation Algorithms

Lecture 11:
MAXSAT via Randomized Rounding

Part Il
A Simple Randomized Algorithm

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability provides an expected
-approximation for MAXSAT.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
-approximation for MAXSAT.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

| et be a random variable for the truth value of
clause CJ

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of
clause C;.

Let \V be a random variable for the total of the

satisfied clauses.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of
clause C;.

Let \V be a random variable for the total of the

satisfied clauses.

E[W/] =

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of
clause C;.

Let \V be a random variable for the total of the

satisfied clauses.

E[W]=E|) =

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of
clause C;.

Let \V be a random variable for the total of the

satisfied clauses.

E[W]=E Z = wE[V]=

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of
clause C;.

Let \V be a random variable for the total of the

satisfied clauses.

m m m

E[W]=E|) =Y wE[V]=) wPr[(satisfied]

Jj=1 Jj=1 Jj=1

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of

clause C;.

Let IV be a random variable for the total of the

satisfied clauses.

E[W]=E|) =Y wE[V]=) wPr[(satisfied]
j=1 j=1 j=1

l; = length(C;) =

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of

clause C;.

Let IV be a random variable for the total of the

satisfied clauses.

E[W]=E|) =Y wE[V]=) wPr[(satisfied]
j=1 j=1 j=1

(; = length(C;) = Pr[C; satisfied] =

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of

clause C;.

Let IV be a random variable for the total of the

satisfied clauses.

E[W]=E|) =Y wE[V]=) wPr[(satisfied]
j=1 j=1 j=1

l; == length(C;) = Isr[CJ satisfied] = 1 — (1/2)% >

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of

clause C;.

Let IV be a random variable for the total of the

satisfied clauses.

E[W]=E|) =Y wE[V]=) wPr[(satisfied]
j=1 j=1 j=1

(; = length(C;) = Pr[C; satisfied] = 1 — (1/2)% > 1/2.

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of

clause C;.

Let IV be a random variable for the total of the

satisfied clauses.

E[W]=E|) =Y wE[V]=) wPr[(satisfied]
j=1 j=1 j=1

(; = length(C;) = Pr[C; satisfied] = 1 — (1/2)% > 1/2.

Thus, E[W] >

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of

clause C;.

Let IV be a random variable for the total of the

satisfied clauses.

E[W]=E|) =Y wE[V]=) wPr[(satisfied]
j=1 j=1 j=1

(; = length(C;) = Pr[C; satisfied] = 1 — (1/2)% > 1/2.

Thus, E[W] > 37w, >

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1 /2-approximation for MAXSAT.

Proof.

Let be a random variable for the truth value of

clause C;.

Let IV be a random variable for the total of the

satisfied clauses.

E[W]=E|) =Y wE[V]=) wPr[(satisfied]
j=1 j=1 j=1

(; = length(C;) = Pr[C; satisfied] = 1 — (1/2)% > 1/2.

Thus, E[W] > 33", w; > OPT /2.

Approximation Algorithms

Lecture 11:
MAXSAT via Randomized Rounding

Part |1l
Derandomization by Conditional Expectation

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | x; =1] > E[W | x; = 0.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | x; =1] > E[W | x; = 0.

E[W/] =

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | x; =1] > E[W | x; = 0.

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | x; =1] > E[W | x; = 0.

E[W] = (E[W | xx = 0] + E[W |y =1]) /2. Lanoiiess”

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | xx =1] > E[W | x; = 0.
E[W] = (E[W |x2 = 0]+ E[W [x =1]) /2. Farinsg”

If x; was set to b; € {0, 1},

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | xx =1] > E[W | x; = 0.
E[W] = (E[W |x2 = 0]+ E[W [x =1]) /2. Farinsg”

If x; was set to b; € {0, 1},
then E[W | x; = bi] >

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | xx =1] > E[W | x; = 0.
E[W] = (E[W |x2 = 0]+ E[W [x =1]) /2. Farinsg”

If x; was set to b; € {0, 1},
then E[W ‘ X1 = bl] > E[W] >

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized,
I.e., there is a deterministic 1/2-approximation
algorithm for MAXSAT.

Proof.

