

Approximation Algorithms

Lecture 9:
An Approximation Scheme
for EUCLIDEAN TSP

Part I:
The TRAVELING SALESMAN PROBLEM

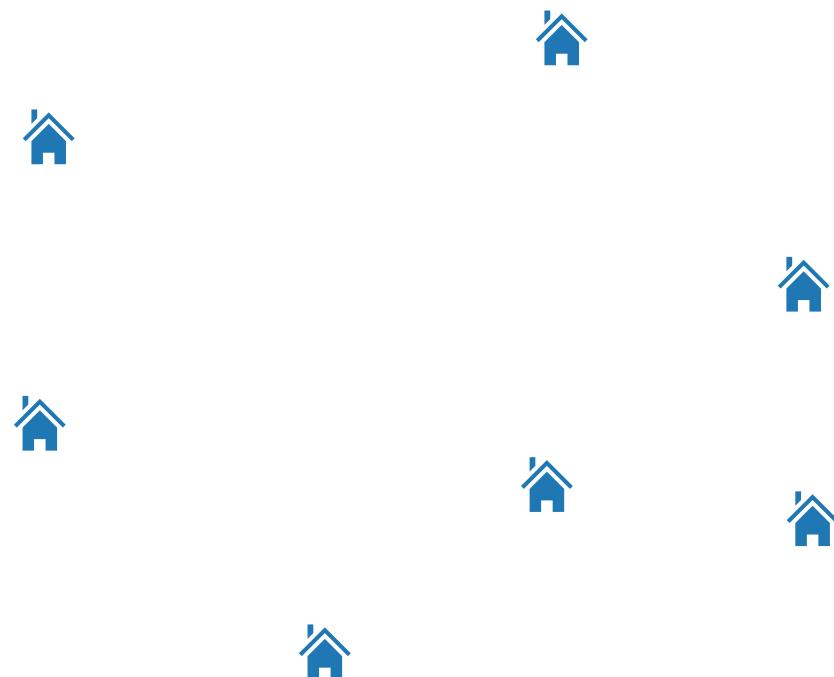
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

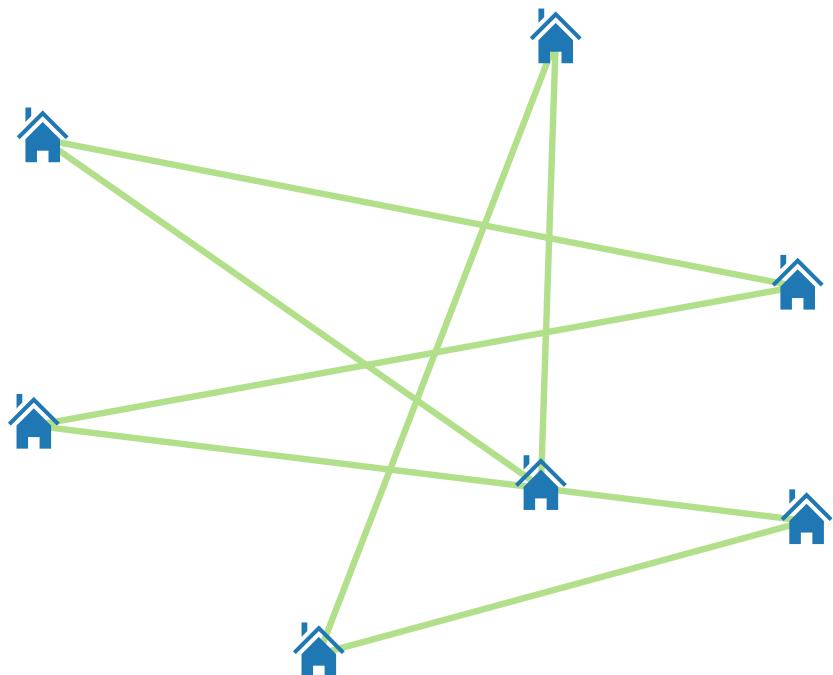


TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle)

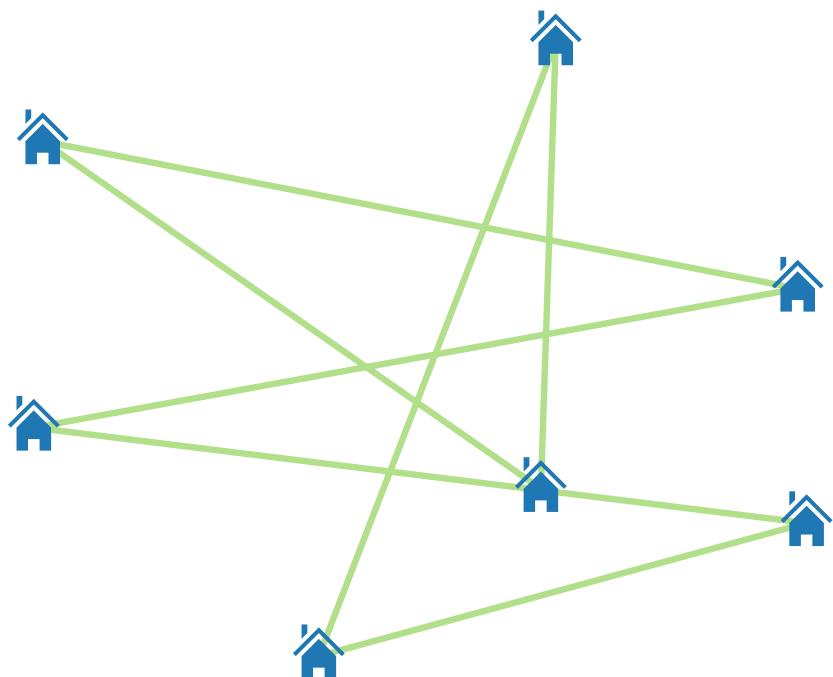


TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle)

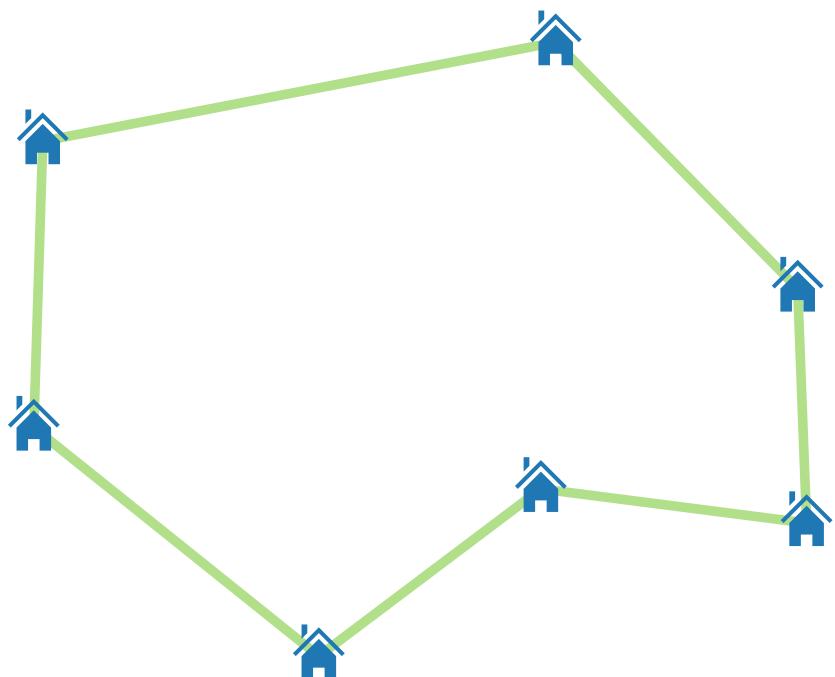


TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

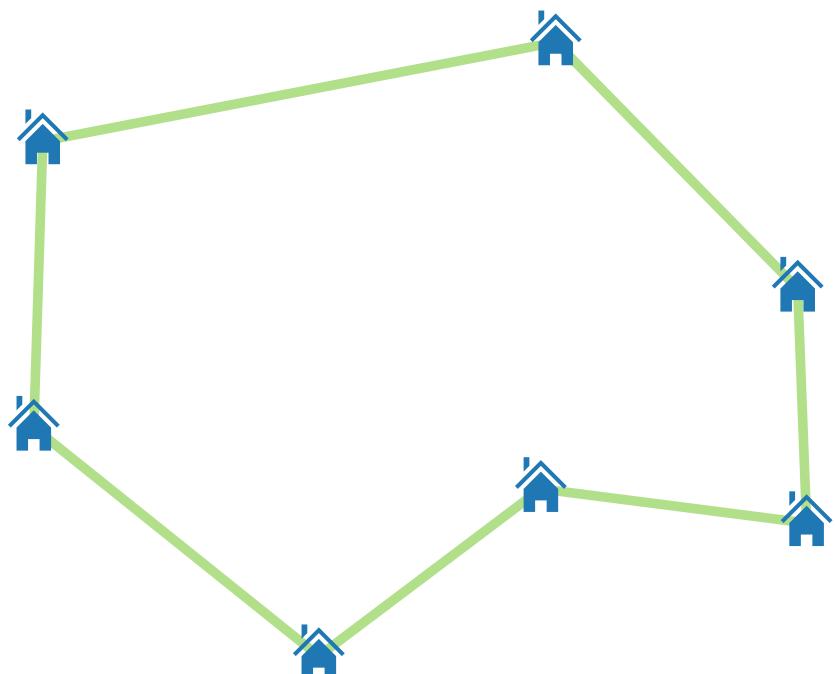


TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.



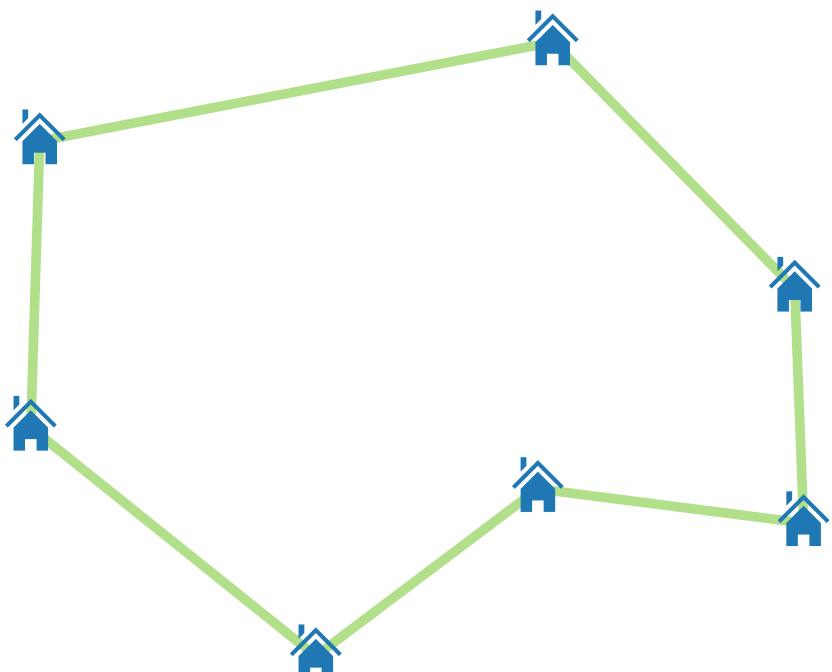
For every polynomial $p(n)$, TSP cannot be approximated within a factor of $2^{p(n)}$

TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.



For every polynomial $p(n)$, TSP cannot be approximated within a factor of $2^{p(n)}$ (unless $P = NP$).

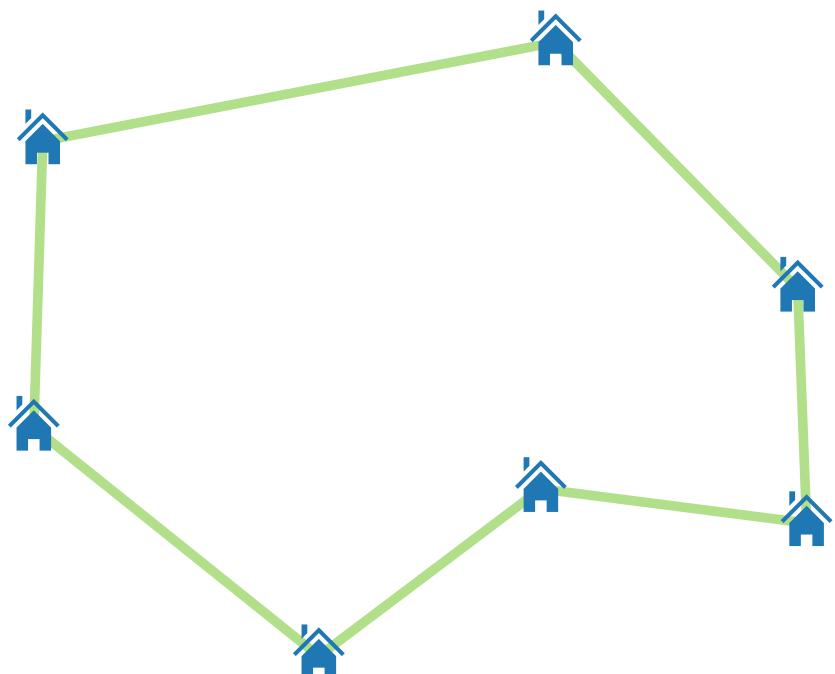
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial $p(n)$, TSP cannot be approximated within a factor of $2^{p(n)}$ (unless $P = NP$).

