Approximation Algorithms

L ecture 10:
MINIMUM-DEGREE SPANNING TRE]
via Local Search

pu

L

(L

Part |
MINIMUM-DEGREE SPANNING TREE

Alexander Wolff Winter term 2025

MINIMUM-DEGR]

Given:

1

E SPANNING TRE

L

A connected graph G.

L

MINIMUM-DEGR]

Given:

E SPANNING T'RI

L

A connected graph G.

=
L

MINIMUM-DEGR]

Given:
Task:

E SPANNING T'RI

L

A connected graph G.

Find a spanning tree [that has
the smallest maximum degree
among all spanning trees of G.

=
L

MINIMUM-DEGR]

Given:
Task:

E SPANNING T'RI

L

A connected graph G.

Find a spanning tree [that has
the smallest maximum degree
among all spanning trees of G.

=
L

MINIMUM-DEGR]

Given:
Task:

E SPANNING T'RI

L

A connected graph G.

Find a spanning tree [that has
the smallest maximum degree
among all spanning trees of G.

=
L

MINIMUM-DEGR]

Given:
Task:

E SPANNING T'RI

L

A connected graph G.

Find a spanning tree [that has
the smallest maximum degree
among all spanning trees of G.

=
L

E SPANNING T'RI

L

MINIMUM-DEGR]

Given: A connected graph G.

Task: Find a spanning tree [that has
the smallest maximum degree
among all spanning trees of G.

NP-hard. (%)

=
L

E SPANNING T'RI

L

MINIMUM-DEGR]

Given: A connected graph G.

Task: Find a spanning tree [that has
the smallest maximum degree
among all spanning trees of G.

=
L

MINIMUM-DEGR]

L

E SPANNING T'RI

Given: A connected graph G.

Task: Find a spanning tree [that has
the smallest maximum degree
among all spanning trees of G.

Special case of HAMILTONIAN PATH!

=
L

Warm-up

Warm-up

Warm-up

Warm-up

Warm-up

Warm-up

Warm-up

Warm-up

Obs. 1. A spanning tree | has...
B n vertices and n — 1 edges,
B sum of degrees) .\ (g)deg (v) =2n—2,
B average degree < 2.

Obs. 2. Let V' C V(G).

Then > Y deges(v)/|V/].
ve Vv’

Obs. 3. Let T be a spanning tree with
Then |/ has at most 7 vertices of degree

AR

Warm-up

Obs. 1. A spanning tree | has...
B n vertices and n — 1 edges,
B sum of degrees) .\ (g)deg (v) =2n—2,
B average degree < 2.

Obs. 2. Let V' C V(G).
Then > Y deges(v)/|V/].

veV/

Obs. 3. Let T be a spanning tree with
Then T has at most 22=2 vertices of degree

AL

Approximation Algorithms

| ecture 10:
MINIMUM-DEGREE SPANNING TRE]

via Local Search

Part 1l
Edge Flips and Local Search

(L

Edge Flips

Edge Flips

Edge Flips

Edge Flips

Edge Flips

I +e

contains a cycle!

Edge Flips

T+e—¢€

IS @ new spanning tree.

Edge Flips

Def. An improving flip in | for a vertex v and
an edge uw € E(G) \ E(T) is a flip with
degr(v) >

T+e—¢€

IS @ new spanning tree.

Edge Flips

Def. An improving flip in | for a vertex v and
an edge uw € E(G) \ E(T) is a flip with
deg+(v) > max{deg+(u),deg+(w)} + 1.

T+e—¢€

IS @ new spanning tree.

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

plateau

V.