For now, we set x; deterministically, but x>, ..., x, randomly.

Namely: set x; =1 < E[W | xx =1] > E[W | x; = 0.
E[W] = (E[W |x2 = 0]+ E[W [x =1]) /2. Farinsg”

If x; was set to b; € {0, 1},

Derandomization by Conditional Expectation

Assume (by induction) that we have set xq, ..., x: to by
such that

Derandomization by Conditional Expectation

Assume (by induction) that we have set xq, ..., x: to by
such that

E[W ‘Xl :bl X,':b,'] ZOPT/Z

Derandomization by Conditional Expectation

Assume (by induction) that we have set xq, ..., x: to by
such that

E[W ‘Xl :bl X,':b,'] ZOPT/Z

Then (similarly to the base case):

Derandomization by Conditional Expectation

Assume (by induction) that we have set xq, ..., x: to by
such that

(EW X1 = b1 X = b,‘,XH_l — O
—I—EW X1 = by, ..., X,':b,',XH_l:].:)/Q

Derandomization by Conditional Expectation

Assume (by induction) that we have set xq, ..., xi to by, ..., b;
such that

(EW X1 = b1 X = b,',XH_l — O
—I—EW X1 = by, ..., X,':b,',XH_l:].:)/Q
:EW X1:b1 X,':b,'] ZOPT/Z

Derandomization by Conditional Expectation

Assume (by induction) that we have set xq, ..., xi to by, ..., b;
such that

(EW X1 = b1 X = b,',XH_l — O
—I—EW X1 = by, ..., X,':b,',XH_l:].:)/Q
:EW X1:b1 X,':b,'] ZOPT/Z

Soweset x.1 =1«

Derandomization by Conditional Expectation

Assume (by induction) that we have set xq, ..., xi to by, ..., b;
such that

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assighment x; = by, ..., x; = b;
and a clause C;.

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assighment x; = by, ..., x; = b;
and a clause C;.

It C; is already satisfied, then it contributes exactly to
E[W ‘ X1 =— bl,...,X,' — b,]

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assighment x; = by, ..., x; = b;
and a clause C;.

It C; is already satisfied, then it contributes exactly w; to
E[W ‘ X1 =— bl,...,X,' — b,]

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assighment x; = by, ..., x; = b;
and a clause C;.

It C; is already satisfied, then it contributes exactly w; to
E[W ‘ X1 =— bl,...,X,' — b,]

If C; is not yet satisfied and contains k unassigned variables,

then it contributes exactly Pr|] to
E[W ‘ X1 = bl, co, X = b,’], that iS,

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assighment x; = by, ..., x; = b;
and a clause C;.

It C; is already satisfied, then it contributes exactly w; to
E[W ‘ X1 =— bl,...,X,' — b,]

If C; is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[C; is satisfied] to
E[W ‘ X1 = bl, co, X = b,’], that iS,

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assignment x; = by, ..., X; = b,
and a clause C;.

It C; is already satisfied, then it contributes exactly w; to
E[W ‘ X1 =— bl,...,X,' — b,]

If C; is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[C; is satisfied] to
E[W\Xlzbl,...,x,-:b,-],that iS, (1—(1/2)k)

Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized —
if the conditional expectation can be computed efficiently!

Consider a partial assighment x; = by, ..., x; = b;
and a clause C;.

It C; is already satisfied, then it contributes exactly w; to
E[W ‘ X1 =— bl,...,X,' — b,]

If C; is not yet satisfied and contains k unassigned variables,
then it contributes exactly Pr[C; is satisfied] to
E[W\xlzbl,...,x,-:b,-],that iS, (1—(1/2)k)

The conditional expectation is simply the sum of the
contributions from each clause.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

The algorithm iteratively sets the variables and greedily decides
for the locally best assignment.

Summary

Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: Respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the
expected value.

The algorithm iteratively sets the variables and greedily decides
for the locally best assignment.

Global optimization?

