

Approximation Algorithms

Lecture 10:
MINIMUM-DEGREE SPANNING TREE
via Local Search

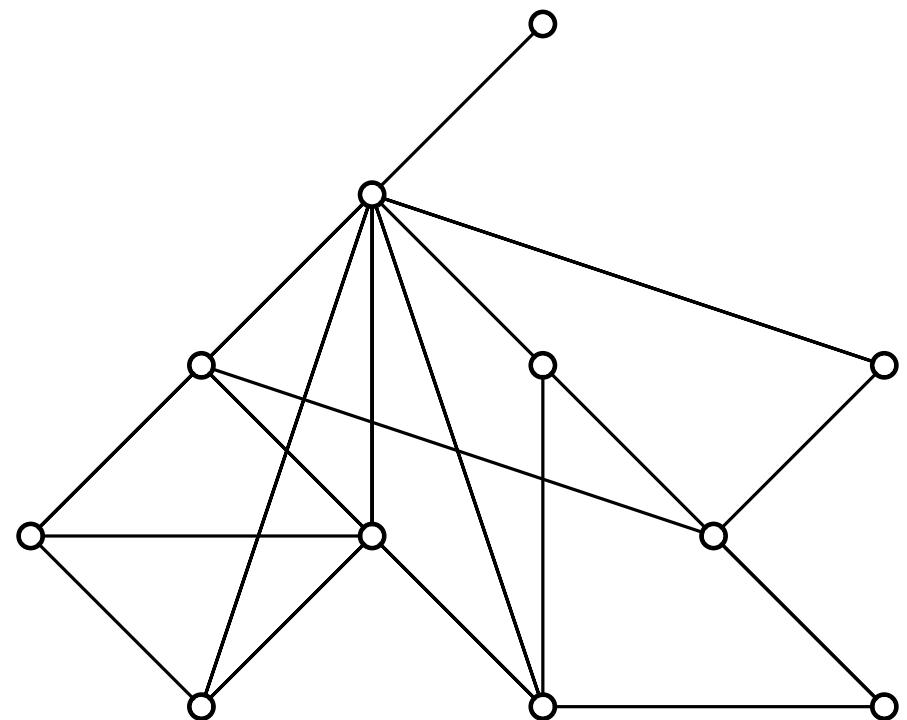
Part I:
MINIMUM-DEGREE SPANNING TREE

MINIMUM-DEGREE SPANNING TREE

Given: A connected graph G .

MINIMUM-DEGREE SPANNING TREE

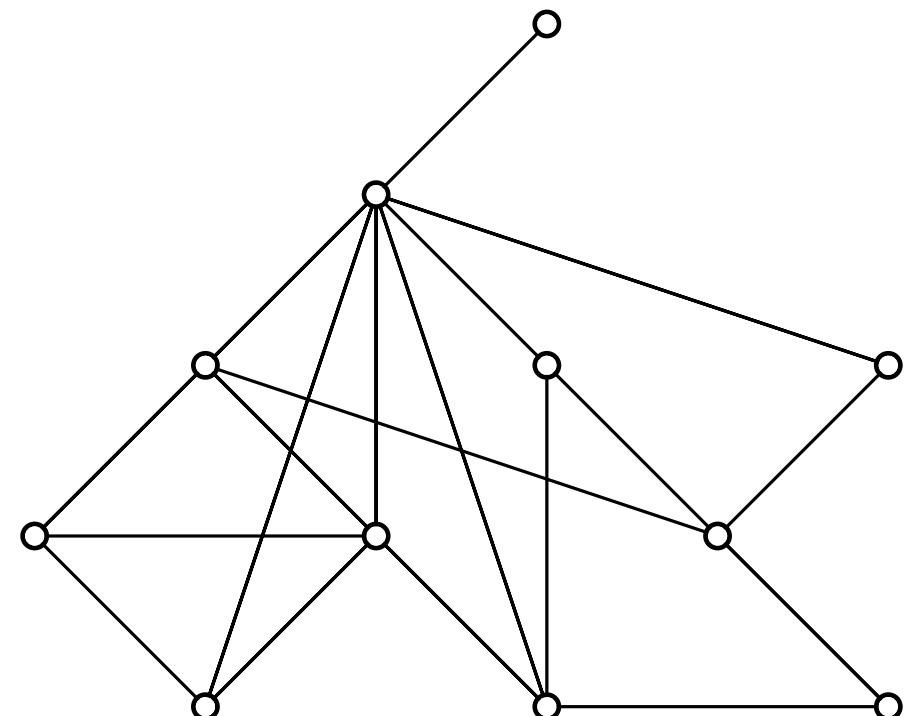
Given: A connected graph G .



MINIMUM-DEGREE SPANNING TREE

Given: A connected graph G .

Task: Find a **spanning tree T** that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G .



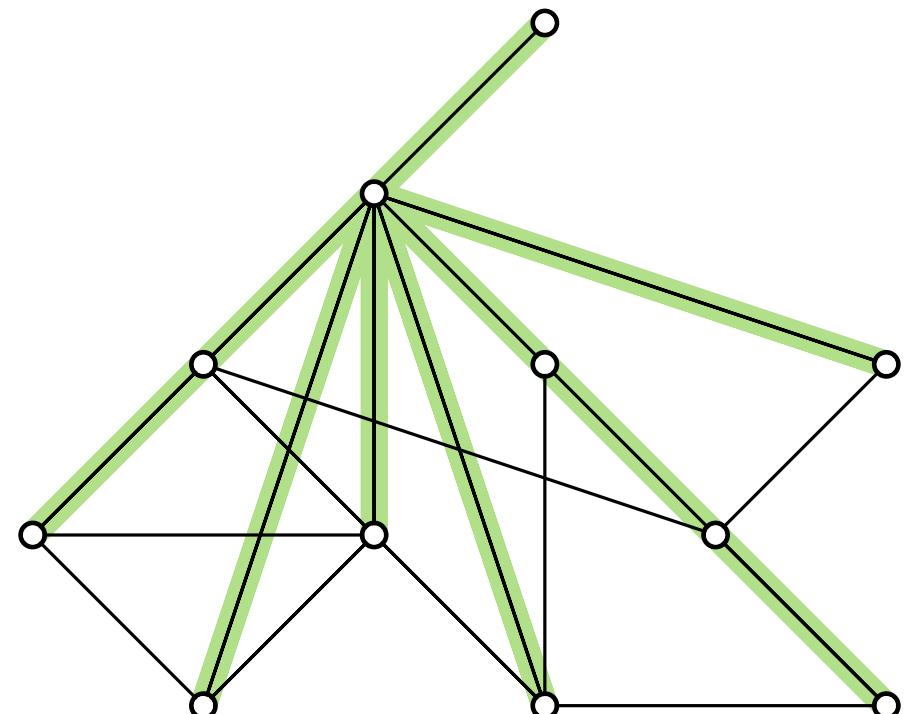
MINIMUM-DEGREE SPANNING TREE

Given:

A connected graph G .

Task:

Find a **spanning tree T** that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G .



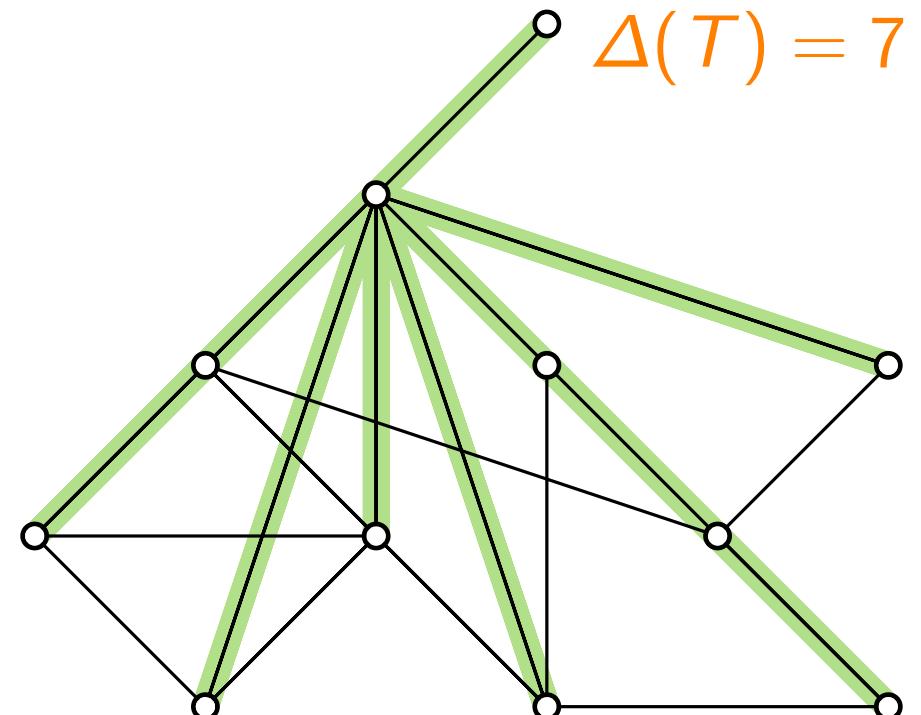
MINIMUM-DEGREE SPANNING TREE

Given:

A connected graph G .

Task:

Find a **spanning tree T** that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G .



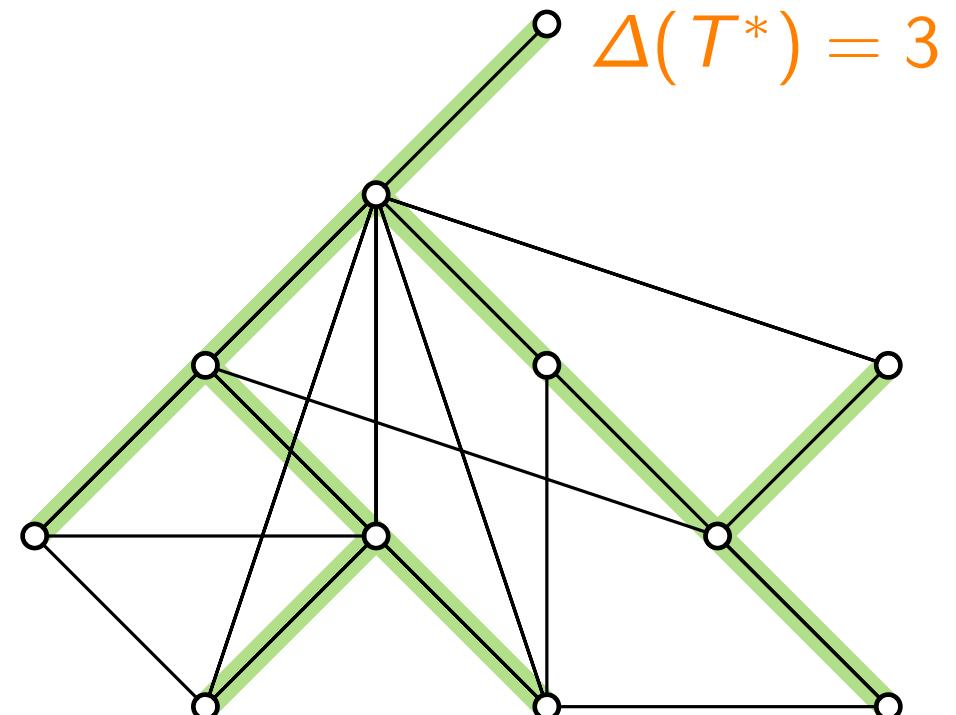
MINIMUM-DEGREE SPANNING TREE

Given:

A connected graph G .

Task:

Find a **spanning tree T** that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G .



MINIMUM-DEGREE SPANNING TREE

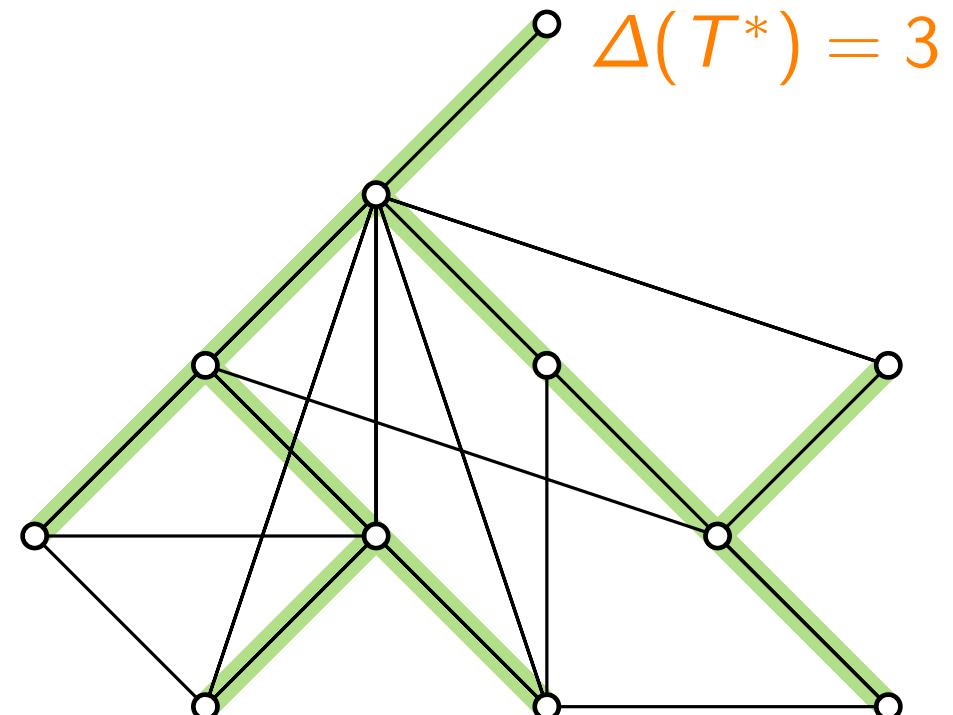
Given:

A connected graph G .

Task:

Find a **spanning tree T** that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G .

NP-hard.



MINIMUM-DEGREE SPANNING TREE

Given:

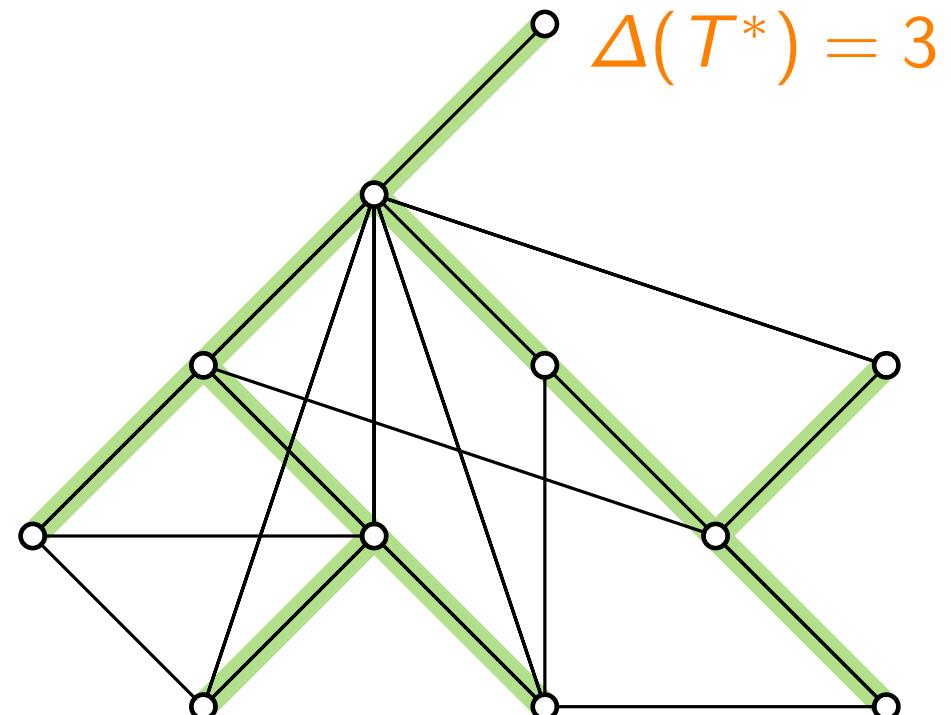
A connected graph G .

Task:

Find a **spanning tree T** that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G .

NP-hard.

Why?



MINIMUM-DEGREE SPANNING TREE

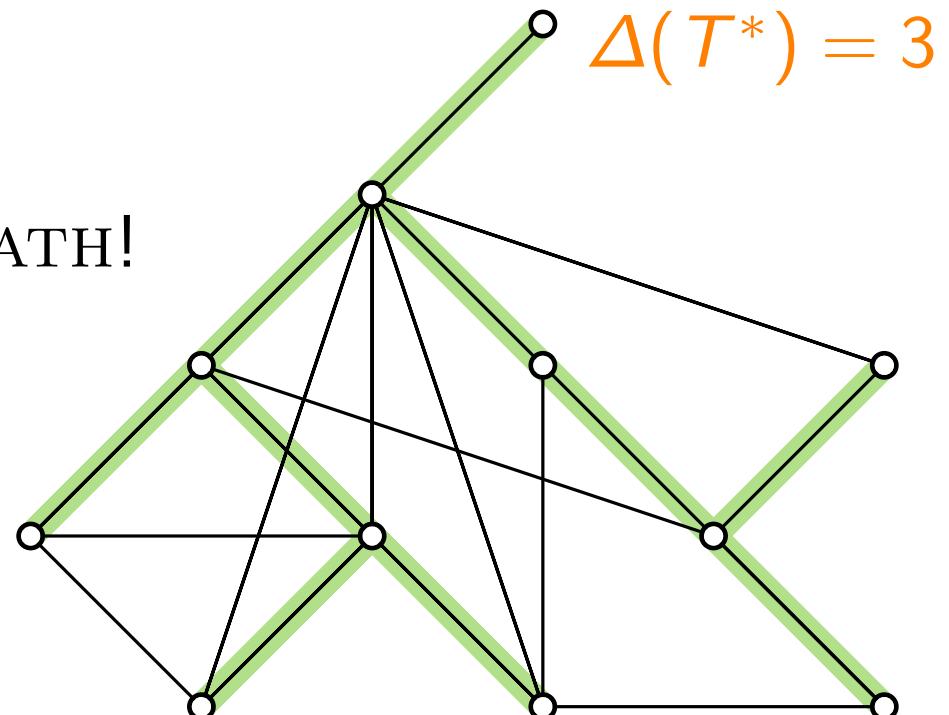
Given: A connected graph G .

Task: Find a **spanning tree T** that has the smallest maximum degree $\Delta(T)$ among all spanning trees of G .

NP-hard.

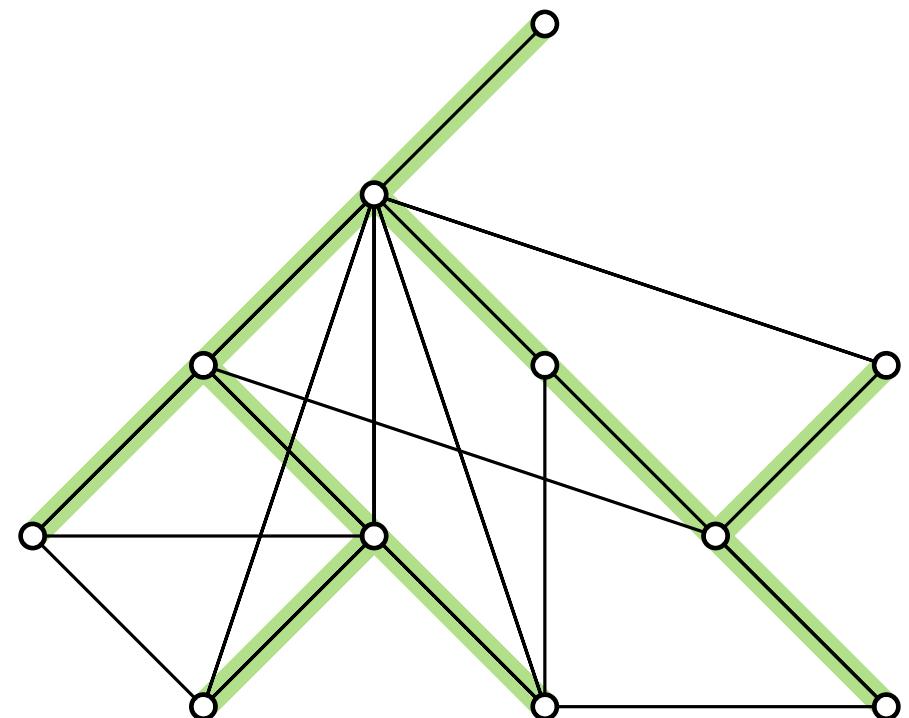
Why?

Special case of HAMILTONIAN PATH!



Warm-up

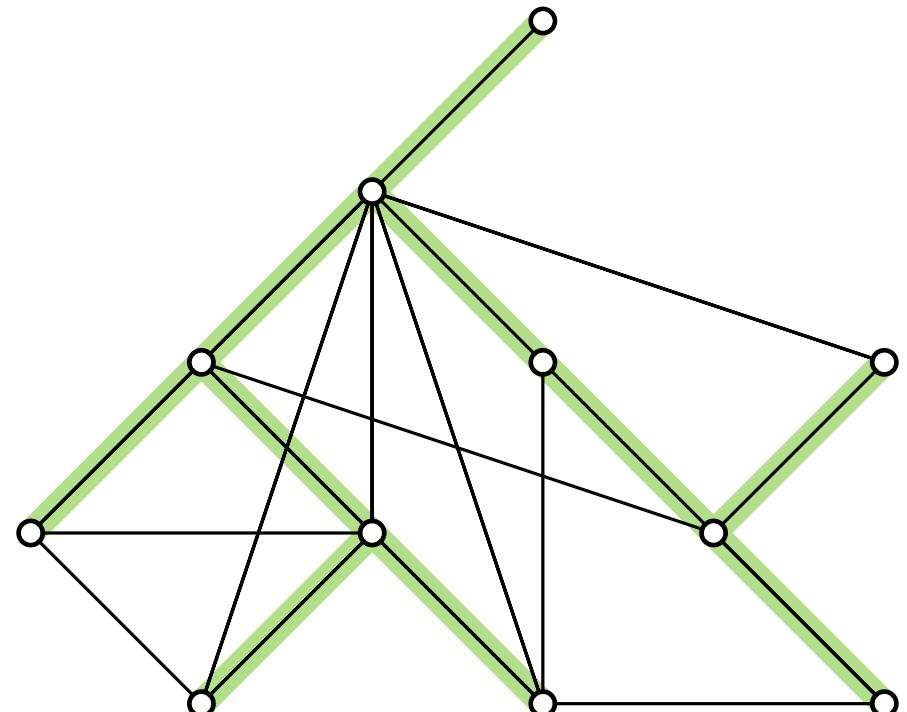
Obs. 1. A spanning tree T has...



Warm-up

Obs. 1. A spanning tree T has...

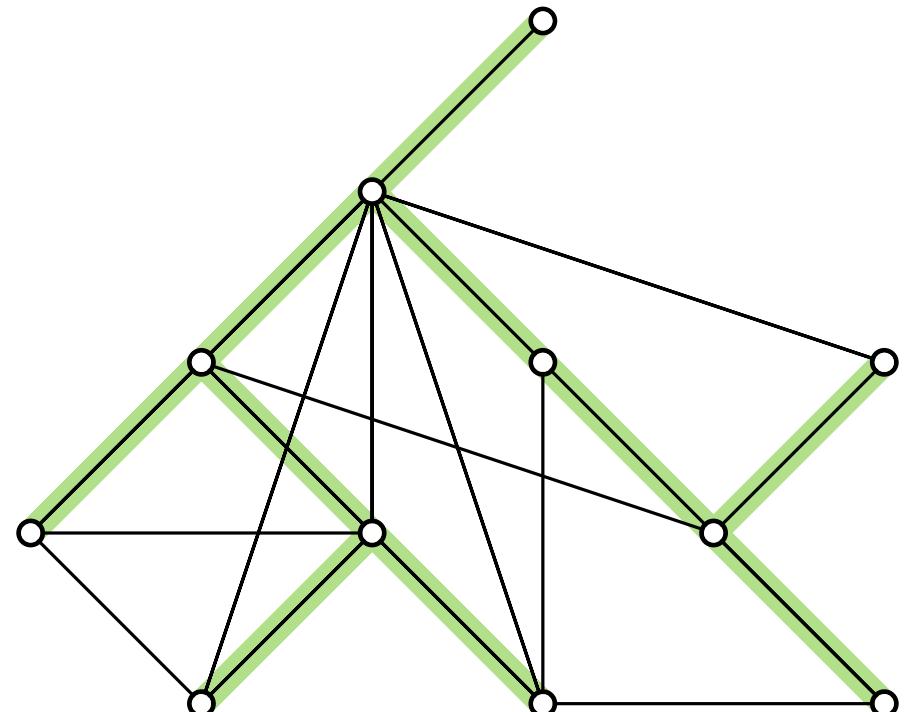
- n vertices and $?$ edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = ?$
- average degree $< ?$



Warm-up

Obs. 1. A spanning tree T has...

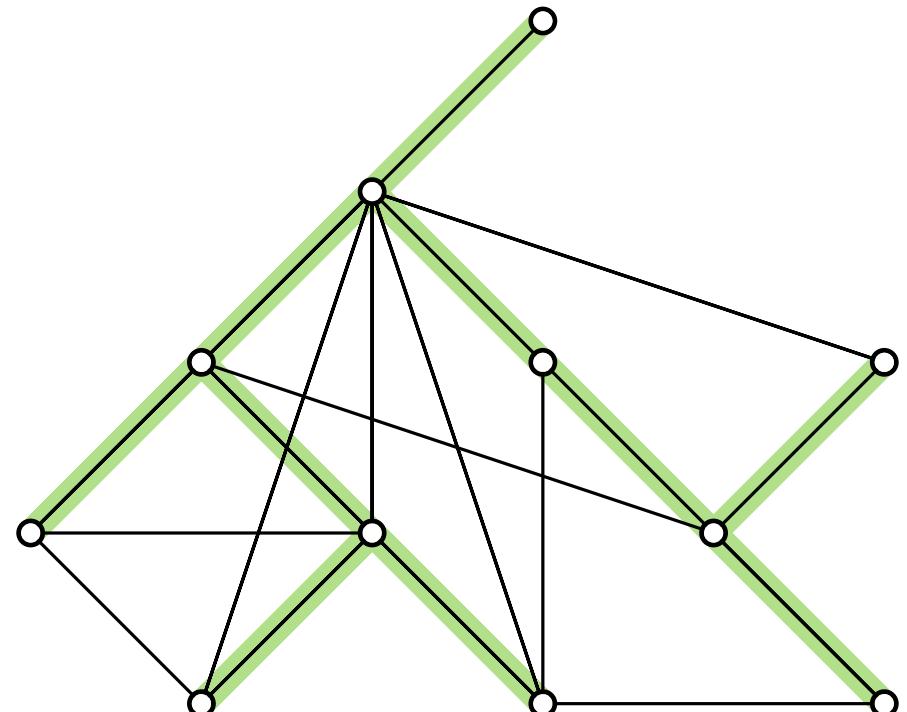
- n vertices and $n - 1$ edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = ?$
- average degree $< ?$



Warm-up

Obs. 1. A spanning tree T has...

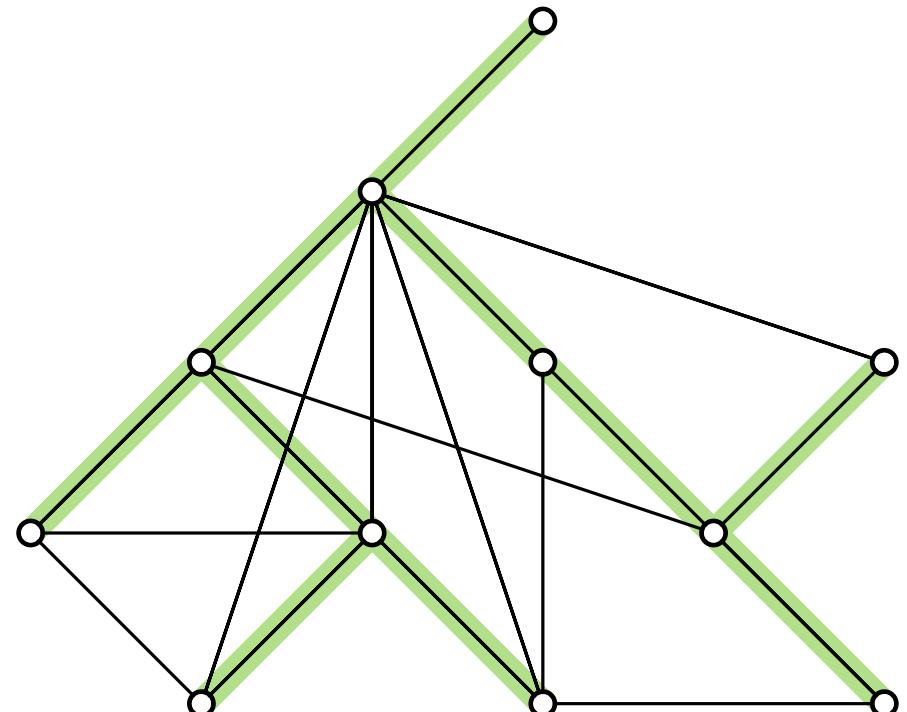
- n vertices and $n - 1$ edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n - 2$,
- average degree $< ?$



Warm-up

Obs. 1. A spanning tree T has...

- n vertices and $n - 1$ edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n - 2$,
- average degree < 2 .



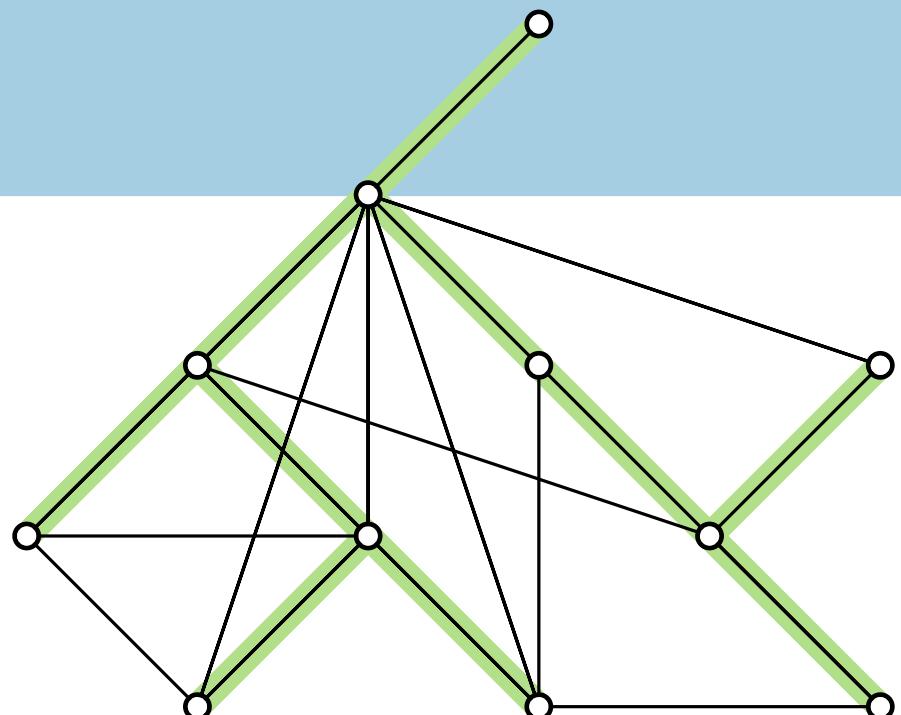
Warm-up

Obs. 1. A spanning tree T has...

- n vertices and $n - 1$ edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n - 2$,
- average degree < 2 .

Obs. 2. Let $V' \subseteq V(G)$.

Then $\Delta(G) \geq ?$



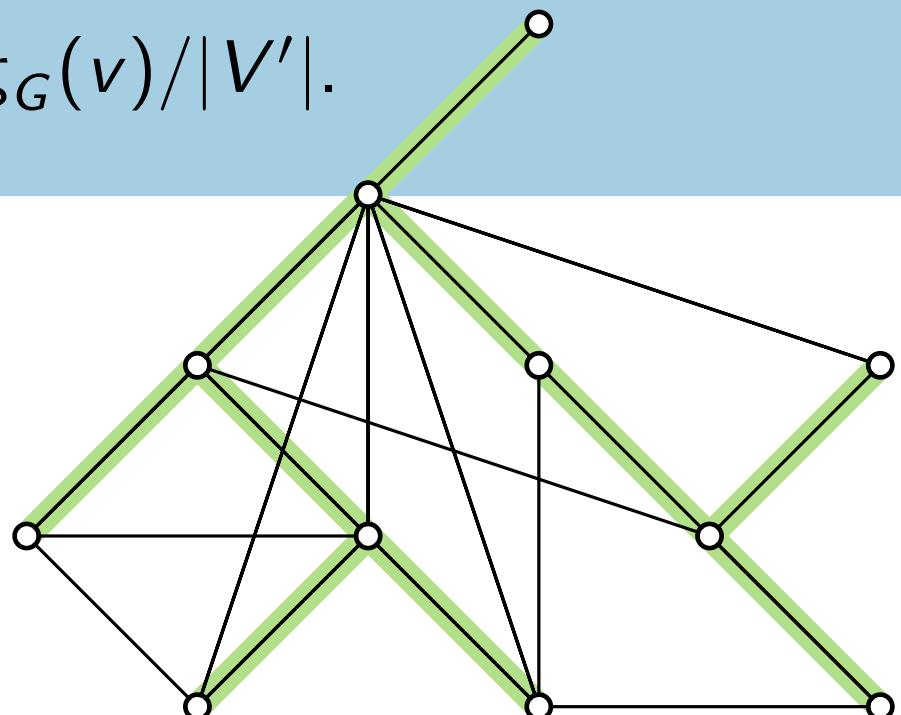
Warm-up

Obs. 1. A spanning tree T has...

- n vertices and $n - 1$ edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n - 2$,
- average degree < 2 .

Obs. 2. Let $V' \subseteq V(G)$.

Then $\Delta(G) \geq \sum_{v \in V'} \deg_G(v) / |V'|$.



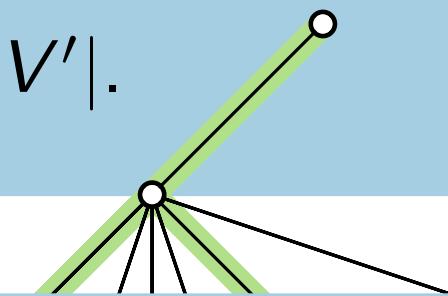
Warm-up

Obs. 1. A spanning tree T has...

- n vertices and $n - 1$ edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n - 2$,
- average degree < 2 .

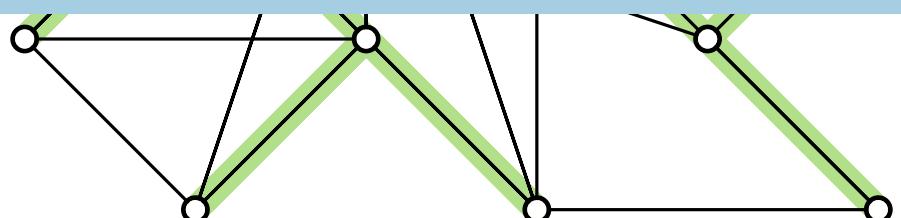
Obs. 2. Let $V' \subseteq V(G)$.

Then $\Delta(G) \geq \sum_{v \in V'} \deg_G(v) / |V'|$.



Obs. 3. Let T be a spanning tree with $k = \Delta(T)$.

Then T has at most $?$ vertices of degree k .



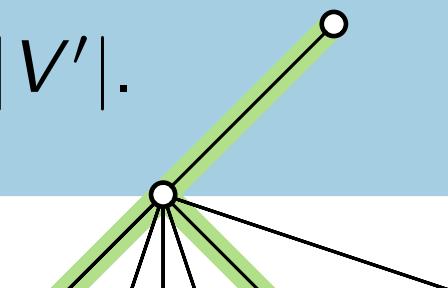
Warm-up

Obs. 1. A spanning tree T has...

- n vertices and $n - 1$ edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n - 2$,
- average degree < 2 .

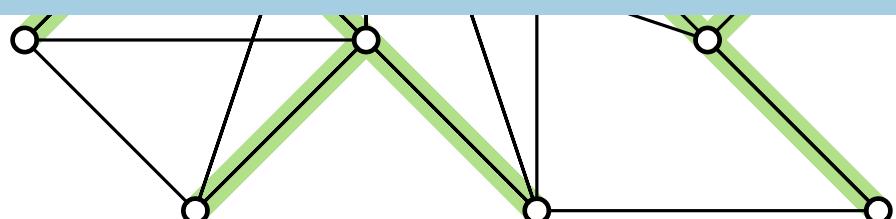
Obs. 2. Let $V' \subseteq V(G)$.

Then $\Delta(G) \geq \sum_{v \in V'} \deg_G(v) / |V'|$.



Obs. 3. Let T be a spanning tree with $k = \Delta(T)$.

Then T has at most $\frac{2n-2}{k}$ vertices of degree k .