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
- < any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

* local optimum; no more improving flips!

plateau
(l

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
[< any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

* local optimum; no more improving flips!

plateau
(l

global optimum

OPT ‘V

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
[< any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

* local optimum; no more improving flips!

plateau
(l

_______________________________ ..__________________.-____

global optimum

0 I T S

>
Note: overly simplified visualization! spanning trees | of G

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
[< any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip
return |

* local optimum; no more improving flips!

plateau
(l

______________________________ ..__________________.-____
Iapproximation factor?

0 I T S

>
Note: overly simplified visualization! spanning trees | of G

global optimum

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
[< any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip

T
return T B Termination:

* local optimum; no more improving flips!

plateau
(l

______________________________ ..__________________.-____
Iapproximation factor?

0 I T S

>
Note: overly simplified visualization! spanning trees | of G

global optimum

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
[< any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip

T
return T B Termination:

B runtime?
* local optimum; no more improving flips!

plateau
(l

______________________________ ..__________________.-____
Iapproximation factor?

0 I T S

>
Note: overly simplified visualization! spanning trees | of G

global optimum

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
[< any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip

T
return T B Termination:

B runtime?
* local optimum; no more improving flips!

pvla/teau X m /7

______________________________ ..__________________.-____
Iapproximation factor?

0 I T S

>
Note: overly simplified visualization! spanning trees | of G

global optimum

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
[< any spanning tree of G

while 3 improving flip in T for a vertex v
with deg+(v) > — (do
L do the improving flip

T
return T B Termination:

B runtime?
* local optimum; no more improving flips!

plateau l m (= “Og2 ’ﬂ

______________________________ ..__________________.-____
Iapproximation factor?

0 I T S

>
Note: overly simplified visualization! spanning trees | of G

global optimum

Local Search

‘MinDegSpanningTreelLocalSearch(graph G)
[< any spanning tree of G

while 3 improving flip in T for a vertex v

_

return /

OPT

with deg+(v) > — (do
do the improving flip ,
B Termination?

B runtime?

* local optimum; no more improving flips!

B approximation

plateau l m (= “Og2 ’ﬂ
factor?

______________________________ ..__________________.-____
Iapproximation factor?

""""""""""""""""""""""" S

global optimum

>

Note: overly simplified visualization! spanning trees | of G

Example

Example

Goldner—Harary graph (minus two edges)

Example

choose any

—>
spanning tree T

Goldner—Harary graph (minus two edges

Example

choose any

—>
spanning tree T

Goldner—Harary graph (minus two edges

Example

choose any

—>
spanning tree T

Goldner—Harary graph (minus two edges

Example

choose any

—>
spanning tree T

Goldner—Harary graph (minus two edges

g .
P
S et
P

O L

Example

choose any

—>
spanning tree T

Goldner—Harary graph (minus two edges

g .
P
S et
P

O L

Example

choose any

—>
spanning tree T

Goldner—Harary graph (minus two edges

/

Seamm=®

g
g “'-
e
.

.
o’
‘e

-m—

Example

choose any

—>
spanning tree T

Goldner—Harary graph (minus two edges

improving fli /

G .
/! B
5)

S et
W

O i

g “'-
e
.

Example

choose any

—>
spanning tree T

Goldner—Harary graph (minus two edges

improving fli /

G .
/! B
5)

S et
W

O i

U e

.
Ll
. *

Example

choose any
—>

spanning tree T

Goldner—Harary graph

minus two edges

Steaaa=”

4 .
ol
‘e
-

-

S et
)
ae-

-

B ”
il
i
.

Example

choose any

— >
spanning tree T

Goldner—Harary graph (minus two edges

T") =3 but A(T"

..
.
~
~

~aa e

g .
P
S et
S

O i

Y %
t”
“

Example

*

Goldner—Harary graph (minus two edges

T") =3 but A(T"

..
.
~
~

~aa e

S

choose any

_—>
anning tree T

Y %
t”
“

g .
P
S et
S

O i

Approximation Algorithms

| ecture 10:
MINIMUM-DEGREE SPANNING TR

via Local Search

Part |l
Lower Bound

=
L

Decomposition

spanning
tree |

Decomposition

spanning
tree |

Decomposition

B Removing k edges decomposes into kK + 1 components.