Approximation Algorithms

Lecture 11:
MAXSAT via Randomized Rounding

Part |V:
Randomized Rounding

An ILP

Let G =V,ep Xi VVep X% forj=1,....m.

maximize

subject to

maximize

subject to

yi €{0,1},

maximize

subject to

vi € {0,1},
Zj € {O, 1},

maximize E W;Zj

Jj=1

subject to

vi € {0,1},
Zj € {O, 1},

An ILP

Let Cj:\/iepjx,-\/\/ielvji,- for j=1,..., m.

maximize E W;Zj

subject to Z +Z

1€P; el

yi €40,1},
Zj € {O, 1},

An ILP

Let Cj=Vcp XiVViep X forj=1,..., m.

m

maximize E W;Zj

J=1

An ILP

Let Cj=Vcp XiVViep X forj=1,..., m.

m

maximize E W;Zj

Jj=1
subject to Zy; + Z(l — ¥i)

iEPj iENj
yi €4{0,1},
Zj € {O, 1},

An ILP

Let Cj:\/iepjx,-\/\/ielvji,- for j=1,..., m.

maximize E W;Zj

Jj=1
subject to Zy,- + Z(l —Yi) z

iEPj iENj
yi €4{0,1},
Zj € {O, 1},

An ILP

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E W;Zj
J=1

subject to Zy; + Z(l —yvi) >z forj=1

1€P; el
vi €40, 1}, fori=1,...,n
Zi & {O, 1}, '

An ILP

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E W;Zj
J=1

subject to Zy; + Z(l —yvi) >z forj=1

iEPj I'ENJ-
y; € {0,1}, fori=1 ... n
Z-e07 1}, '

An ILP

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E W;Zj
J=1

subject to Zy; + Z(l —yvi) >z forj=1

1€P; el
yi €{0,1}, fori=1,...,n
%—@{0,1},_ OSZJS 1

An ILP

Let Cj=Vep XiVViep X forj=1,....m.

m
maximize E W;Zj
J=1

subject to Zy;+2(1—)/i)22j fory=1,...,m

iEPj iENj

fori=1,...,n

An ILP ... and lts Relaxation

Let Cj=Vcp XiVViep X forj=1,..., m.
m
maximize Z W;Zj
j=1

subject to Zy; + Z(l —yvi) >z forj=1

iEPj iENj

=
i

An ILP ... and lts Relaxation

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E Z
J=1

subject to Zy; + Z(l —yvi) >z forj=1

iEPj iENj
wyefo1, 0<y, <1 fori=1,...,n
Z—— ,1}7 OSZJS].

Theorem. Let (y*, z") be an optimal solution to the
LP-relaxation.

An ILP ... and lts Relaxation

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E Z
J=1

subject to Zy; + Z(l —yvi) >z forj=1

iEPj iENj
wyefo1, 0<y, <1 fori=1,...,n
Z—— ,1}7 OSZJS].

Theorem. Let (y*, z") be an optimal solution to the
LP-relaxation. Independently setting each
variable x; to 1

An ILP ... and lts Relaxation

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E Z
J=1

subject to Zy; + Z(l —yvi) >z forj=1

iEPj iENj
wyefo1, 0<y, <1 fori=1,...,n
Z—— ,1}_, OSZJS].

Theorem. Let (y*, z") be an optimal solution to the
LP-relaxation. Independently setting each
variable x; to 1 with probability = provides a
()-approximation for MAXSAT.

An ILP ... and lts Relaxation

Let Cj=Vep XiVViep X forj=1,....m.

m
maximize E Z
J=1

subject to Zy;+2(1—y;) >z foryj=1,...

iEPj iENj

fori=1,...

Theorem. Let (y*, z") be an optimal solution to the
LP-relaxation. Independently setting each
variable x; to 1 with probability y provides a
()-approximation for MAXSAT.

An ILP ... and lts Relaxation

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E Z
J=1

subject to Zy; + Z(l —yvi) >z forj=1

iEPj iENj
wyefo1, 0<y, <1 fori=1,...,n
Z—— ,1}_, OSZJS].

Theorem. Let (y*, z") be an optimal solution to the
LP-relaxation. Independently setting each
variable x; to 1 with probability y provides a
(1 — 1/e)-approximation for MAXSAT.

An ILP ... and lts Relaxation

Let Cj=Vcp XiVViep X forj=1,..., m.

m
maximize E Z
J=1

subject to Zy; + Z(l —yvi) >z forj=1

iEPj iENj
wyefo1, 0<y, <1 fori=1,...,n
Z—— ,1}7 OSZJS].