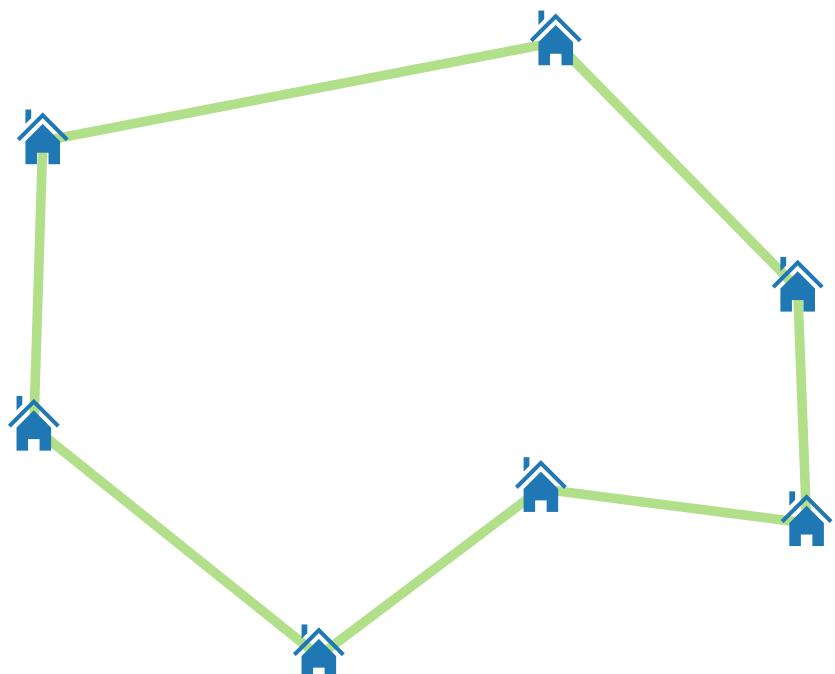
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial $p(n)$, TSP cannot be approximated within a factor of $2^{p(n)}$ (unless $P = NP$).

There is a $3/2$ -approximation algorithm for METRIC TSP [Christofides'76]

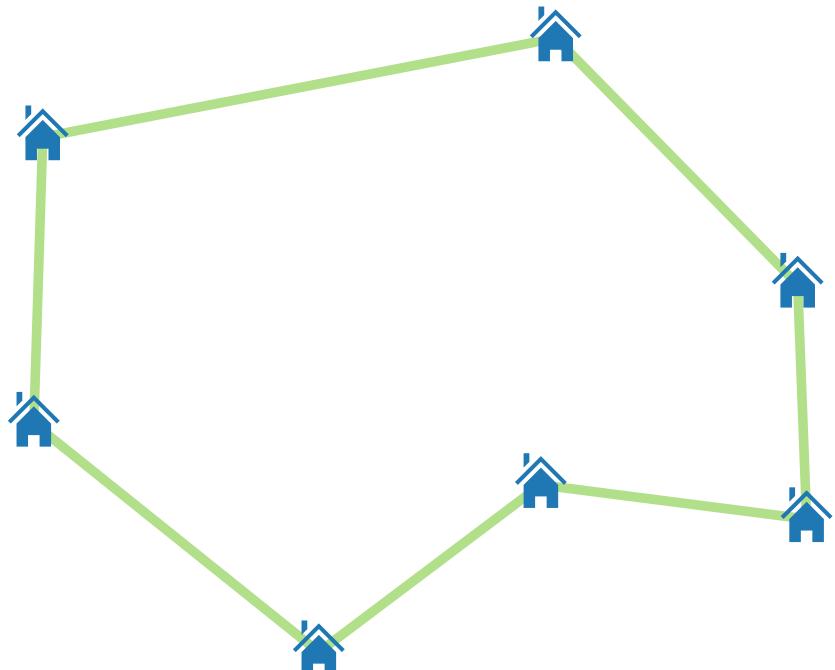
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?



For every polynomial $p(n)$, TSP cannot be approximated within a factor of $2^{p(n)}$ (unless $P = NP$).

There is a $3/2$ -approximation algorithm for METRIC TSP [Christofides'76]

METRIC TSP cannot be approximated within factor $123/122$ (unless $P = NP$).

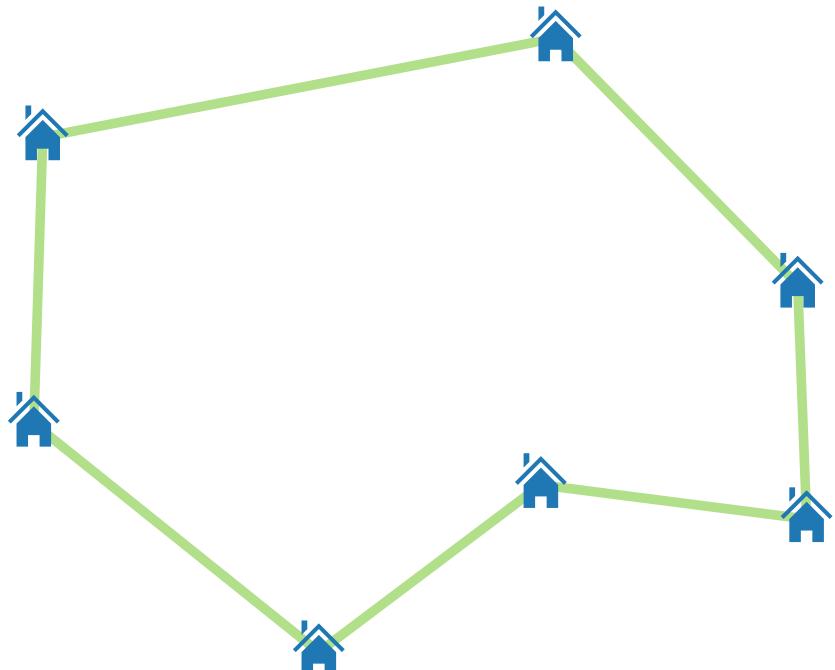
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



For every polynomial $p(n)$, TSP cannot be approximated within a factor of $2^{p(n)}$ (unless $P = NP$).

There is a $3/2$ -approximation algorithm for METRIC TSP [Christofides'76]

METRIC TSP cannot be approximated within factor $123/122$ (unless $P = NP$).

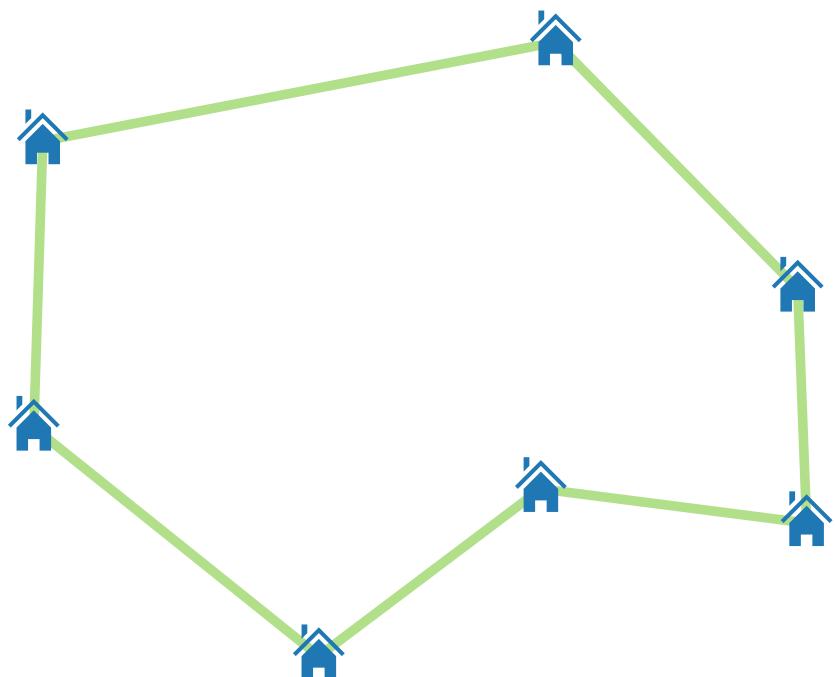
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

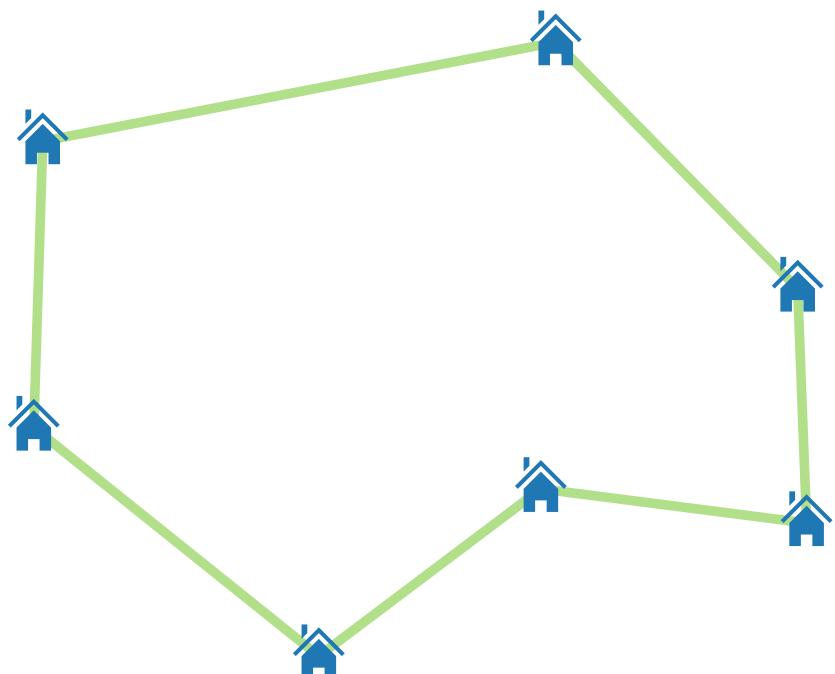
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square

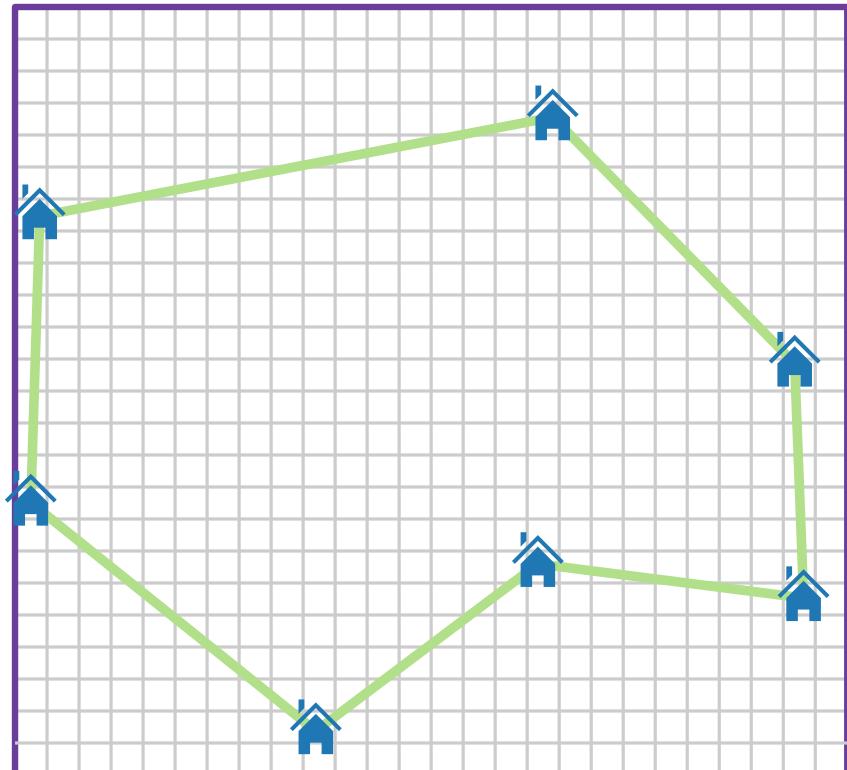
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square

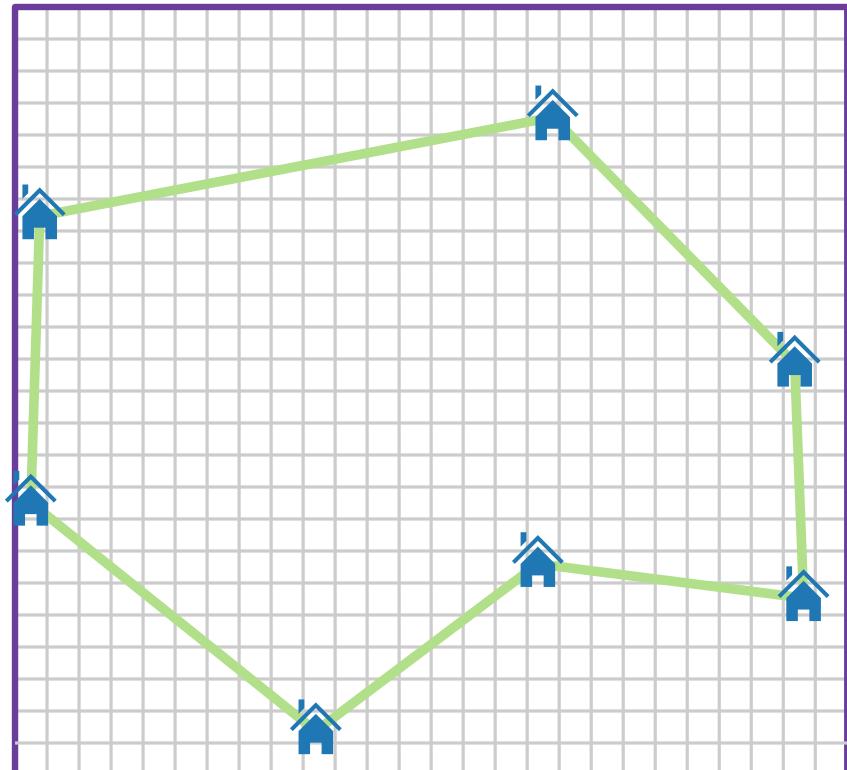
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square
- $L := 4n^2$