spanning
tree |

Decomposition

B Removing k edges decomposes into kK + 1 components.

spanning
tree |

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.

spanning
tree |

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 := vertex cover of E’.

spanning
tree |

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 := vertex cover of E’.

spanning
tree |

m For any spanning tree T/, |[E(T')NE'| >

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 := vertex cover of E’.

spanning
tree |

B For any spanning tree T/, |[E(T")NE’| > k,

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 := vertex cover of E’.

spanning
tree |

B For any spanning tree T/, |[E(T")NE’| > k,
m) .degy(v) >

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 := vertex cover of E’.

spanning
tree |

B For any spanning tree T/, |[E(T")NE’| > k,
B) _.deg;/(v) >k, and

(Obs. 2)

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 := vertex cover of E’.

spanning
tree |

B For any spanning tree T/, |[E(T")NE’| > k,
B) _.degy(v) >k, (and)A(T’) >

Obs. 2

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 := vertex cover of E’.

spanning
tree |

B For any spanning tree T/, |[E(T")NE’| > k,
B D) .degq/(v) >k, (and)A(T’) > k/|5].

Obs. 2

Decomposition

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 := vertex cover of E’.

spanning
tree |

B For any spanning tree T/, |[E(T")NE’| > k,
B D) .degq/(v) >k, and)A(T’)z k/|5].

(Obs. 2
m Consider the optimal spanning tree T*.

Decomposition = Lower Bound for OPT

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 = vertex cover of E’.

spanning
tree |

B For any spanning tree T/, |[E(T")NE’| > k,
B D) _deg,(v)> Kk, and)A(T’) > k/|5]. Lemma 1.

(Obs. 2

m Consider the optimal spanning tree 7. = OP1T >

Decomposition = Lower Bound for OPT

B Removing k edges decomposes into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 = vertex cover of E’.

spanning
tree |

B For any spanning tree T/, |[E(T")NE’| > k,
B D) _deg,(v)> Kk, and)A(T’) > k/15]. Lemma 1

(Obs. 2

m Consider the optimal spanning tree 7*. = OPT > k/| |

Approximation Algorithms

| ecture 10:
MINIMUM-DEGREE SPANNING TRE]

via Local Search

Part IV:
Structure of a Decomposition

(L

Structure of a Decomposition

Structure of a Decomposition

Let 5, be the set of vertices v in T with deg(v) > i.

Structure of a Decomposition

Let 5, be the set of vertices v in T with deg(v) > i.

T? \
L e

Structure of a Decomposition

Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to

\/

R

Structure of a Decomposition

Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to

\/

R

U

1Y

—
Structure of a Decomposition =

Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to

\/

R

O U

—
Structure of a Decomposition =
—

Let 5, be the set of vertices v in T with deg(v) > i.

Let £; be the set of edges in | incident to

\/

Eq
I

R

= D) ..
Structure of a Decomposition ~ 5 = V(G)
= £ = E(T)
Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to
Lemma 2. 3j s.t. —+1 < i < with | | <2 .

\/

R

—
Structure of a Decomposition =
—

Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to

Lemma 2. 3 s.t. —I+1<i< with | | <2 |

|V(G)] ’5i|
N X % x
1 X /
0- : X
1 A(T)—¢ A(T)

A

X X

= D) ..
Structure of a Decomposition ~ 5 = V(G)
= E, = E(T)
Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to
Lemma 2. 3j s.t. —+1 < i < with | | <2 .
Proof. > 2¢
1Sa il > 241547
Otherwise Lo LIs
N X x x
/ (1) X X X |

1 A(TI) ¢ A(T)

A

= D) ..
Structure of a Decomposition ~ 5 = V(G)

= £ = E(T)
Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to
Lemma 2. 3j s.t. —+1 < i < with | | <2 .
Proof. ,|Sacr) (| > 2¢[Sacr|= 218" |Sa (| >