Theorem. Let (y*, z") be an optimal solution to the
LP-relaxation. Independently setting each
variable x; to 1 with probability y provides a
063 ~ (1 — 1/e)-approximation for MAXSAT.

Approximation Algorithms

Lecture 11:
MAXSAT via Randomized Rounding

Part V:
Randomized Rounding — Proof

Mathematical Toolkit

Let f be a function that is concave on [0, 1]

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. (x) <0on [0,1])

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. (x) <0on [0,1])

A

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. (x) <0on [0,1])

A

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i,e. f’(x) <0on [0,1]) with f(0) =a
A

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i,e. f’(x) <0on [0,1]) with f(0) =a
A

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b
A

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b

A
a+ bt f

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b
A

a—+ b-

= f(x) > bx + a for x € [0, 1].

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b

A = f(x) > bx + a for x € [0, 1].
a -+ bA ,

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b
A = f(x) > bx + a for x € [0, 1].
a+ b- f

—»

0 1
Arithmetic—Geometric Mean Inequality (AGMI):

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b
A = f(x) > bx + a for x € [0, 1].
a—+ b- f

—»

0 1
Arithmetic—Geometric Mean Inequality (AGMI):

For all non-negative numbers a4, ..., aj:

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b
A = f(x) > bx + a for x € [0, 1].
a—+ b- f

—»

0 1
Arithmetic—Geometric Mean Inequality (AGMI):

For all non-negative numbers a4, ..., aj:

Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.,e. 7(x) <0on [0,1]) with f(0) =aand f(1)=a+b
A = f(x) > bx + a for x € [0, 1].
a—+ b- f

—»

0 1
Arithmetic—Geometric Mean Inequality (AGMI):

For all non-negative numbers a4, ..., aj:

) = (5

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] =

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y)

iEPj

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y) H y:

iEPj iE/VJ'

AN

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

PriCinotsat] = [[(1—y) [v

1€P; el

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y) H y:

iEPj iE/VJ'

o < Z(l -y)+ Z Yi

iEPj iENj

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y) H y:

. icP; i€ N
1))
- AGMI - 1 sk k
< 7 Z(l —yi)+ Z Yi

iEPj iENj

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y) H y:

; icP; =
<H a’) : % (Z a)\' - - 4;
- AGMI - 1 * *
< Z Z(l —yi)+ Z Yi

1€P; e,

1__ ZyI+Z(1_yI

1€P; el

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y) H y:

. icP; i€ N
1))
- AGMI - 1 sk k
< Z Z(l —yi)+ Z Yi

1€P; e,

1__ ZyI+Z(1_yI

IEP el

N

>

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y) H y:

. icP; i€ N
1))
- AGMI - 1 sk k
< Z Z(l —yi)+ Z Yi

1€P; e,

_EJ

1__ ZyI+Z(1_yI
IEP el

N

> by LP constraints

J/

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l — y) H y:

. icP i€ N
1))
- AGMI - 1 k *
< Z Z(l —yi)+ Z Yi

1€P; e,

_EJ

1__ ZyI+Z(1_yI

IEP el

J/

2 Zj by LP constraints

Randomized Rounding (Proof)

Consider a fixed clause C; of length /;. Then we have:

Pr[C; not sat.] = H(l —y) H y:
. icP; i€ N
1))
=1 =1 1))
f_j Z(l -y)+ Z Yi

>

O

=
FAN

I i€ P; i€N;]
- 6]
= 1—— D v+ (1-y)
IEP el 1
(Zk)EJ 2 Zj by LP constraints
< _ 1L
g

Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].

Randomized Rounding (Proof)

%
Z

¢
The function f(z') =1 — (1 — EL) is concave on [0, 1].
Thus

Pr|[C; satisfied] >

Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].
Thus

Pr[C; satisfied] > f(z) >

Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].
Thus

Pr[C; satisfied] > f(z") > f(1) - z7 + £(0)

>

Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].
Thus

Pr[C; satisfied] > f(z") > f(1) - z7 + £(0)

/.
L\’ .