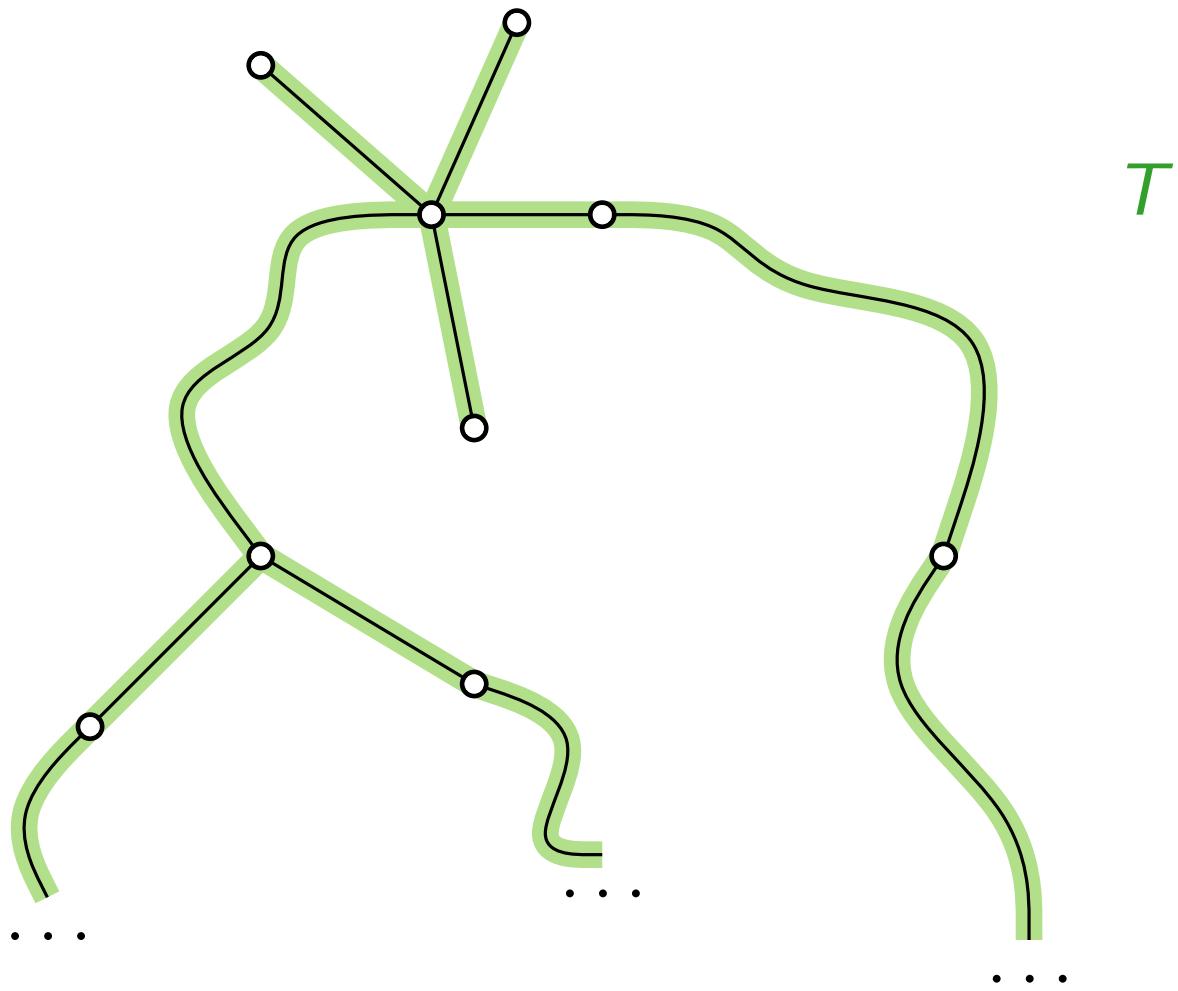


Approximation Algorithms

Lecture 10:
MINIMUM-DEGREE SPANNING TREE
via Local Search

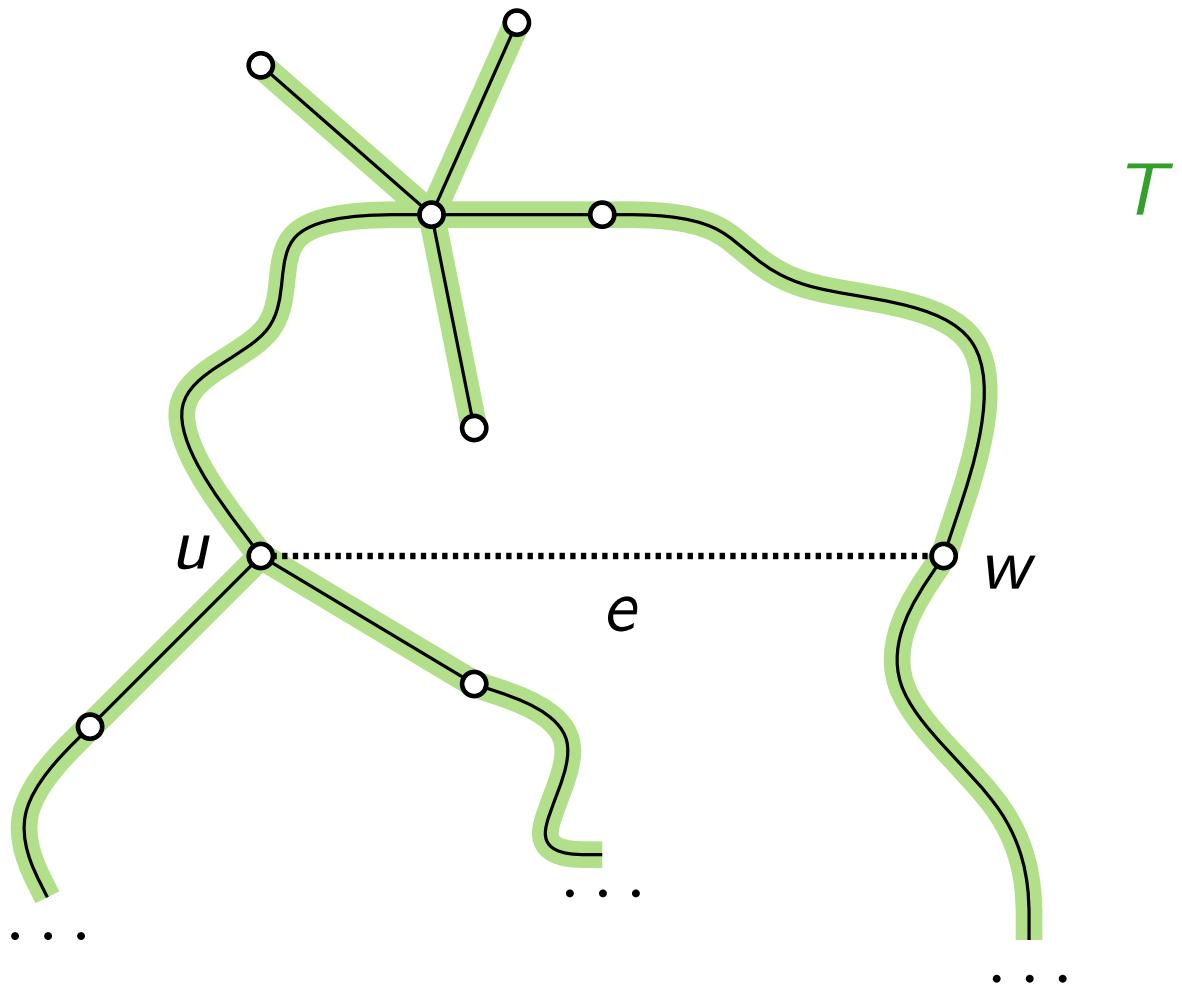
Part II:
Edge Flips and Local Search

Edge Flips



$E(T)$
 $E(G) - E(T)$

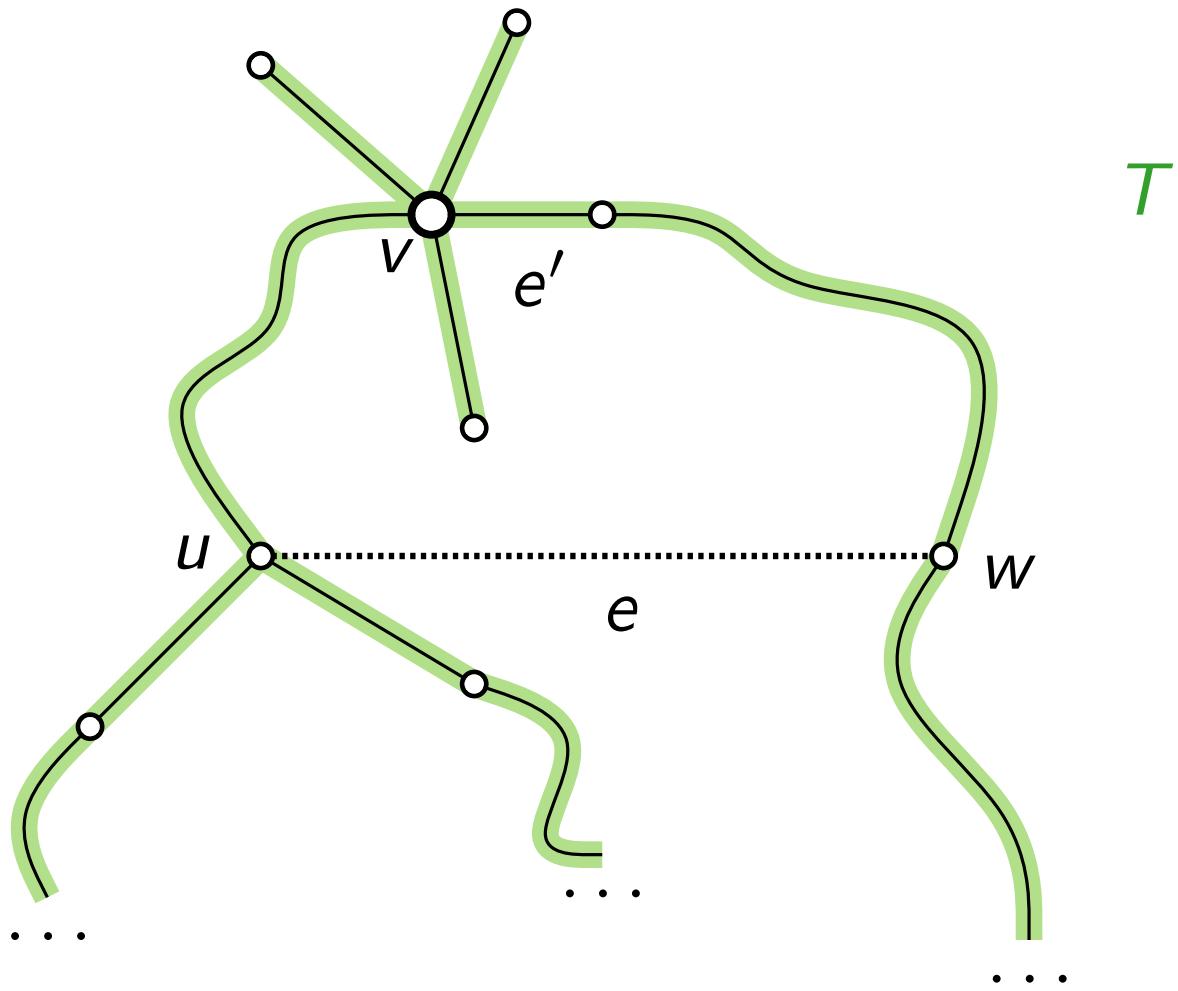
Edge Flips



T

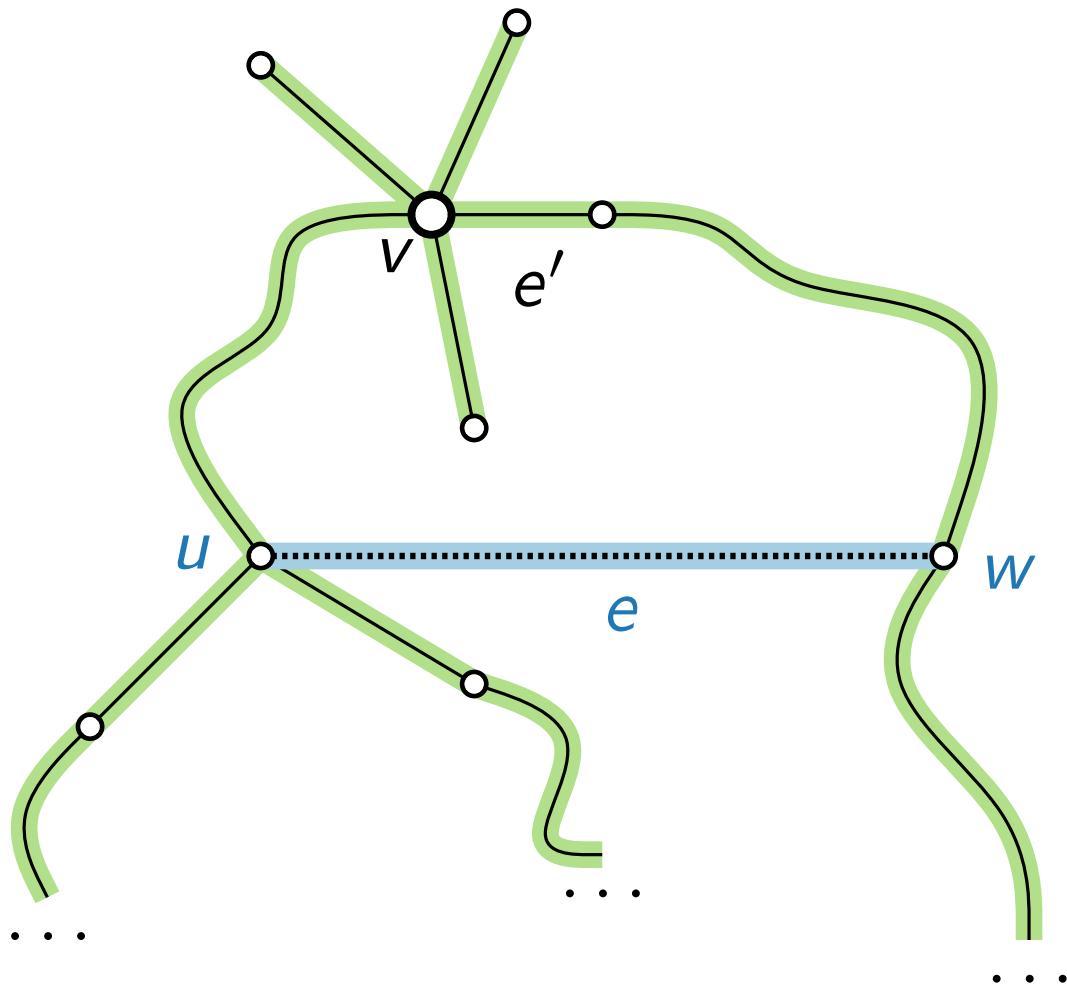
- $\text{---} \quad E(T)$
- $\cdots \cdots \quad E(G) - E(T)$

Edge Flips



$\text{---} E(T)$
 $\cdots E(G) - E(T)$

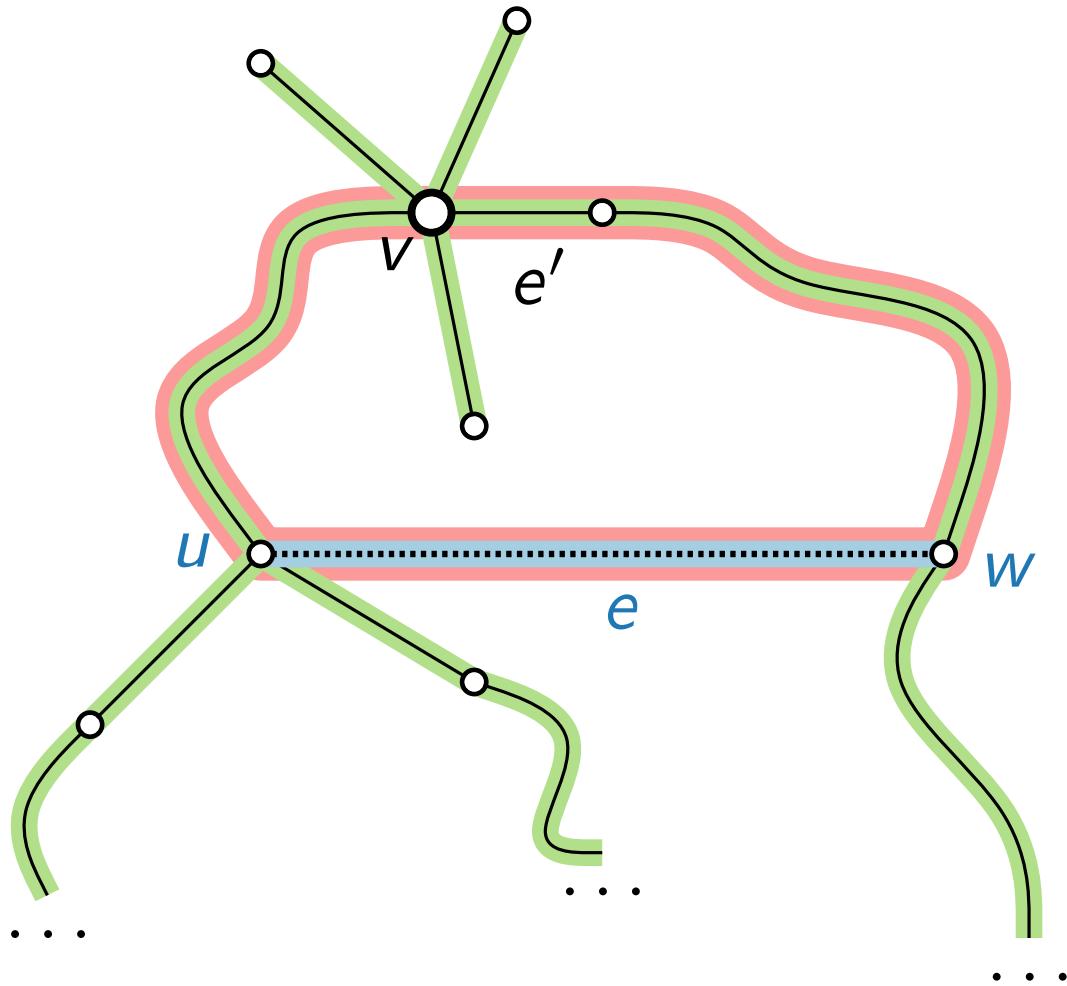
Edge Flips



$T + e$

$\text{---} E(T)$
 $\cdots \cdots E(G) - E(T)$

Edge Flips



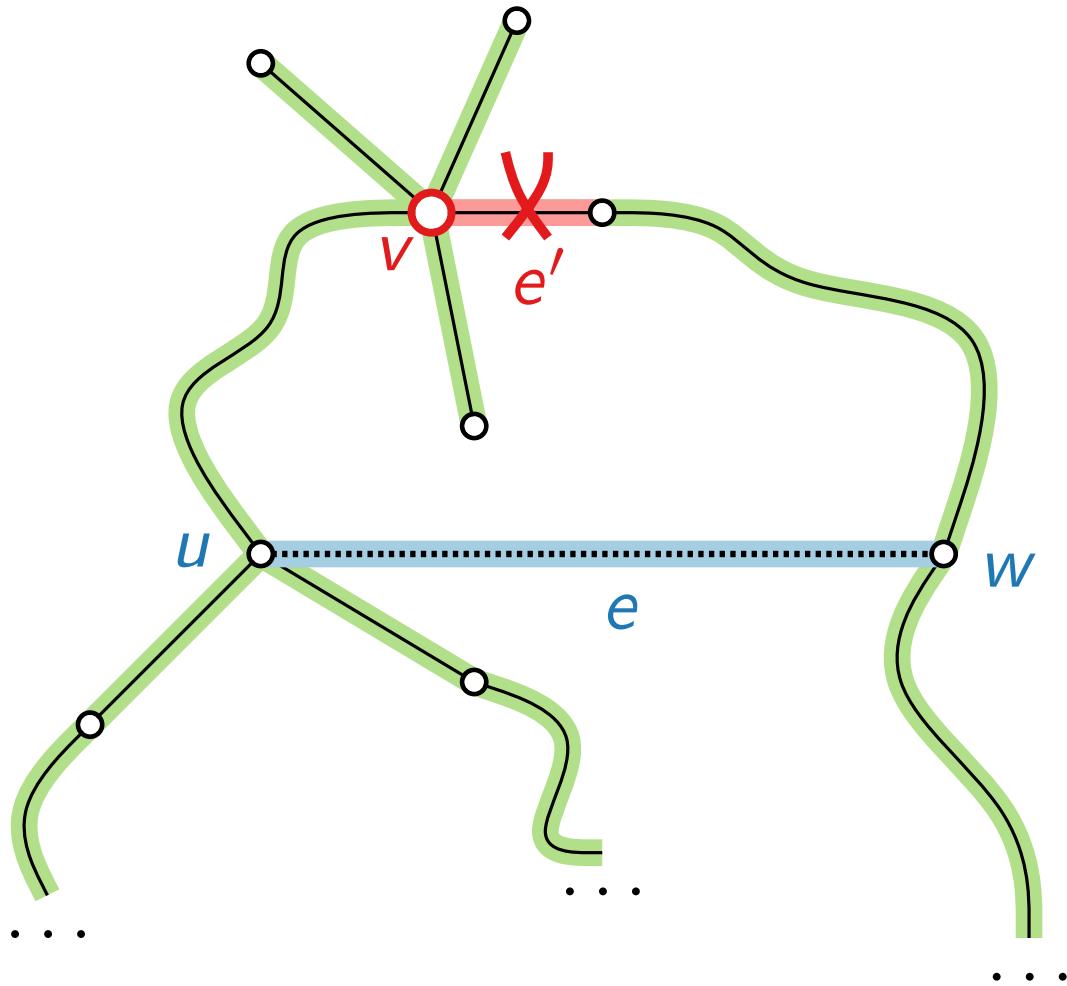
$T + e$

contains a cycle!

$\text{---} = E(T)$

$\cdots \cdots \cdots \cdots = E(G) - E(T)$

Edge Flips

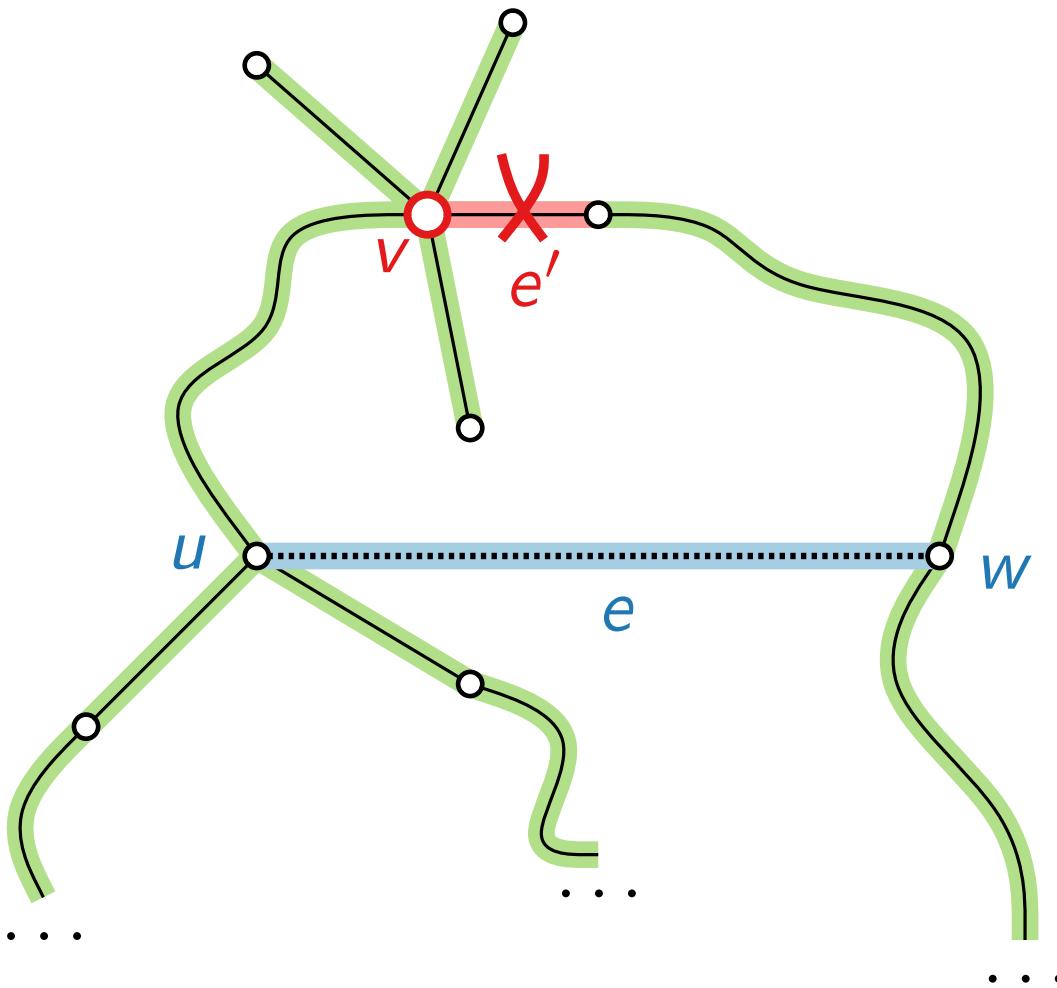


$T + e - e'$
is a new spanning tree.

$\text{---} = E(T)$
 $\cdots \cdots \cdots$
 $\cdots \cdots \cdots = E(G) - E(T)$

Edge Flips

Def. An **improving flip** in T for a vertex v and an edge $uw \in E(G) \setminus E(T)$ is a flip with $\deg_T(v) >$

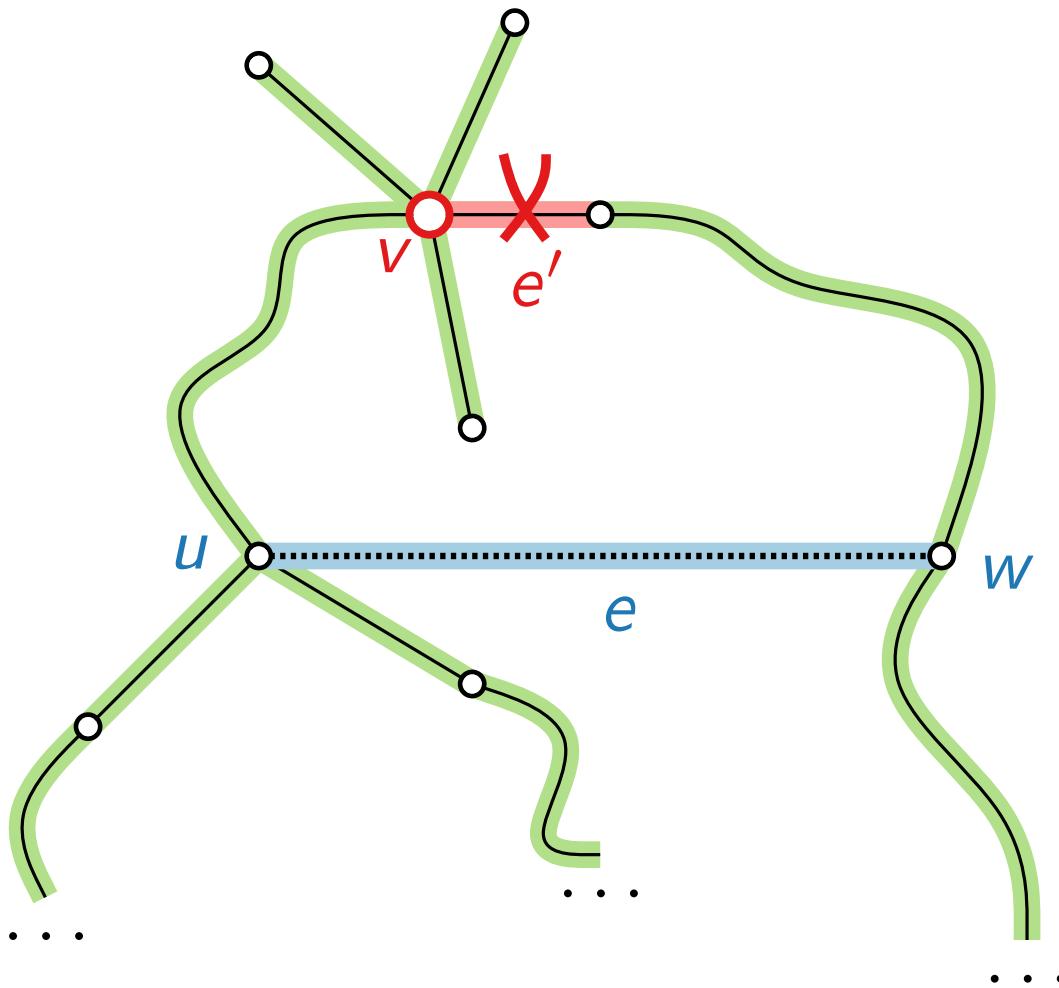


$T + e - e'$
is a new **spanning tree**.

$\text{--- } E(T)$
 $\text{... } E(G) - E(T)$

Edge Flips

Def. An **improving flip** in T for a vertex v and an edge $uw \in E(G) \setminus E(T)$ is a flip with $\deg_T(v) > \max\{\deg_T(u), \deg_T(w)\} + 1$.



$T + e - e'$
is a new spanning tree.

$\text{---} E(T)$
 $\cdots \cdots \cdots E(G) - E(T)$

Local Search

```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

```
     $T \leftarrow$  any spanning tree of  $G$ 
```

```
    while  $\exists$  improving flip in  $T$  for a vertex  $v$   
        with  $\deg_T(v) \geq \Delta(T) - \ell$  do
```