: £ = [logp n]
Otherwise Lo LIs
N X x x
/ (1) X X X |

1 A(TI) ¢ A(T)

A

= D) ..
Structure of a Decomposition ~ 5 = V(G)

= £ = E(T)
Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to
Lemma 2. 3j s.t. —+1 < i < with | | <2 .
Proof. |Sa(r) /| > 2°|Sa(r)| =21 |Sa)| > n- [Sacr)

: £ = [logp n]
Otherwise Lo LIs
N X x x
’ S T

1 A(TI) ¢ A(T)

A

= D) ..
Structure of a Decomposition ~ 5 = V(G)
= E = E(T)
Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to
Lemma 2. 3j s.t. —+1 < i < with | | <2 .
Proof. ~ 2Ff — 9llog, n] > n.
| | > 2] E!“O | | | =n- |4
. go n
Otherwise Lo LIs
N X x x
’ S T

1 A(TI) ¢ A(T)

A

= D) ..
Structure of a Decomposition ~ 5 = V(G)
= E = E(T)
Let 5, be the set of vertices v in T with deg(v) > i.
Let £; be the set of edges in | incident to
Lemma 2. 3j s.t. —+1 < i < with | | <2 .
Proof. ~ 2Ff — 9llog, n] > n.
| | > 2] E!“O | | | =n- |4
. go n
Otherwise Lo LIs
N X x x
’ S T

1 A(TI) ¢ A(T)

A

Structure of a Decomposition

Structure of a Decomposition

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:
() 16> (i—1)] |+1,
(i) Each edge e € E(G) \ E; connecting distinct components

of T\ E; is incident to a node of

\/

R

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:
() 16> (i—1)] |+1,
(i) Each edge e € E(G) \ E; connecting distinct components

of T\ E; is incident to a node of

Proof. (i) |E| >

\/

R

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:
() 16> (i—1)] |+1,
(i) Each edge e € E(G) \ E; connecting distinct components

of T\ E; is incident to a node of

Proof. (i) |E/| > i

vertex-deg

\/
/

Y \

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:
() 16> (i—1)] |+1,
(i) Each edge e € E(G) \ E; connecting distinct components

of T\ E; is incident to a node of

Proof. (i) |E| > 15| —(|5] —1) =

vertex-deg counted twice?

\/
/

Y \

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:

() 16> (i—1)] |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

Proof. (i) |Eil =2 i|5] = (15] = 1) = (F = 1)|5/] +1

vertex-deg counted twice?

\/
/

Y \

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:

() 16> (i—1)] |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

Proof. (i) |Eil =2 i|5] = (15] = 1) = (F = 1)|5/] +1

vertex-deg counted twice?
(ii)

\/

R

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:

() 16> (i—1)] |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

Proof. (i) |Eil =2 i|5] = (15] = 1) = (F = 1)|5/] +1

vertex-deg counted twice?
(ii)

7%)
g A

R

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:

() 16> (i—1)] |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

Proof. (i) |Eil =2 i|5] = (15] = 1) = (F = 1)|5/] +1

vertex-deg counted twice?
(ii)

T%)
g A

R

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:

() 16> (i—1)] |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

Proof. (i) |Eil =2 i|5] = (15] = 1) = (F = 1)|5/] +1

vertex-deg counted twice?
(ii)

'@
/
0
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
0
?’ S{\

R

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:

() 16> (i—1)] |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

Proof. (i) |Eil =2 i|5] = (15] = 1) = (F = 1)|5/] +1

vertex-deg counted twice?

7

L

)
.

(i
E.

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:

() 16> (i—1)] |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

Proof. (i) |Eil =2 i|5] = (15] = 1) = (F = 1)|5/] +1

vertex-deg counted twice?

7

L

)
.

(i
E.