>

Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].
Thus

Pr[C; satisfied] > f(z") > f(1) - z7 + £(0)

/.
L\’ .

>

b

1+ x < eX

Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].
Thus

Pr[C; satisfied] > f(z") > f(1) - z7 + £(0)

/.
L\’ .

>

1+ x < eX

Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].
Thus

Pr[C; satisfied] > f(z") > f(1) - z7 + f(0)

/.
L\’ .

Randomized Rounding (Proof)

*
Z

¢
The function f(z') =1 — (1 — Z_J) is concave on [0, 1].
Thus

Pr[C; satisfied] > f(z") > f(1) - z7 + £(0)

/.
L\’ .

1 *

Randomized Rounding (Proof)

Therefore

E[W] = zm: Pr[C; satisfied] -

Jj=1

>

Randomized Rounding (Proof)

Therefore

E[W] = zm: Pr[C; satisfied] -

j=1
]' *
> (1-5) L

Randomized Rounding (Proof)

Therefore

E[W] = zm: Pr[C; satisfied] -

Jj=1

1 m LP objective function
1 — — E z:
€

Randomized Rounding (Proof)

Therefore

E[W] = zm: Pr[C; satisfied] -

Jj=1

1 m LP objective function
> 11— — E ij
€

<]. — 1) OPTLP
€

[V

Randomized Rounding (Proof)

Therefore

E[W] = zm: Pr[C; satisfied] -

Jj=1

1 m LP objective function
> 11— — E ij
€

— <]. — 1) OPTLP
e
1

> (1 _ _> OPT
€

Randomized Rounding (Proof)

Therefore

E[W] = zm: Pr[C; satisfied] -

Jj=1

1 m LP objective function
> 11— — E ij
€

= (1 — 1) OPTLp
€
1

> (1 — —> OPT
€

Theorem. The previous algorithm can be derandomized by
the method of conditional expectation.

Approximation Algorithms

Lecture 11:
MAXSAT via Randomized Rounding

Part VI
Combining the Algorithms

Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a -approximation for
MAXSAT.

Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a 3 /4 -approximation for
MAXSAT.

Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a 3 /4 -approximation for
MAXSAT.

Proof.

We use another probabilistic argument.
With probability 1/2, choose the solution of the first
algorithm; otherwise the solution of the second algorithm.

Take the better of the two solutions!

Theorem. The better solution among the randomized
algorithm and the randomized LP-rounding
algorithm provides a 3 /4 -approximation for
MAXSAT.

Proof.

We use another probabilistic argument.
With probability 1/2, choose the solution of the first
algorithm; otherwise the solution of the second algorithm.

The better solution is at least as good as the expectation of
the above randomized algorithm.

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

: +
2

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ . _
1 1Y\"~

“f1-(1- = .* .
2 ((fj))ZJ+

\ 4

LP—ro:nding

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

% (1 — (1 — %)6) z'+ (1—279)

~ ~~ 7 N—
LP-rounding rand. alg.

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

% :<1— (1—%)@) +(1-279) - z

~ ~~ 7 N—
LP-rounding rand. alg.

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

1_ 1 o —1; *
5 (1-(1—6—1_)) +(1-279)| -z >

W

*
Zj'

~ ~~ 7 —— ~——
LP-rounding rand. alg. we claim!

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’.
1 1\" . 3
“f1-(1-= 1—279) .z > 2
2 ((€j)) +)| 7 2 45
N -~ >4 Ne—— —— e’
LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’. i,
1 1\" . 3
(1= (1-= 1—279) | zr > 2=
2 ((éj)) o)| 239
N -~ > N——, —— N—
LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

For /; € {1,2}, a simple calculation yields exactly %zf.

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’.
1 1\" . 3
(1= (1-= 1—279) | zr > 2=
2 ((€j)) + |7 2 45
N -~ > N——, —— N—
LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

For /; € {1,2}, a simple calculation yields exactly %zf.

For¢; >3, 1—(1-1/¢)5% > and 1 — 279 >

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’. i,
1 1\" . 3
(1= (1-= 1—279) | zr > 2=
2 ((éj)) o)| 239
N -~ > N——, —— N—
LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

For /; € {1,2}, a simple calculation yields exactly %zf.