```
        do the improving flip
```

```
    return  $T$ 
```

Local Search

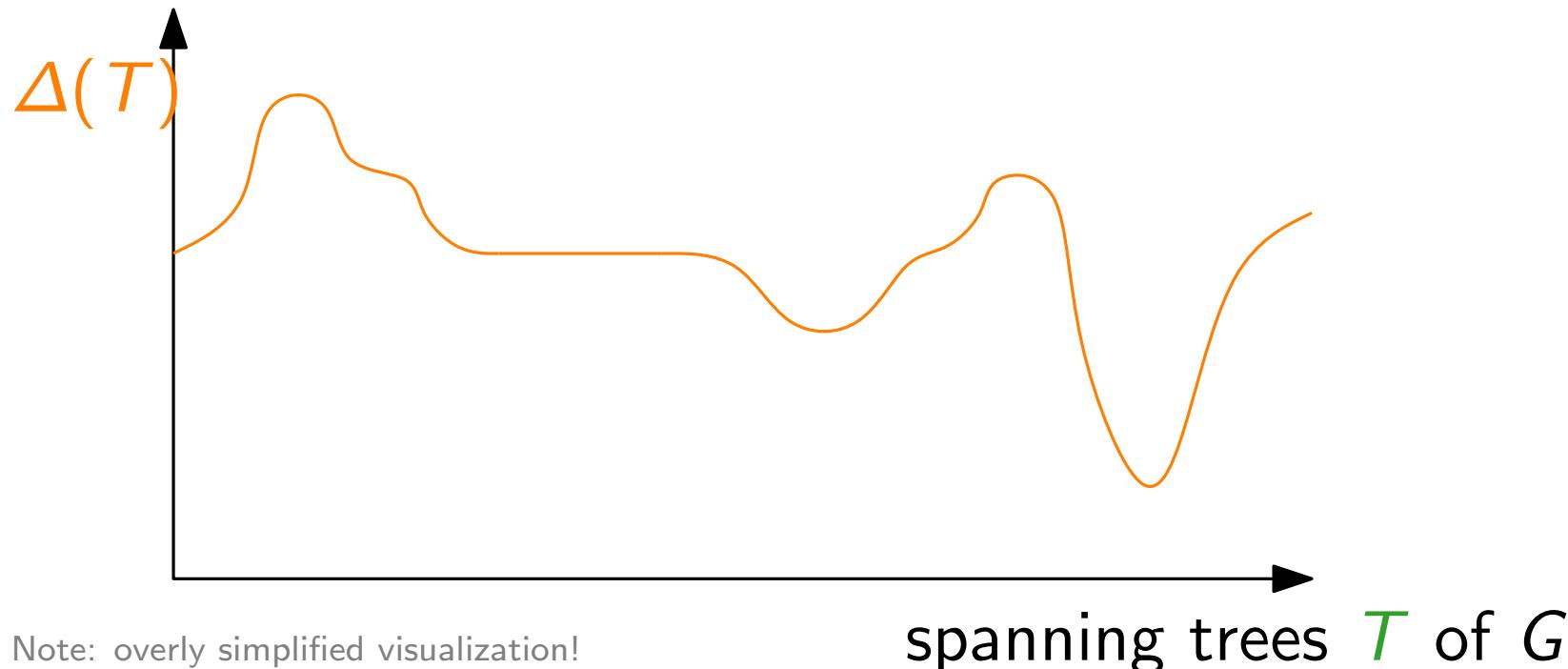
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Local Search

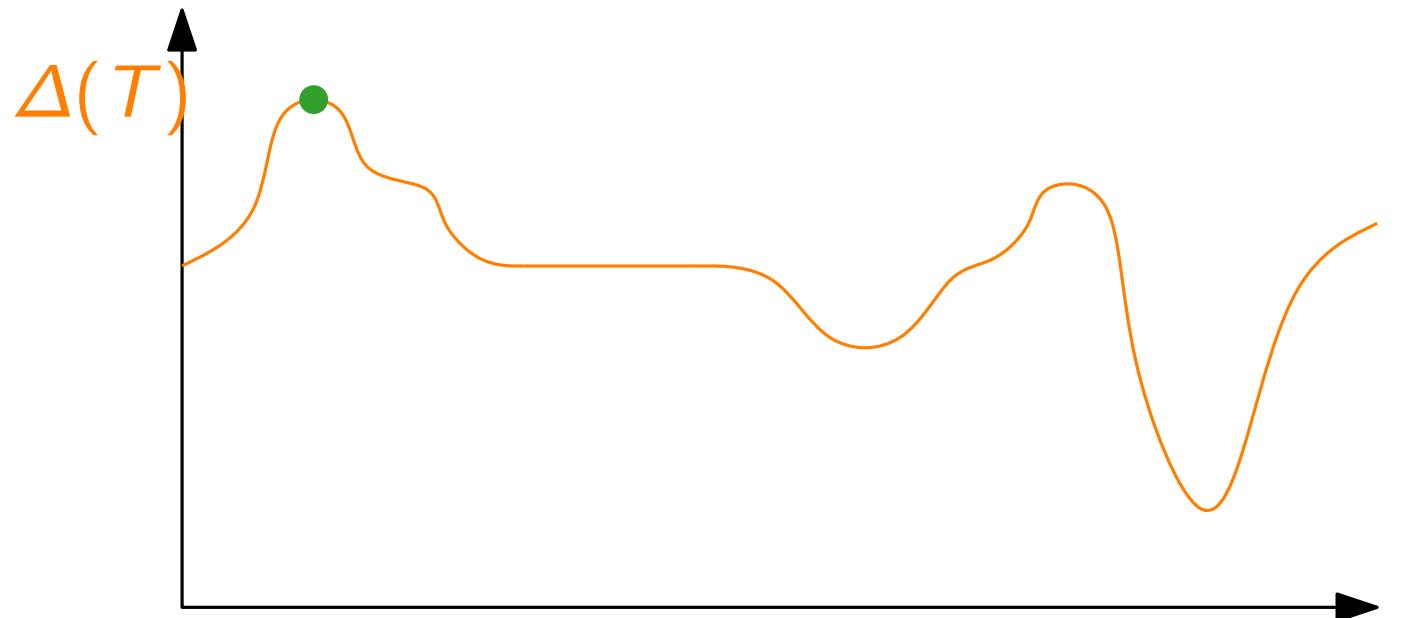
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Note: overly simplified visualization!

spanning trees T of G

Local Search

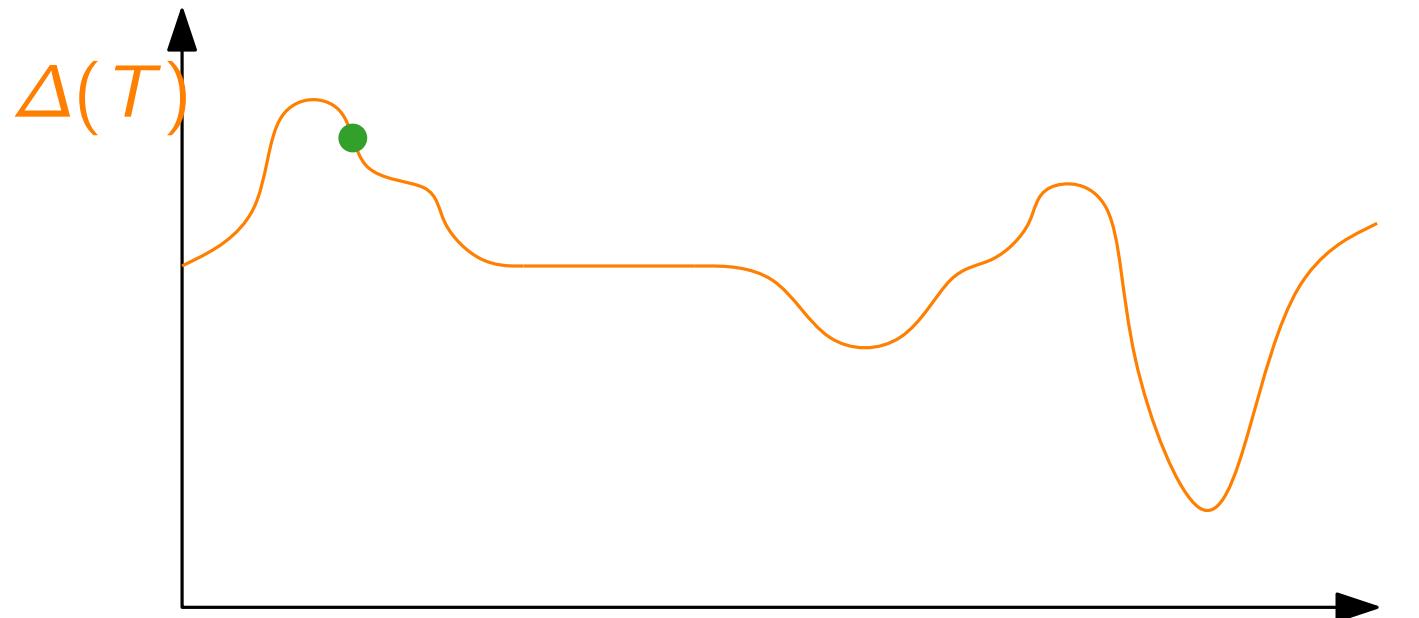
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Note: overly simplified visualization!

spanning trees T of G

Local Search

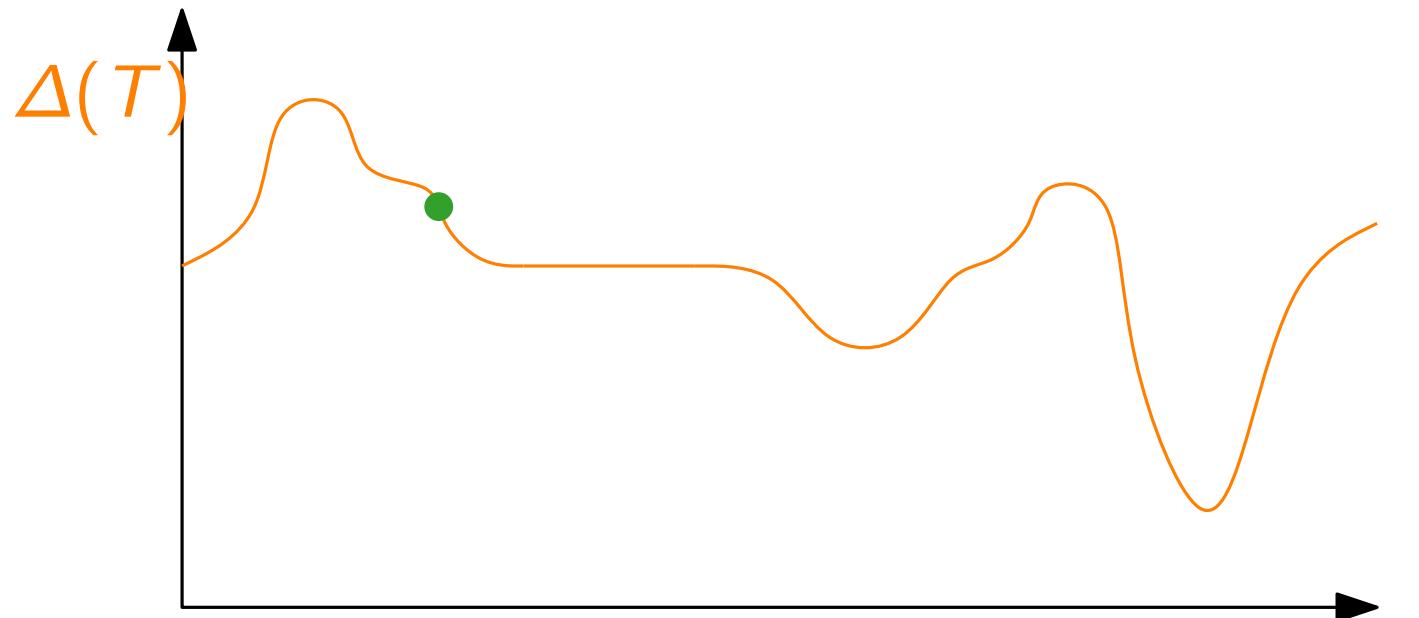
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Note: overly simplified visualization!

spanning trees T of G

Local Search

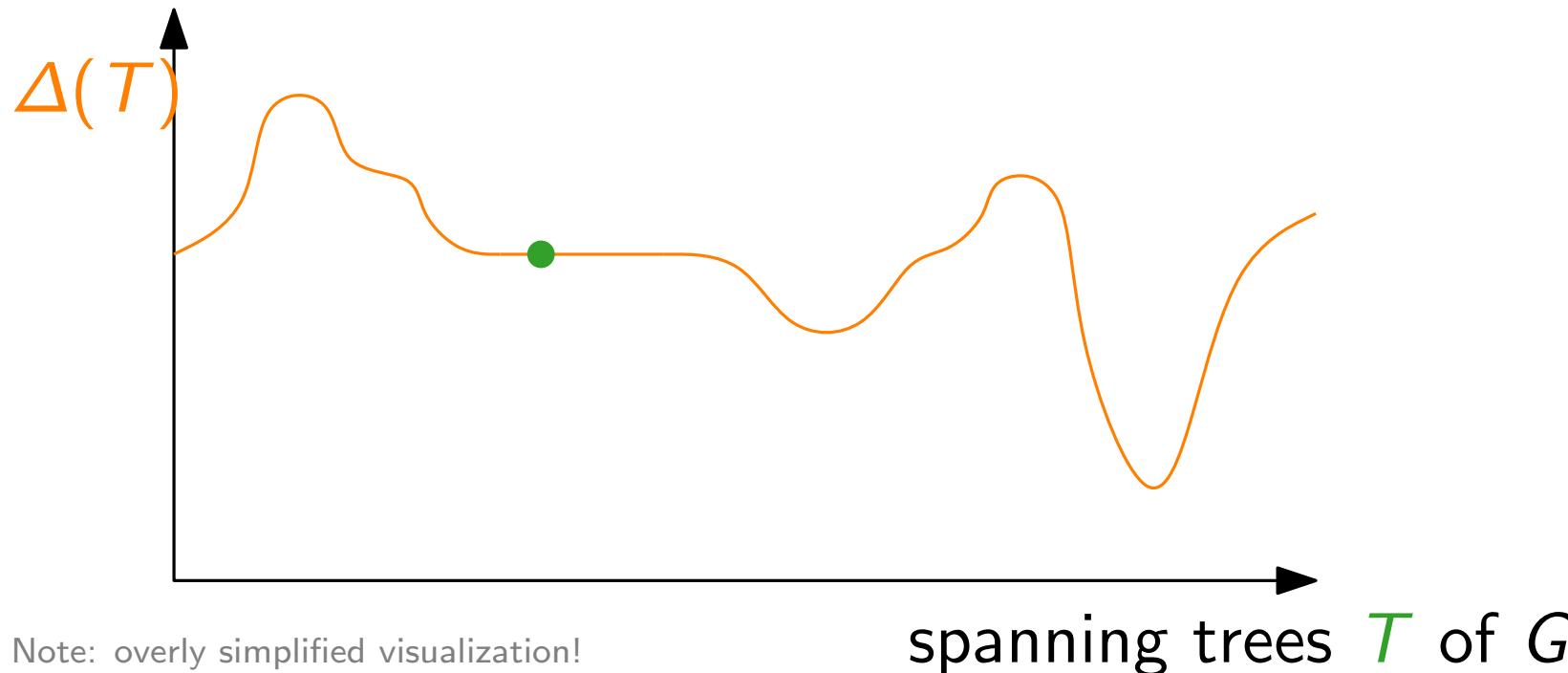
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Note: overly simplified visualization!

Local Search

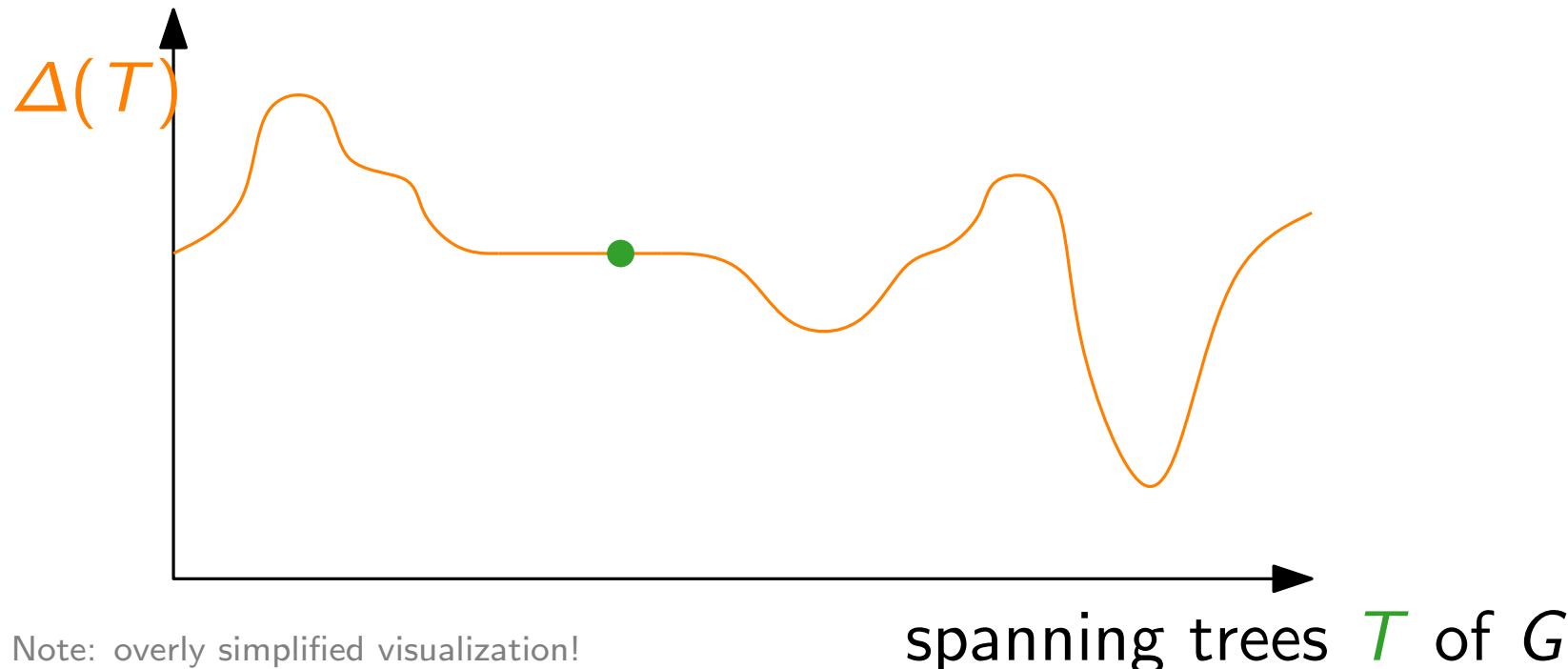
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Note: overly simplified visualization!

Local Search

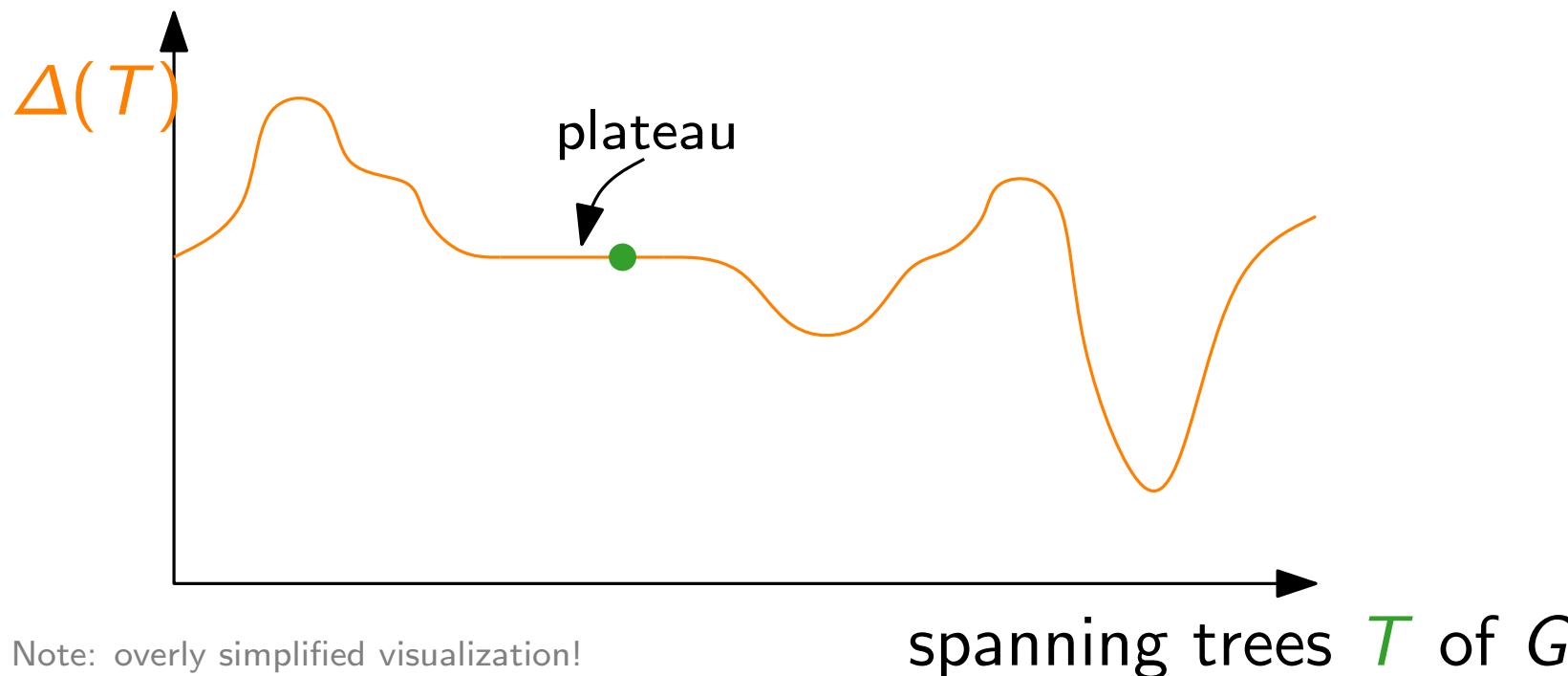
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Local Search

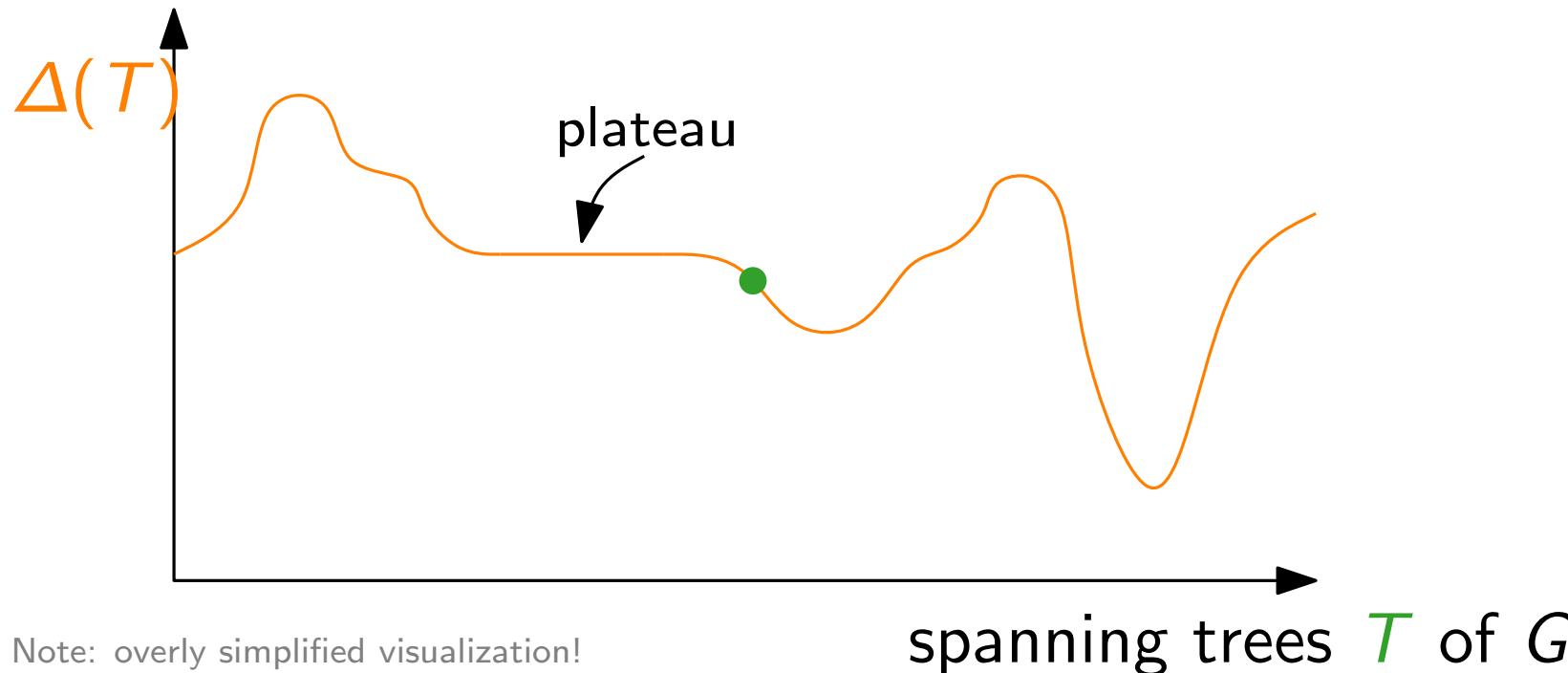
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Note: overly simplified visualization!

Local Search

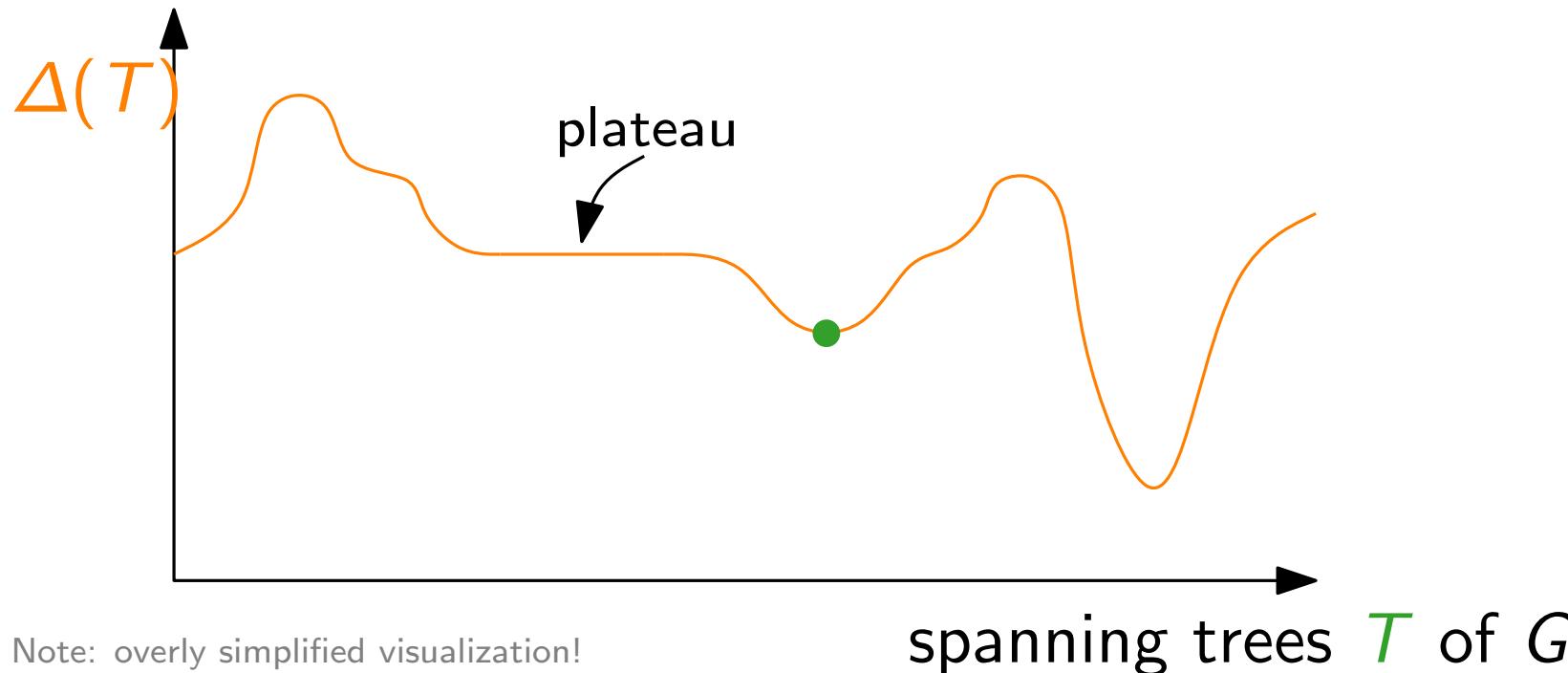
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

└ do the improving flip

return T



Local Search

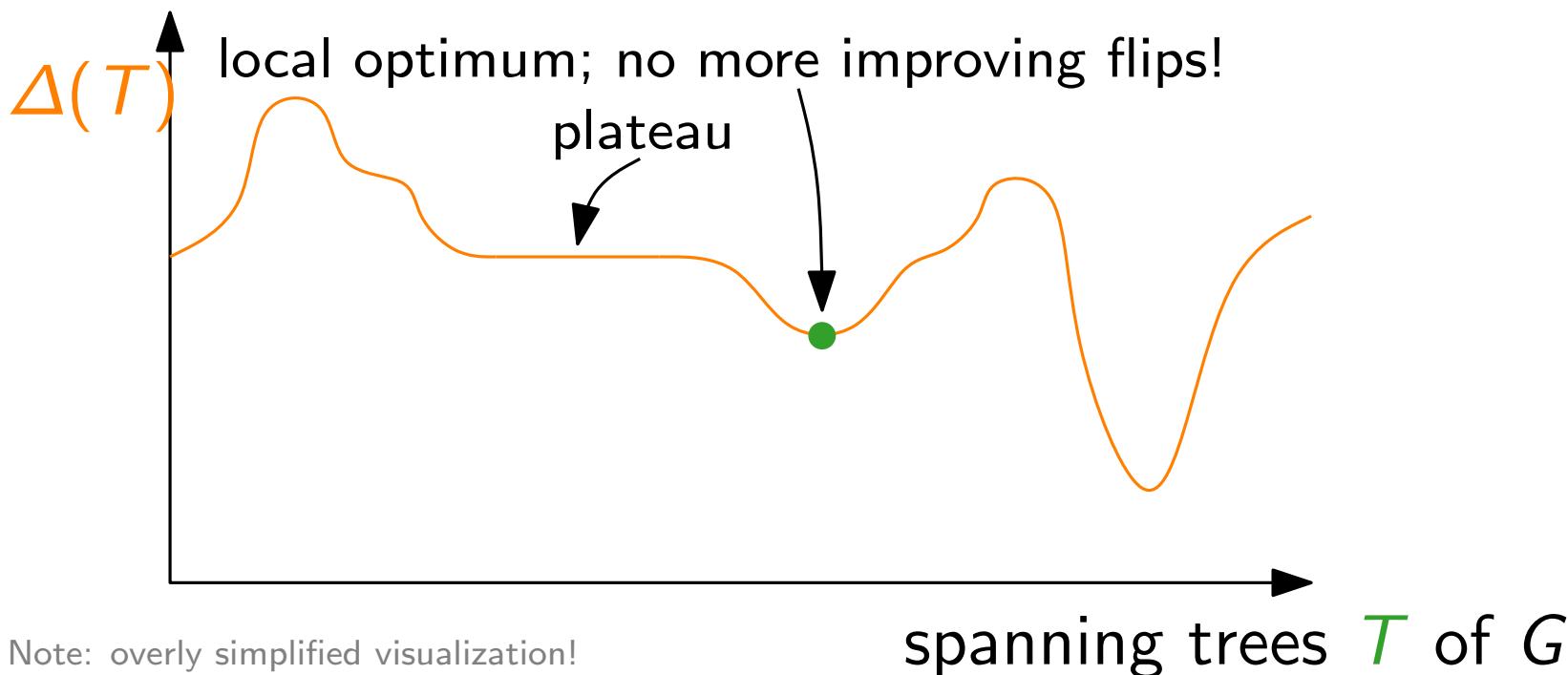
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Local Search

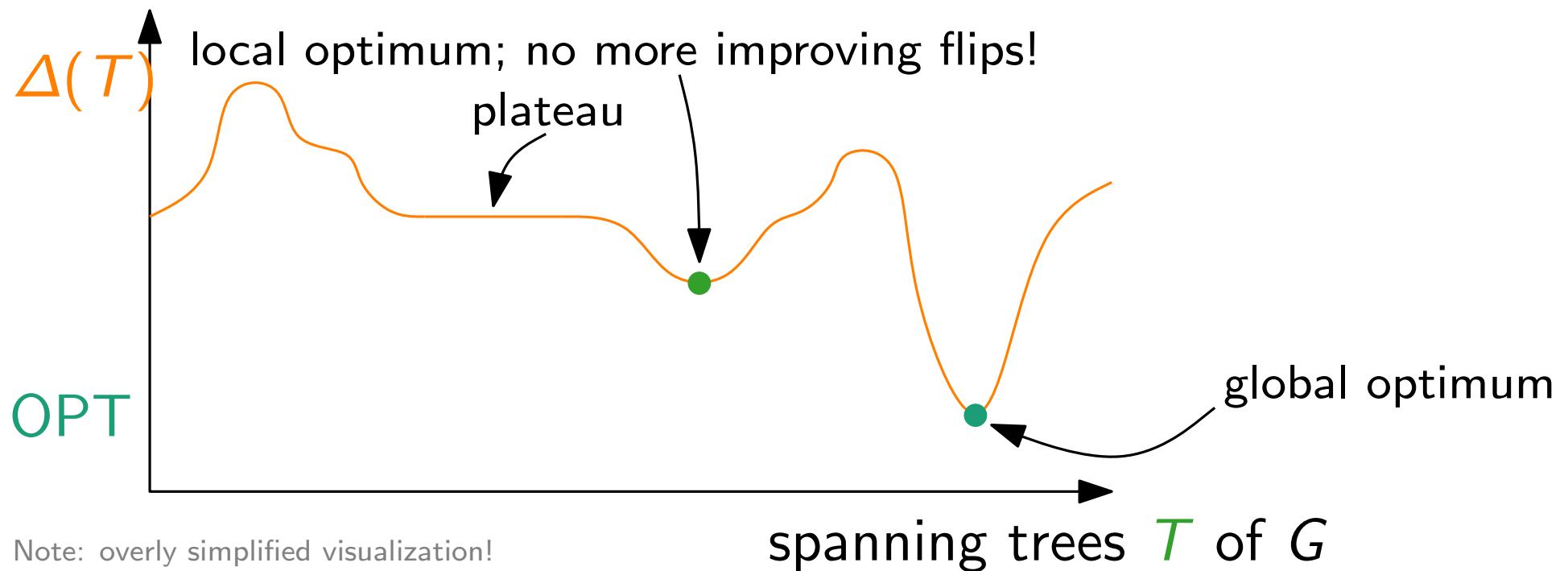
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Local Search

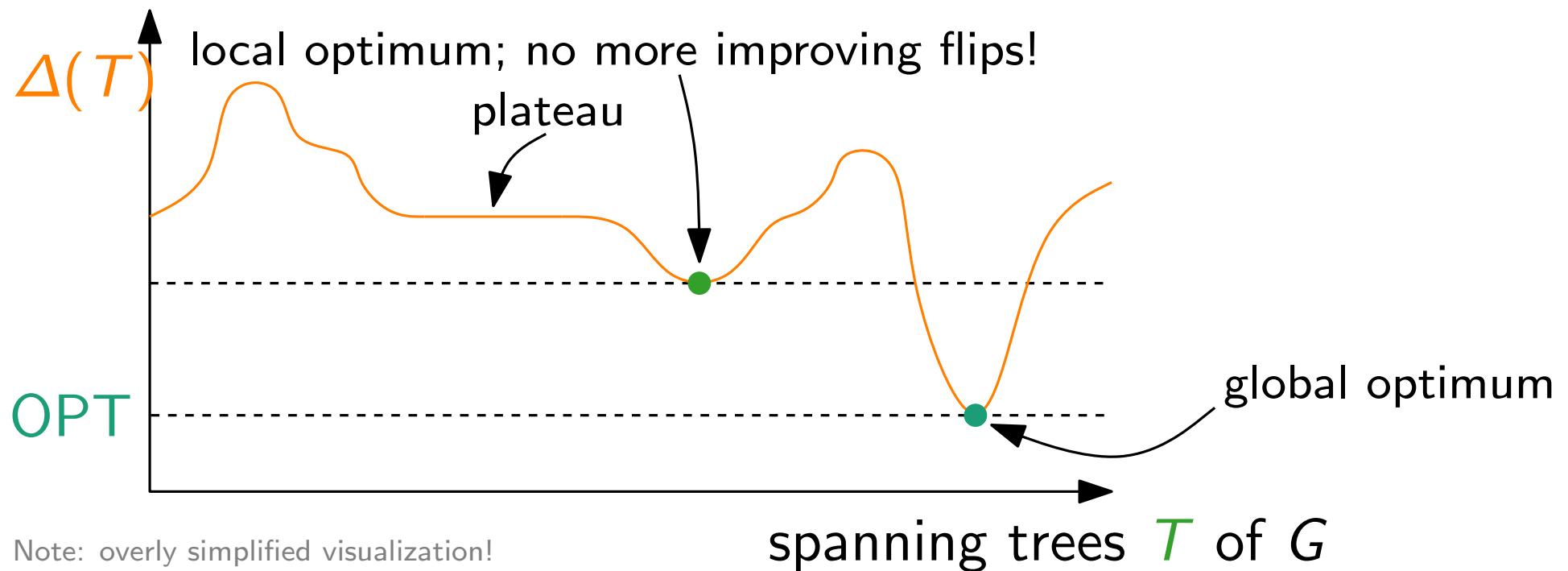
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Local Search

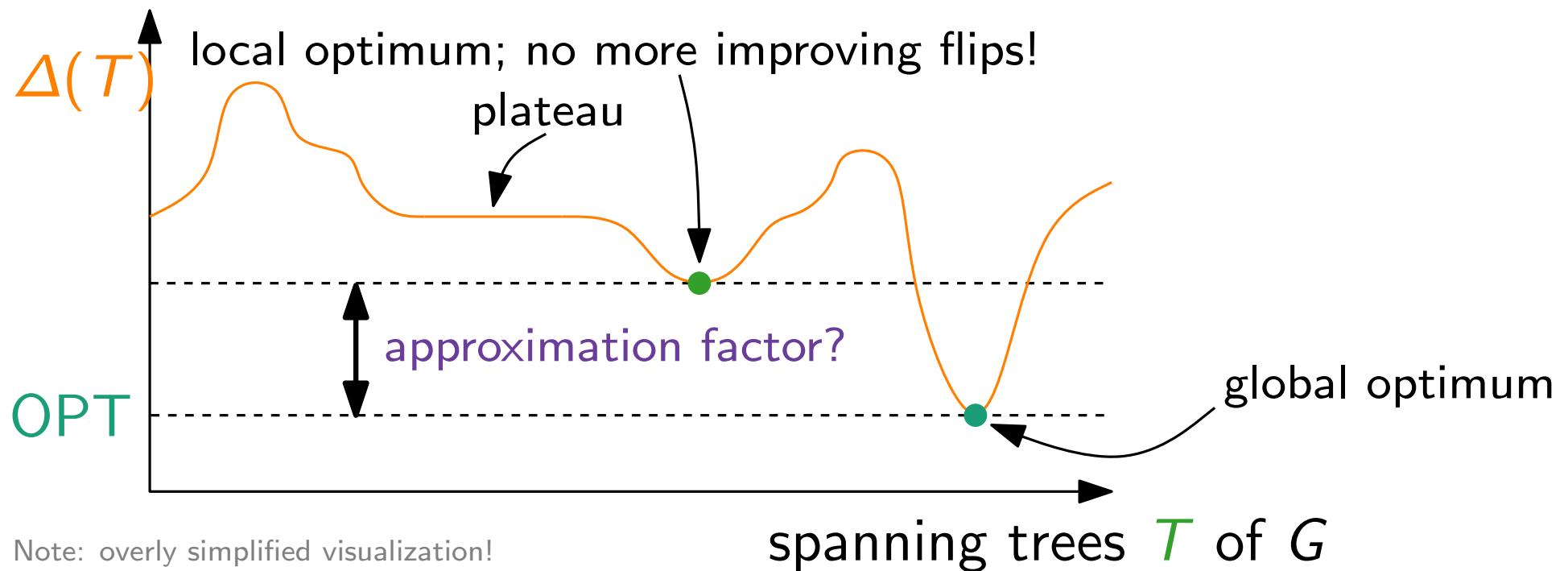
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

└ do the improving flip

return T



Local Search

```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

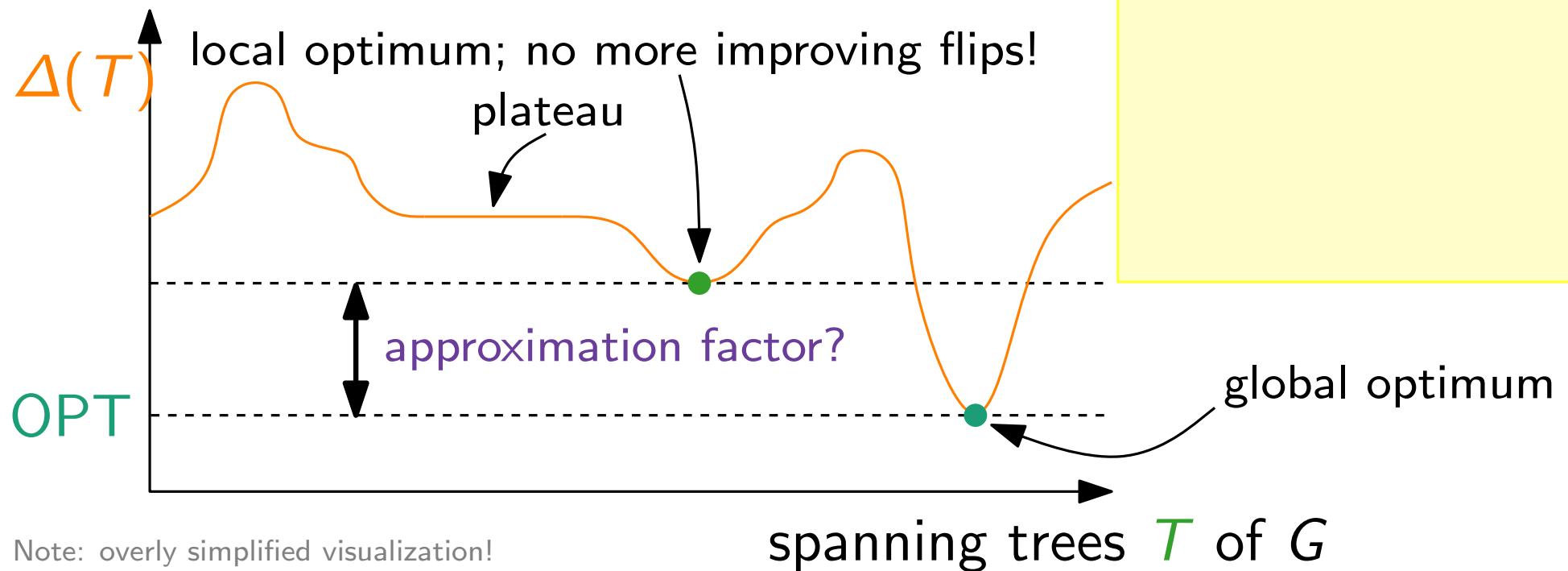
$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T

■ Termination?