Structure of a Decomposition

Lemma 3. For locally opt. spanning tree /', i > — ¢+ 1:

() 16> (i—1) |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

Proof. (i)\EiIZi\ — (5= =0-1)5+1

vertex-deg counted twice?

) Otherwise, there is an improving flip for some v €

Approximation Algorithms

| ecture 10:
MINIMUM-DEGREE SPANNING TRE]

via Local Search

Part V:
Approximation Factor

(L

Approximation Factor

. ' [Fiirer & Raghavachari:
Approximation Factor SR

: : [Fiirer & Raghavachari:
Approximation Factor SODA'02, JA'04]

Theorem. Let | be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Proof. Let 5 be the vertices v in T with deg+(v) > i.
Let E; be the edges in T incident to

: : [Fiirer & Raghavachari:
Approximation Factor SODA'02, JA'04]

Theorem. Let | be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Proof. Let 5 be the vertices v in T with deg+(v) > i.
Let E; be the edges in T incident to

Lemma 1. OPT > k/| | if k = |removed edges|, S vertex cover.

APPVOXimation Factor [Fiirer & Raghavachari:

Theorem.

Proof.

Lemma 1.

Lemma 2.

SODA'92, JA'94]

Let / be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Let 5, be the vertices v in T with deg+(v) > i.
Let E; be the edges in T incident to

OPT > k/| | if k =|removed edges|, S vertex cover.

i s.t. —+1 < i < with | |<2| |

APPVOXimation Factor [Fiirer & Raghavachari:

Theorem.

Proof.

Lemma 1.
Lemma 2.

Lemma 3.

SODA'92, JA'94]

Let / be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Let 5, be the vertices v in T with deg+(v) > i.
Let E; be the edges in T incident to

OPT > k/| | if k = |removed edges|, S vertex cover.
di s.t. —+1 < i < with | | <2|° .

For i > — 0+ 1,

() 16> (i—1) |+1,
(i) Each edge e € E(G) \ E; connecting distinct components
of T \ E; is incident to a node of

: : [Fiirer & Raghavachari:
Approximation Factor SODA'02, JA'04]

Theorem. Let | be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Proof. Let 5 be the vertices v in T with deg+(v) > /.
Let E; be the edges in T incident to
Lemma 1. OPT > k/| | if Kk = |[removed edges|, S vertex cover.

Lemma 2. Jis.t. —+1<i < with | |<2| |

Lemma 3. For i > — {41,

() 16> (i—1) |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T \ E; is incident to a node of

k>Remove E; for this /!

APPVOXimation Factor [Fiirer & Raghavachari:

Theorem.

Proof.

Lemma 1.
Lemma 2.

Lemma 3.

SODA'92, JA'94]

Let / be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Let 5, be the vertices v in T with deg+(v) > i.
Let E; be the edges in T incident to

OPT > k/| | if k = |removed edges|, S vertex cover.
di s.t. —+1 < i < with | | <2|° .

For i > — 0+ 1,

() 16> (i—1) |+1,
(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

k>Remove E; for this il = covers edges between comp.

: : [Fiirer & Raghavachari:
Approximation Factor SODA'02, JA'04]

Theorem. Let | be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Proof. Let 5 be the vertices v in T with deg+(v) > /.
Let E; be the edges in T incident to
Lemma 1. OPT > k/| | if Kk = |[removed edges|, S vertex cover.