For (;23, 1-(1-1/0)) > (1-1/e) and 1275 >

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’. i,
1 1\" . 3
(1= (1-= 1—279) | zr > 2=
2 ((éj)) o)| 239
N -~ > N——, —— N—
LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

For /; € {1,2}, a simple calculation yields exactly %zf.

For (; >3, 1-(1-1/¢))%>(1-1/e)and1—-27% > I

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’. i,
1 1\" . 3
(1= (1-= 1—279) | zr > 2=
2 ((éj)) o)| 239
N ~~ >4 N——, —— N—
LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

For /; € {1,2}, a simple calculation yields exactly %zjfk.
For (; >3, 1-(1-1/¢))%>(1-1/e)and1—-27% > I

Thus, we have at least:

111+7 .
2 e SZJN

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’. i,
1 1\" . 3
(1= (1-= 1—279) | zr > 2=
2 ((éj)) o)| 239
N ~~ >4 N——, —— N—
LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

For /; € {1,2}, a simple calculation yields exactly %zjfk.
For (; >3, 1-(1-1/¢))%>(1-1/e)and1—-27% > I

Thus, we have at least:

1 1 7| . .

Take the better of the two solutions!

The probability that clause C; is satisfied is at least:

_ ’. i,
1 1\" . 3
“l1-(1-= 1—279) . z& > 2

~ ~~ 7 N— N——

LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by
linearity of expectation.)

For /; € {1,2}, a simple calculation yields exactly %zf
For (; >3, 1-(1-1/¢))%>(1-1/e)and1—-27% > I

Thus, we have at least:

1 1\ 77 .

J

-I>IUO

Visualization and Derandomization

Visualization and Derandomization

Pr[C; sat.]/z"

__

Visualization and Derandomization

Pr[C; sat.]/z"

Visualization and Derandomization

Pr[C; sat.]/z"

Visualization and Derandomization

— Randomized alg. is better for large values of /;.

Pr[C; sat.]/z"

Visualization and Derandomization

— Randomized alg. is better for large values of /;.
— Randomized LP-rounding is better for small values of /;

Pr[C; sat.]/z"

Visualization and Derandomization

— Randomized alg. is better for large values of /;.
— Randomized LP-rounding is better for small values of /;

= higher probability of satisfying clause C;. PrC; sat]/z;

1_I

Visualization and Derandomization

— Randomized alg. is better for large values of /;.
— Randomized LP-rounding is better for small values of /;

= higher probability of satisfying clause C;. PrC; sat]/z;

1_I

0.75-1

Visualization and Derandomization

— Randomized alg. is better for large values of /;.

— Randomized LP-rounding is better for small values of /;

= higher probability of satisfying clause C;. Pr{C; sat]/z
' J

1_I

The mean of the two
solutions is at least 3/4
for integer /;.

0.75-

Visualization and Derandomization

— Randomized alg. is better for large values of /;.

— Randomized LP-rounding is better for small values of /;

= higher probability of satisfying clause C;. Pr{C; sat]/z
' J

1_I

The mean of the two
solutions is at least 3/4
for integer /;.

The maximum is at 0.75<
least as large as the mean.

0.5-F

Visualization and Derandomization

— Randomized alg. is better for large values of /;.

— Randomized LP-rounding is better for small values of /;

= higher probability of satisfying clause C;. Pr{C; sat]/z
' J

1_I

The mean of the two
solutions is at least 3/4
for integer /;.

The maximum is at 0.75<
least as large as the mean.

This algorithm, too,
can be derandomized by ,
conditional expectation. 9>

	Maximum Satisfiability (MaxSat)
	A Simple Randomized Algorithm
	Derandomization by Conditional Expectation
	Derandomization by Conditional Expectation (I)
	Derandomization by Conditional Expectation (II)
	Derandomization by Conditional Expectation (III)
	Summary

	Randomized Rounding
	An ILP

	Randomized Rounding - Proof
	Mathematical Toolkit
	Randomized Rounding (Proof) (I)
	Randomized Rounding (Proof) (II)
	Randomized Rounding (Proof) (III)

	Combining the Algorithms
	Take the better of the two solutions!
	Visualization and Derandomization