Local Search

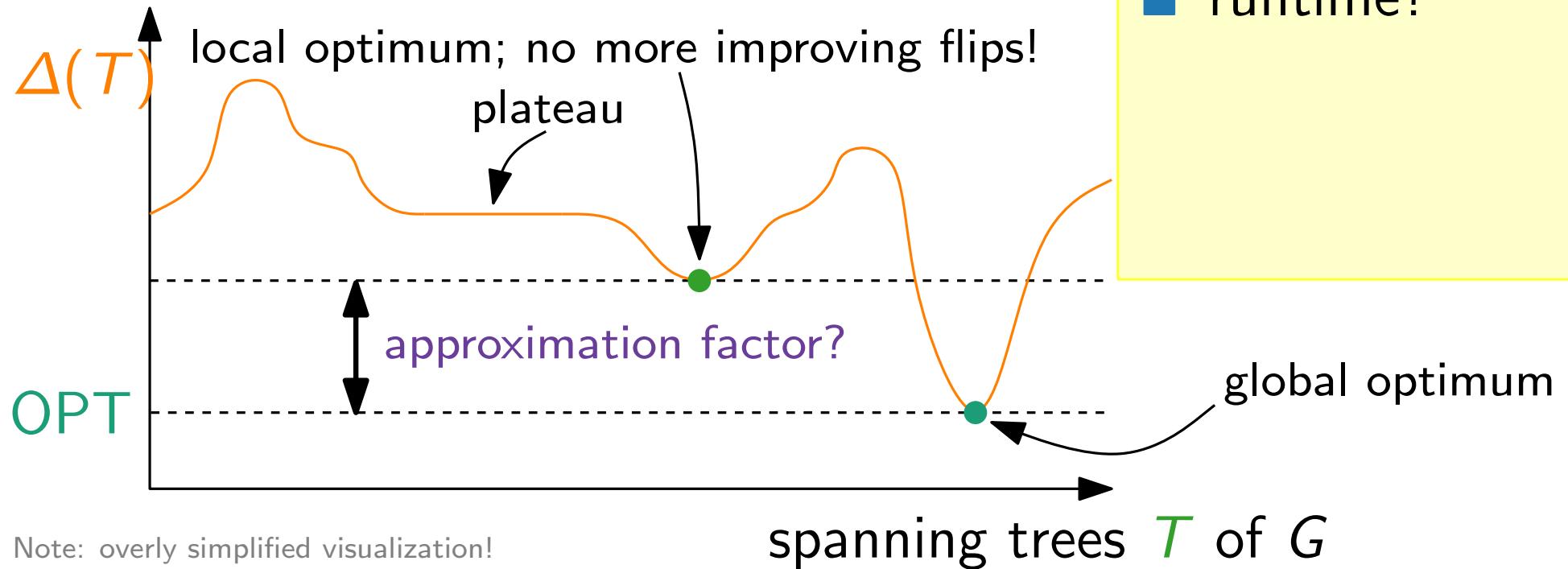
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Local Search

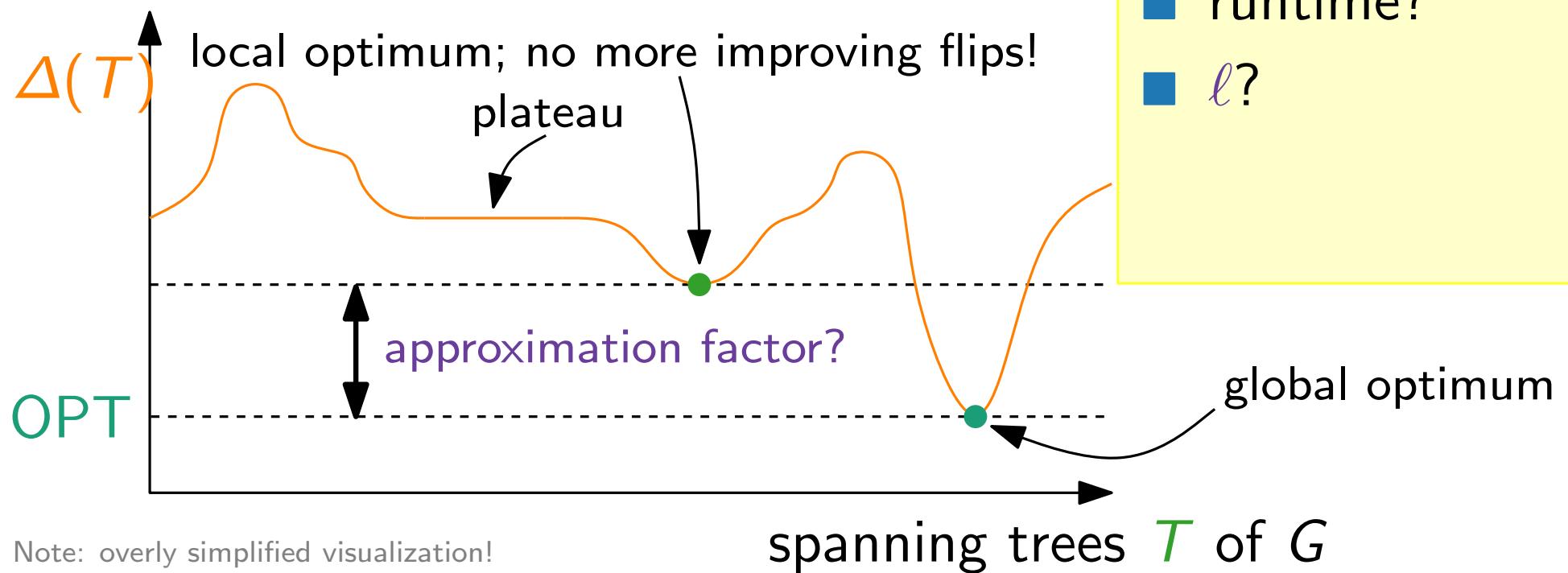
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Local Search

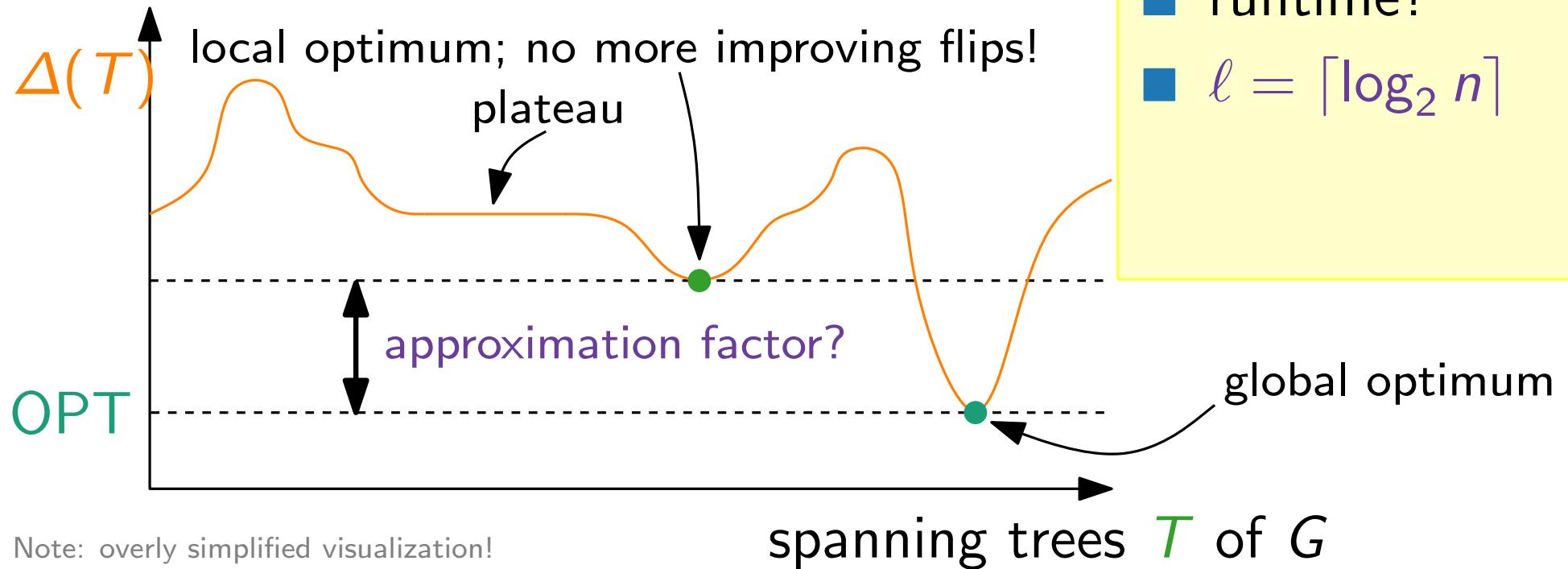
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

return T



Local Search

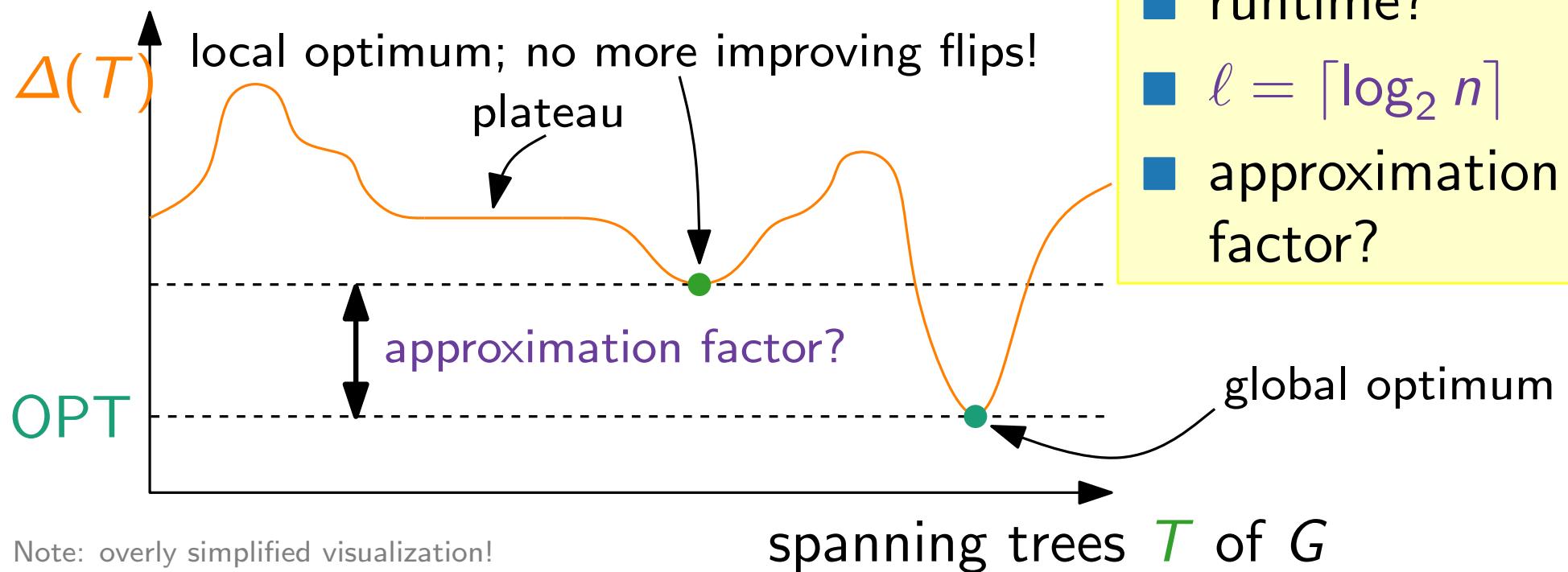
```
MinDegSpanningTreeLocalSearch(graph  $G$ )
```

$T \leftarrow$ any spanning tree of G

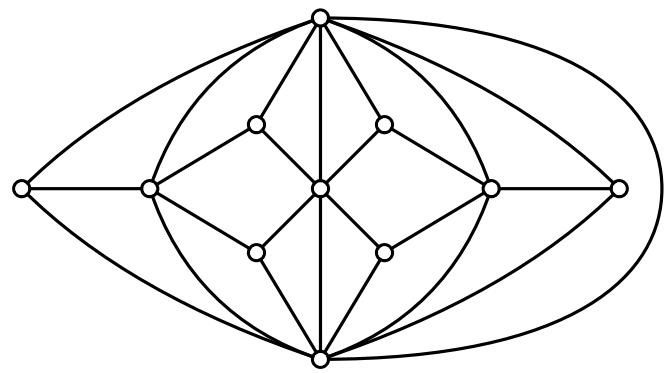
while \exists improving flip in T for a vertex v
with $\deg_T(v) \geq \Delta(T) - \ell$ **do**

 └ do the improving flip

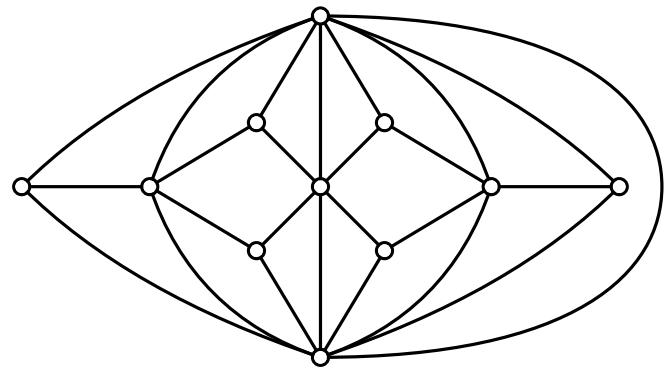
return T



Example

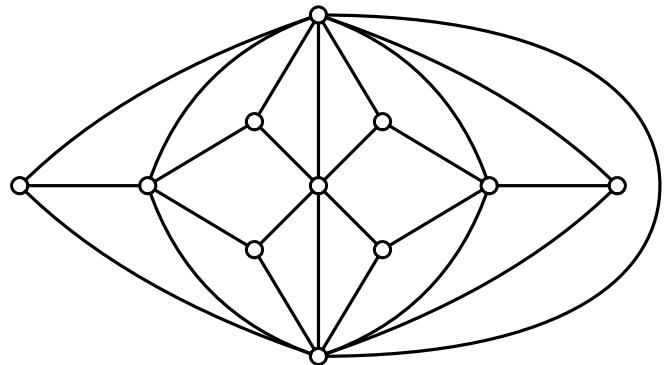


Example



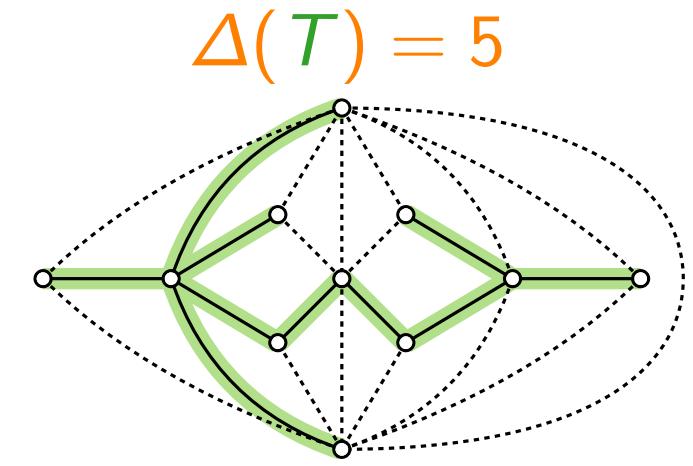
Goldner–Harary graph (minus two edges)

Example

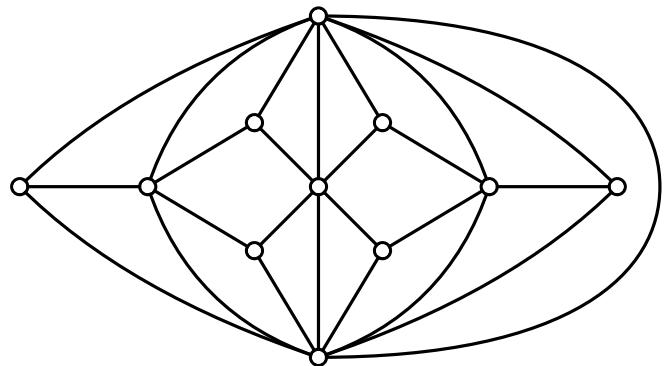


Goldner–Harary graph (minus two edges)

choose any
spanning tree T

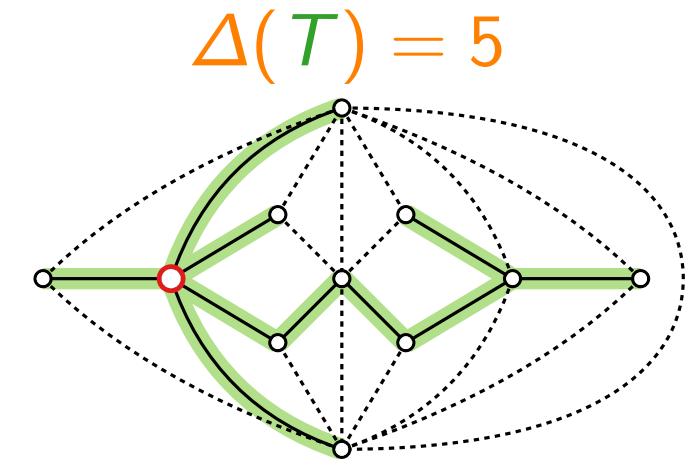


Example

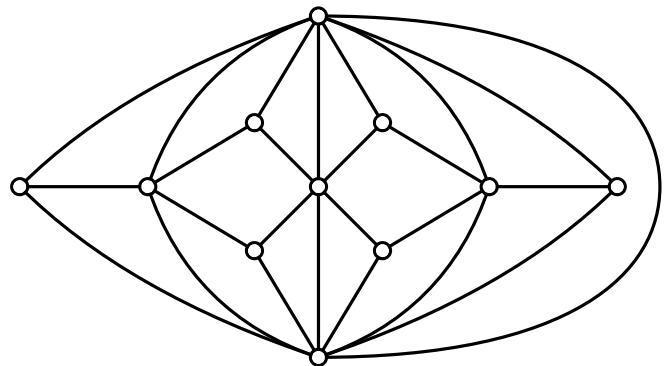


Goldner–Harary graph (minus two edges)

choose any
spanning tree T

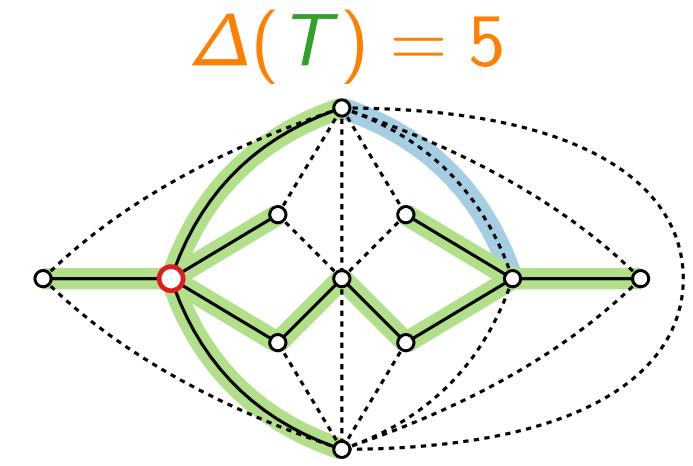


Example

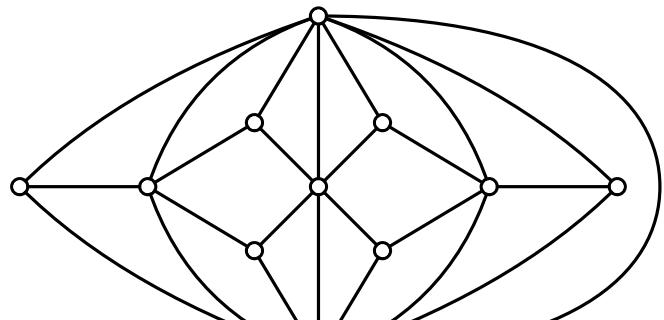


Goldner–Harary graph (minus two edges)

choose any
spanning tree T

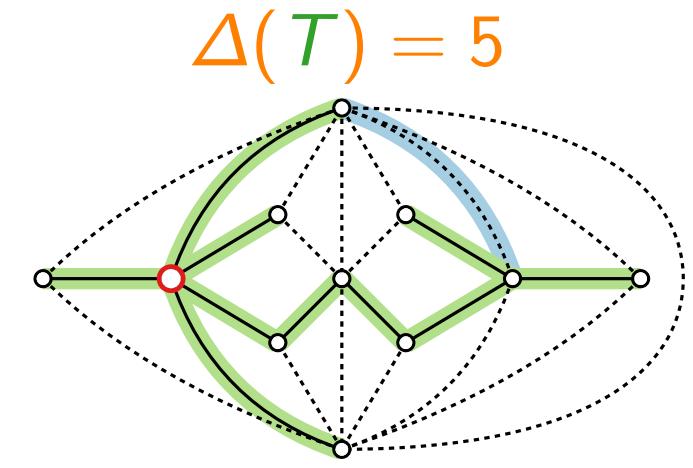


Example

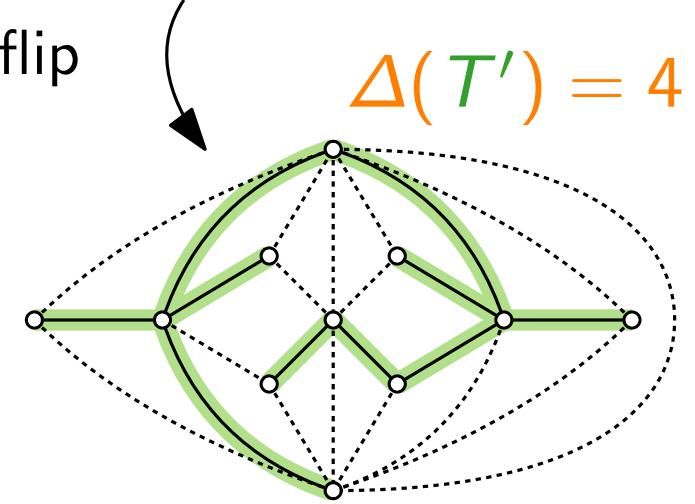


Goldner–Harary graph (minus two edges)

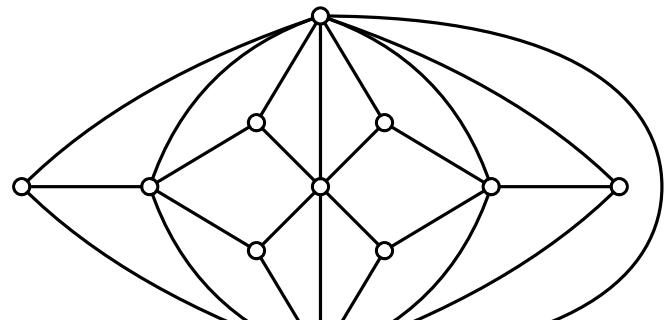
choose any
spanning tree T



improving flip

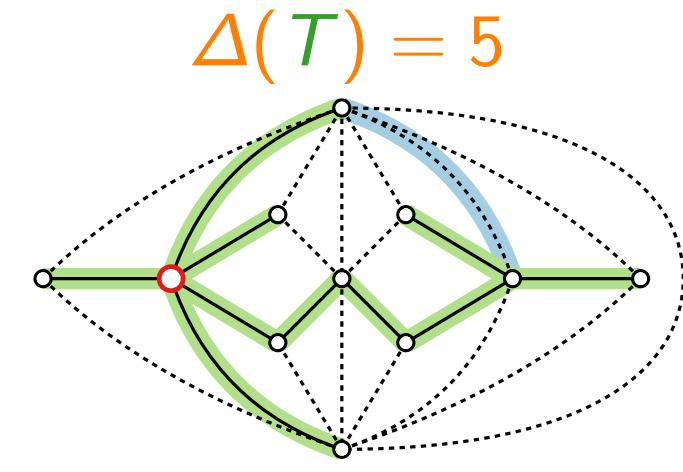


Example

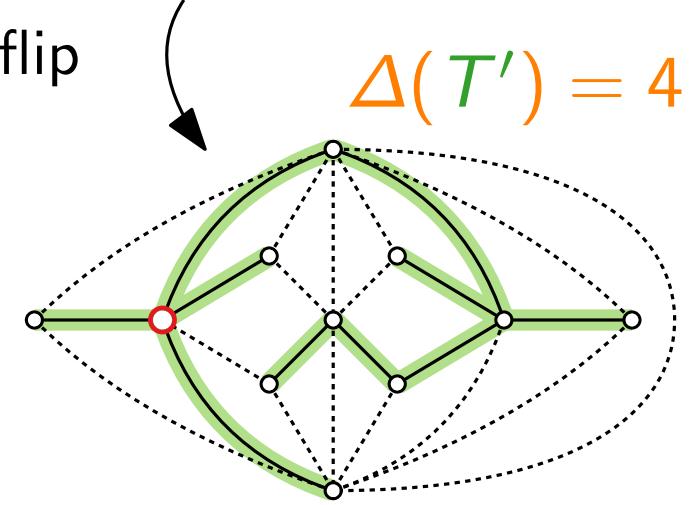


Goldner–Harary graph (minus two edges)

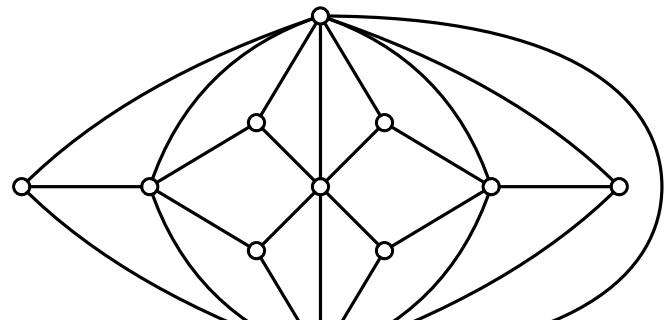
choose any
spanning tree T



improving flip

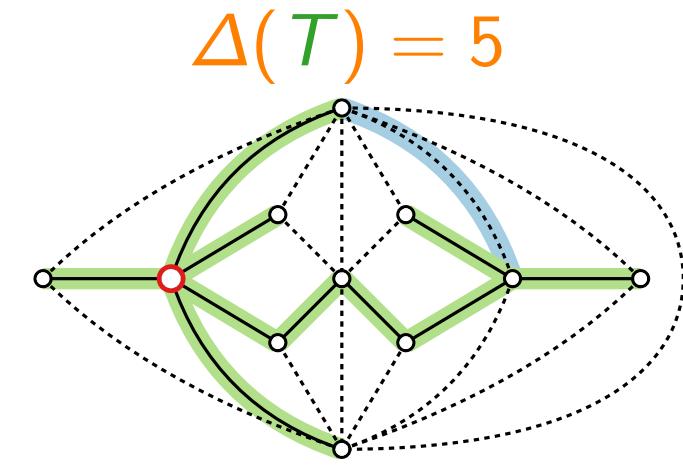


Example

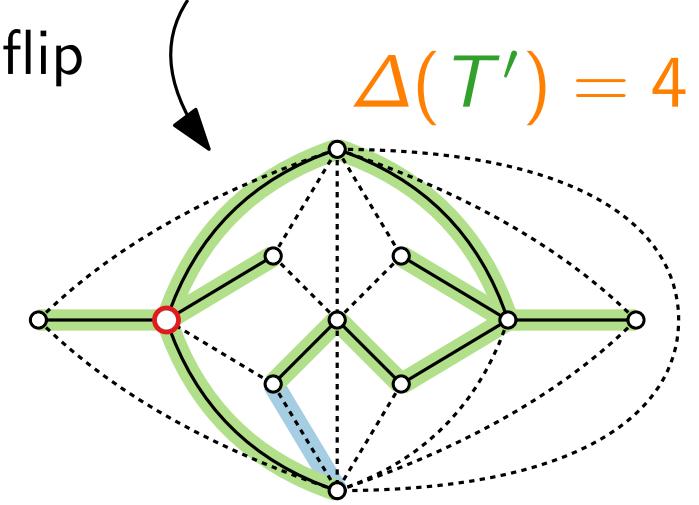


Goldner–Harary graph (minus two edges)

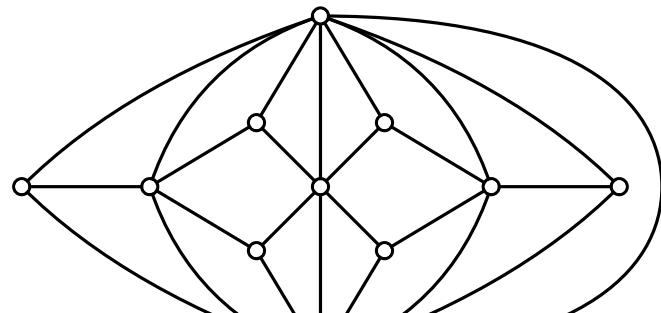
choose any
spanning tree T



improving flip

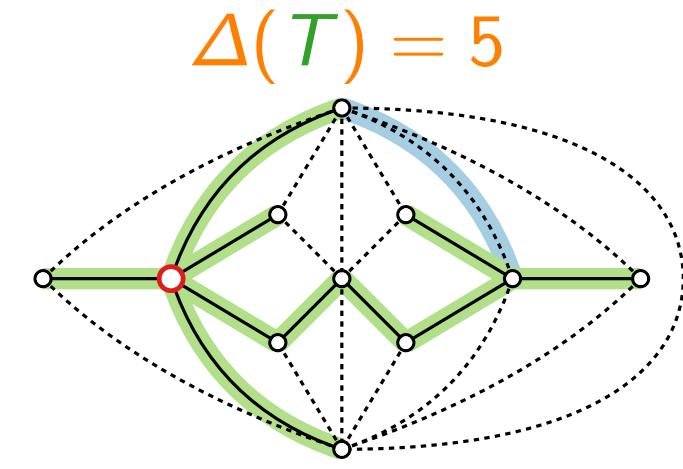


Example

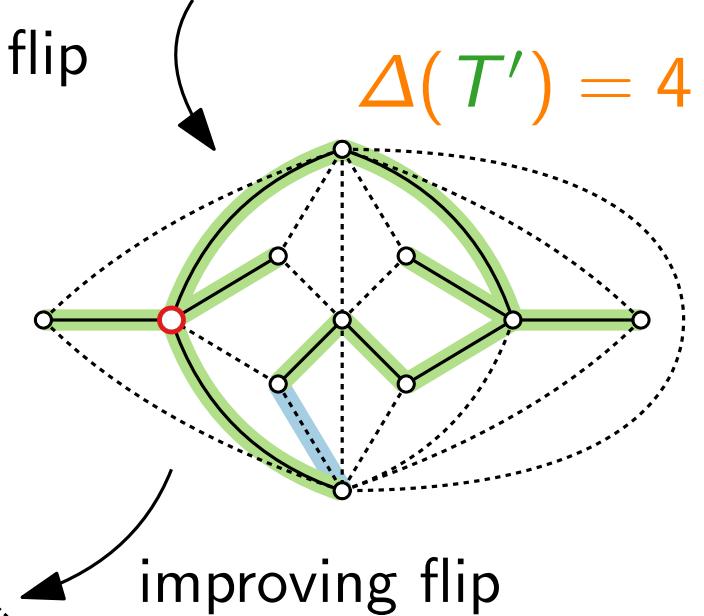


Goldner–Harary graph (minus two edges)

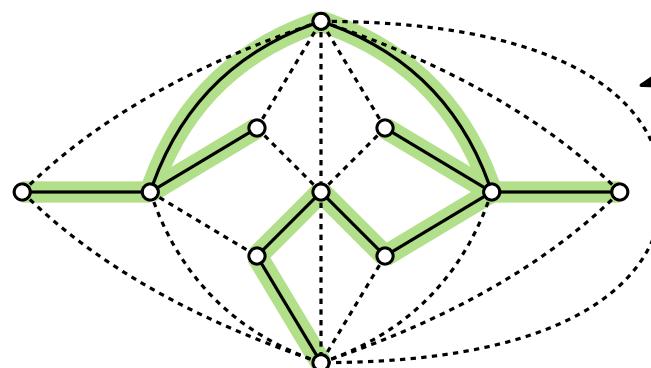
choose any
spanning tree T



improving flip

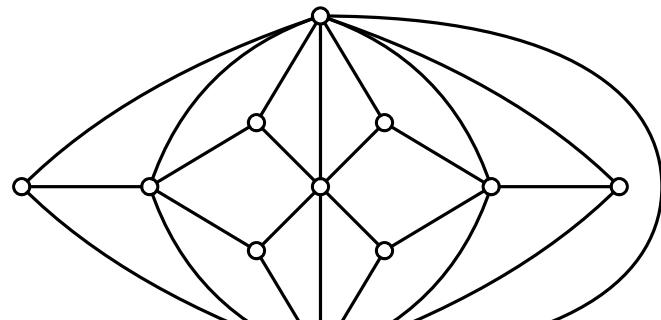


$\Delta(T'') = 4$



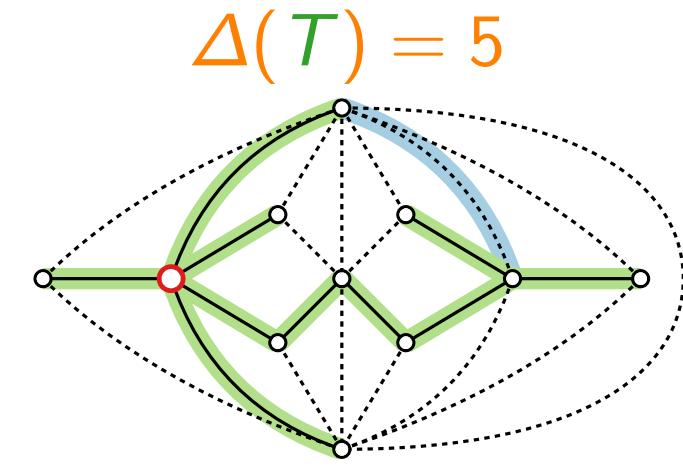
improving flip

Example

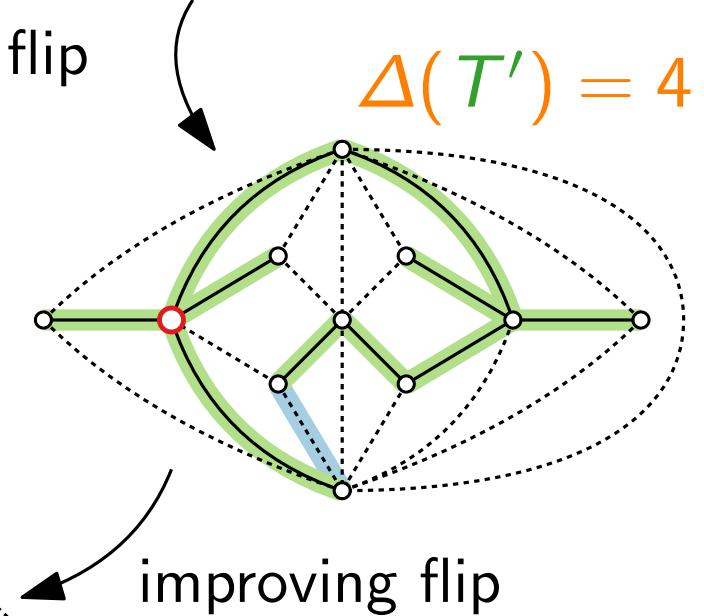


Goldner–Harary graph (minus two edges)