Lemma 2. Jis.t. —+1<i < with | |<2| |

Lemma 3. For i > — {41,

() 16> (i—1) |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

L>Remove E; for this il = covers edges between comp.
OPT > |_k| —

Lemma 1

Approximation Factor

[Fiirer & Raghavachari:
SODA'92, JA'94]

Theorem. Let | be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].
Proof. Let 5 be the vertices v in T with deg+(v) > /.
Let E; be the edges in T incident to
Lemma 1. OPT > k/| | if Kk = |[removed edges|, S vertex cover.
Lemma 2. Jis.t. —+1 < i < with | |<2| |
Lemma 3. For i > — {41,

OPT >

Lemma 1

K

() 16> (i—1) |+1,
(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

L>Remove E; for this il = covers edges between comp.

|Ei| >

Approximation Factor

[Fiirer & Raghavachari:
SODA'92, JA'94]

Theorem. Let | be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].
Proof. Let 5 be the vertices v in T with deg+(v) > /.
Let E; be the edges in T incident to
Lemma 1. OPT > k/| | if Kk = |[removed edges|, S vertex cover.
Lemma 2. Jis.t. —+1 < i < with | |<2| |
Lemma 3. For i > — {41,

OPT >

Lemma 1

K

() 16> (i—1) |+1,
(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

k>Remove E; for this il = covers edges between comp.

Bl (=DIS[+1 <

Lemma 3

APPVOXimation Factor [Fiirer & Raghavachari:

Theorem.

Proof.

Lemma 1.
Lemma 2.

Lemma 3.

SODA'92, JA'94]

Let / be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Let 5, be the vertices v in T with deg+(v) > i.
Let E; be the edges in T incident to

OPT > k/| | if k = |removed edges|, S vertex cover.
di s.t. —+1 < i < with | | <2|° .

For i > — 0+ 1,

() 16> (i—1) |+1,
(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

k>Remove E; for this il = covers edges between comp.

OPT > |_’<| — % ~ (i—|1)| ||+1 N (i—;)|| ||+1 <

Lemma 1

Lemma 3 Lemma 2

: : [Fiirer & Raghavachari:
Approximation Factor SODA'02, JA'04]

Theorem. Let | be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Proof. Let 5 be the vertices v in T with deg+(v) > /.
Let E; be the edges in T incident to
Lemma 1. OPT > k/| | if Kk = |[removed edges|, S vertex cover.

Lemma 2. Jis.t. —+1<i < with | |<2| |

Lemma 3. For i > — {41,

() 16> (i—1) |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

k>Remove E; for this il = covers edges between comp.

OPT > & = EL > (DIl 5 (oplolit 5 (20

Lemma 1 Lemma 3 Lemma 2 Lemma 2

: : [Fiirer & Raghavachari:
Approximation Factor SODA'02, JA'04]

Theorem. Let | be a locally optimal spanning tree.
Then <2-0PT+/4, where ¢ = |log, n].

Proof. Let 5 be the vertices v in T with deg+(v) > /.
Let E; be the edges in T incident to
Lemma 1. OPT > k/| | if Kk = |[removed edges|, S vertex cover.

Lemma 2. Jis.t. —+1<i < with | |<2| |

Lemma 3. For i > — {41,

() 16> (i—1) |+1,

(i) Each edge e € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

k>Remove E; for this il = covers edges between comp.

OPT > & — 1Bl < (=DIS|+L o (=DISH _ (i=1) A7)t
Lemm—a 1| | | |Le;ma3 | | Lerr?na2 2| | 2 Ler;1a2 2 I:I

Approximation Algorithms

| ecture 10:
MINIMUM-DEGREE SPANNING TRE]

via Local Search

Part VI
Termination, Running Time & Extensions

(L

Termination and Running Time

Termination and Running Time

Proof.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree efficiently.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully):

B Each iteration decreases the potential of a solution.

Termination and Running Time
Theorem. The algorithm finds a locally optimal spanning
tree efficiently.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully):

B Each iteration decreases the potential of a solution.

B The function is bounded both from above and below.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree efficiently.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully):

B Each iteration decreases the potential of a solution.

B The function is bounded both from above and below.

B Executing f(n) iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully):

B Each iteration decreases the potential of a solution.

B The function is bounded both from above and below.

B Executing f(n) iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

B The function is bounded both from above and below.

B Executing f(n) iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

Lemma. After each flip T — T/, &(T’) < (1 — 5=5)®(T).

