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Obs. 1. A spanning tree | has...
B n vertices and n — 1 edges,
B sum of degrees ) .\ (g)deg (v) =2n—2,
B average degree < 2.

Obs. 2. Let V' C V(G).

Then > Y deges(v)/|V/].
ve Vv’

Obs. 3. Let T be a spanning tree with
Then |/ has at most 7 vertices of degree
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Def. An improving flip in | for a vertex v and
an edge uw € E(G) \ E(T) is a flip with
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B Removing k edges decomposes  into kK + 1 components.
B £’ = {edges in G between different components C; # C;}.
B 5 = vertex cover of E’.

spanning
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Corollary. For any constant b > 1 and ¢ = [log, n|,
the local search algorithm runs in polynomial time

and produces a spanning tree |/ with
<b-0OPT +¢.

Proof. Similar to previous pages. Homework O

B A variant of this algorithm yields the following result:
[Flirer & Raghavachari: SODA'92, JA'94]

Theorem. There is a local search algorithm that runs
in O(EVa(E, V)log V) time and produces
a spanning tree | with < OPT +1.

B Further variants for directed graphs and Steiner tree.
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