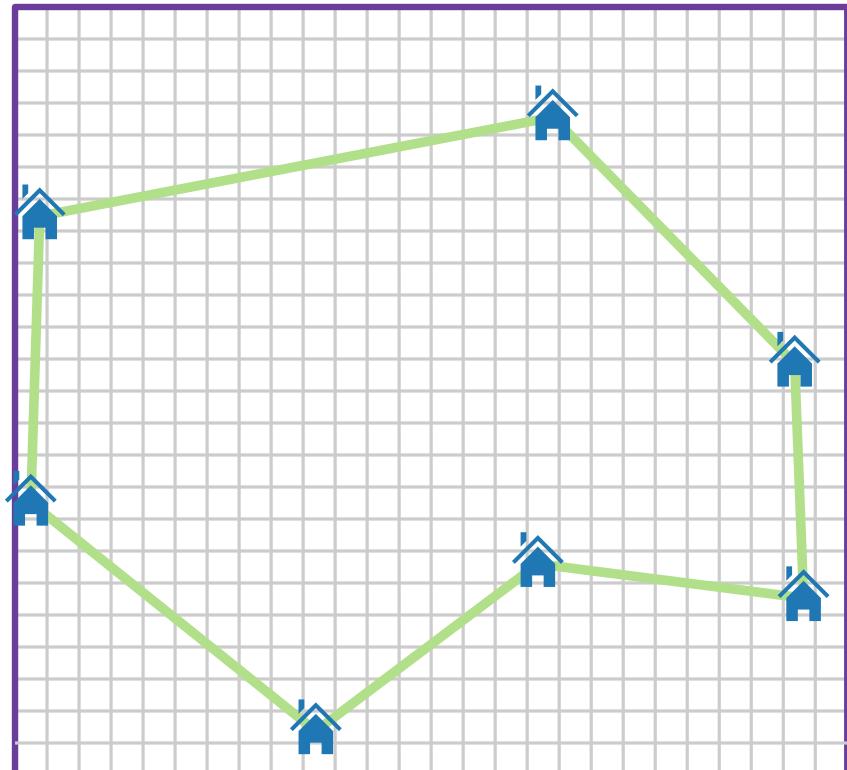
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k$;

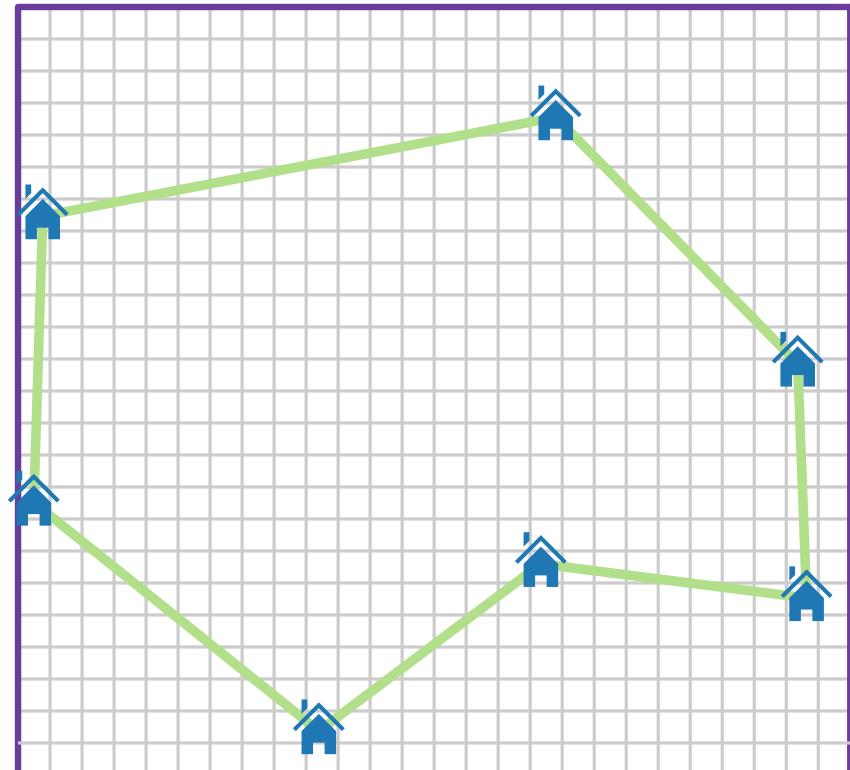
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k$;
 $k = 2 + 2 \log_2 n$

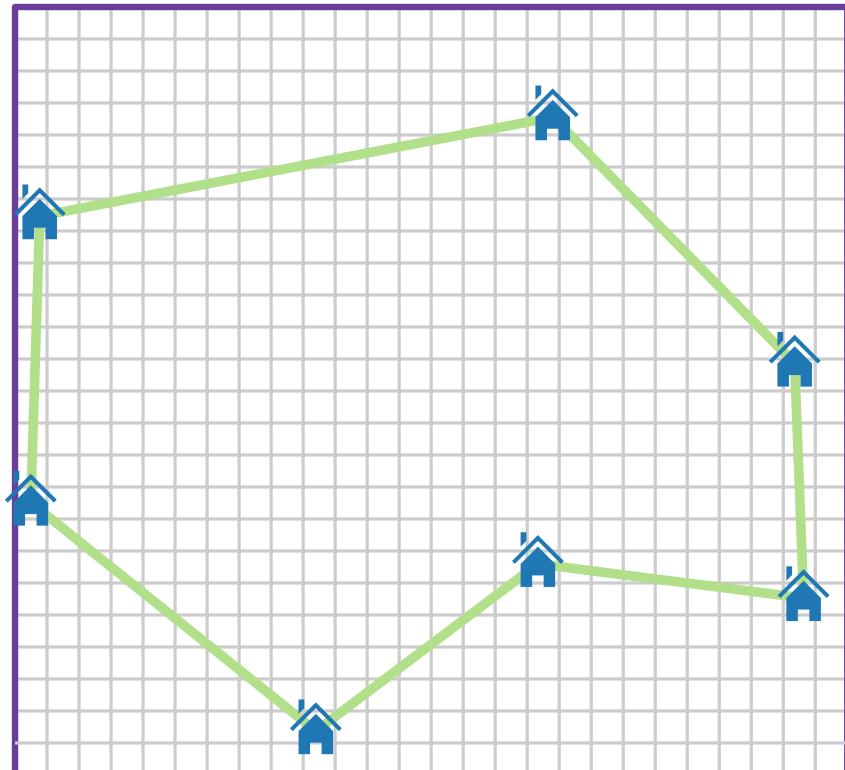
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k$;
 $k = 2 + 2 \log_2 n$
- integer coordinates

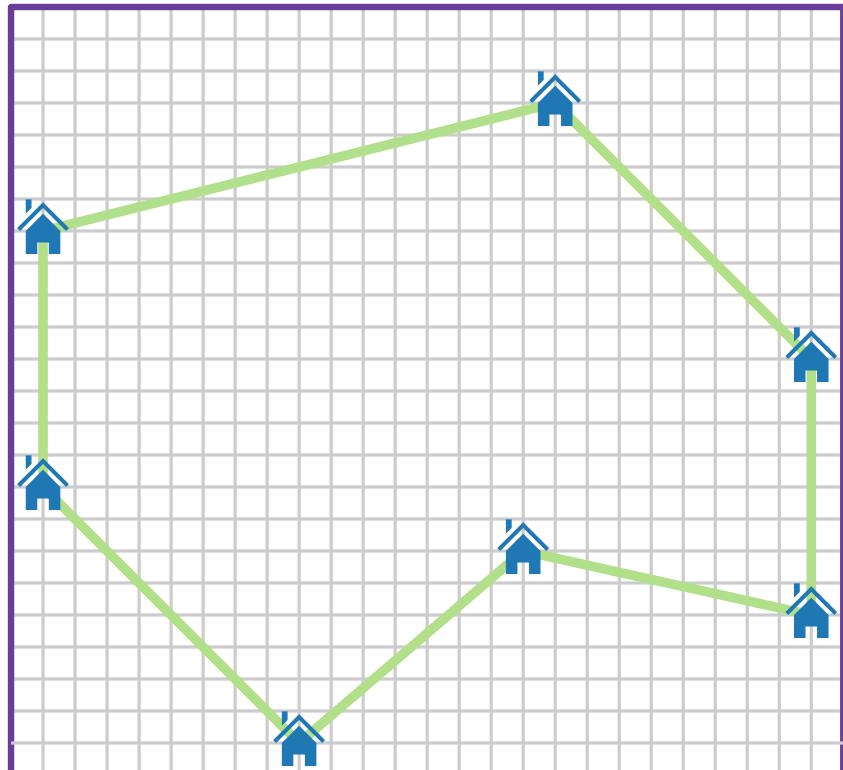
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k$;
 $k = 2 + 2 \log_2 n$
- integer coordinates

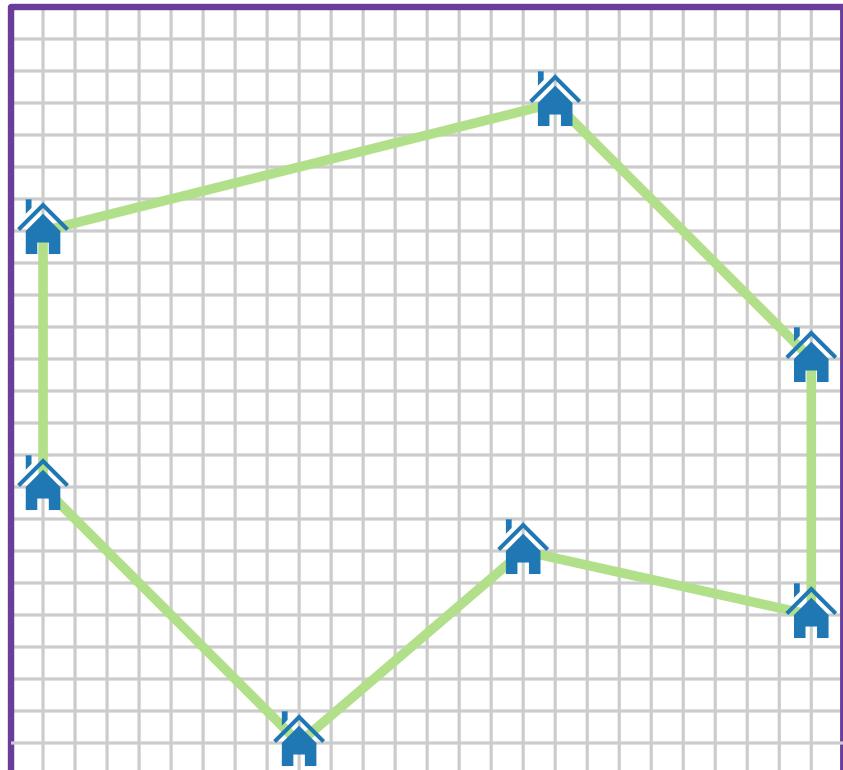
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k$;
 $k = 2 + 2 \log_2 n$
- integer coordinates
("justification": **homework**)

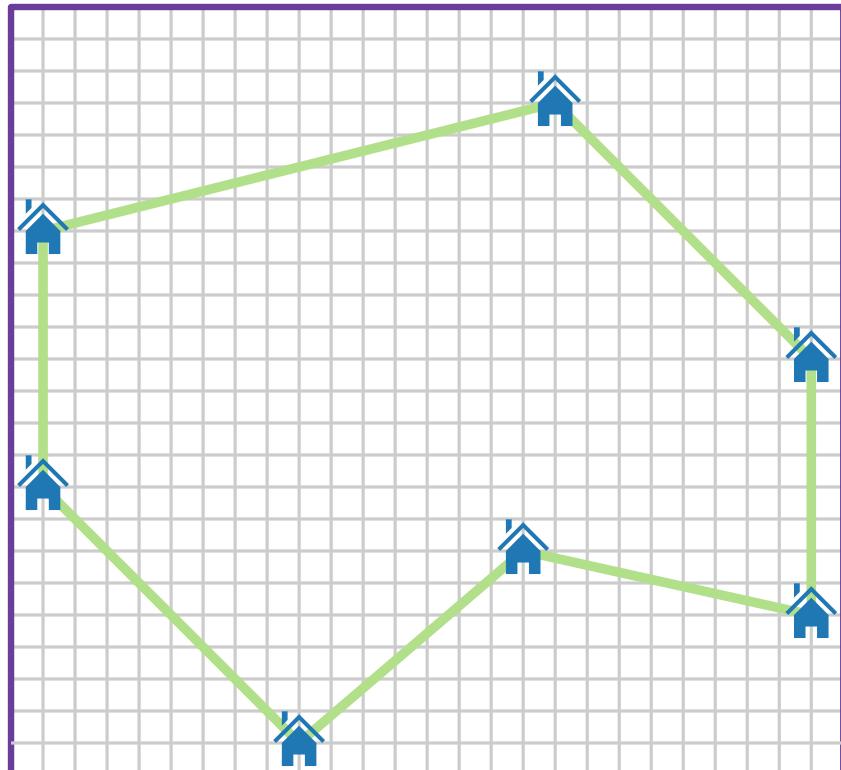
TRAVELING SALESMAN PROBLEM (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^2 .

Task: Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.