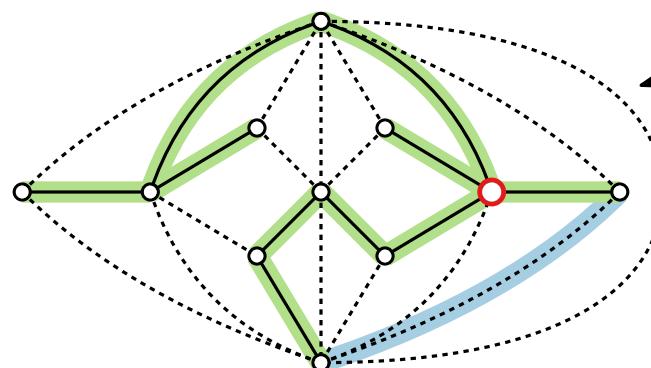
choose any
spanning tree T



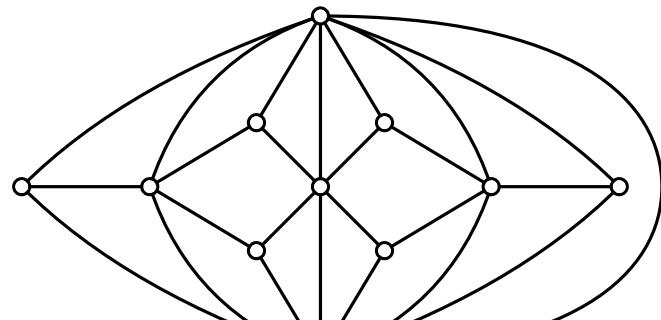
improving flip



$\Delta(T'') = 4$

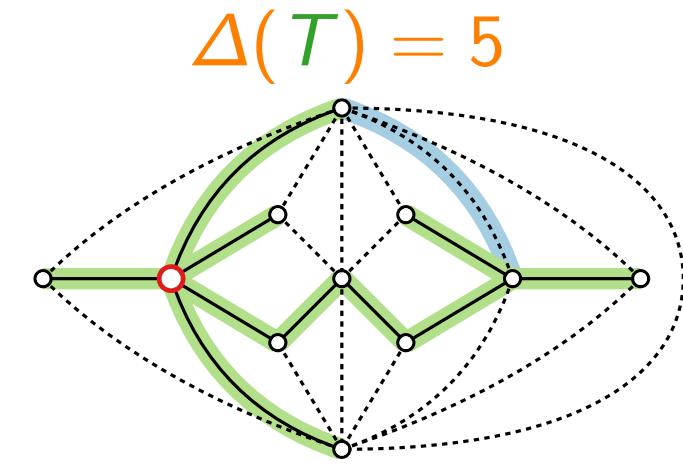


Example

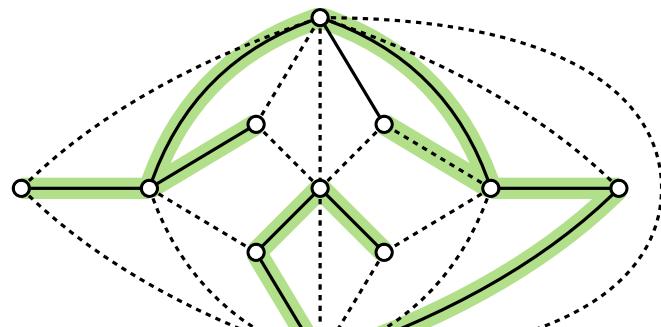


Goldner–Harary graph (minus two edges)

choose any
spanning tree T



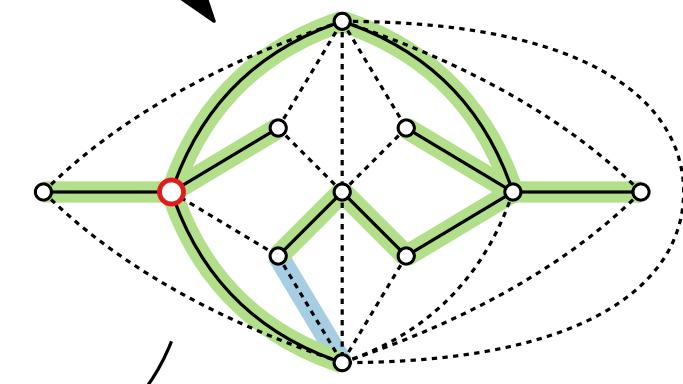
$$\Delta(T''') = 3$$



improving flip

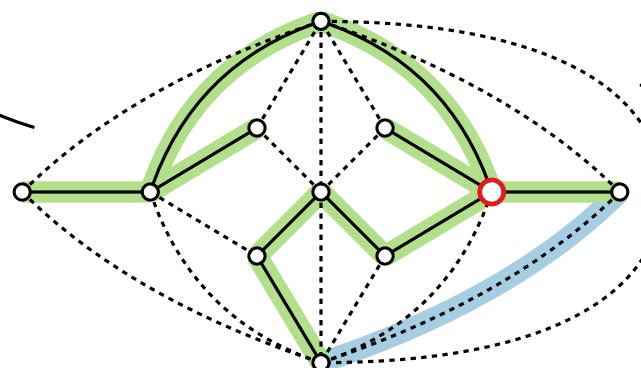
improving flip

$$\Delta(T') = 4$$

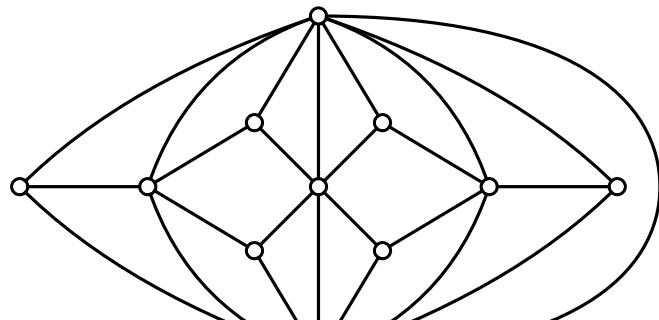


improving flip

$$\Delta(T'') = 4$$

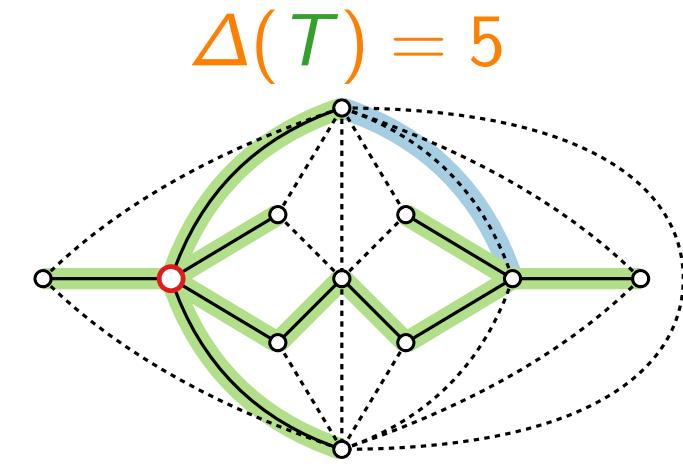


Example

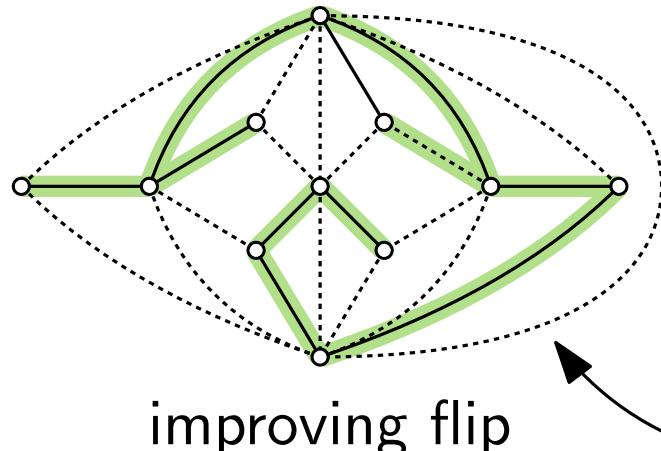


Goldner–Harary graph (minus two edges)

choose any
spanning tree T



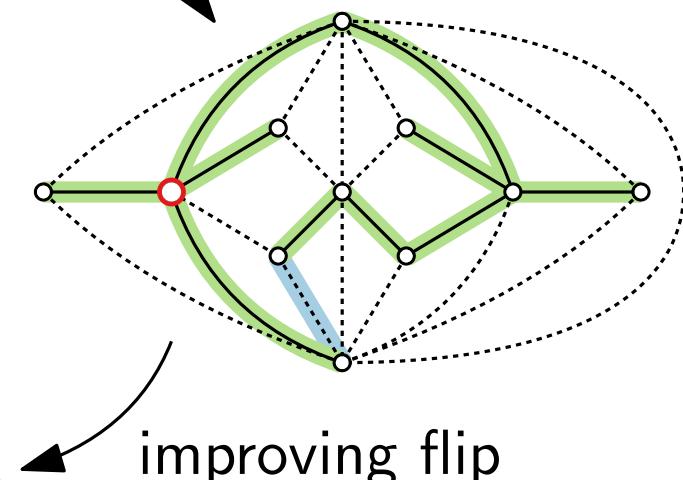
$$\Delta(T'') = 3 \text{ but } \Delta(T^*) = 2$$



improving flip

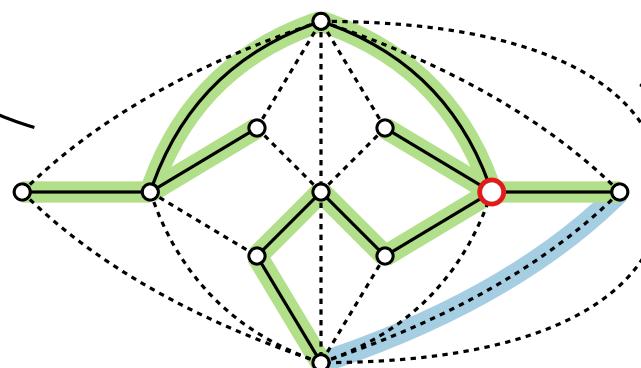
improving flip

$$\Delta(T') = 4$$

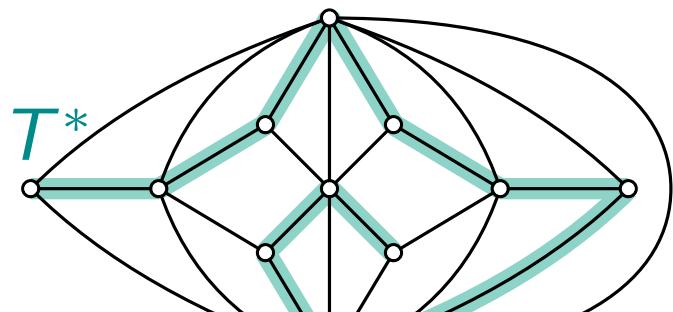


improving flip

$$\Delta(T'') = 4$$

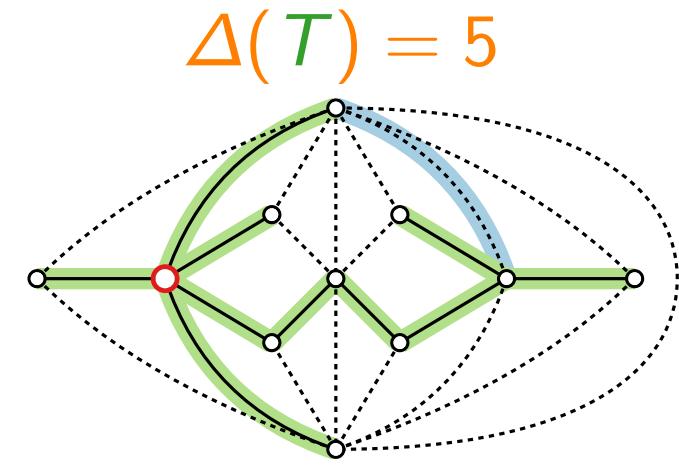


Example

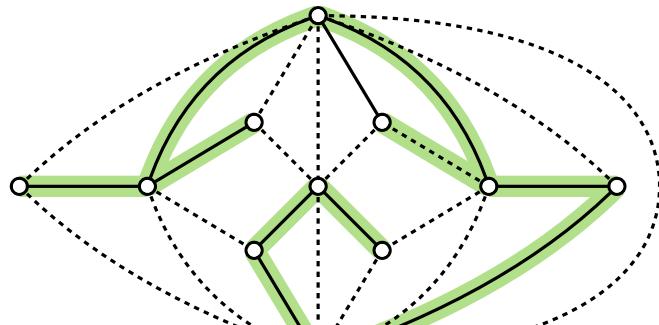


Goldner–Harary graph (minus two edges)

choose any
spanning tree T



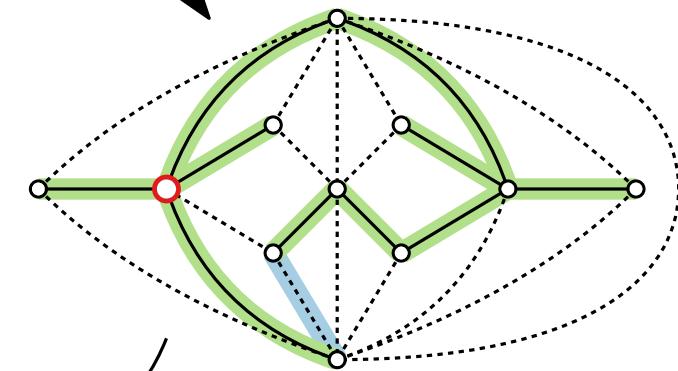
$$\Delta(T''') = 3 \text{ but } \Delta(T^*) = 2$$



improving flip

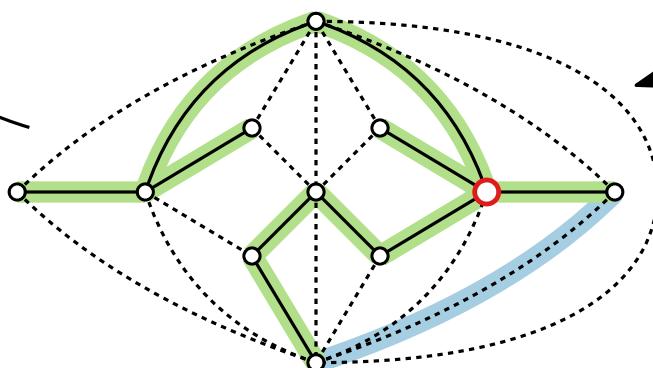
improving flip

$$\Delta(T') = 4$$



improving flip

$$\Delta(T'') = 4$$



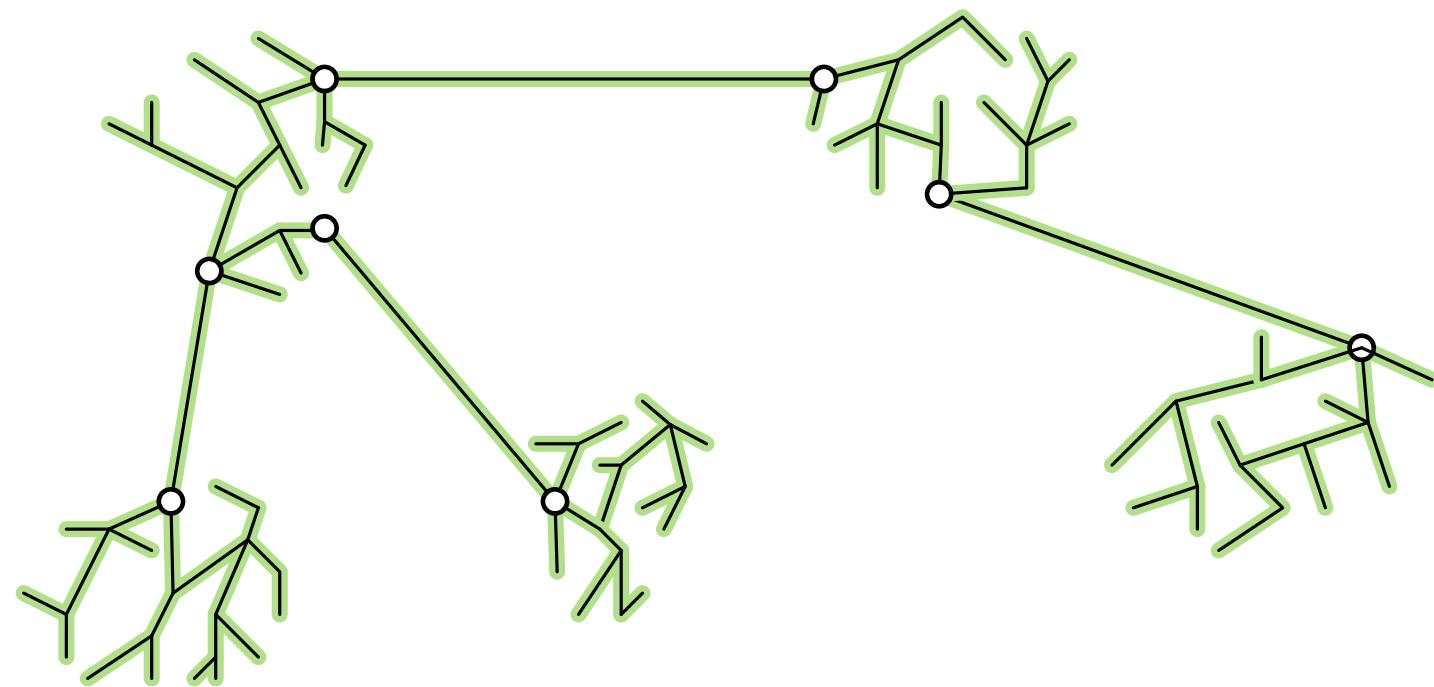
Approximation Algorithms

Lecture 10:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part III:
Lower Bound

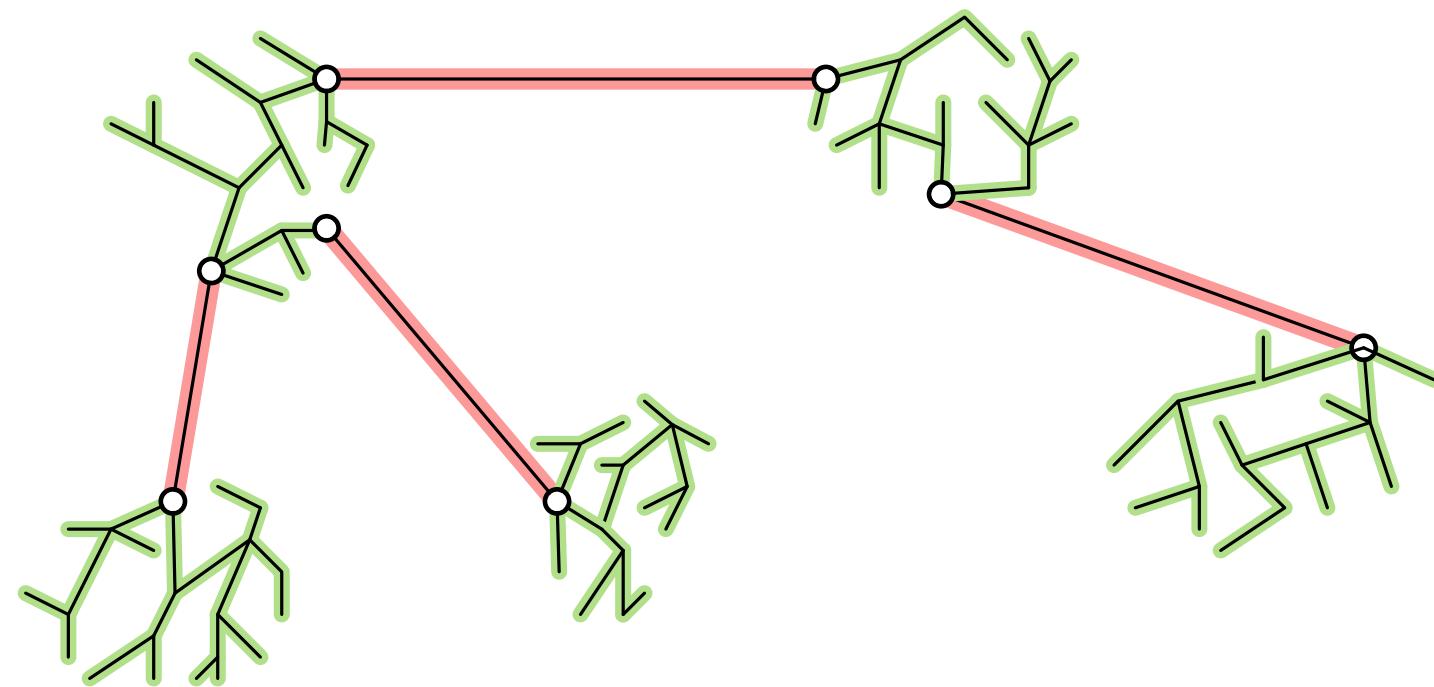
Decomposition

spanning
tree T



Decomposition

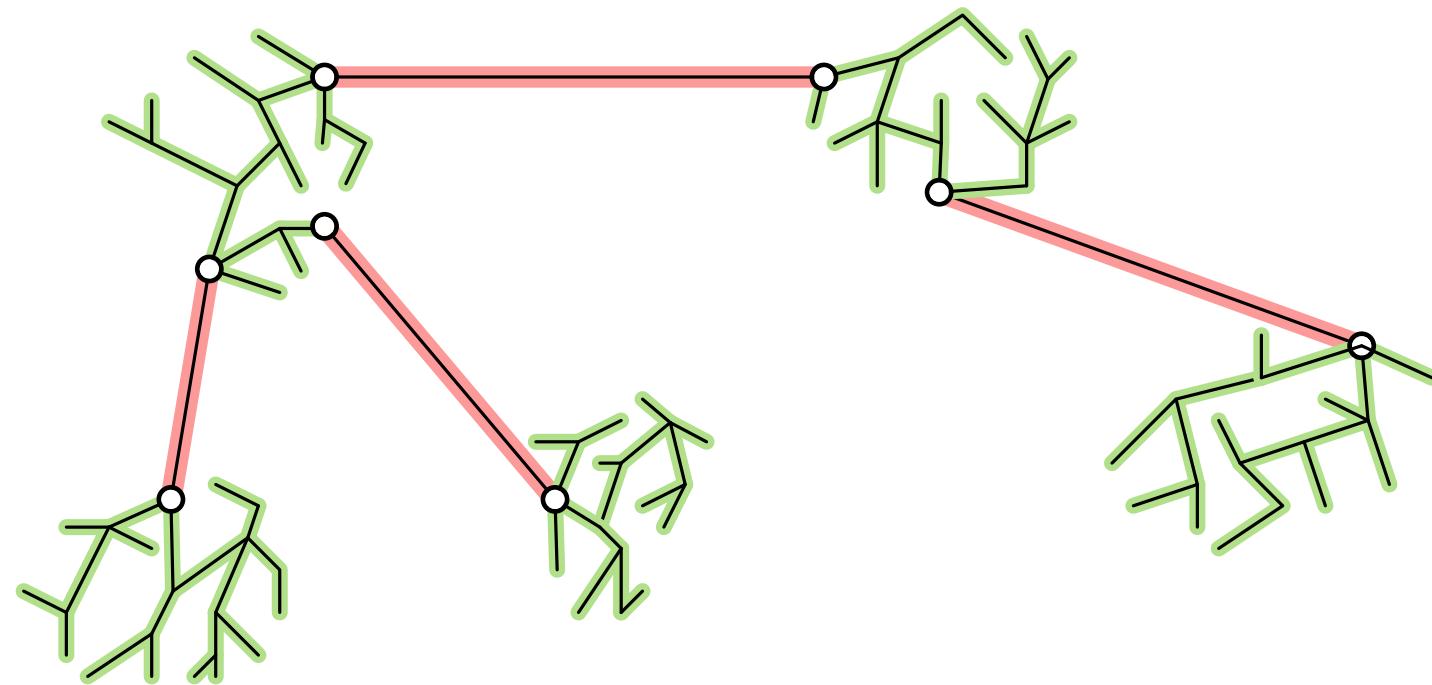
spanning tree T



Decomposition

- Removing k edges decomposes T into $k + 1$ components.

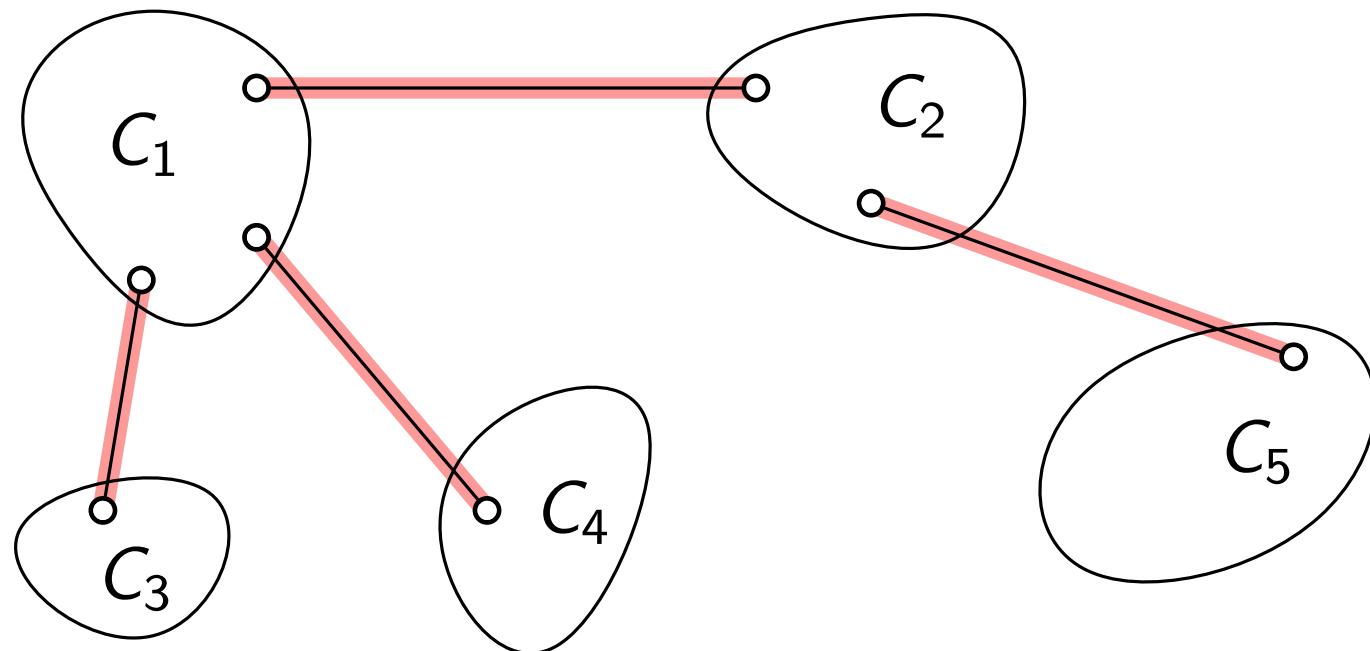
spanning
tree T



Decomposition

- Removing k edges decomposes T into $k + 1$ components.

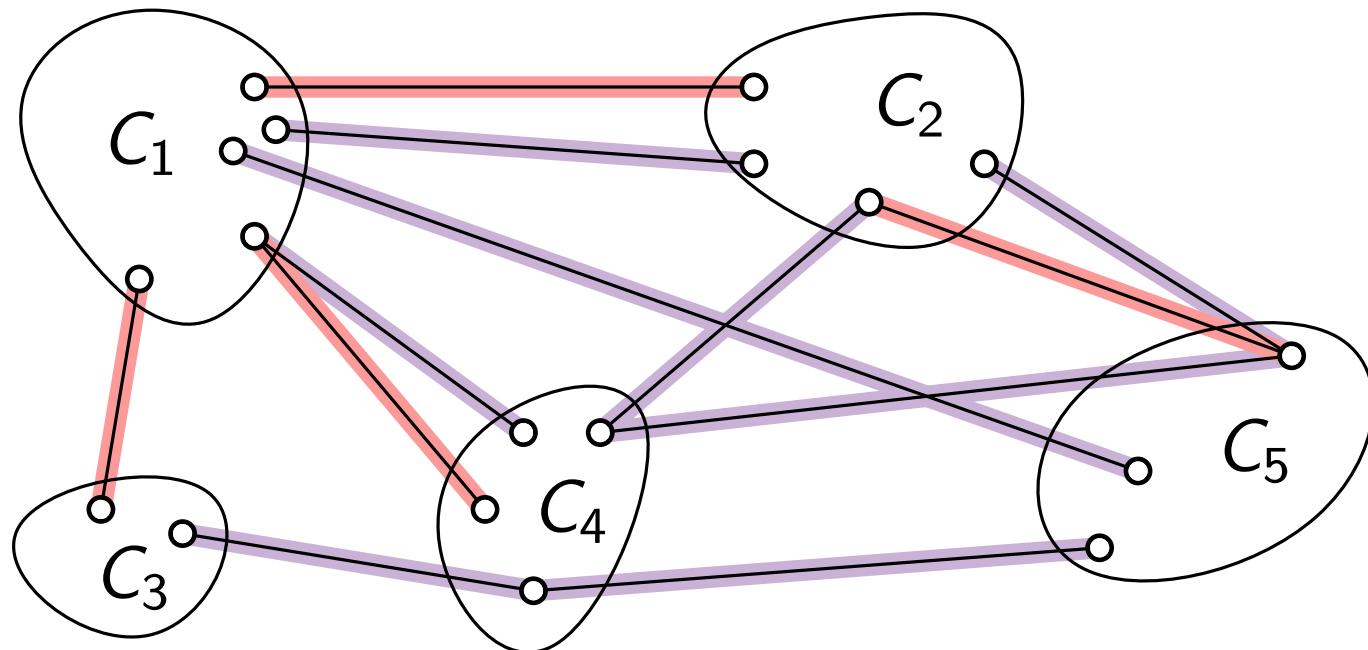
spanning
tree T



Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.

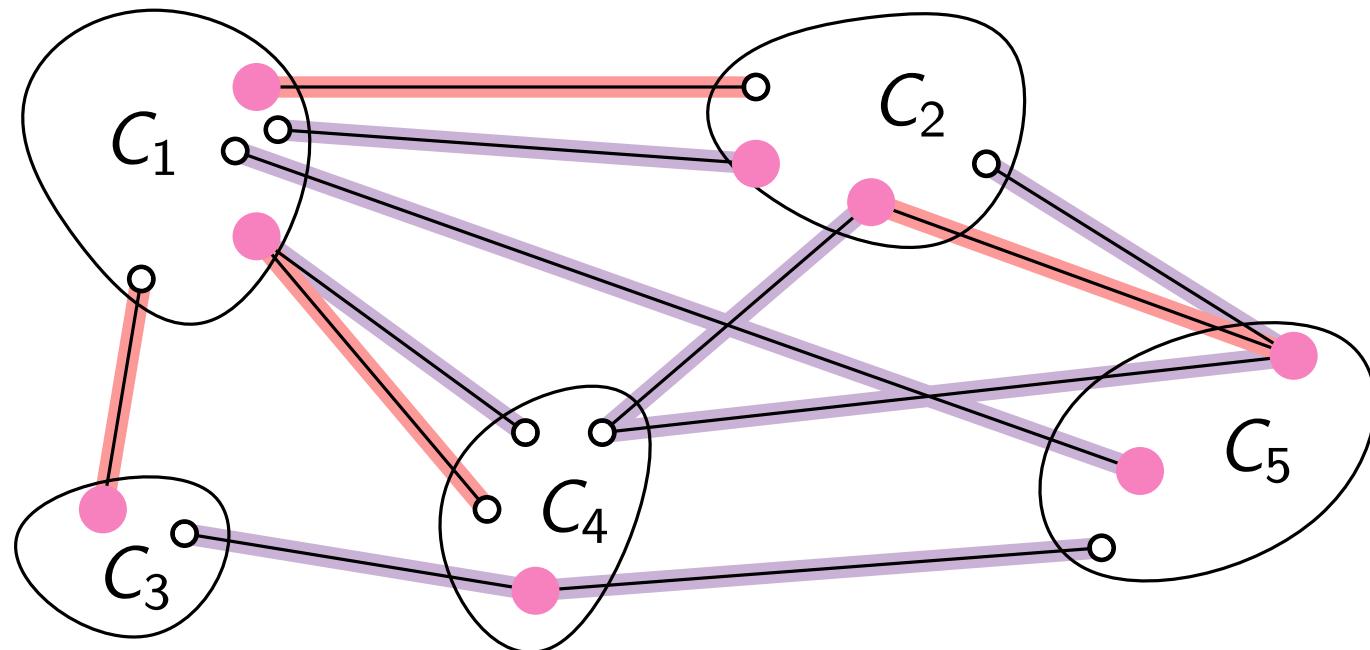
spanning tree T



Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

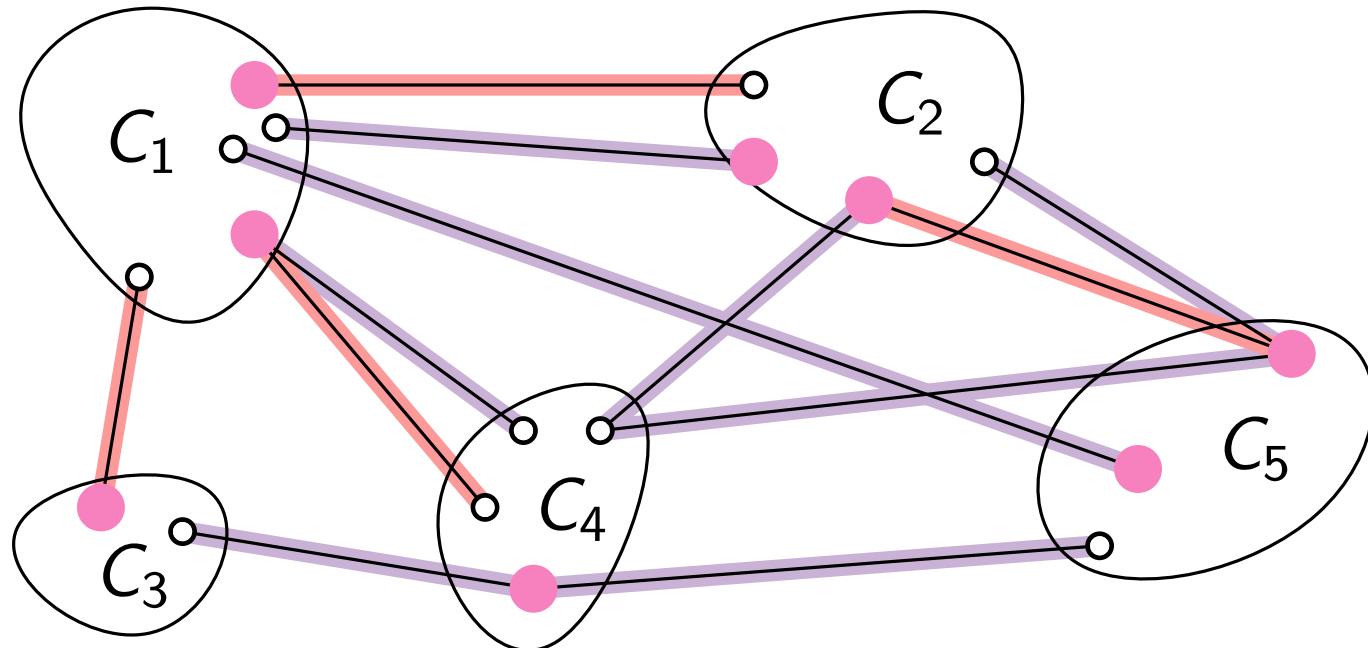
spanning tree T



Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T

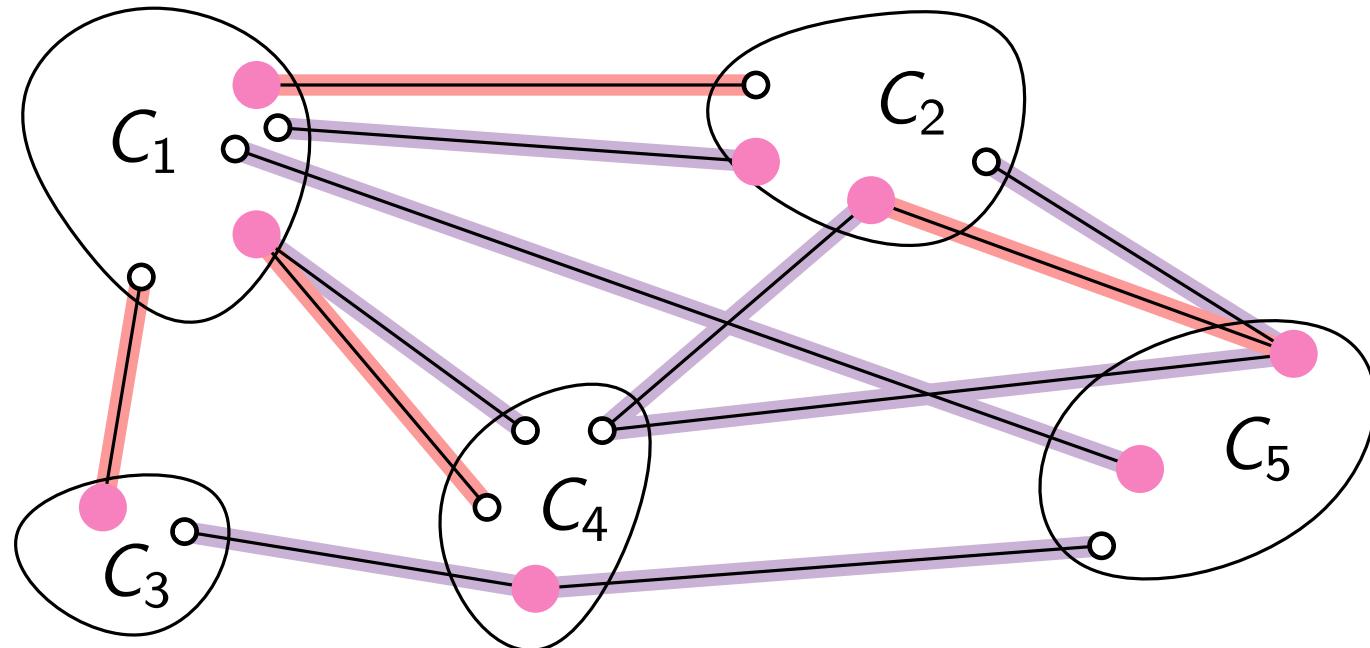


- For any spanning tree T' , $|E(T') \cap E'| \geq$

Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T

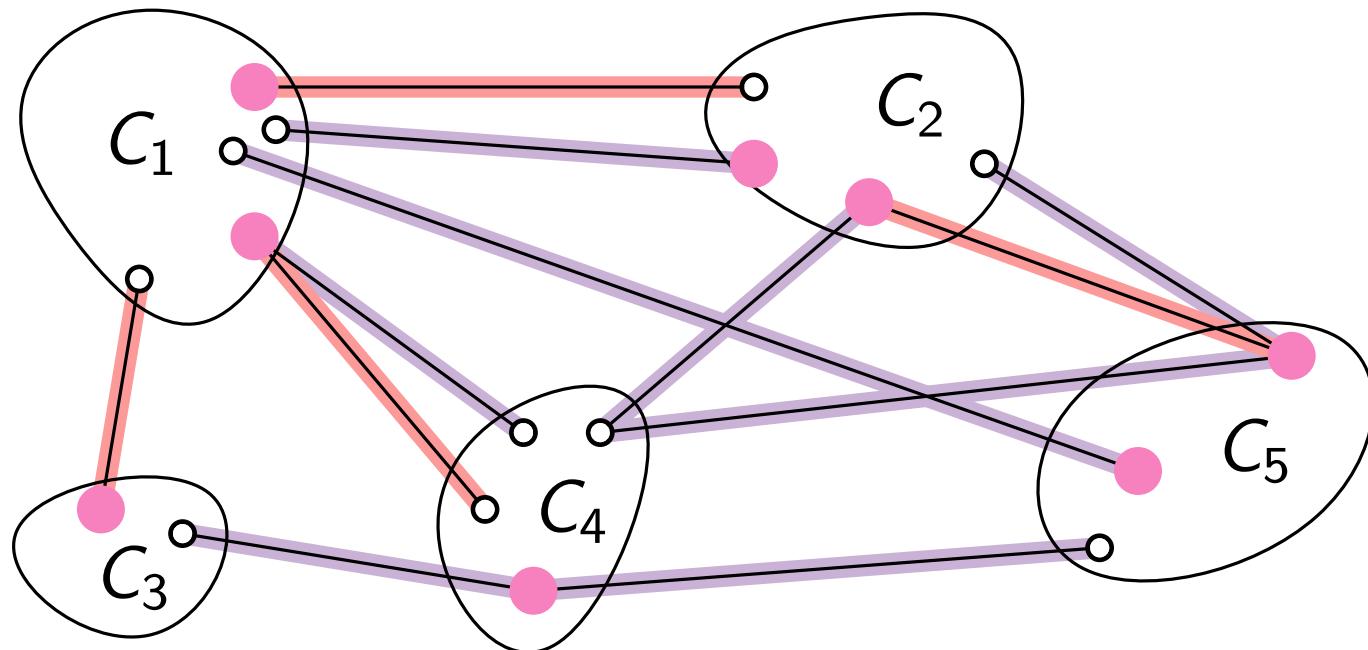


- For any spanning tree T' , $|E(T') \cap E'| \geq k$,

Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T

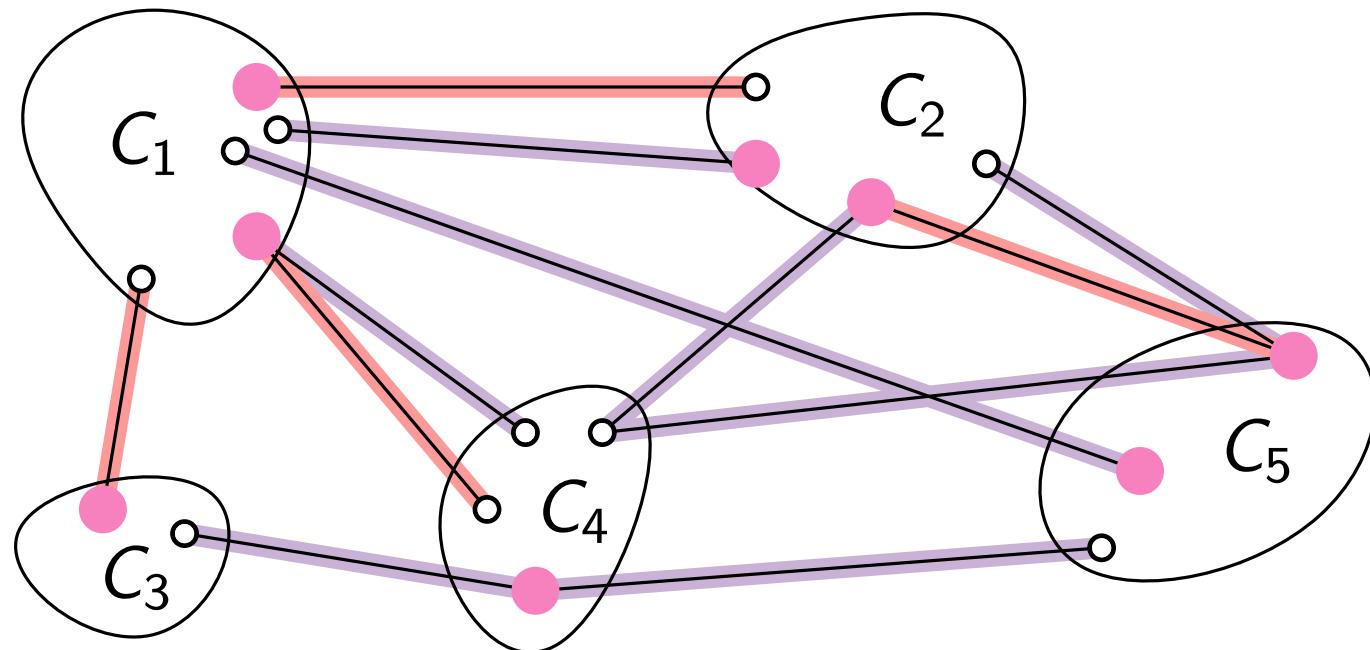


- For any spanning tree T' , $|E(T') \cap E'| \geq k$,
- $\sum_{v \in S} \deg_{T'}(v) \geq$

Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T

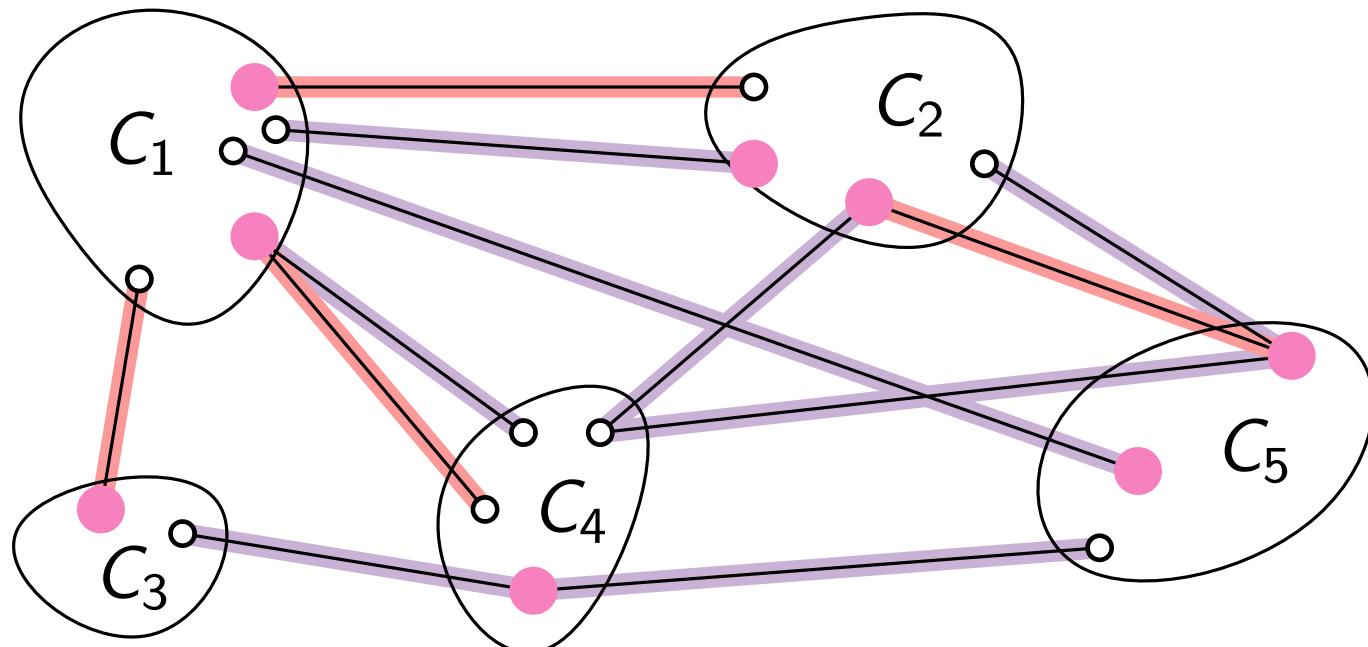


- For any spanning tree T' , $|E(T') \cap E'| \geq k$,
- $\sum_{v \in S} \deg_{T'}(v) \geq k$, and
(Obs. 2)

Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T

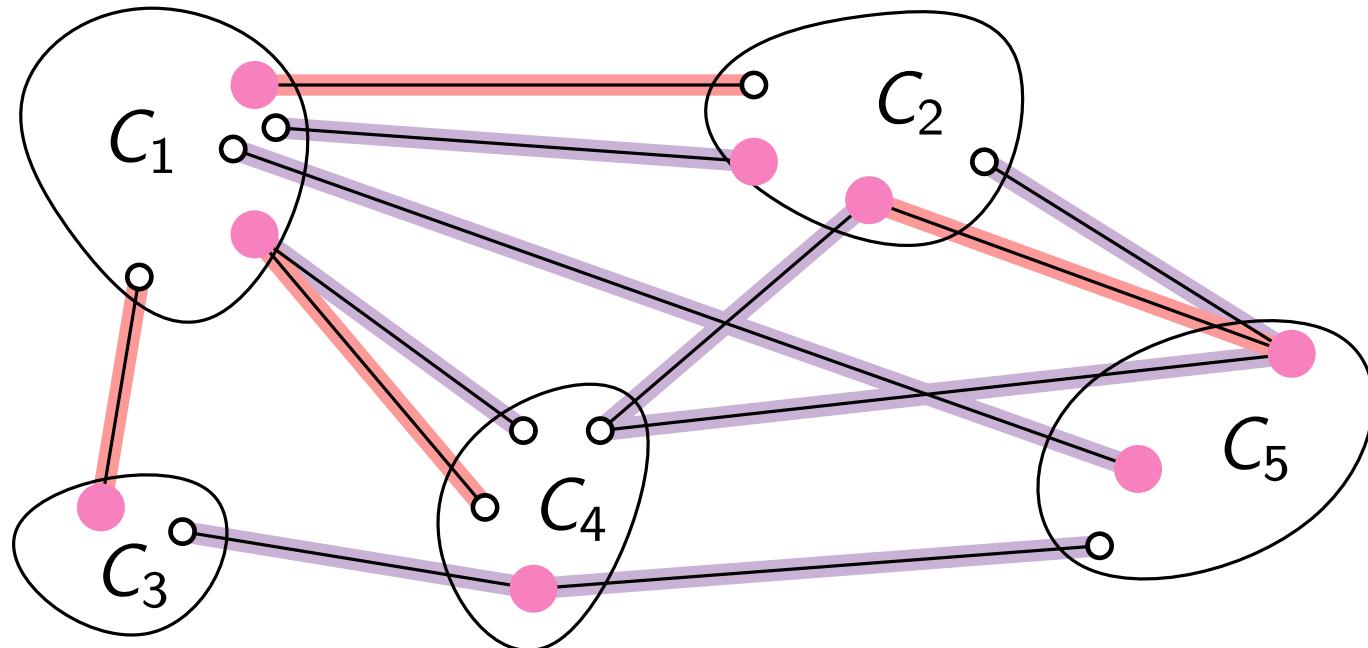


- For any spanning tree T' , $|E(T') \cap E'| \geq k$,
- $\sum_{v \in S} \deg_{T'}(v) \geq k$, and $\Delta(T') \geq$
(Obs. 2)

Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T

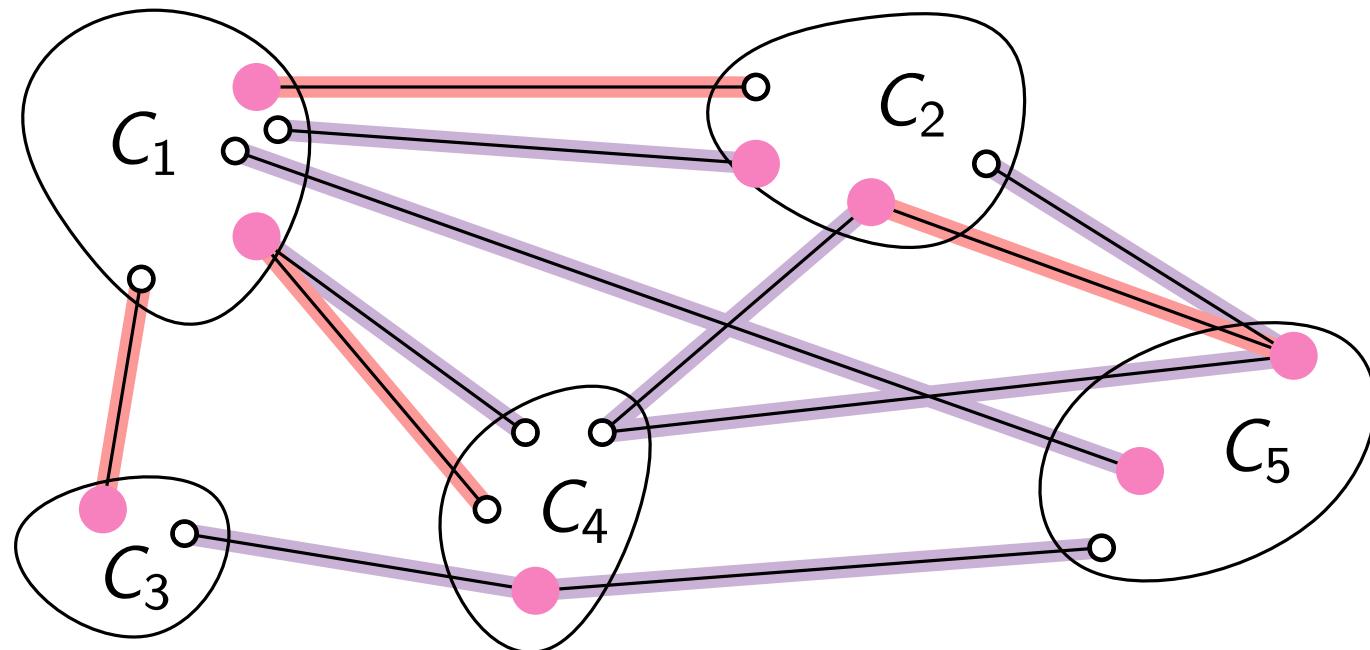


- For any spanning tree T' , $|E(T') \cap E'| \geq k$,
- $\sum_{v \in S} \deg_{T'}(v) \geq k$, and $\Delta(T') \geq k/|S|$.
(Obs. 2)

Decomposition

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T

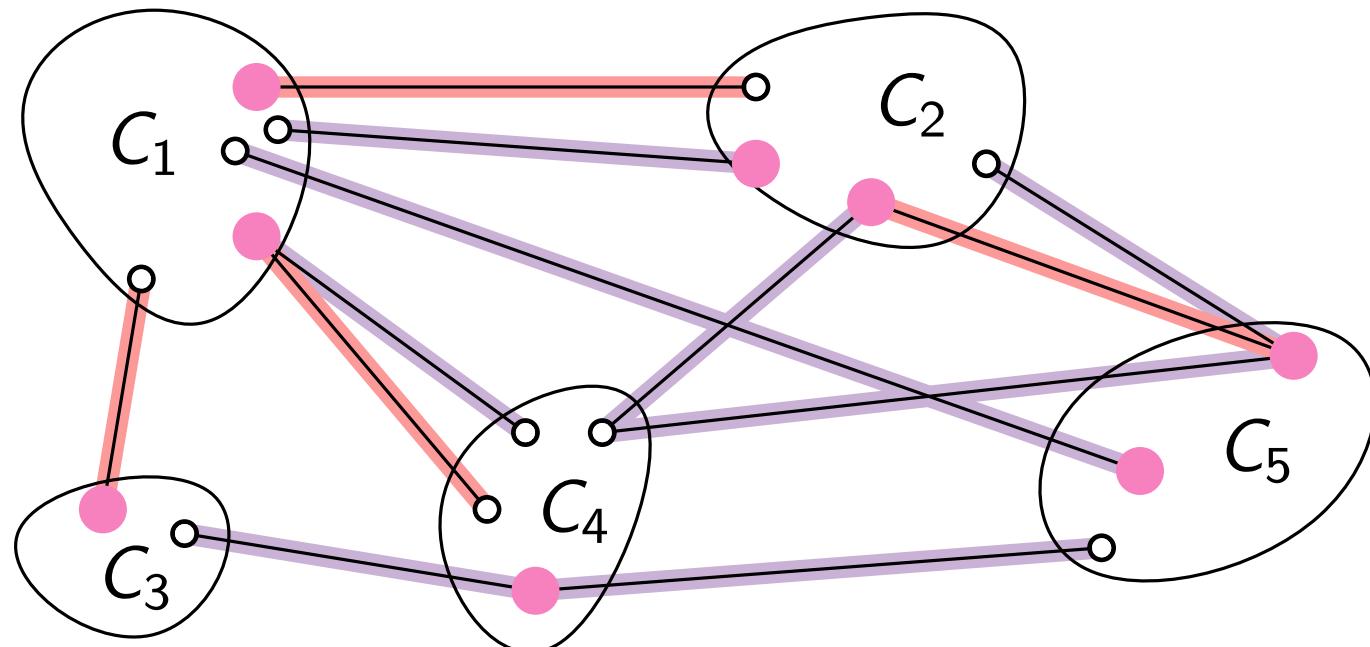


- For any spanning tree T' , $|E(T') \cap E'| \geq k$,
- $\sum_{v \in S} \deg_{T'}(v) \geq k$, and $\Delta(T') \geq k/|S|$.
(Obs. 2)
- Consider the optimal spanning tree T^* .

Decomposition \Rightarrow Lower Bound for OPT

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T

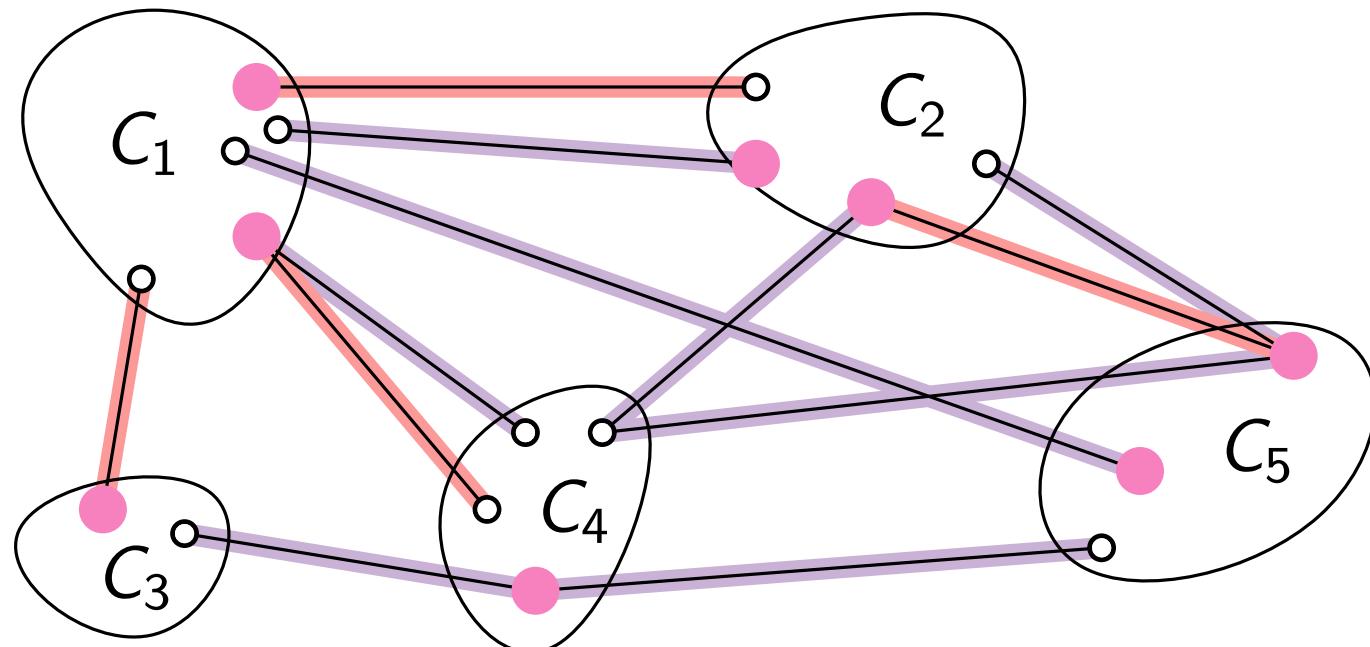


- For any spanning tree T' , $|E(T') \cap E'| \geq k$,
- $\sum_{v \in S} \deg_{T'}(v) \geq k$, and $\Delta(T') \geq k/|S|$. **Lemma 1.**
 $\Rightarrow \text{OPT} \geq$
- Consider the optimal spanning tree T^* .

Decomposition \Rightarrow Lower Bound for OPT

- Removing k edges decomposes T into $k + 1$ components.
- $E' = \{\text{edges in } G \text{ between different components } C_i \neq C_j\}$.
- $S := \text{vertex cover of } E'$.

spanning tree T



- For any spanning tree T' , $|E(T') \cap E'| \geq k$,
- $\sum_{v \in S} \deg_{T'}(v) \geq k$, and $\Delta(T') \geq k/|S|$.
- Consider the optimal spanning tree T^* .

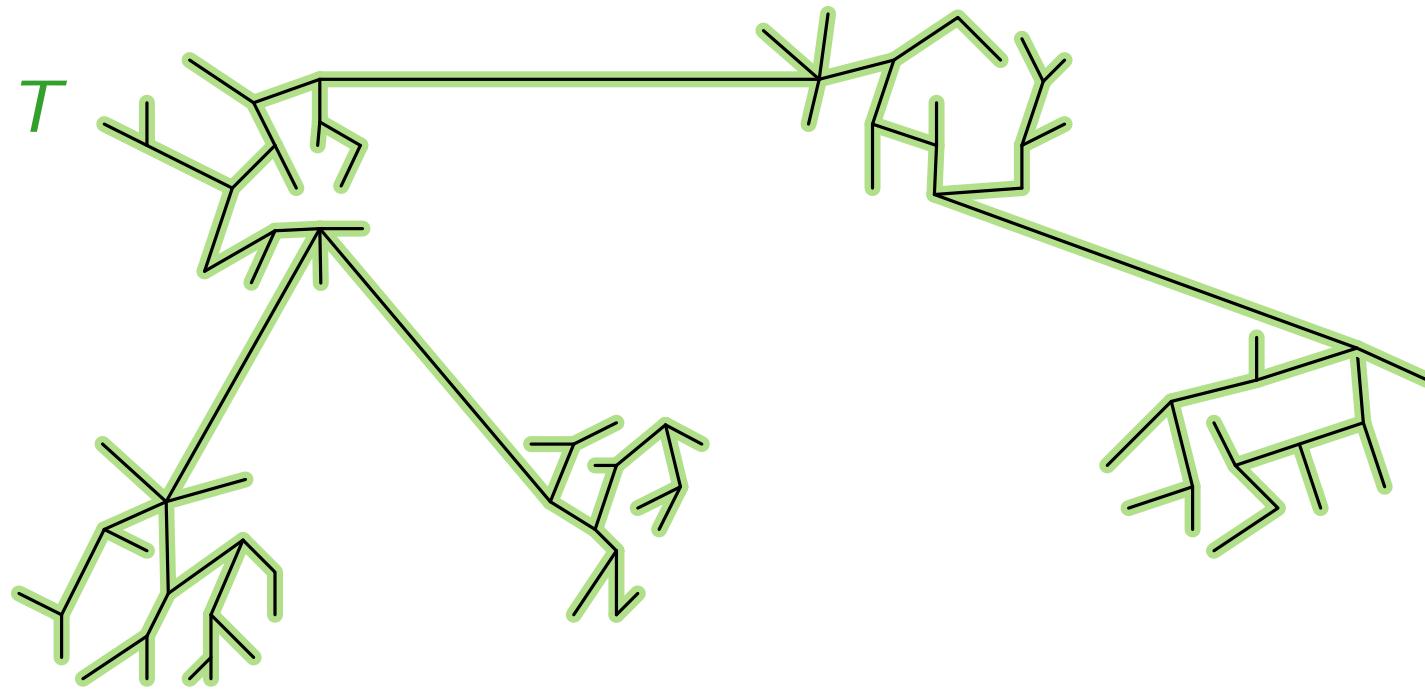
Lemma 1.
 $\Rightarrow \text{OPT} \geq k/|S|$

Approximation Algorithms

Lecture 10:
MINIMUM-DEGREE SPANNING TREE
via Local Search

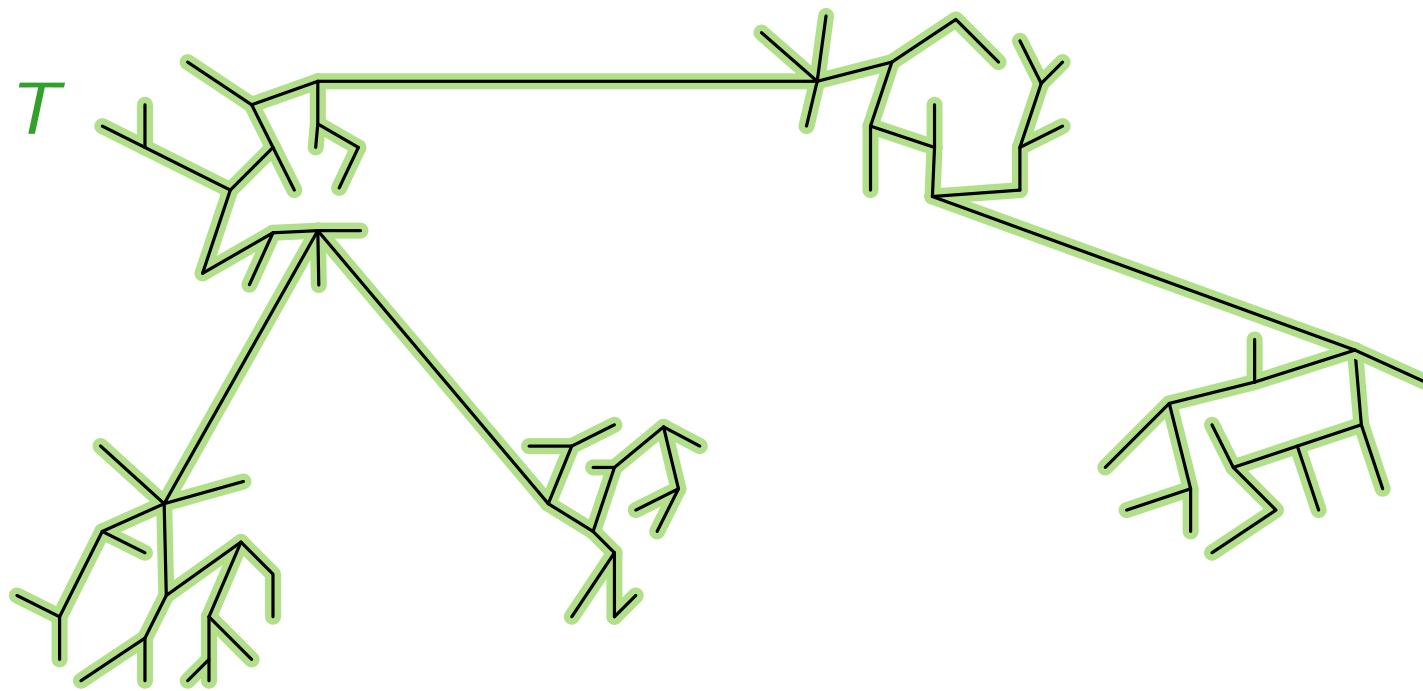
Part IV:
Structure of a Decomposition

Structure of a Decomposition



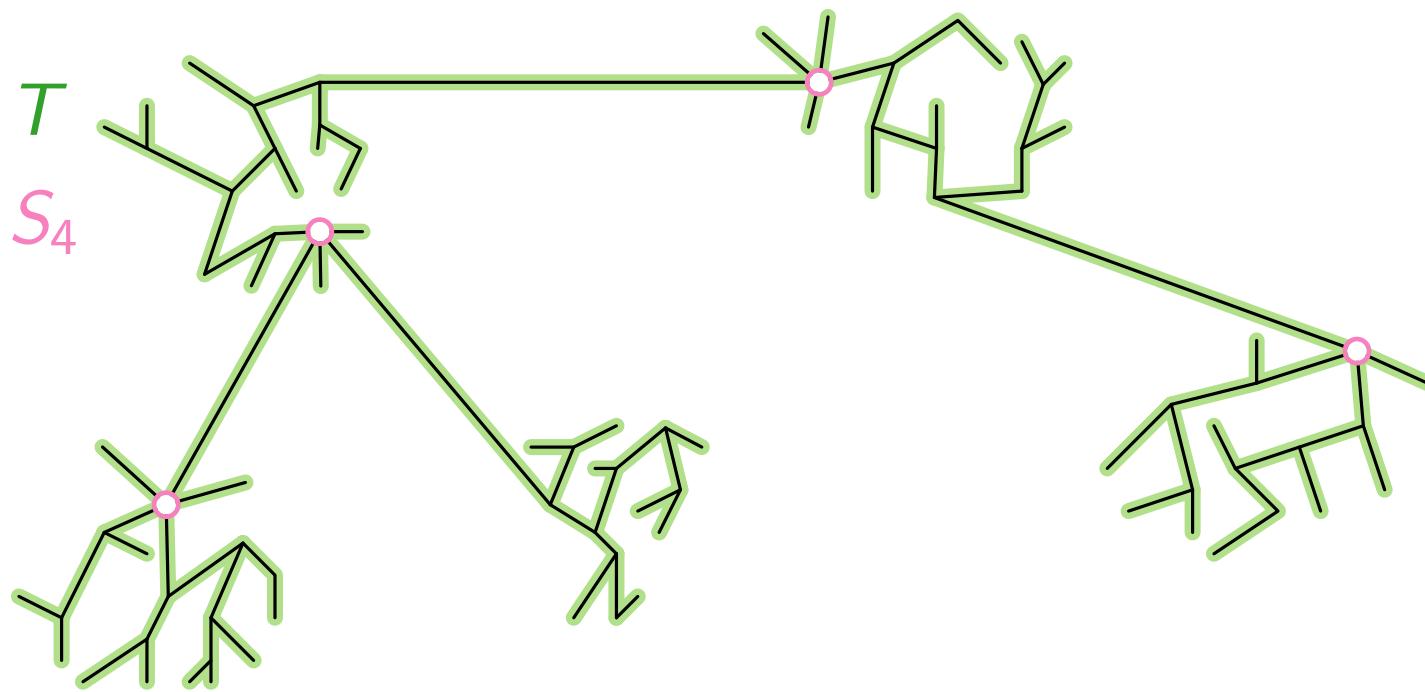
Structure of a Decomposition

Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.



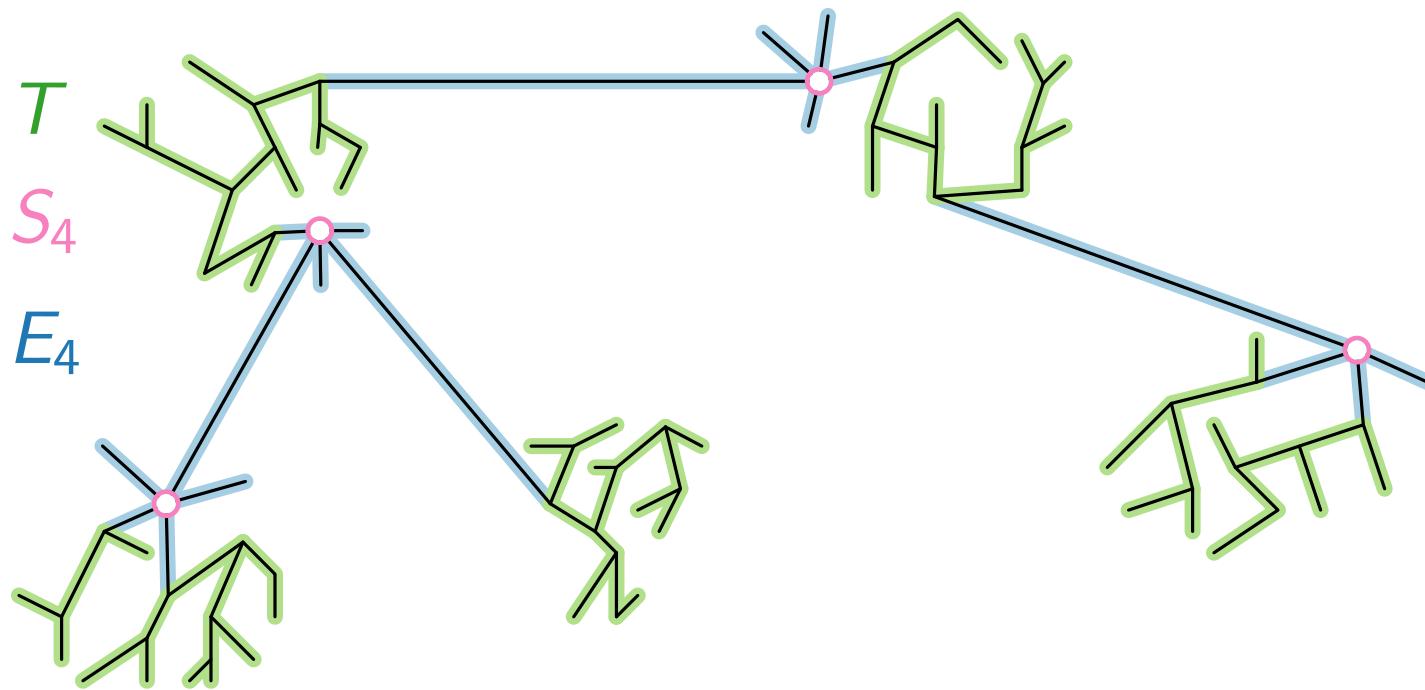
Structure of a Decomposition

Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.



Structure of a Decomposition

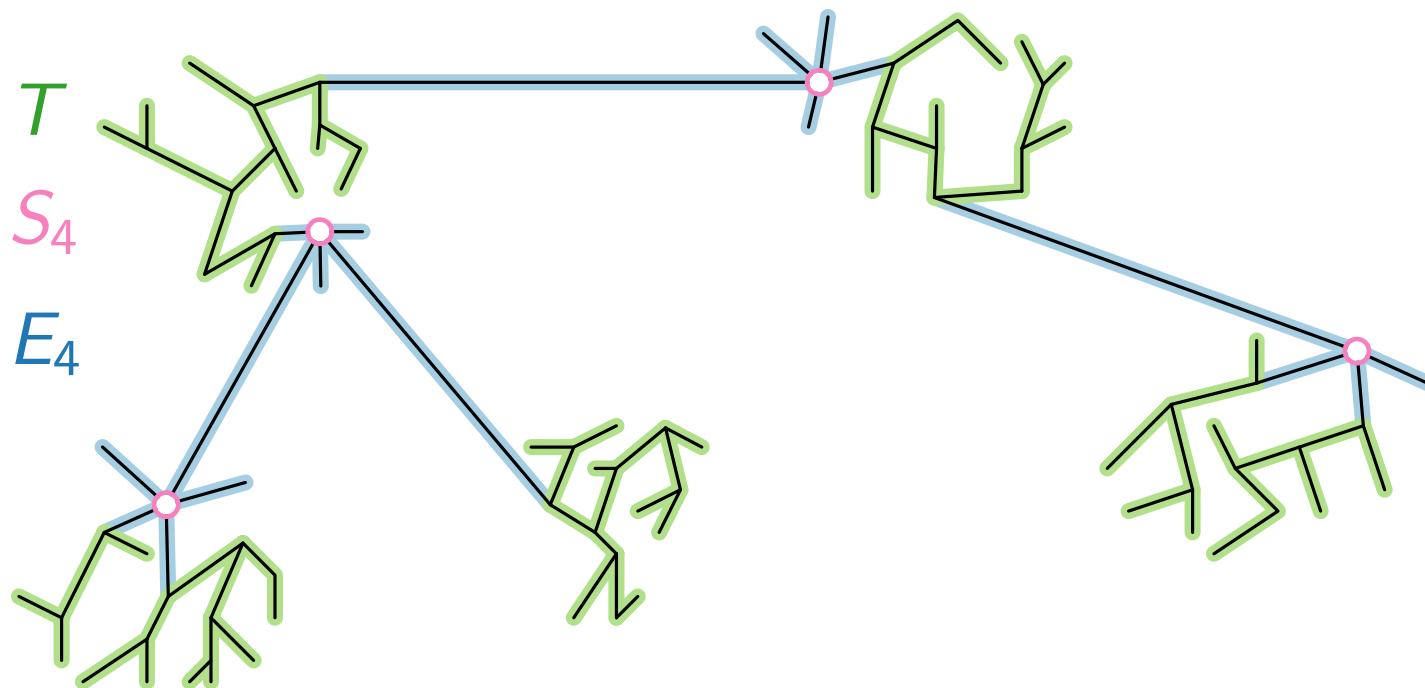
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.
Let E_i be the set of edges in T incident to S_i .



$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$

Structure of a Decomposition

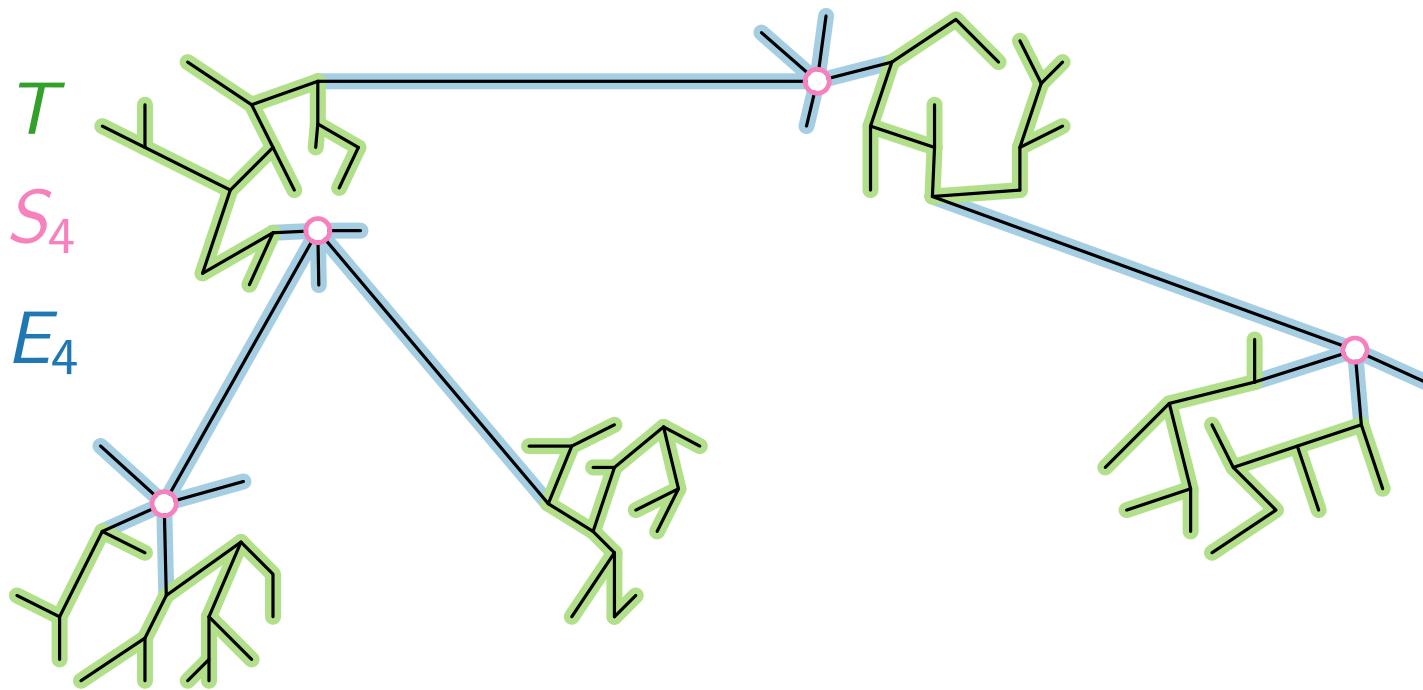
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.
Let E_i be the set of edges in T incident to S_i .



Structure of a Decomposition

$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$

Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.
Let E_i be the set of edges in T incident to S_i .