B The function is bounded both from above and below.

B Executing f(n) iterations would exceed the lower bound.

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.
Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.

Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
How does @(T) change?

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.

Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
How does @(T) change?

®(T) decreases by: (1 — 272n3)f(”) <

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.

Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
How does @(T) change?

®(T) decreases by: (1 — 272n3)f(”) <
14+ x < e

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.
Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
How does @(T) change?

2

®(T) decreases by: (1 — 272n3)f(”) < (e”zm)fln) =
1+ x < ef

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.
Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
How does @(T) change?

2

®(T) decreases by: (1 — 272n3)f(”) < (e”zm)fln) =

Goal: After f(n) iterations: &(T) = n < 3n.

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.
Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
Let f(n) = 2fn* - In3. How does @(T) change?

2

®(T) decreases by: (1 — 272n3)f(”) < (e”zm)fln) =

Goal: After f(n) iterations: &(T) = n < 3n.

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.

Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
Let f(n) = 2fn* - In3. How does @(T) change?

®(T) decreases by: (1 — 525) (" < (e_z#)f(") = e N3 =

Goal: After f(n) iterations: &(T) = n < 3n.

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most f(n) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.

Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
Let f(n) = 2fn* - In3. How does @(T) change?

®(T) decreases by: (1 — 525) (" < (e_w%)f(”) — g3 =377

Goal: After f(n) iterations: &(T) = n < 3n. u

Homework

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning
tree after at most O(n*) iterations.

Proof. Via potential function @(T) measuring the value of a
solution where (hopefully): O(T) =2 cvic) 3degr(v)

B Each iteration decreases the potential of a solution.

. 2
Lemma. After each flip T — T/, &(T') < (1 — 553)®(T).
® The function is bounded both from above and below.

Lemma. For every spanning tree 7, @(T) € [3n, n3"].

B Executing f(n) iterations would exceed the lower bound.
Let f(n) = 2fn* - In3. How does @(T) change?

®(T) decreases by: (1 — 525) (" < (e_w%)f(”) — g3 =377

Goal: After f(n) iterations: &(T) = n < 3n. u

Homework

Extensions

Extensions

Proof. Similar to previous pages. Homework]

Extensions

Corollary. For any constant b > 1 and ¢ = [log, n]|,
the local search algorithm runs in polynomial time

and produces a spanning tree |/ with
<b-0OPT +¢.

Proof. Similar to previous pages. Homework]

B A variant of this algorithm yields the following result:

Extensions

Corollary. For any constant b > 1 and ¢ = [log, n|,
the local search algorithm runs in polynomial time

and produces a spanning tree |/ with
<b-0OPT +¢.

Proof. Similar to previous pages. Homework O

B A variant of this algorithm yields the following result:
[Flirer & Raghavachari: SODA’92, JA’'94]
Theorem. There is a local search algorithm that runs
in O(EVa(E, V)log V) time and produces
a spanning tree | with < OPT +1.

Extensions

Corollary. For any constant b > 1 and ¢ = [log, n|,
the local search algorithm runs in polynomial time

and produces a spanning tree |/ with
<b-0OPT +¢.

Proof. Similar to previous pages. Homework O

B A variant of this algorithm yields the following result:
[Flirer & Raghavachari: SODA'92, JA'94]

Theorem. There is a local search algorithm that runs
in O(EVa(E, V)log V) time and produces
a spanning tree | with < OPT +1.

B Further variants for directed graphs and Steiner tree.

	Minimum-Degree Spanning Tree
	Problem Definition

	Warm-up
	Warm-up

	Edge Flips and Local Search
	Edge Flips
	Local Search
	Example

	Lower Bound
	Decomposition

	More Lemmas
	Structure of a Decomposition
	Lemma 2

	Structure of a Decomposition
	Lemma 3

	Approximation Factor
	Termination, Running Time & Extensions
	Termination and Running Time
	Extensions