Simplifying Assumptions

- Houses inside $(L \times L)$ -square
- $L := 4n^2 = 2^k$; $k = 2 + 2 \log_2 n$
- integer coordinates
("justification": [homework](#))

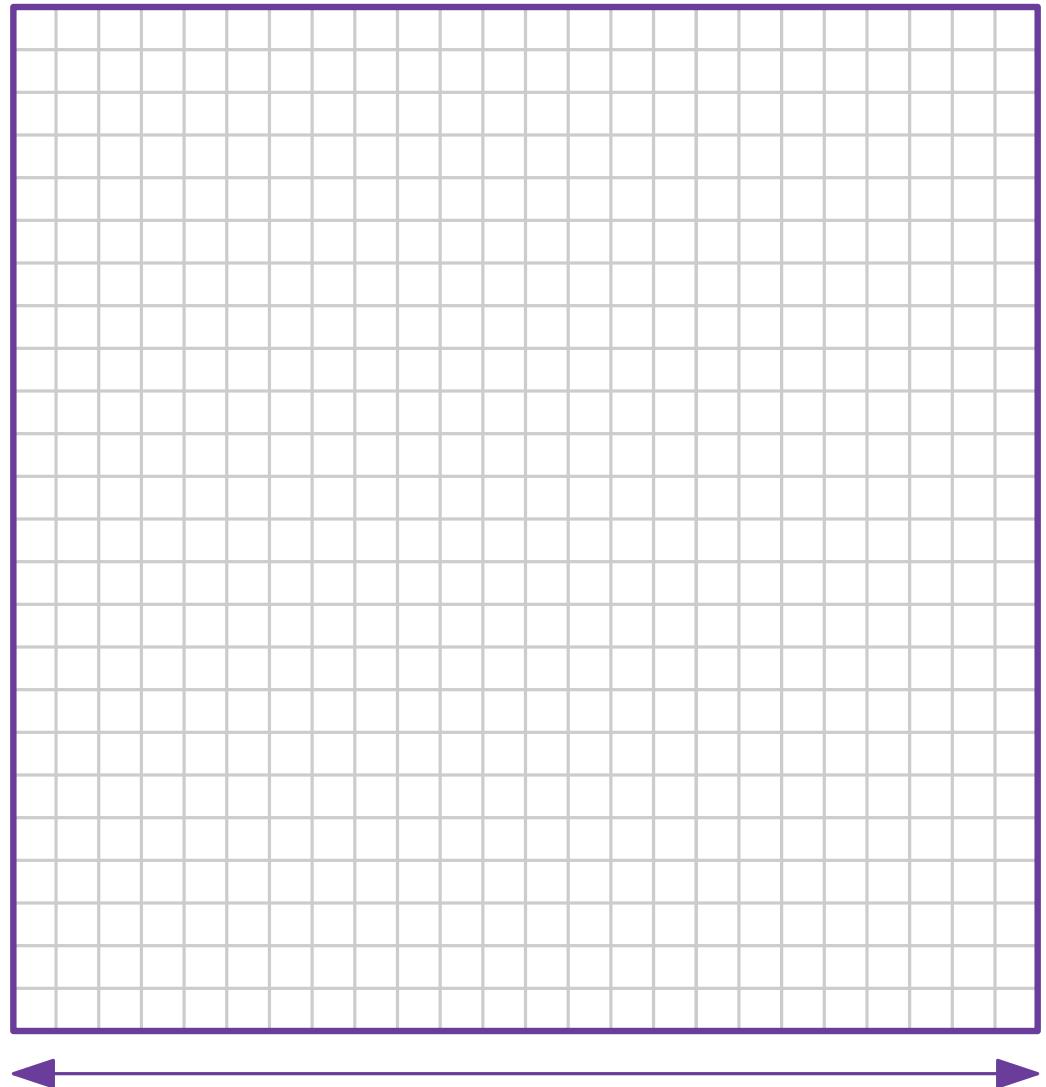
Goal: $(1 + \varepsilon)$ -approximation!