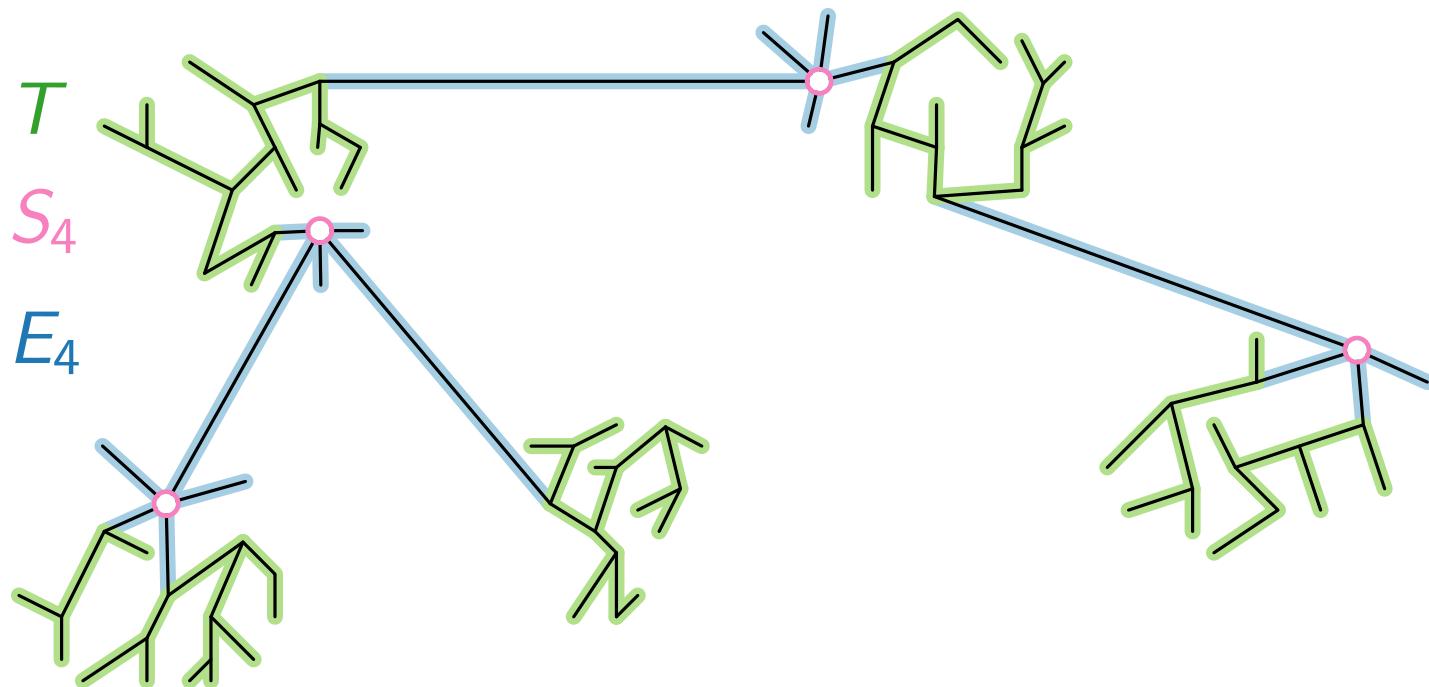


Structure of a Decomposition

$$\begin{aligned}\Rightarrow S_1 &\supseteq S_2 \supseteq \dots \\ \Rightarrow S_1 &= V(G) \\ \Rightarrow E_1 &= E(T)\end{aligned}$$

Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the set of edges in T incident to S_i .



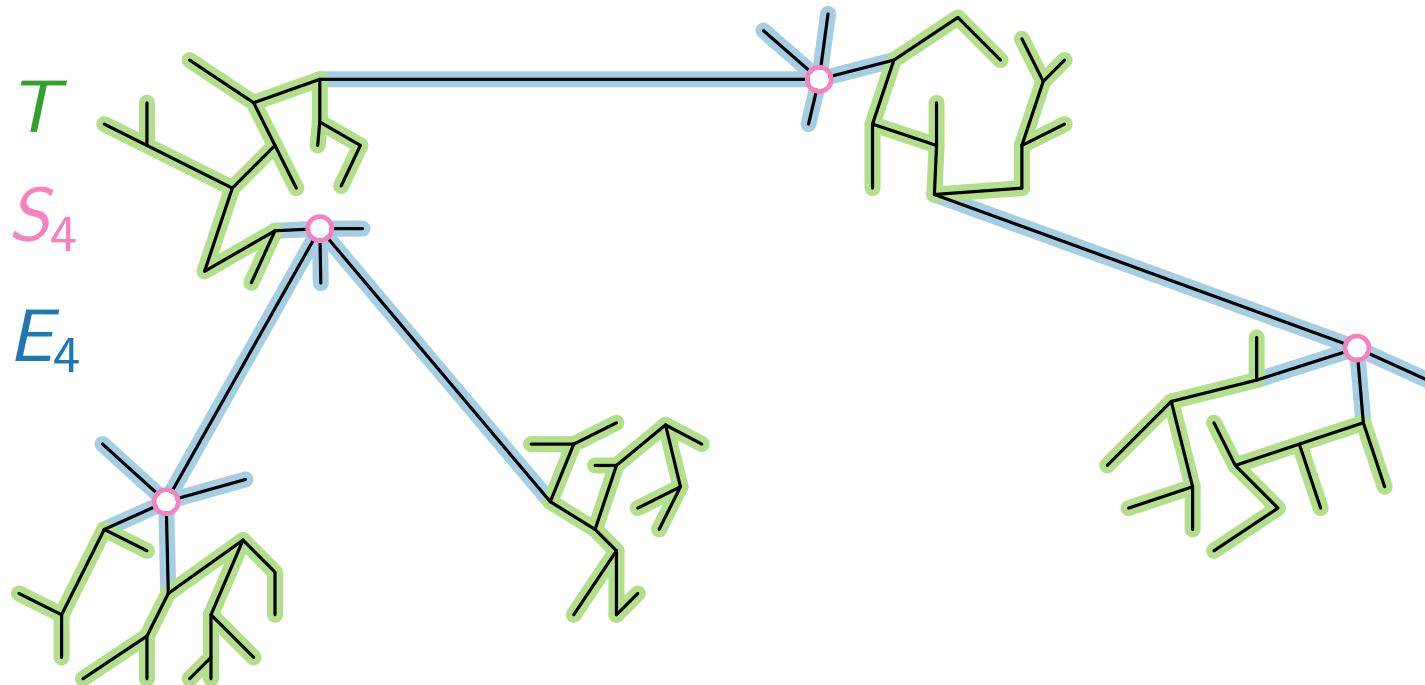
Structure of a Decomposition

$$\begin{aligned}\Rightarrow S_1 &\supseteq S_2 \supseteq \dots \\ \Rightarrow S_1 &= V(G) \\ \Rightarrow E_1 &= E(T)\end{aligned}$$

Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the set of edges in T incident to S_i .

Lemma 2. $\exists i$ s.t. $\Delta(T) - \ell + 1 \leq i \leq \Delta(T)$ with $|S_{i-1}| \leq 2|S_i|$.



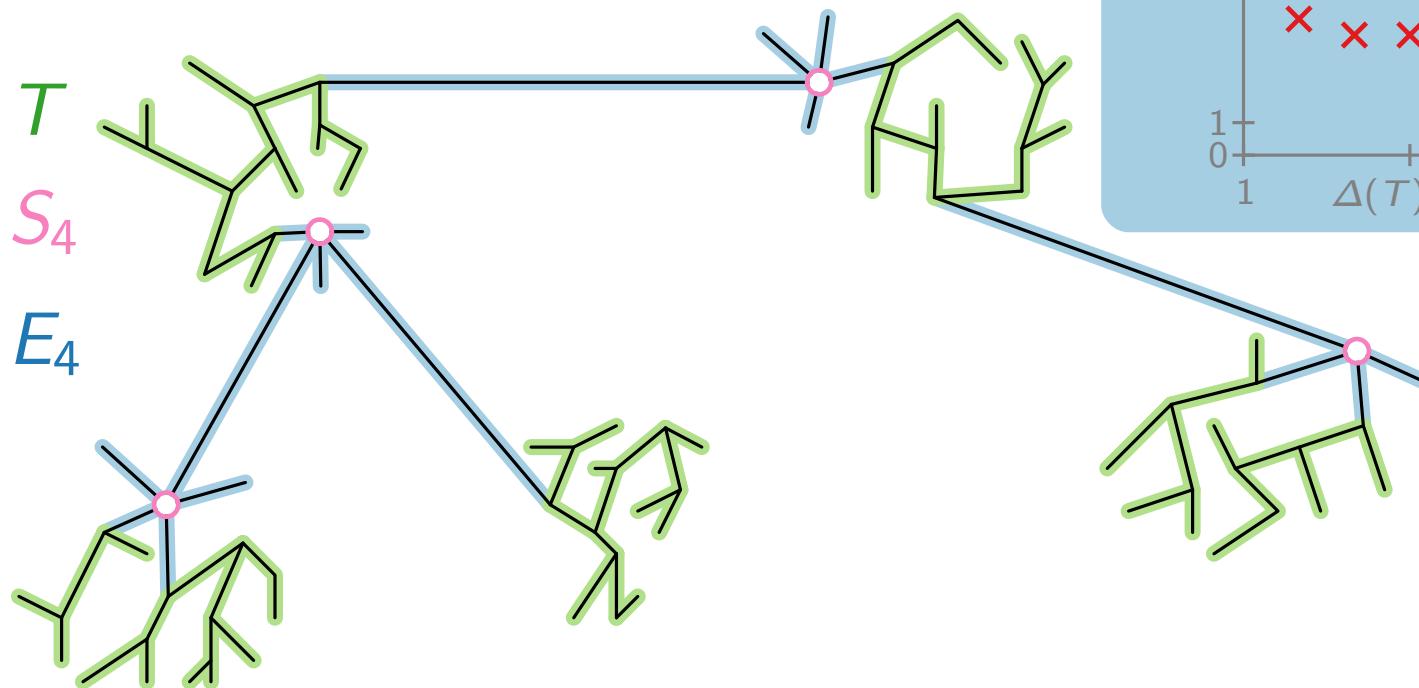
Structure of a Decomposition

$$\begin{aligned}\Rightarrow S_1 &\supseteq S_2 \supseteq \dots \\ \Rightarrow S_1 &= V(G) \\ \Rightarrow E_1 &= E(T)\end{aligned}$$

Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the set of edges in T incident to S_i .

Lemma 2. $\exists i$ s.t. $\Delta(T) - \ell + 1 \leq i \leq \Delta(T)$ with $|S_{i-1}| \leq 2|S_i|$.



Structure of a Decomposition

$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$

$$\Rightarrow S_1 = V(G)$$

$$\Rightarrow E_1 = E(T)$$

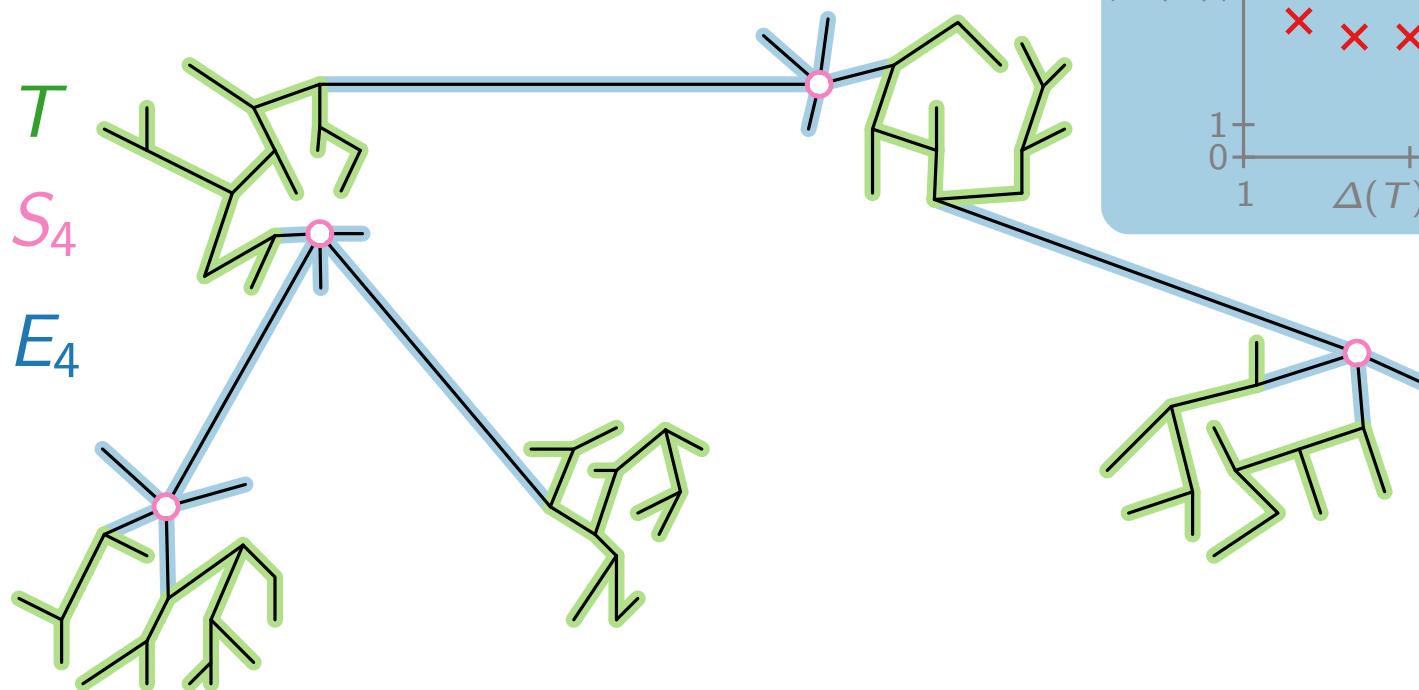
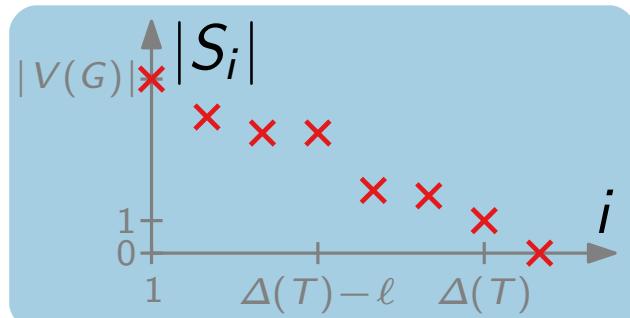
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the set of edges in T incident to S_i .

Lemma 2. $\exists i$ s.t. $\Delta(T) - \ell + 1 \leq i \leq \Delta(T)$ with $|S_{i-1}| \leq 2|S_i|$.

Proof. $|S_{\Delta(T)-\ell}| > 2^\ell |S_{\Delta(T)}|$

Otherwise



Structure of a Decomposition

$$\begin{aligned}\Rightarrow S_1 &\supseteq S_2 \supseteq \dots \\ \Rightarrow S_1 &= V(G) \\ \Rightarrow E_1 &= E(T)\end{aligned}$$

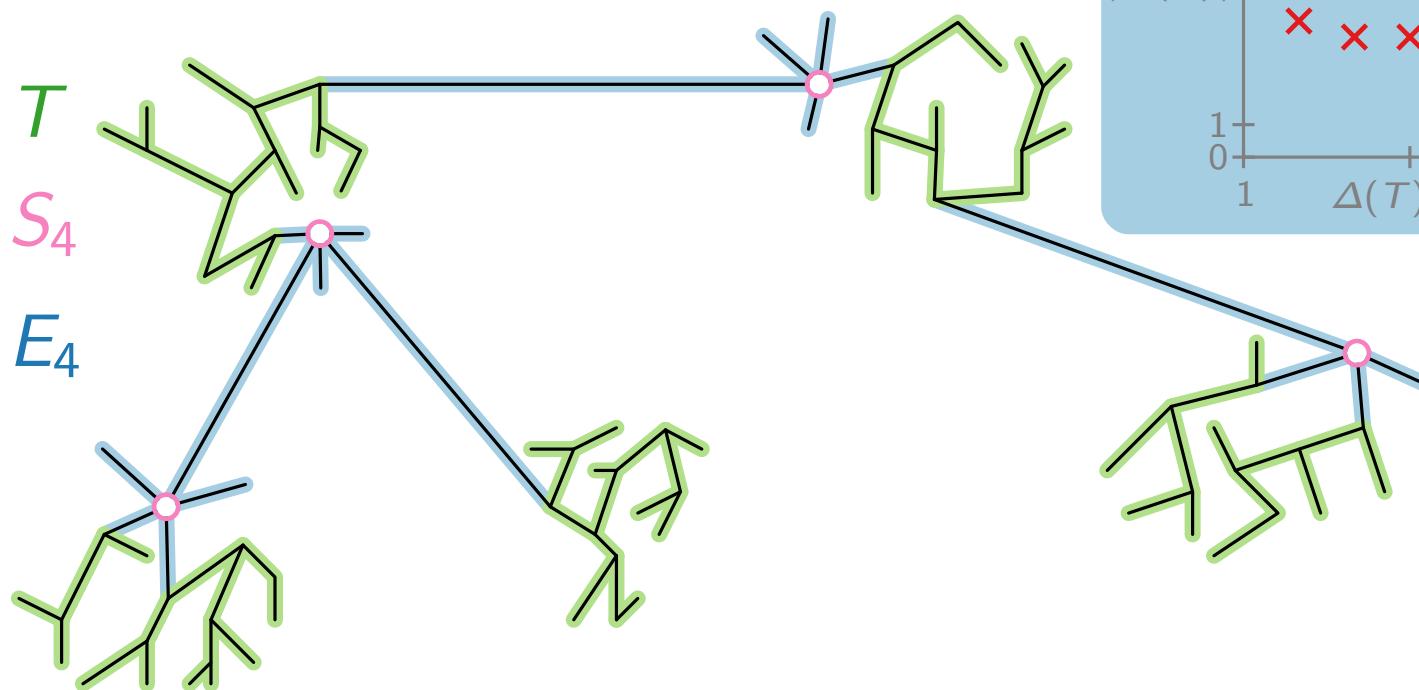
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the set of edges in T incident to S_i .

Lemma 2. $\exists i$ s.t. $\Delta(T) - \ell + 1 \leq i \leq \Delta(T)$ with $|S_{i-1}| \leq 2|S_i|$.

Proof. $|S_{\Delta(T)-\ell}| > 2^\ell |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \geq$

Otherwise



Structure of a Decomposition

$$\begin{aligned}\Rightarrow S_1 &\supseteq S_2 \supseteq \dots \\ \Rightarrow S_1 &= V(G) \\ \Rightarrow E_1 &= E(T)\end{aligned}$$

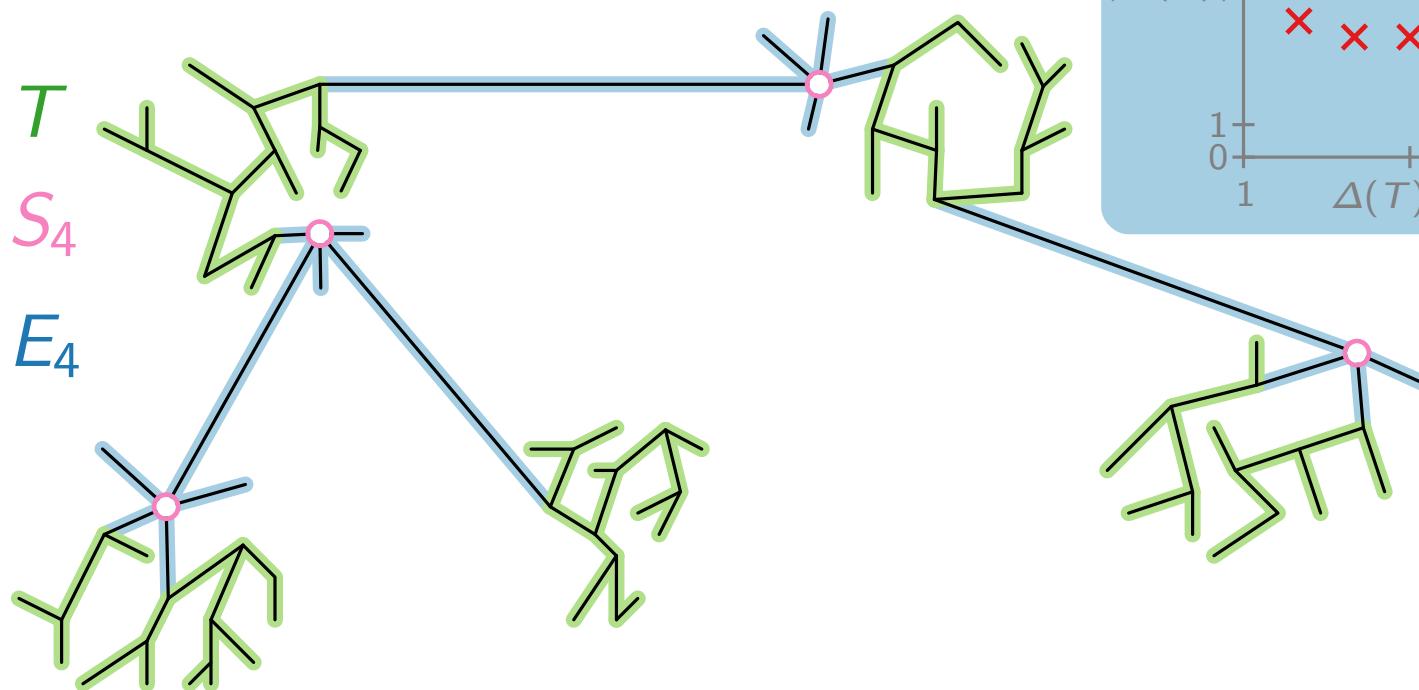
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the set of edges in T incident to S_i .

Lemma 2. $\exists i$ s.t. $\Delta(T) - \ell + 1 \leq i \leq \Delta(T)$ with $|S_{i-1}| \leq 2|S_i|$.

Proof. $|S_{\Delta(T)-\ell}| > 2^\ell |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \geq n \cdot |S_{\Delta(T)}|$

Otherwise



Structure of a Decomposition

$$\begin{aligned}\Rightarrow S_1 &\supseteq S_2 \supseteq \dots \\ \Rightarrow S_1 &= V(G) \\ \Rightarrow E_1 &= E(T)\end{aligned}$$

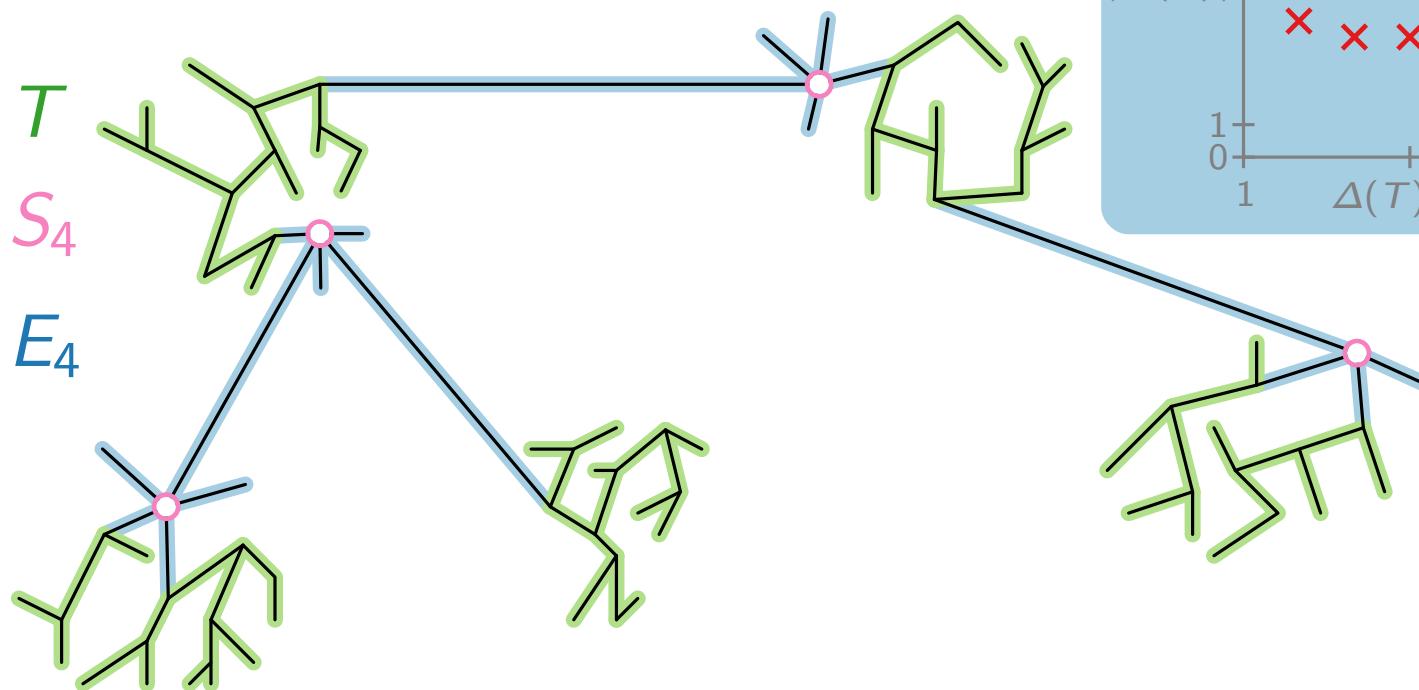
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the set of edges in T incident to S_i .

Lemma 2. $\exists i$ s.t. $\Delta(T) - \ell + 1 \leq i \leq \Delta(T)$ with $|S_{i-1}| \leq 2|S_i|$.

Proof. $|S_{\Delta(T)-\ell}| > 2^\ell |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \geq n \cdot |S_{\Delta(T)}|$

Otherwise



Structure of a Decomposition

$$\begin{aligned}\Rightarrow S_1 &\supseteq S_2 \supseteq \dots \\ \Rightarrow S_1 &= V(G) \\ \Rightarrow E_1 &= E(T)\end{aligned}$$

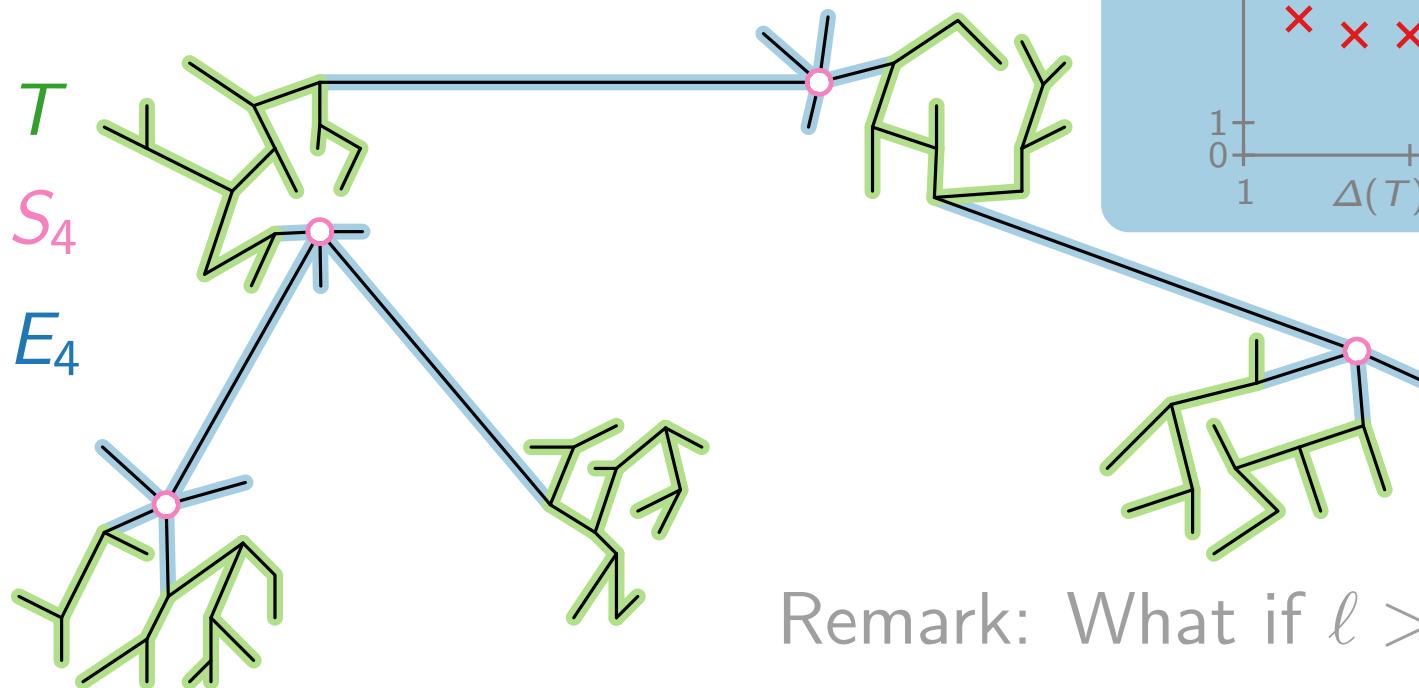
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the set of edges in T incident to S_i .

Lemma 2. $\exists i$ s.t. $\Delta(T) - \ell + 1 \leq i \leq \Delta(T)$ with $|S_{i-1}| \leq 2|S_i|$.

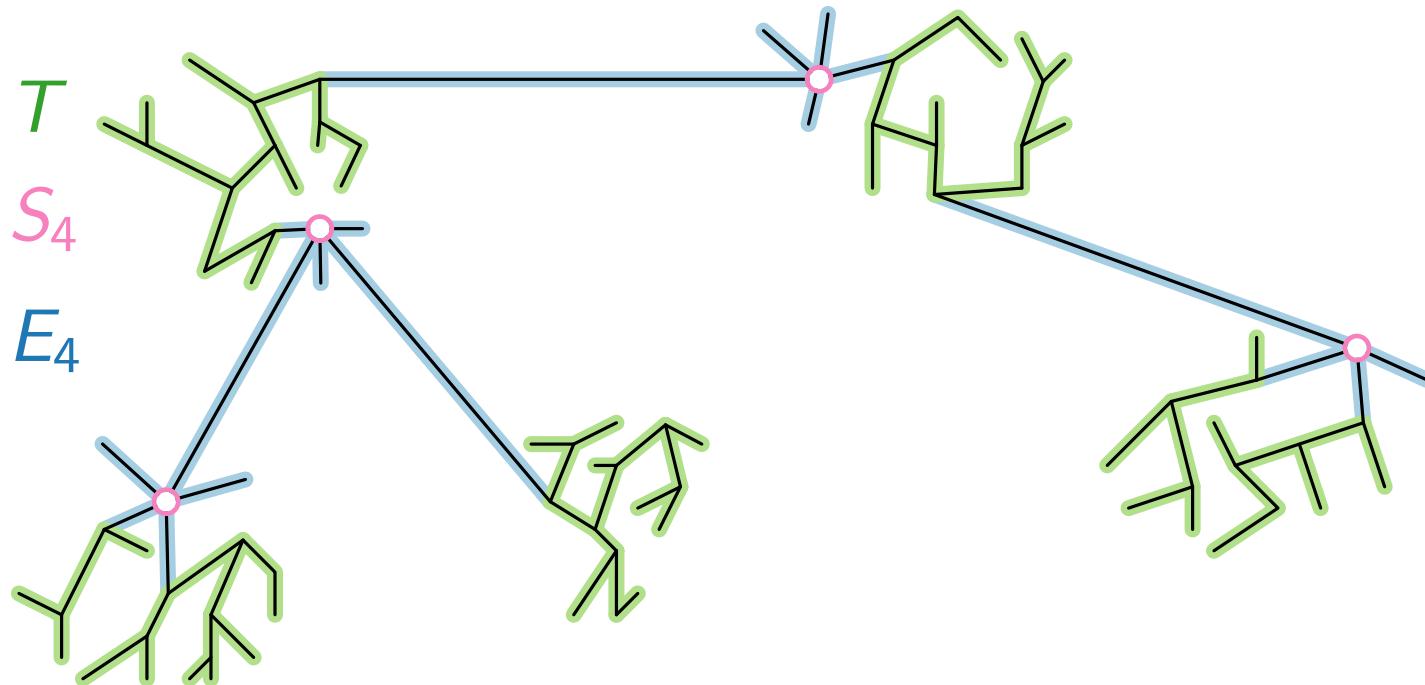
Proof. $|S_{\Delta(T)-\ell}| > 2^\ell |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \geq n \cdot |S_{\Delta(T)}|$

Otherwise



Structure of a Decomposition

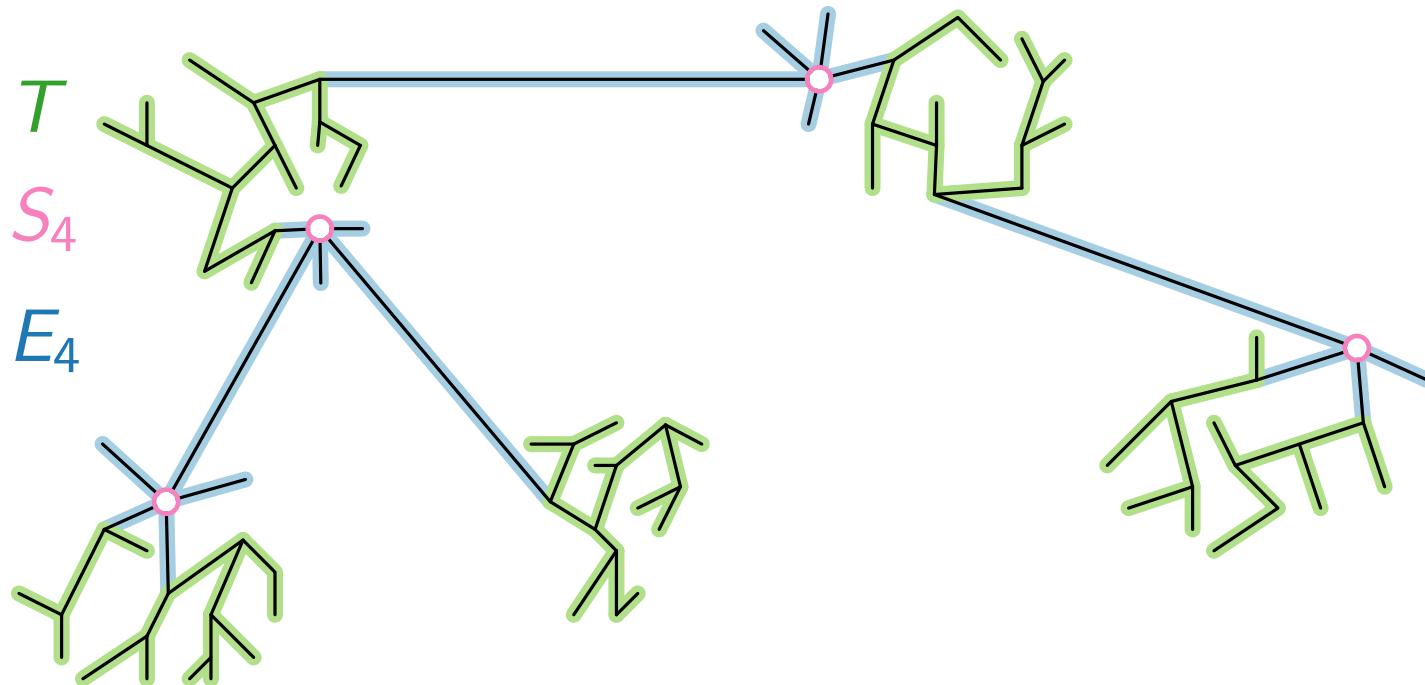
Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:



Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

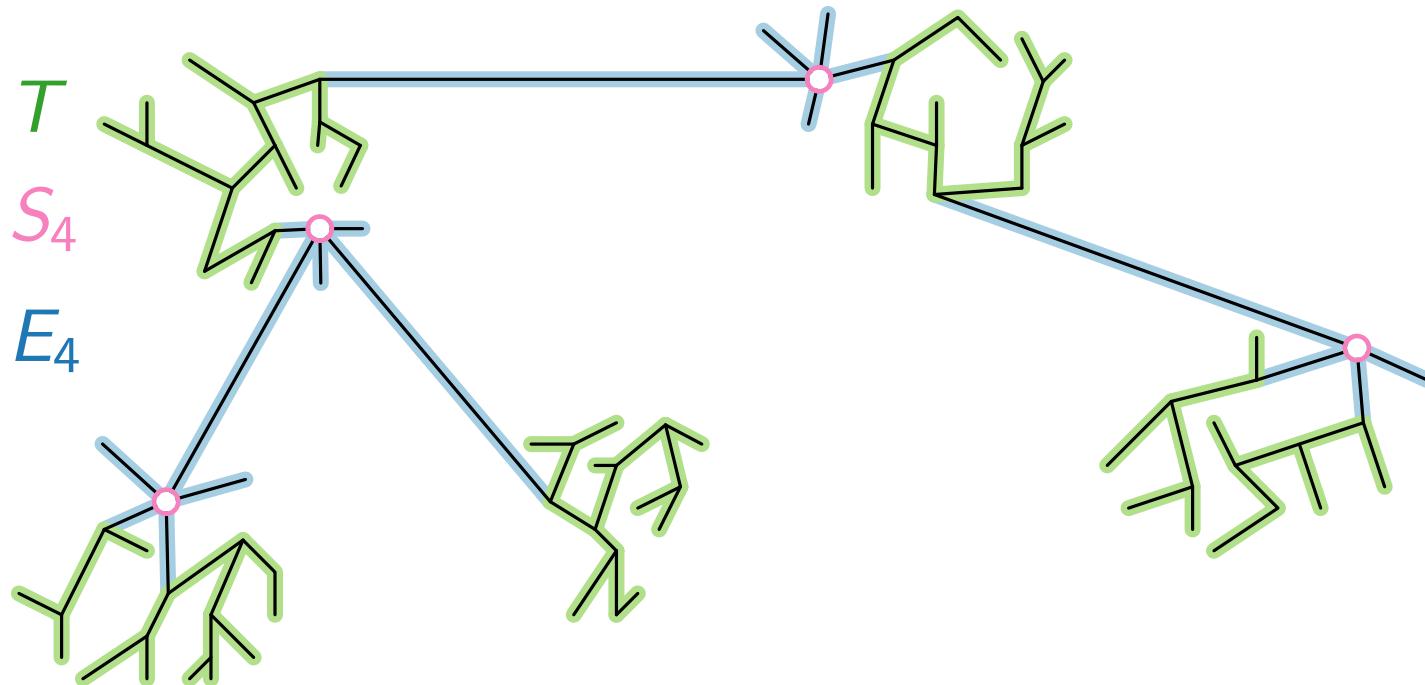
(i) $|E_i| \geq (i - 1)|S_i| + 1$,



Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

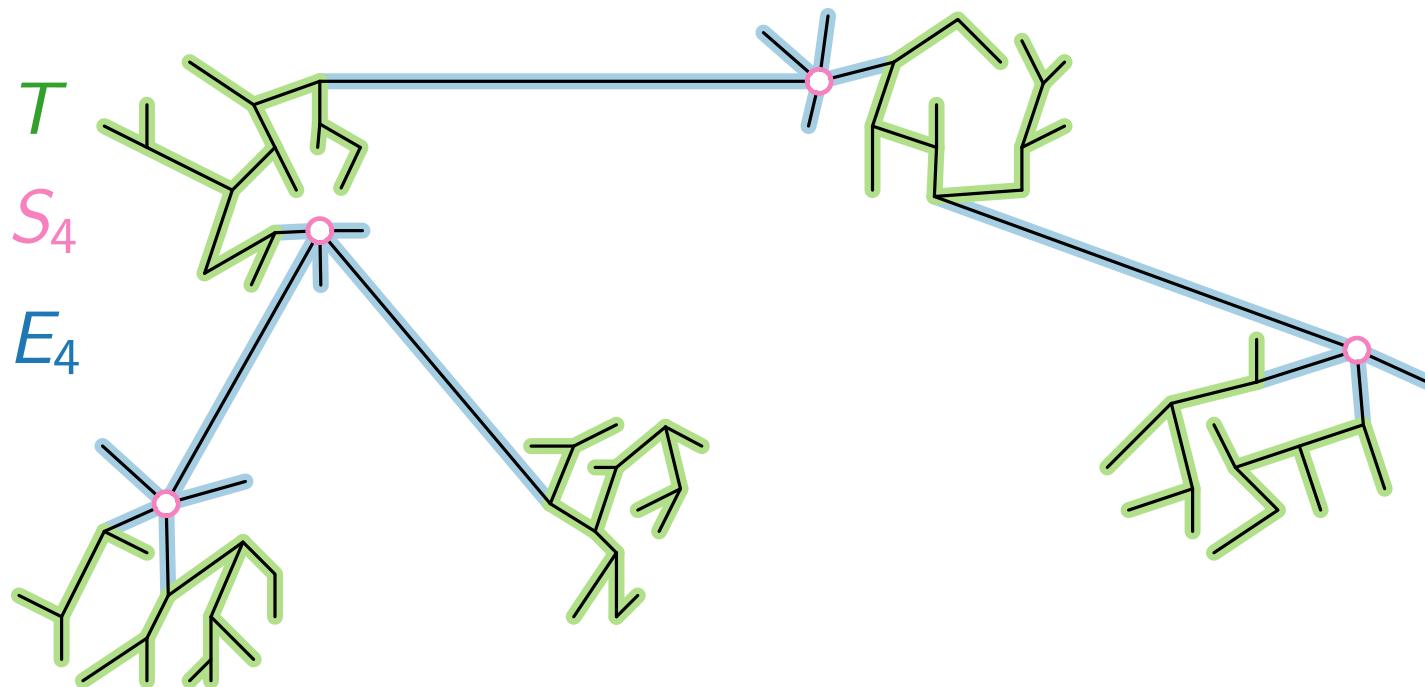


Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq$



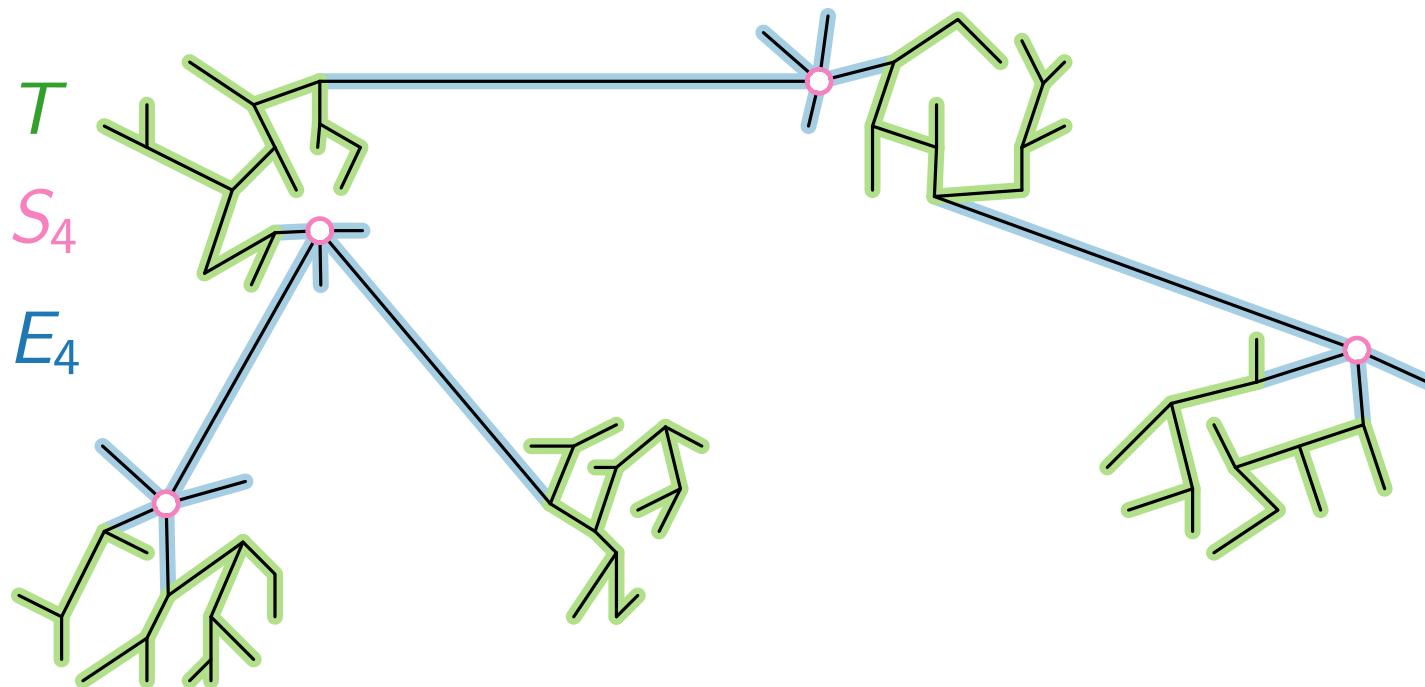
Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i|$

vertex-deg

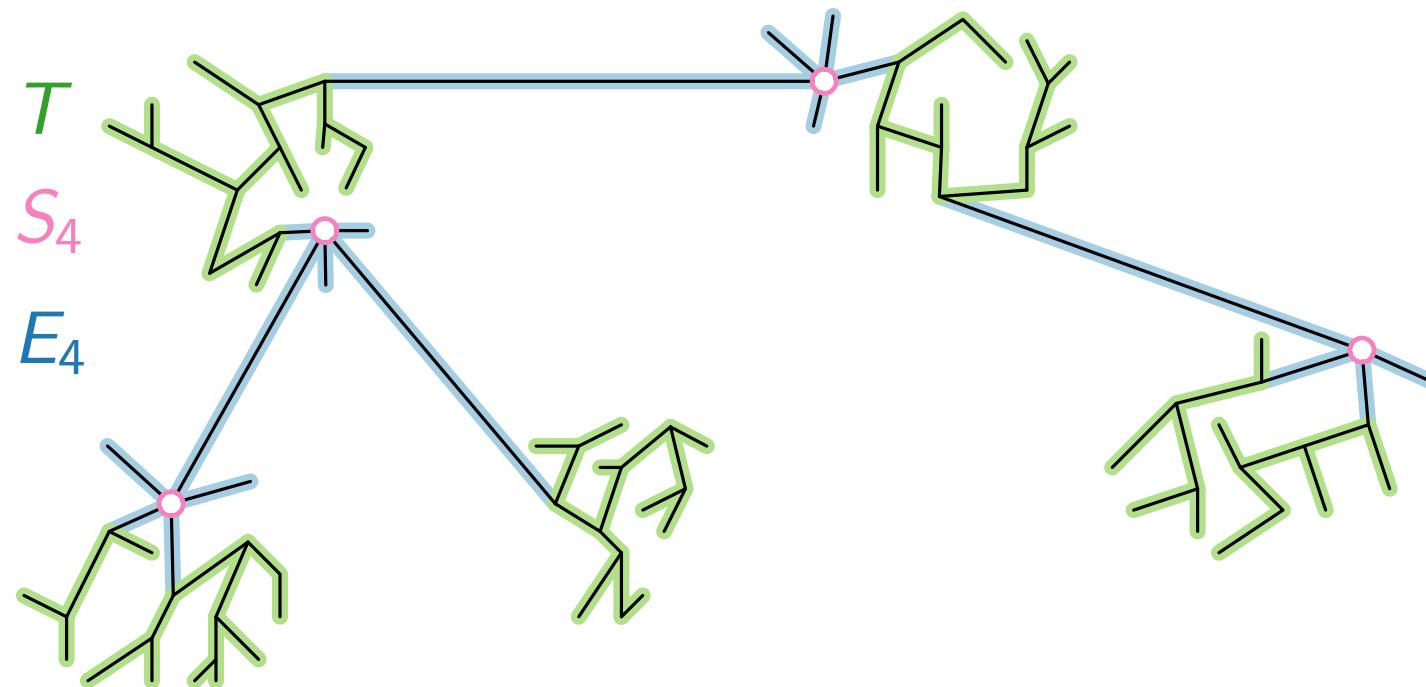


Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - (|S_i| - 1) =$
 vertex-deg counted twice?

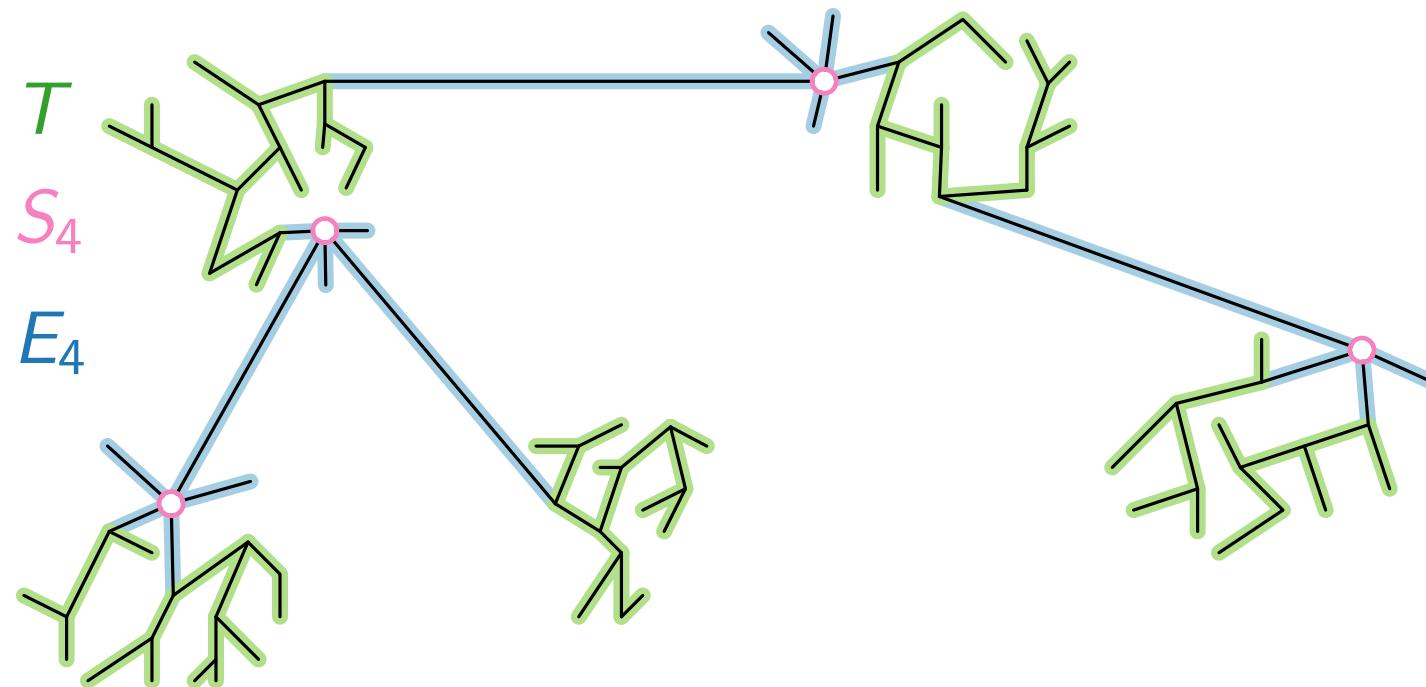


Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - (|S_i| - 1) = (i - 1)|S_i| + 1$



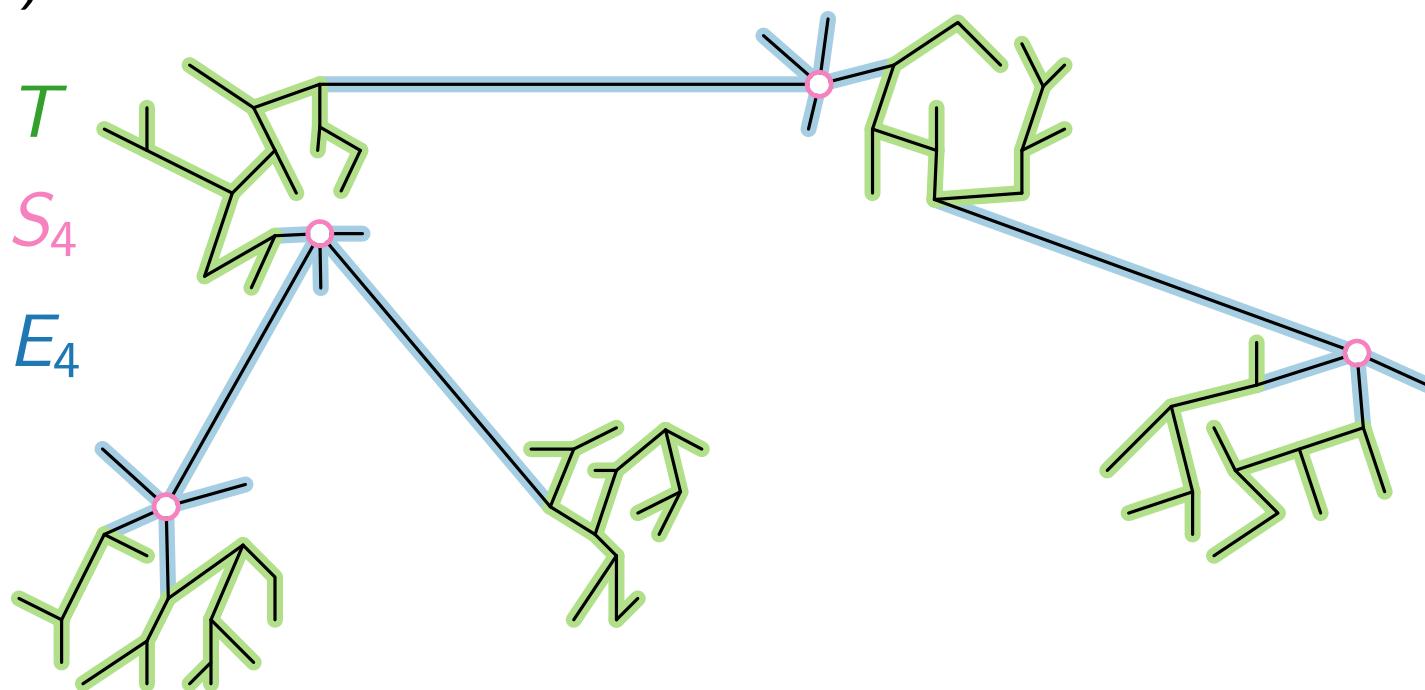
Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - \underset{\text{vertex-deg}}{(|S_i| - 1)} - \underset{\text{counted twice?}}{1} = (i - 1)|S_i| + 1$

(ii)



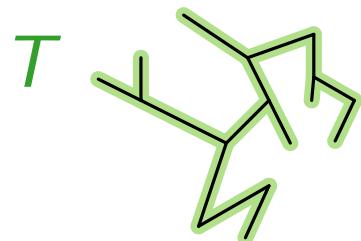
Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - \underset{\text{vertex-deg}}{(|S_i| - 1)} - \underset{\text{counted twice?}}{1} = (i - 1)|S_i| + 1$

(ii)



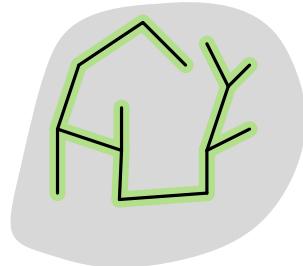
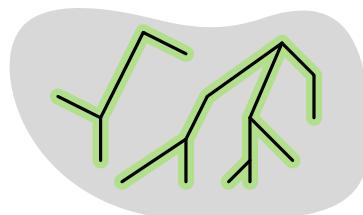
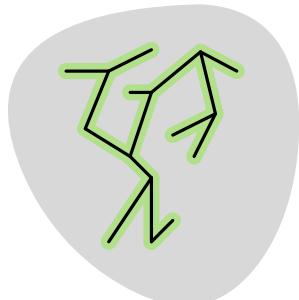
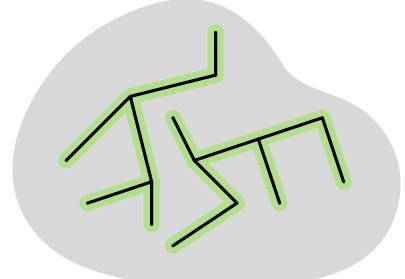
Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - \underset{\text{vertex-deg}}{(|S_i| - 1)} - \underset{\text{counted twice?}}{(|S_i| - 1)} = (i - 1)|S_i| + 1$

(ii)



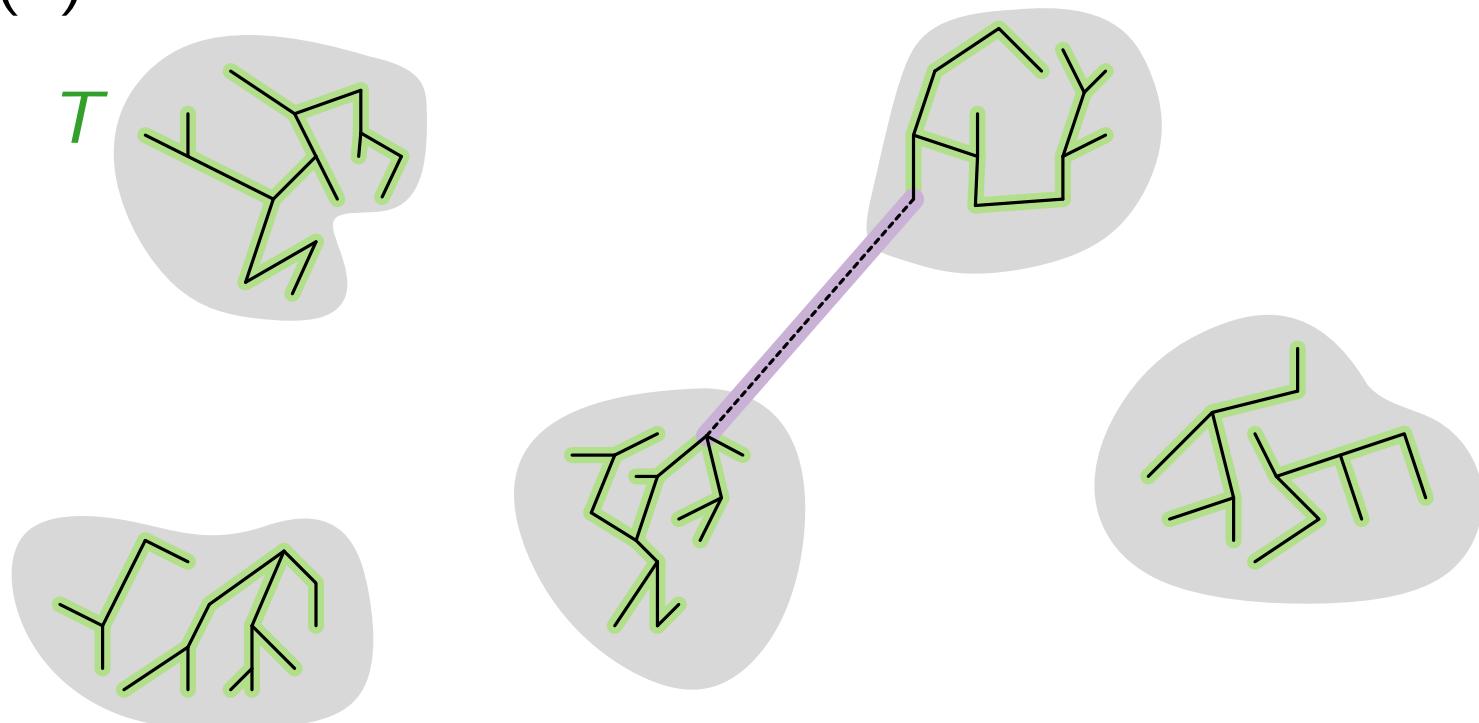
Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - \underset{\text{vertex-deg}}{(|S_i| - 1)} - \underset{\text{counted twice?}}{(|S_i| - 1)} = (i - 1)|S_i| + 1$

(ii)



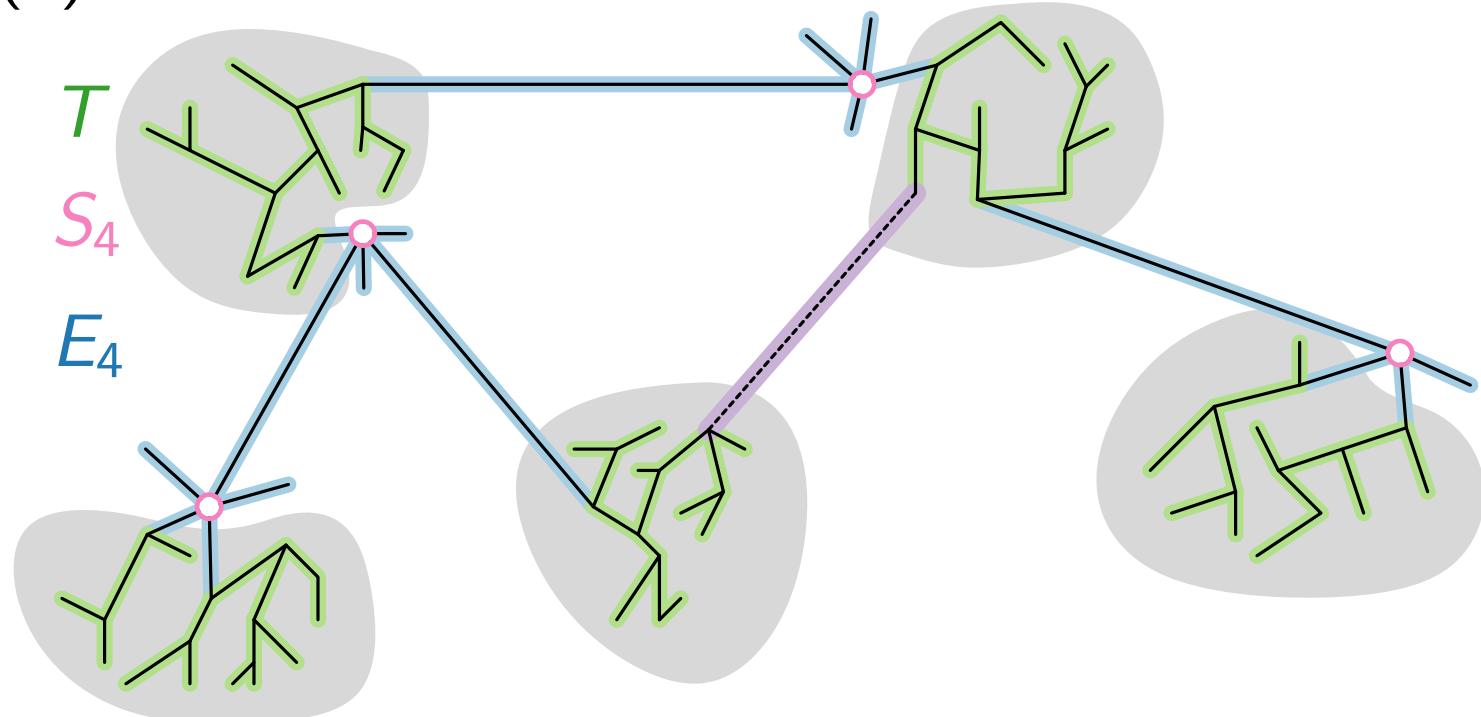
Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - \underset{\text{vertex-deg}}{(|S_i| - 1)} - \underset{\text{counted twice?}}{1} = (i - 1)|S_i| + 1$

(ii)



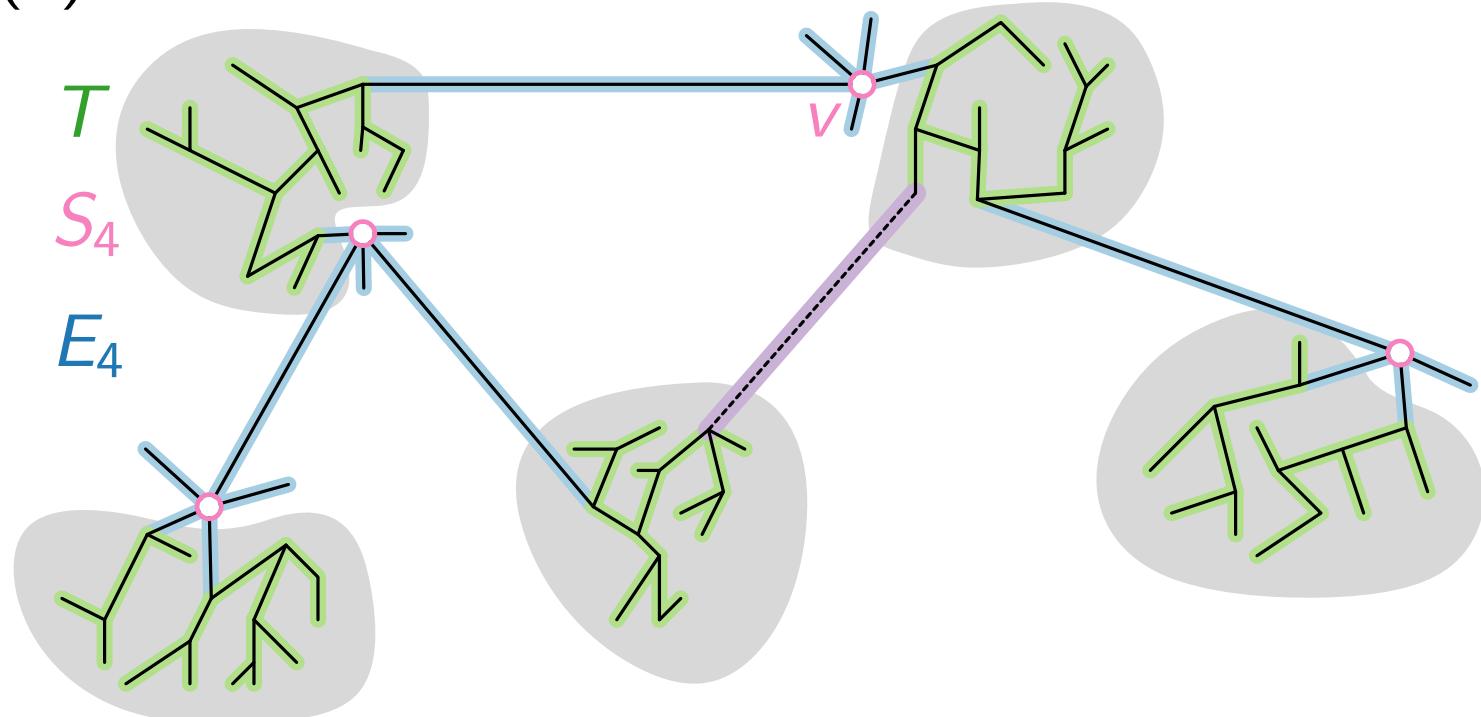
Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - \underset{\text{vertex-deg}}{(|S_i| - 1)} - \underset{\text{counted twice?}}{1} = (i - 1)|S_i| + 1$

(ii)



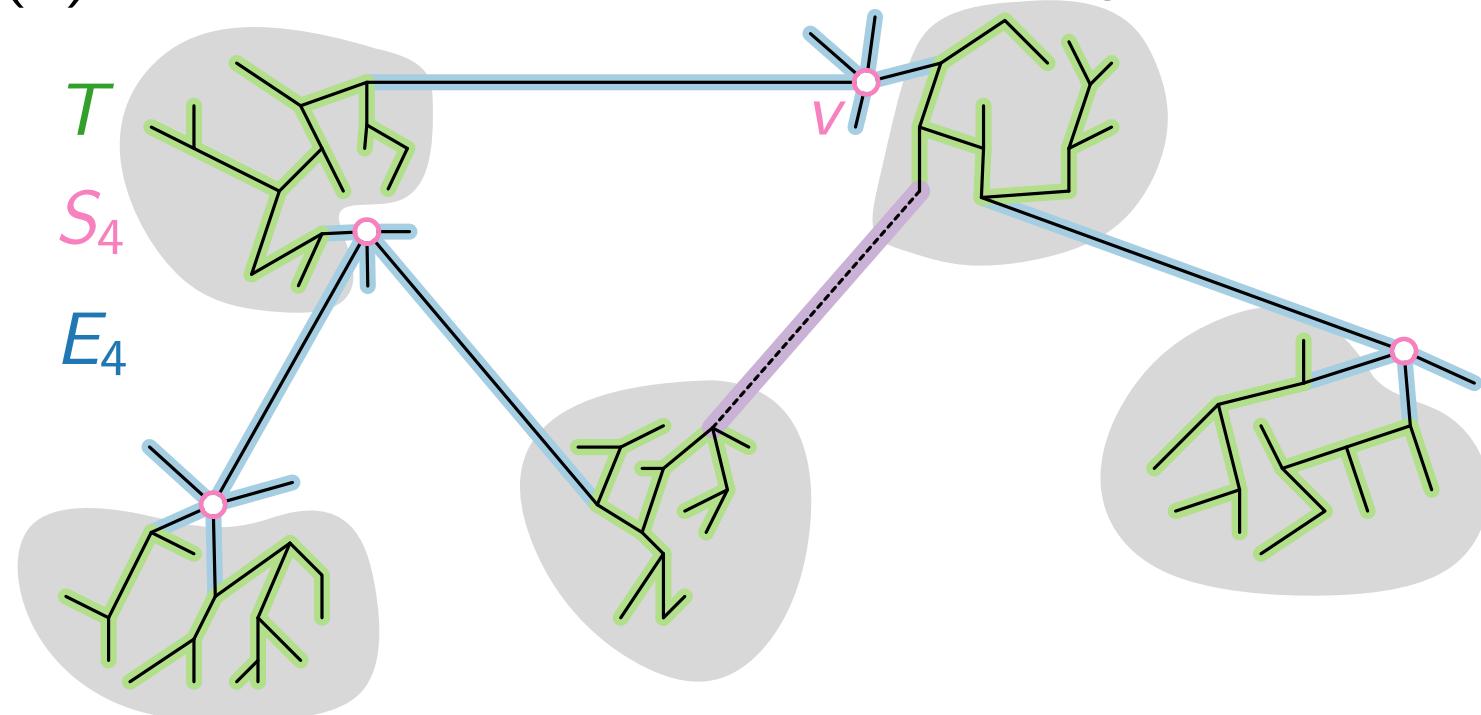
Structure of a Decomposition

Lemma 3. For locally opt. spanning tree T , $i \geq \Delta(T) - \ell + 1$:

- (i) $|E_i| \geq (i - 1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \geq i|S_i| - \underset{\text{vertex-deg}}{(|S_i| - 1)} - \underset{\text{counted twice?}}{1} = (i - 1)|S_i| + 1$

(ii) Otherwise, there is an improving flip for some $v \in S_i$.



Approximation Algorithms

Lecture 10:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part V:
Approximation Factor

Approximation Factor

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.
Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.
Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.
Let E_i be the edges in T incident to S_i .

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.
Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.
Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.
Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.
Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T)$ with $|S_{i-1}| \leq 2|S_i|$.

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i - 1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i - 1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i !

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i - 1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i ! $\Rightarrow S_{i-1}$ covers edges between comp.

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i-1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i ! $\Rightarrow S_{i-1}$ covers edges between comp.

$\text{OPT} \geq \frac{k}{|S|} =$
Lemma 1

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i-1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i ! $\Rightarrow S_{i-1}$ covers edges between comp.

$$\text{OPT} \geq \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \geq$$

Lemma 1

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i-1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i ! $\Rightarrow S_{i-1}$ covers edges between comp.

$$\text{OPT} \geq \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \stackrel{\text{Lemma 3}}{\geq} \frac{(i-1)|S_i|+1}{|S_{i-1}|} \geq$$

Lemma 1 Lemma 3

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i-1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i ! $\Rightarrow S_{i-1}$ covers edges between comp.

$$\text{OPT} \geq \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \stackrel{\text{Lemma 3}}{\geq} \frac{(i-1)|S_i|+1}{|S_{i-1}|} \stackrel{\text{Lemma 2}}{\geq} \frac{(i-1)|S_i|+1}{2|S_i|} >$$

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i-1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i ! $\Rightarrow S_{i-1}$ covers edges between comp.

$$\text{OPT} \geq \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \stackrel{\text{Lemma 3}}{\geq} \frac{(i-1)|S_i|+1}{|S_{i-1}|} \stackrel{\text{Lemma 2}}{\geq} \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2} \stackrel{\text{Lemma 2}}{\geq}$$

Approximation Factor

[Fürer & Raghavachari:
SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof.

Let S_i be the vertices v in T with $\deg_T(v) \geq i$.

Let E_i be the edges in T incident to S_i .

Lemma 1. $\text{OPT} \geq k/|S|$ if $k = |\text{removed edges}|$, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

(i) $|E_i| \geq (i-1)|S_i| + 1$,

(ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i ! $\Rightarrow S_{i-1}$ covers edges between comp.

$$\text{OPT} \geq \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \stackrel{\text{Lemma 3}}{\geq} \frac{(i-1)|S_i|+1}{|S_{i-1}|} \stackrel{\text{Lemma 2}}{\geq} \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2} \stackrel{\text{Lemma 2}}{\geq} \frac{\Delta(T) - \ell}{2}$$

□

Approximation Algorithms

Lecture 10:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part VI:
Termination, Running Time & Extensions

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully):

- Each iteration decreases the potential of a solution.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully):

- Each iteration decreases the potential of a solution.
- The function is bounded both from above and below.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

- Each iteration decreases the potential of a solution.
- The function is bounded both from above and below.
- Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):

- Each iteration decreases the potential of a solution.
- The function is bounded both from above and below.
- Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.
- The function is bounded both from above and below.
- Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.
- Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

How does $\Phi(T)$ change?

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

How does $\Phi(T)$ change?

$\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \leq$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

How does $\Phi(T)$ change?

$$\Phi(T) \text{ decreases by: } (1 - \frac{2}{27n^3})^{f(n)} \leq 1 + x \leq e^x$$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

How does $\Phi(T)$ change?

$$\Phi(T) \text{ decreases by: } (1 - \frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} = 1 + x \leq e^x$$

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

How does $\Phi(T)$ change?

$\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} =$

Goal: After $f(n)$ iterations: $\Phi(T) = n < 3n$.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change?

$\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} =$

Goal: After $f(n)$ iterations: $\Phi(T) = n < 3n$.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change?

$\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} =$

Goal: After $f(n)$ iterations: $\Phi(T) = n < 3n$.

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $f(n)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully):
$$\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change?

$\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} = 3^{-n}$

Goal: After $f(n)$ iterations: $\Phi(T) = n < 3n$. □

Termination and Running Time

Theorem. The algorithm finds a locally optimal spanning tree after at most $O(n^4)$ iterations.

Proof. Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

- Each iteration decreases the potential of a solution.

Lemma. After each flip $T \rightarrow T'$, $\Phi(T') \leq (1 - \frac{2}{27n^3})\Phi(T)$.

- The function is bounded both from above and below.

Lemma. For every spanning tree T , $\Phi(T) \in [3n, n3^n]$.

- Executing $f(n)$ iterations would exceed the lower bound.

Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\Phi(T)$ change?

$\Phi(T)$ decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} = 3^{-n}$

Goal: After $f(n)$ iterations: $\Phi(T) = n < 3n$. □

Extensions

Corollary. For any constant $b > 1$ and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \text{OPT} + \ell$.

Extensions

Corollary. For any constant $b > 1$ and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \text{OPT} + \ell$.

Proof.

Similar to previous pages.

Homework

Extensions

Corollary. For any constant $b > 1$ and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \text{OPT} + \ell$.

Proof. Similar to previous pages. Homework

- A variant of this algorithm yields the following result:

Extensions

Corollary. For any constant $b > 1$ and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \text{OPT} + \ell$.

Proof. Similar to previous pages. Homework \square

■ A variant of this algorithm yields the following result:

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. There is a local search algorithm that runs in $O(EV\alpha(E, V) \log V)$ time and produces a spanning tree T with $\Delta(T) \leq \text{OPT} + 1$.

Extensions

Corollary. For any constant $b > 1$ and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \text{OPT} + \ell$.

Proof. Similar to previous pages. Homework \square

■ A variant of this algorithm yields the following result:

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. There is a local search algorithm that runs in $O(EV\alpha(E, V) \log V)$ time and produces a spanning tree T with $\Delta(T) \leq \text{OPT} + 1$.

■ Further variants for directed graphs and Steiner tree.