Approximation Algorithms

Lecture 9:
A PTAS for EUCLIDEAN TSP

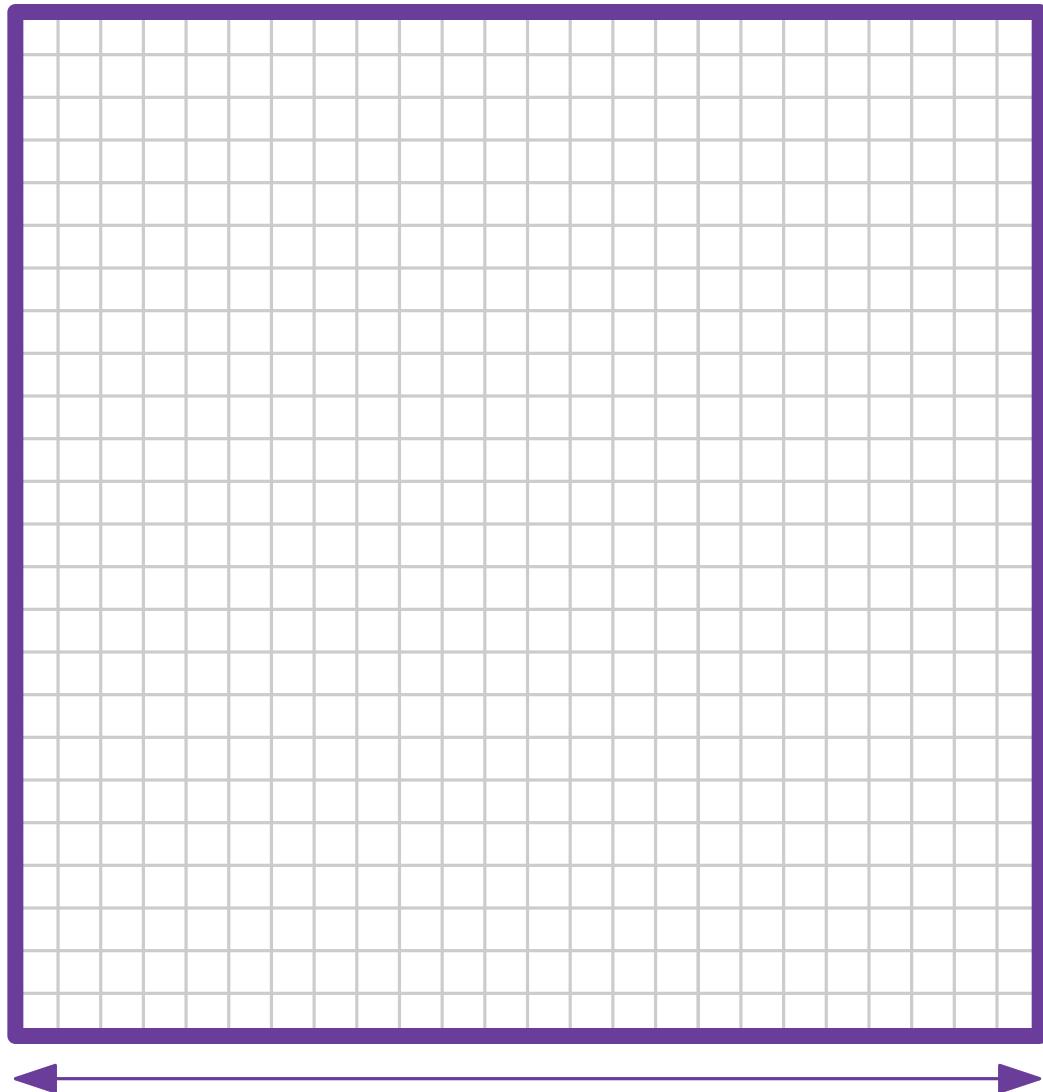
Part II:
Dissection

Basic Dissection



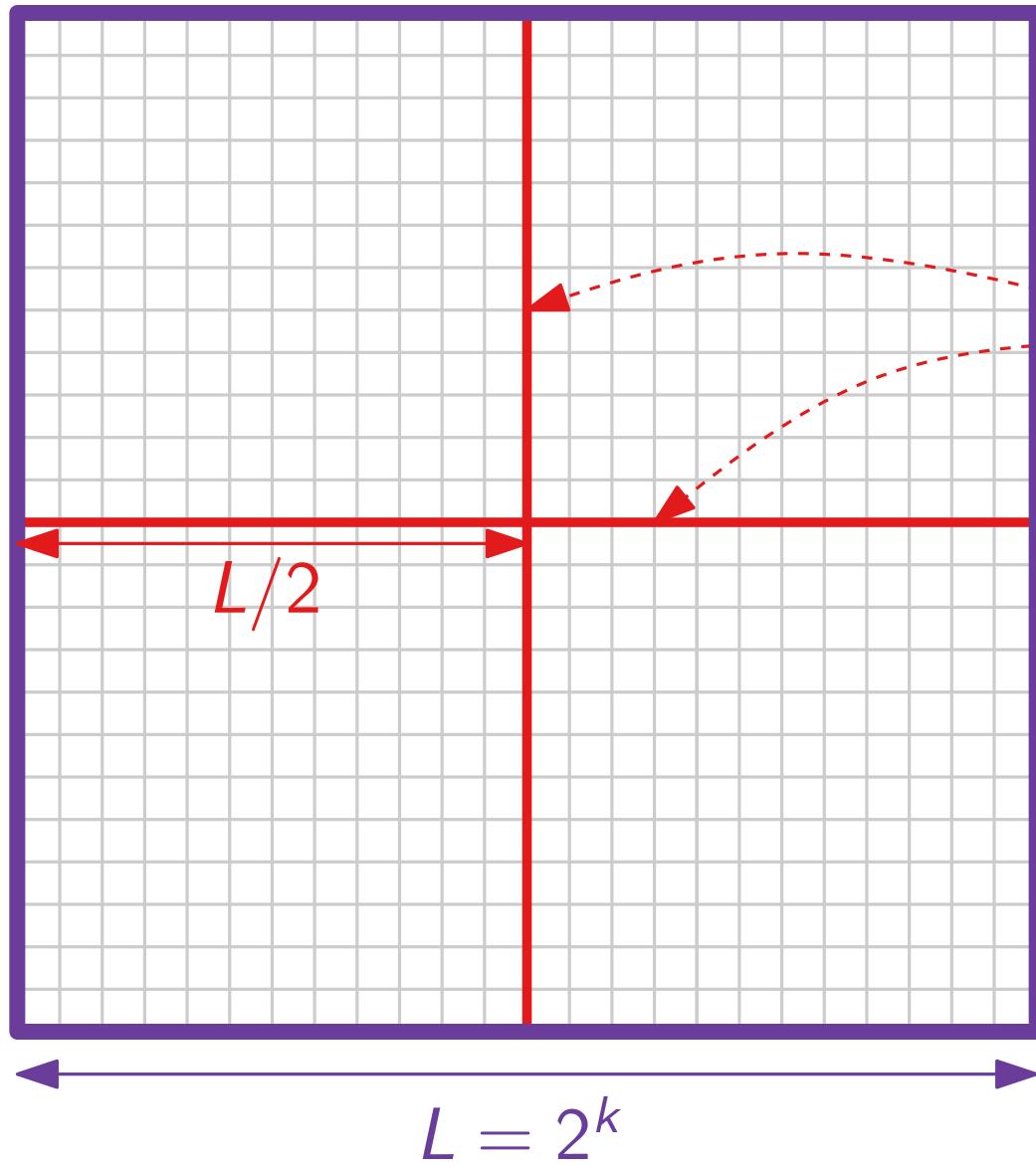
$$L = 2^k$$

Basic Dissection



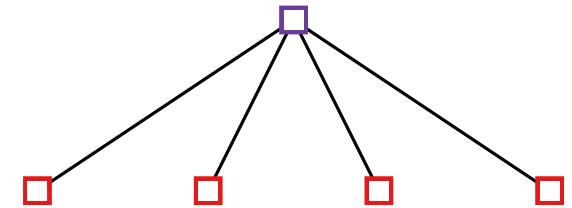
Level 0

Basic Dissection

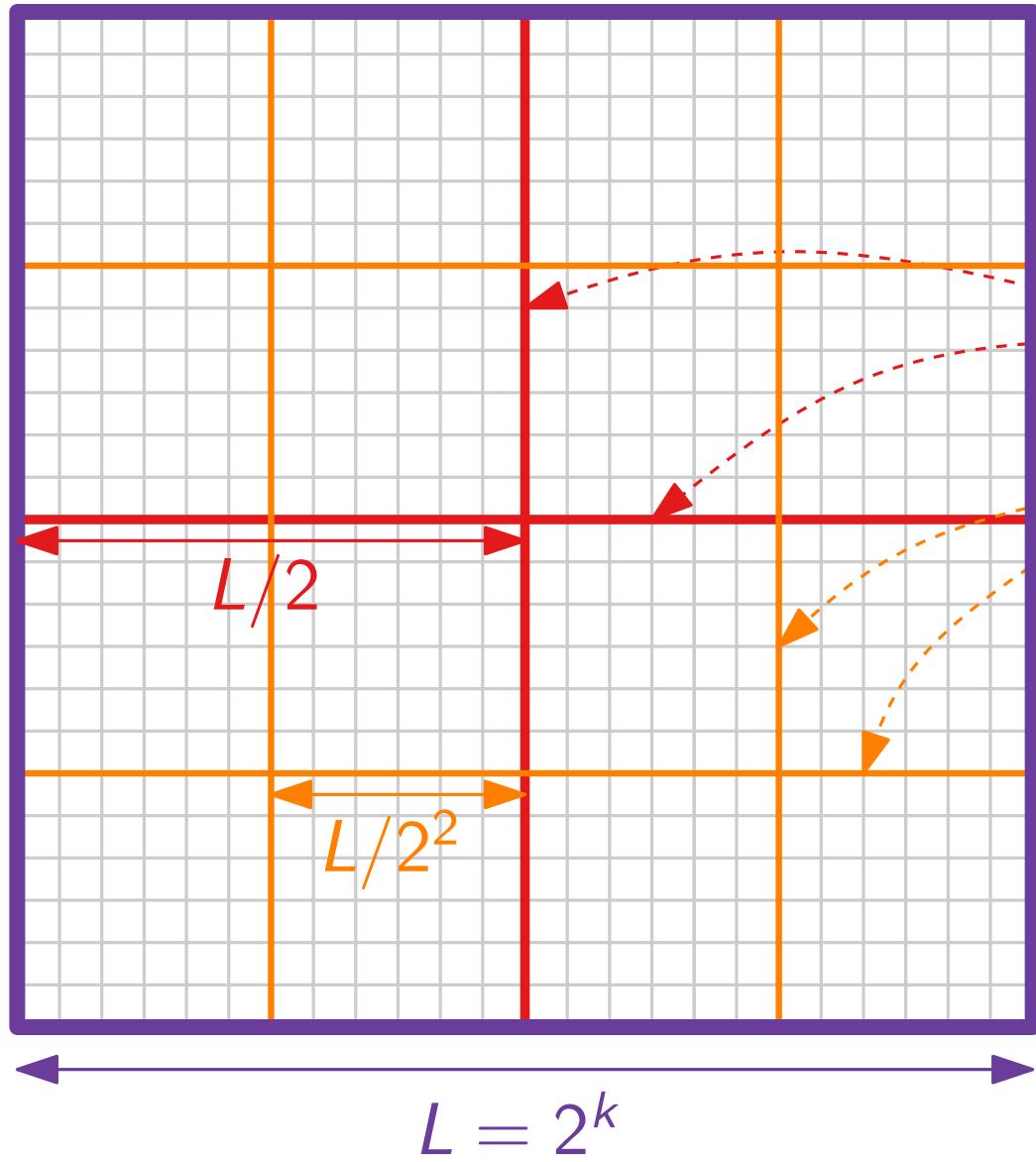


Level 0

Level 1



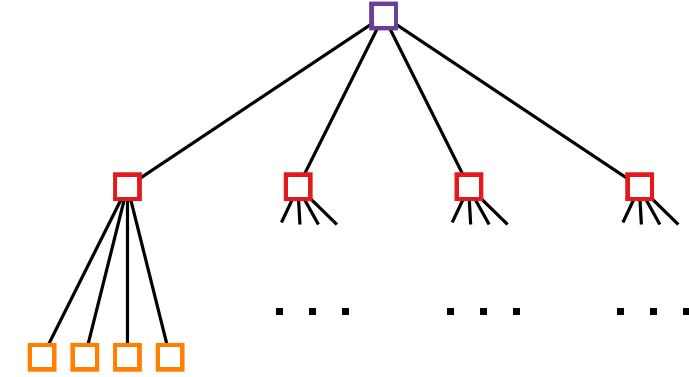
Basic Dissection



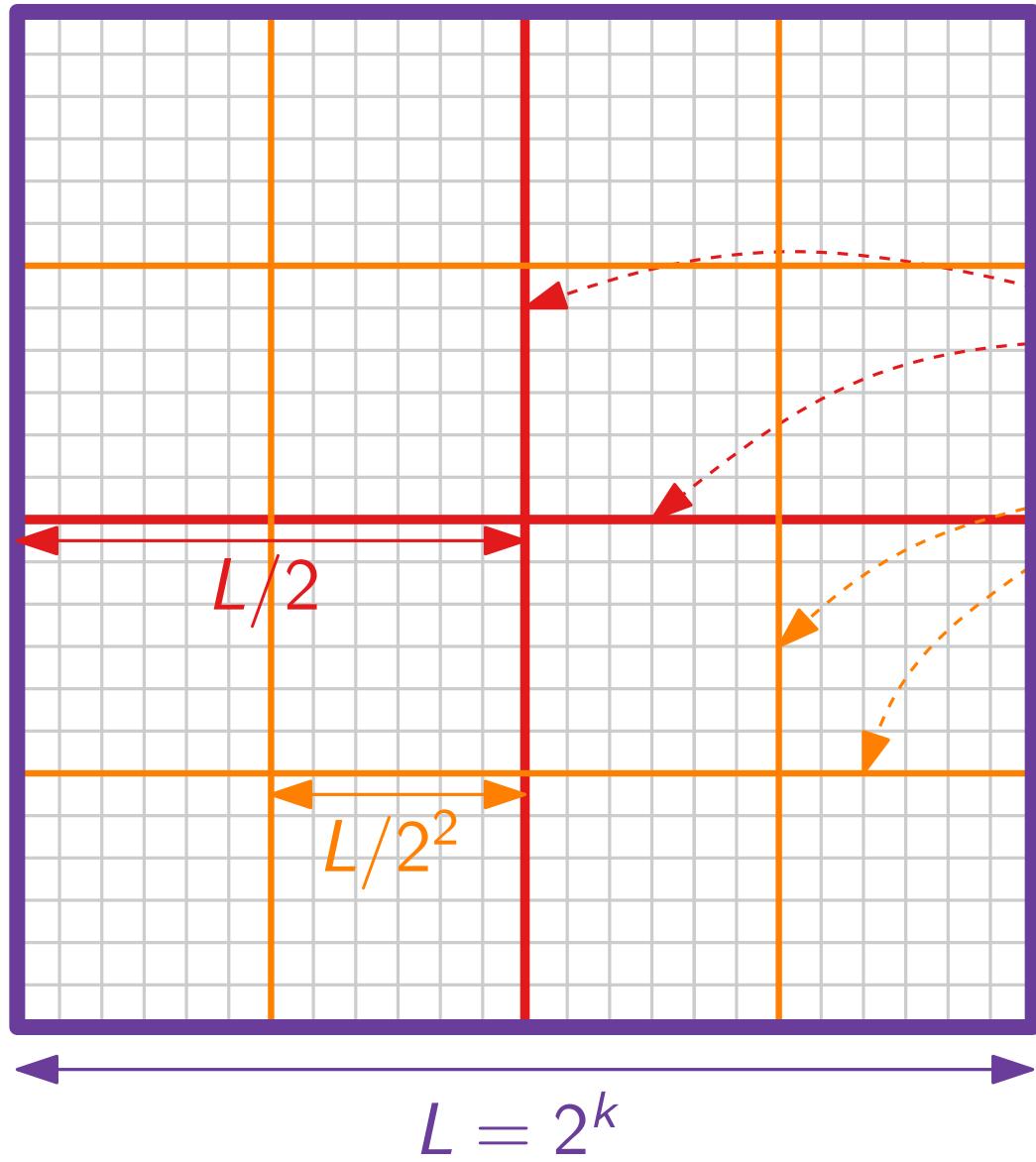
Level 0

Level 1

Level 2



Basic Dissection

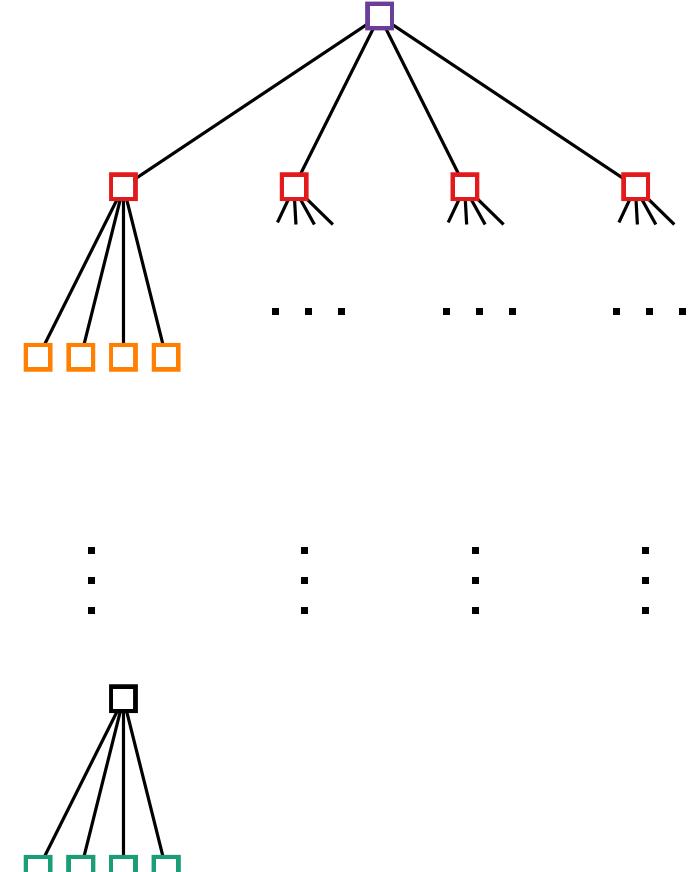


Level 0

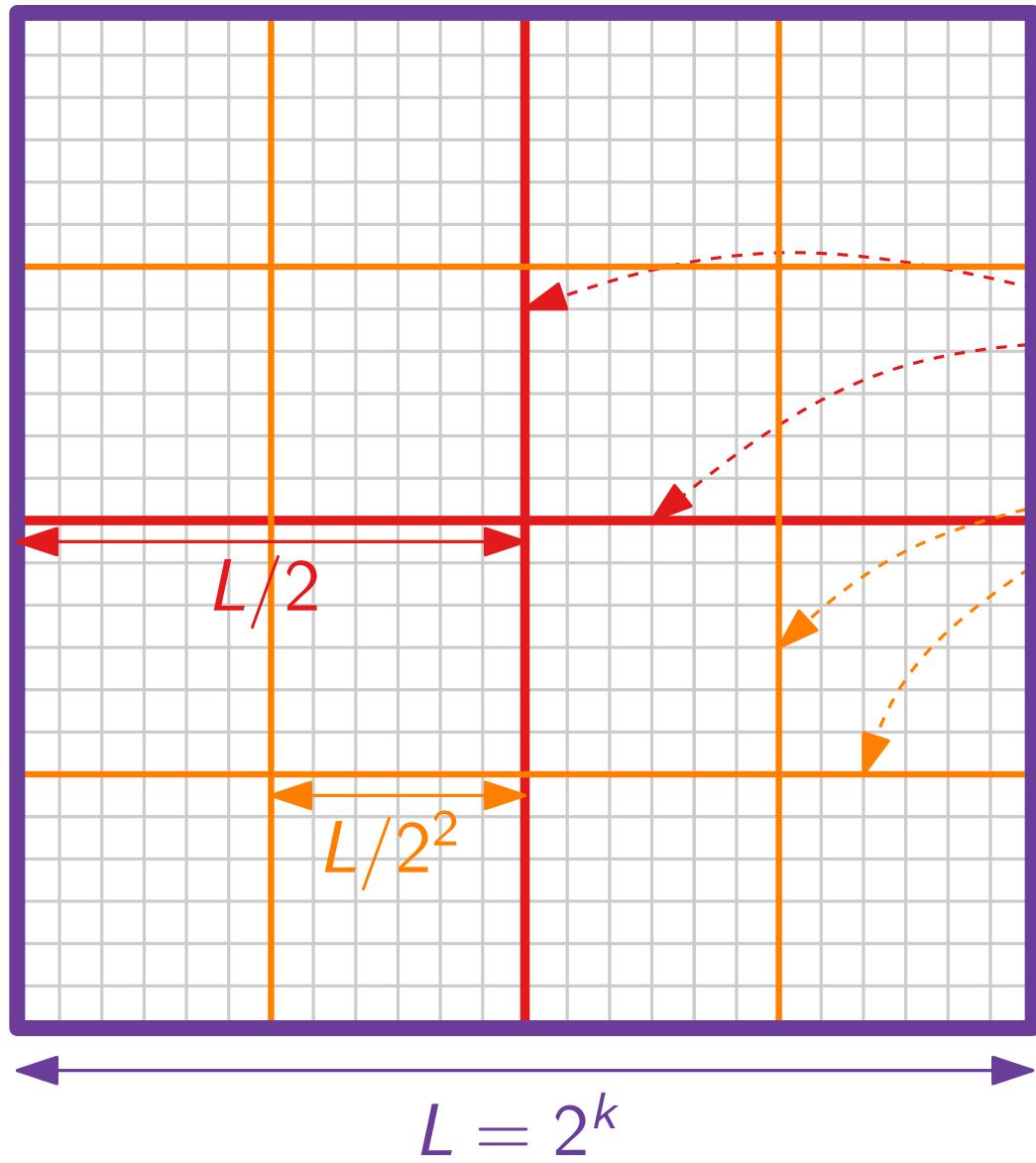
Level 1

Level 2

Level k
(squares of size 1)



Basic Dissection

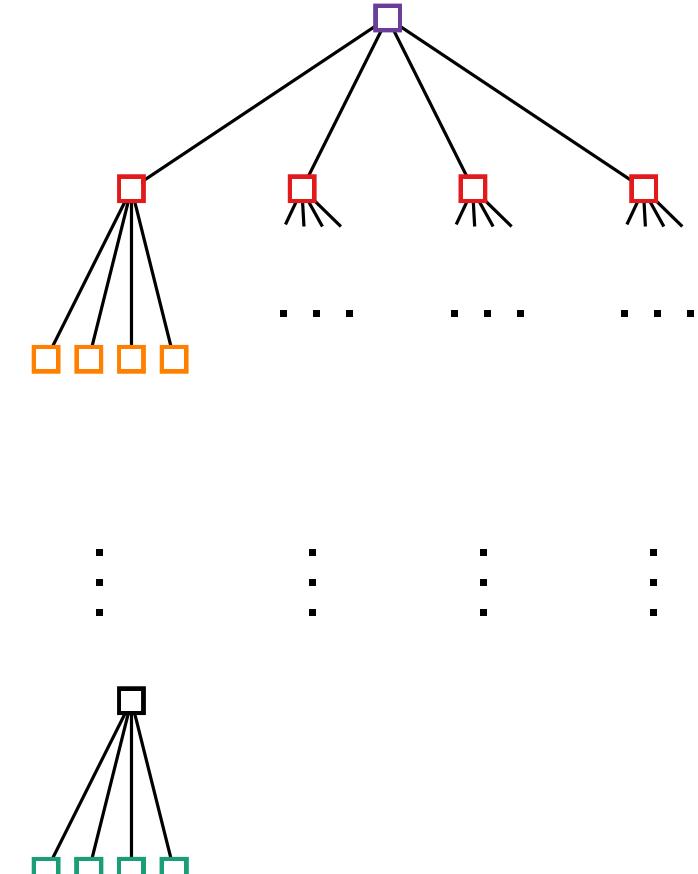


Level 0

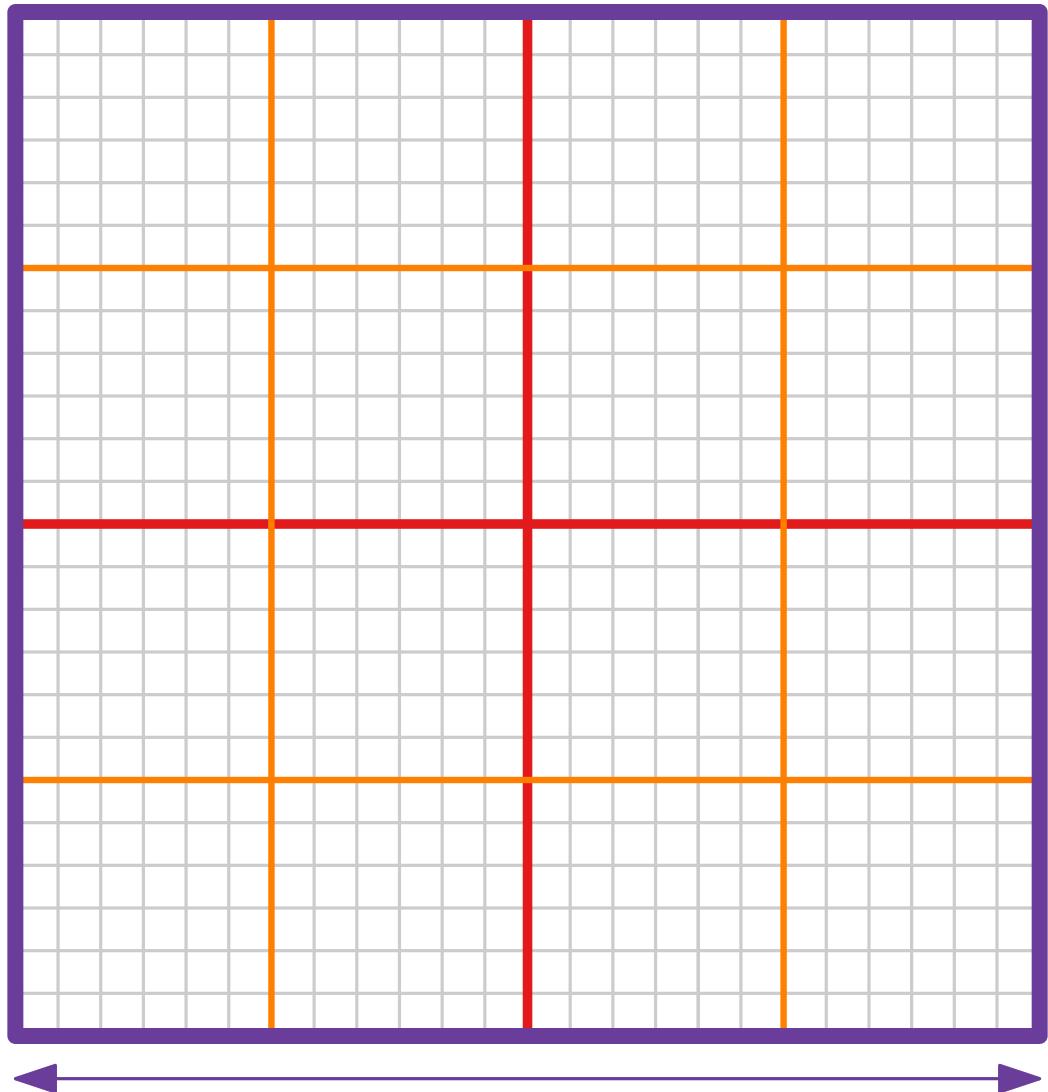
Level 1

Level 2

Level k
(squares of size 1×1)

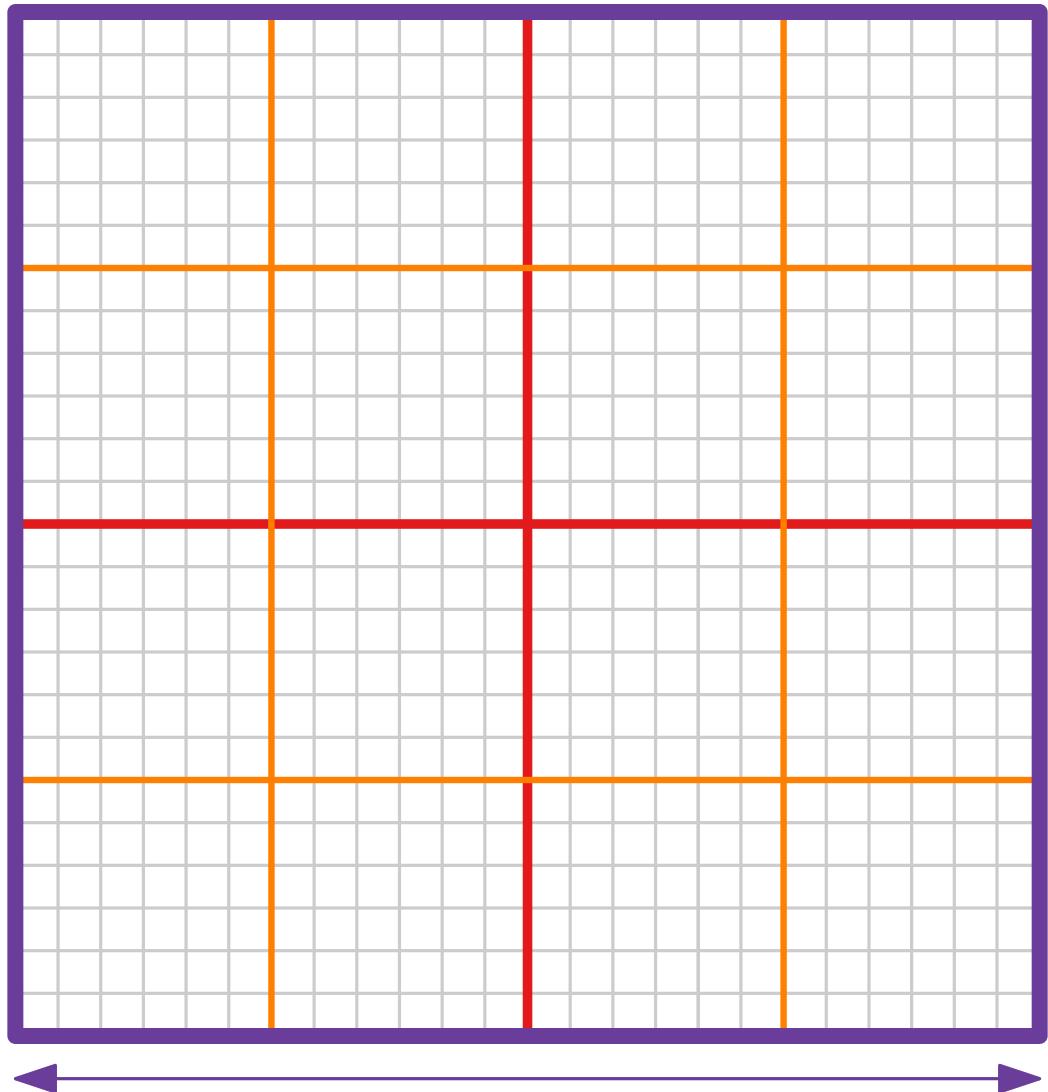


Portals



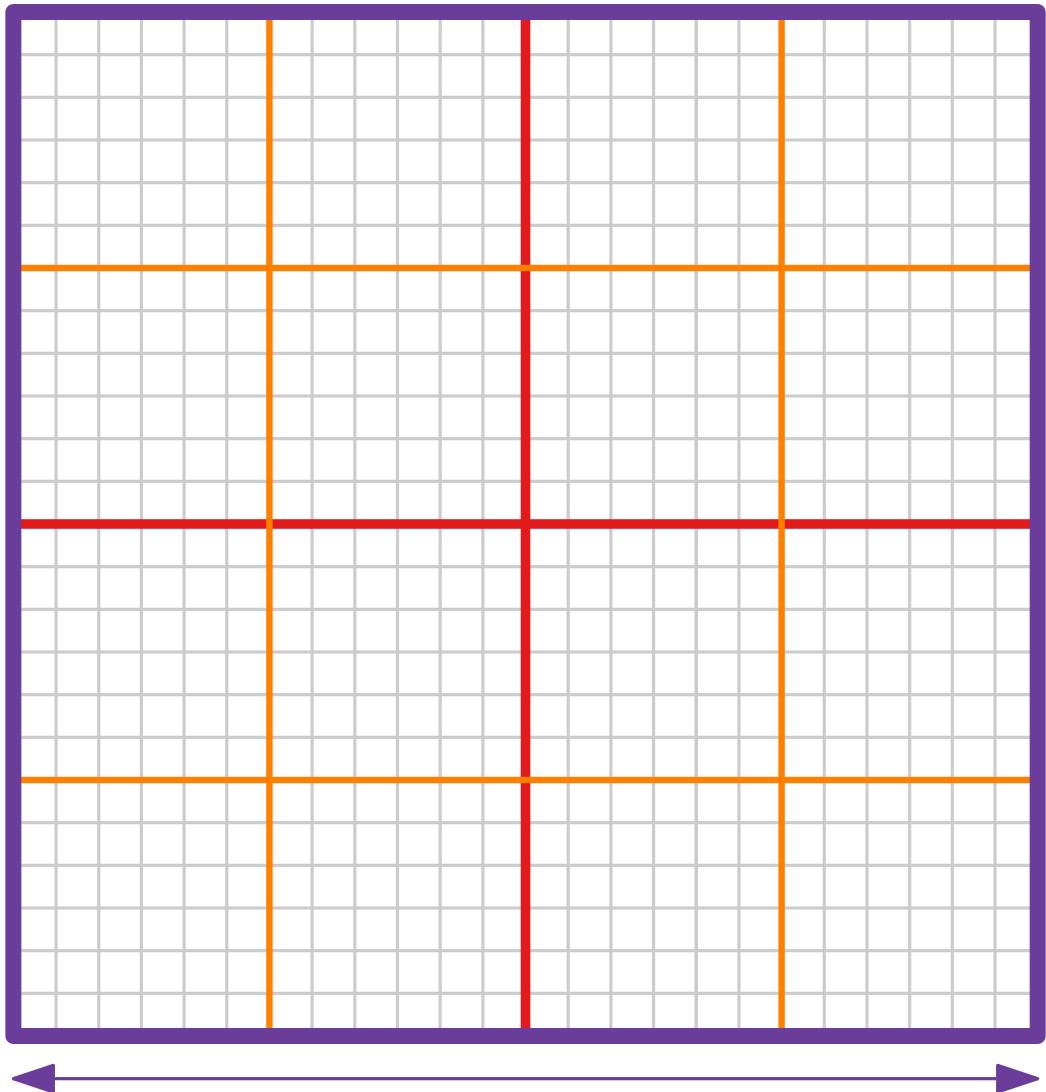
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.

Portals



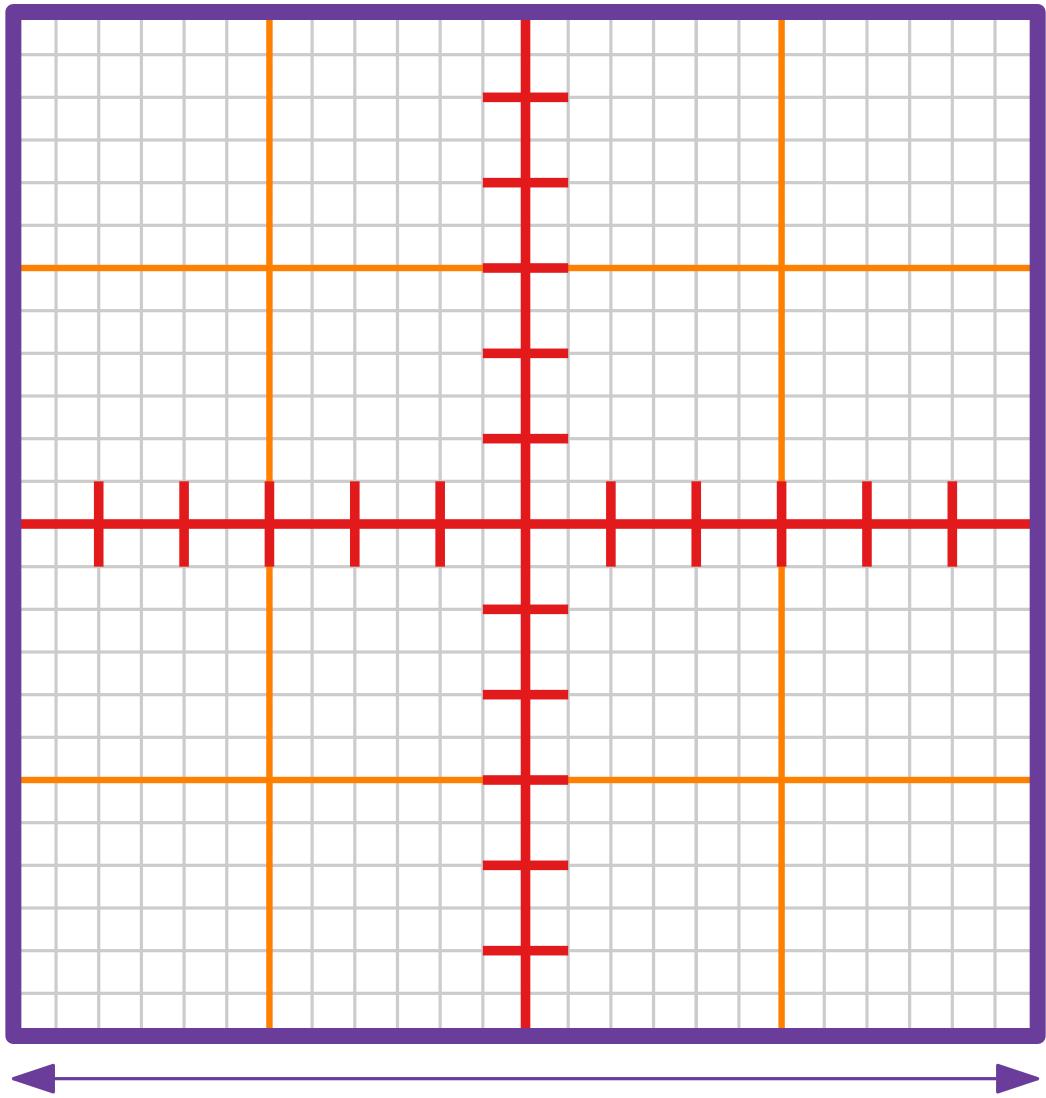
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
Recall that $k = 2 + 2 \log_2 n$.

Portals



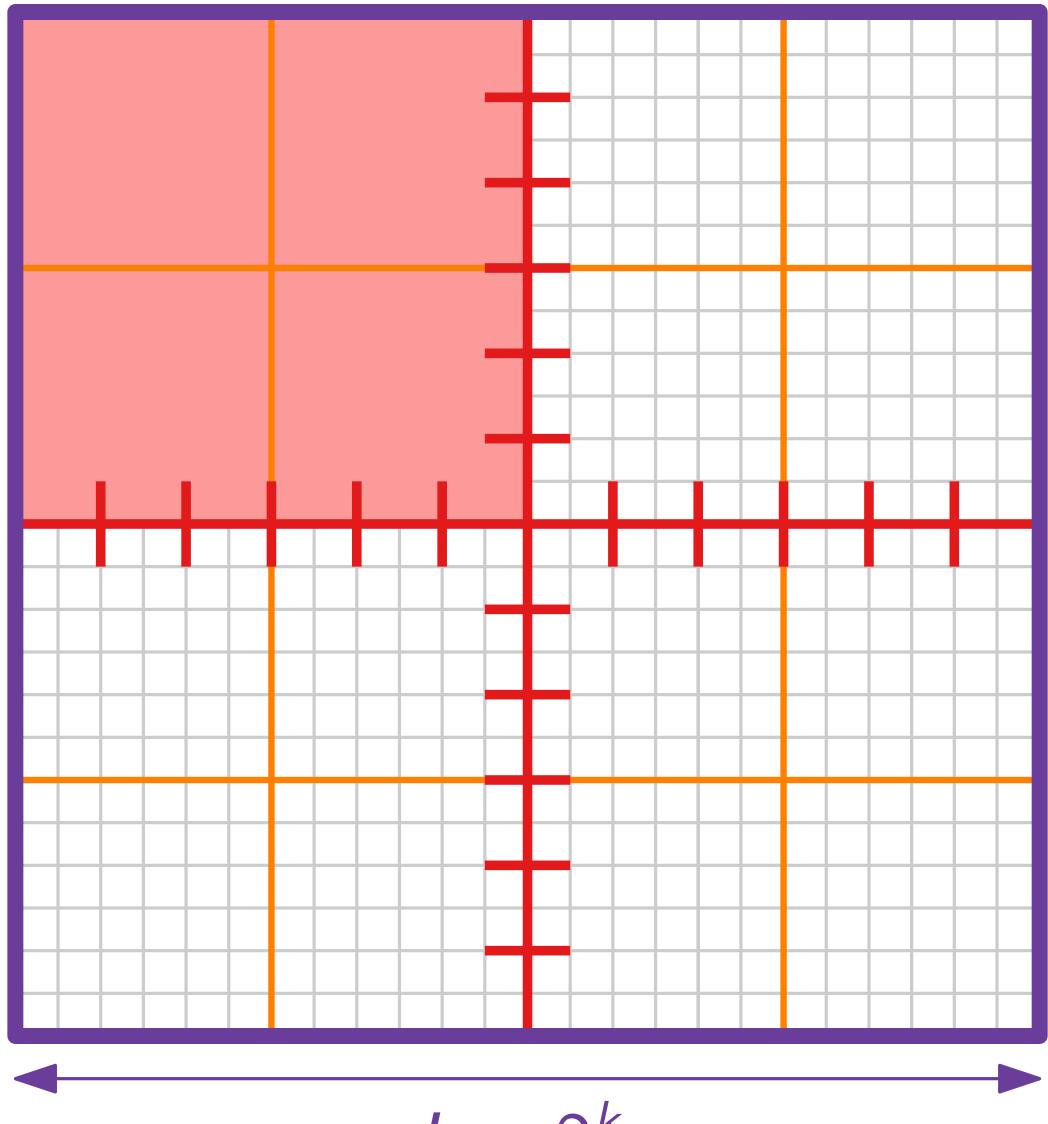
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$

Portals



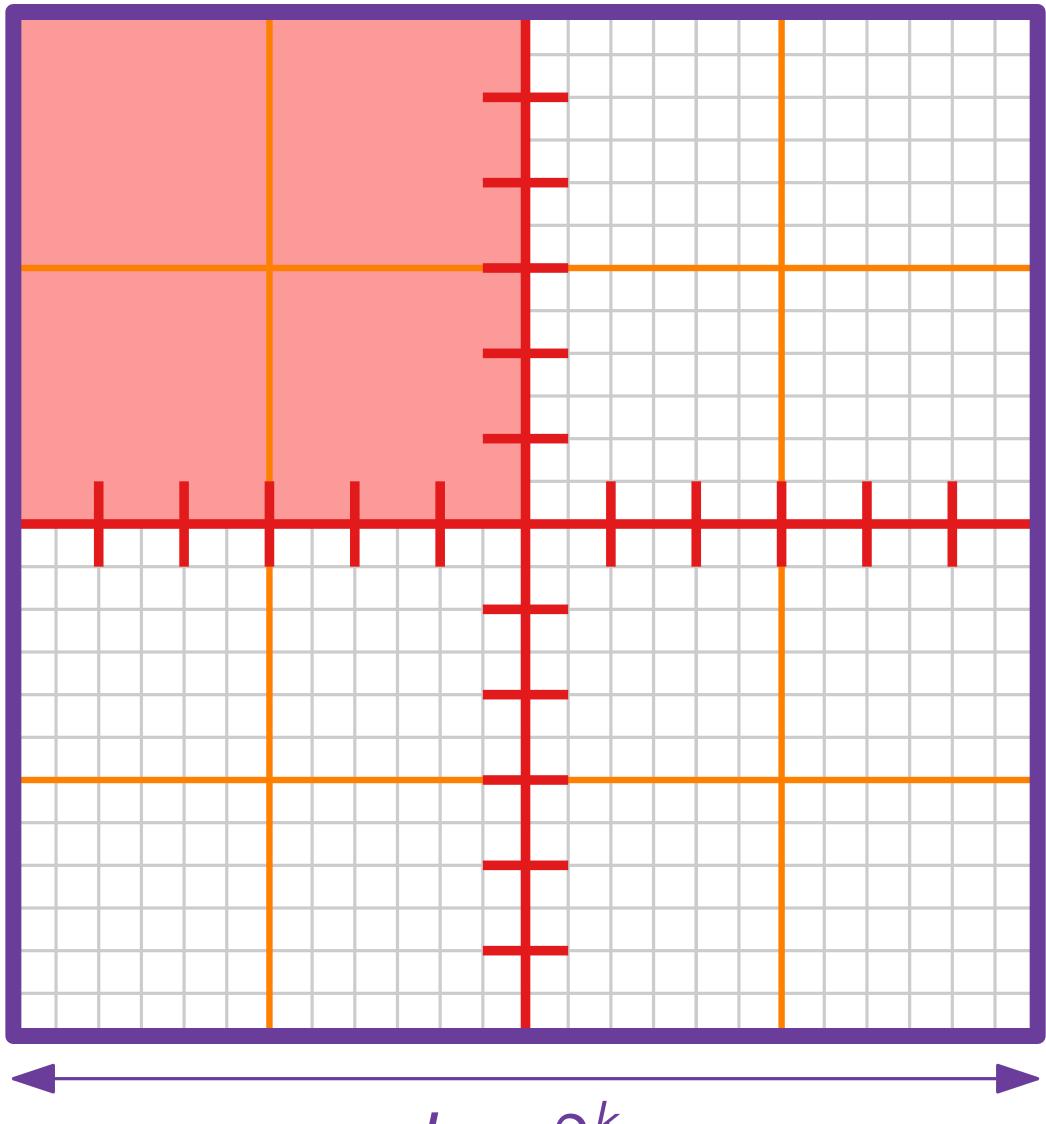
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
 Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals** on level- i line are at a distance of $L/(2^i m)$.

Portals



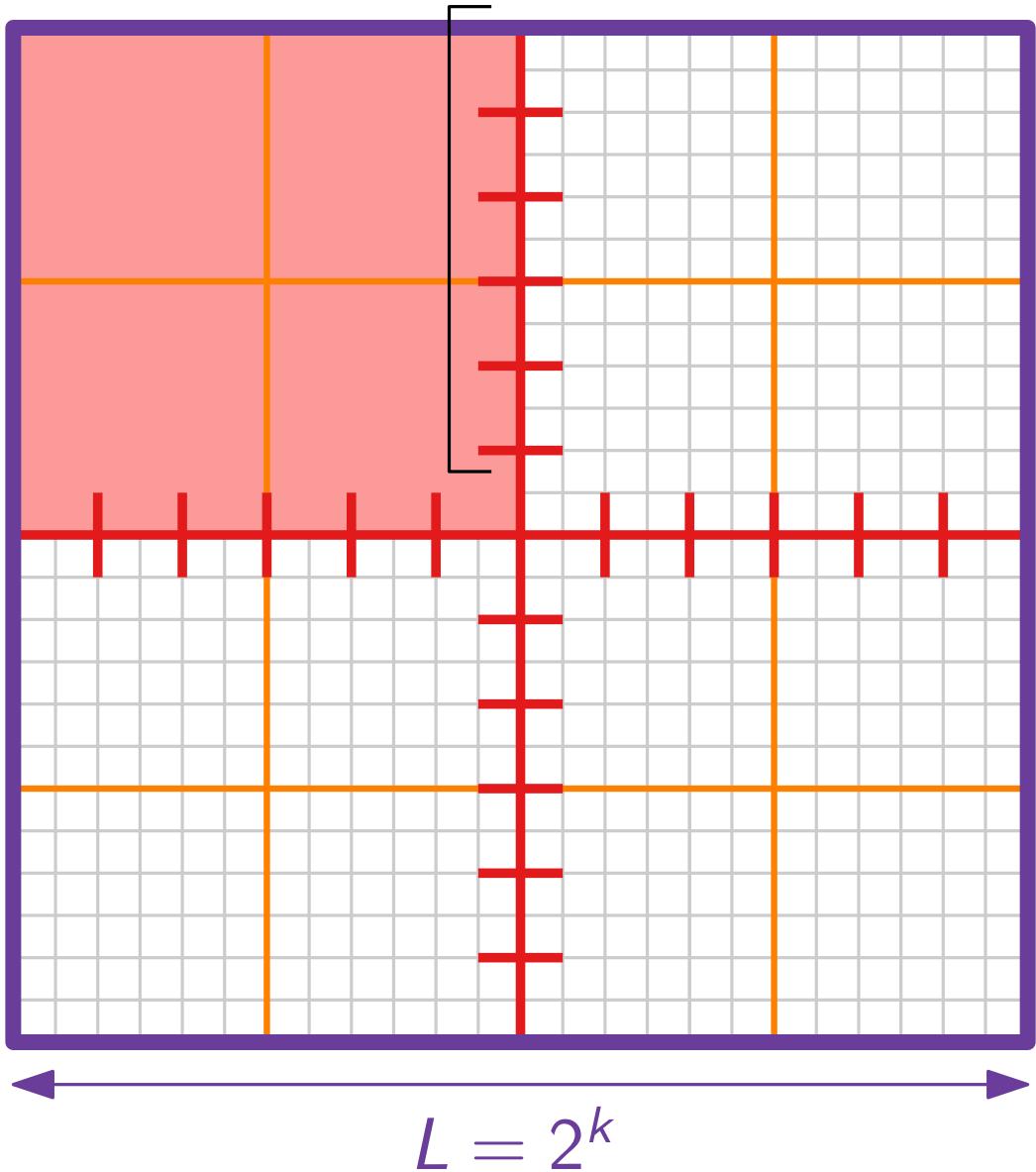
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
 Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals** on level- i line are at a distance of $L/(2^i m)$.
- Every level- i square has size

Portals



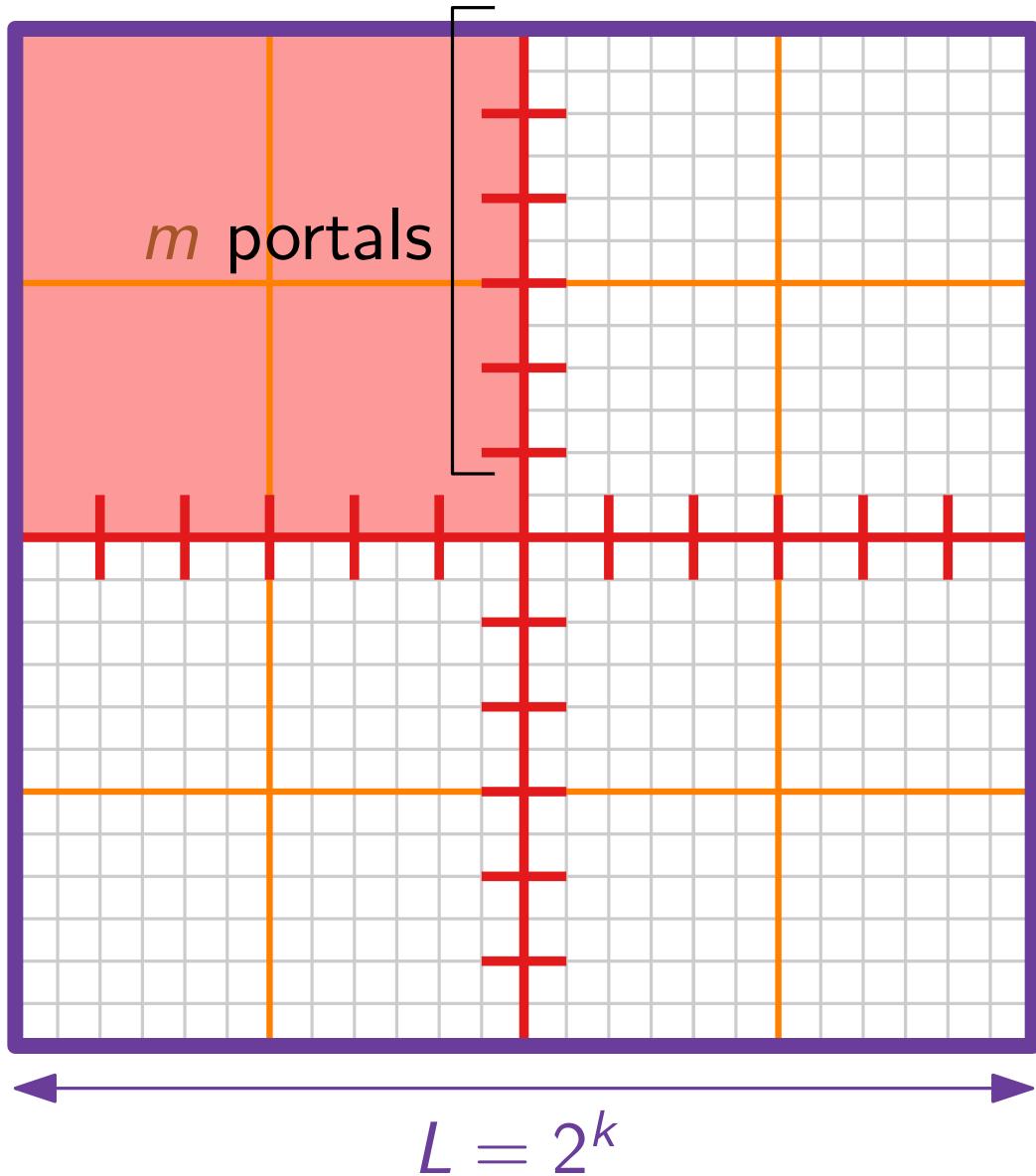
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
 Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals** on level- i line are at a distance of $L/(2^i m)$.
- Every level- i square has size $L/2^i \times L/2^i$.

Portals



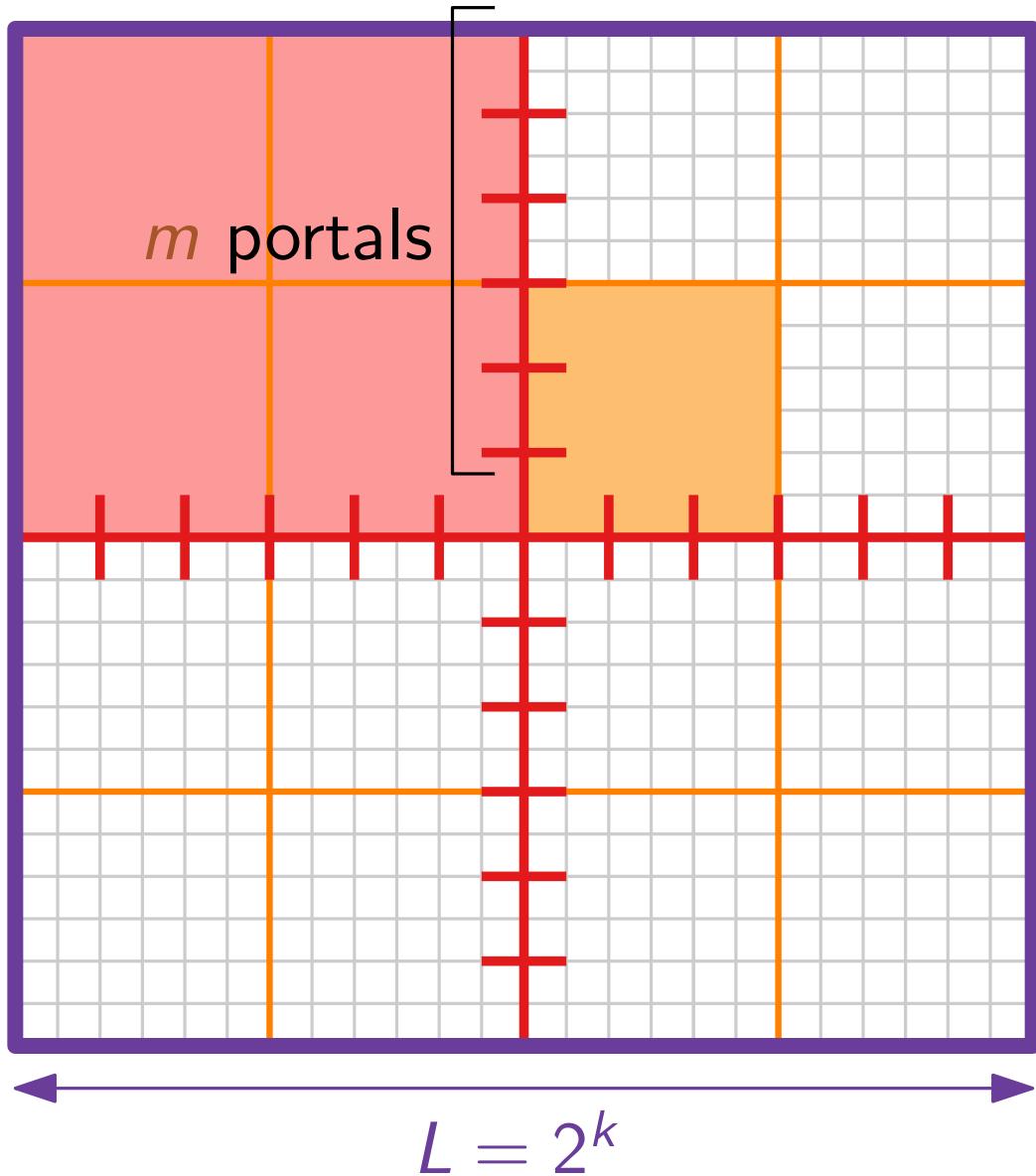
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
 Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals** on level- i line are at a distance of $L/(2^i m)$.
- Every level- i square has size $L/2^i \times L/2^i$.

Portals



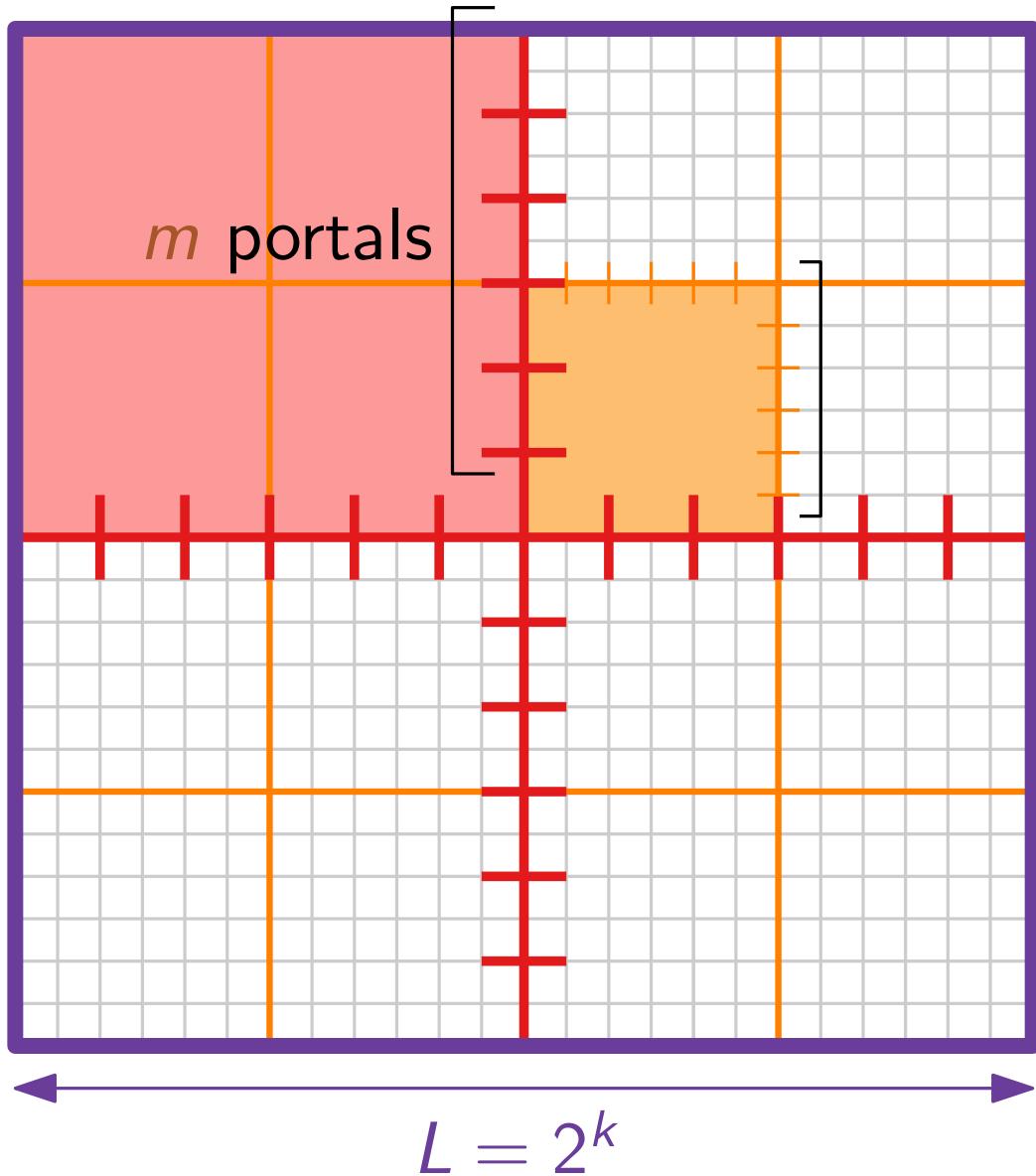
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals on level- i line are at a distance of $L/(2^i m)$.
- Every level- i square has size $L/2^i \times L/2^i$.

Portals



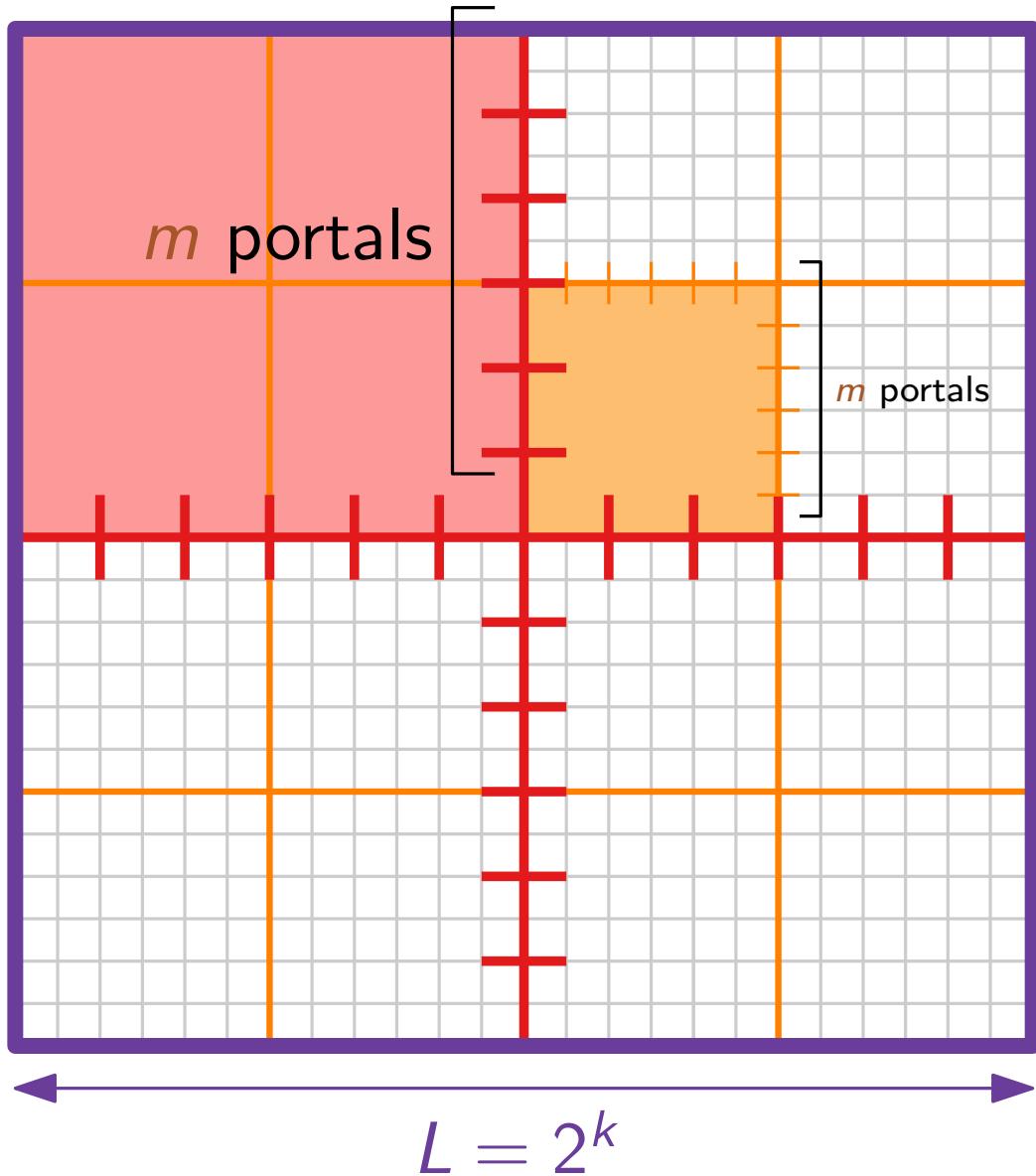
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
 Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals** on level- i line are at a distance of $L/(2^i m)$.
- Every level- i square has size $L/2^i \times L/2^i$.

Portals



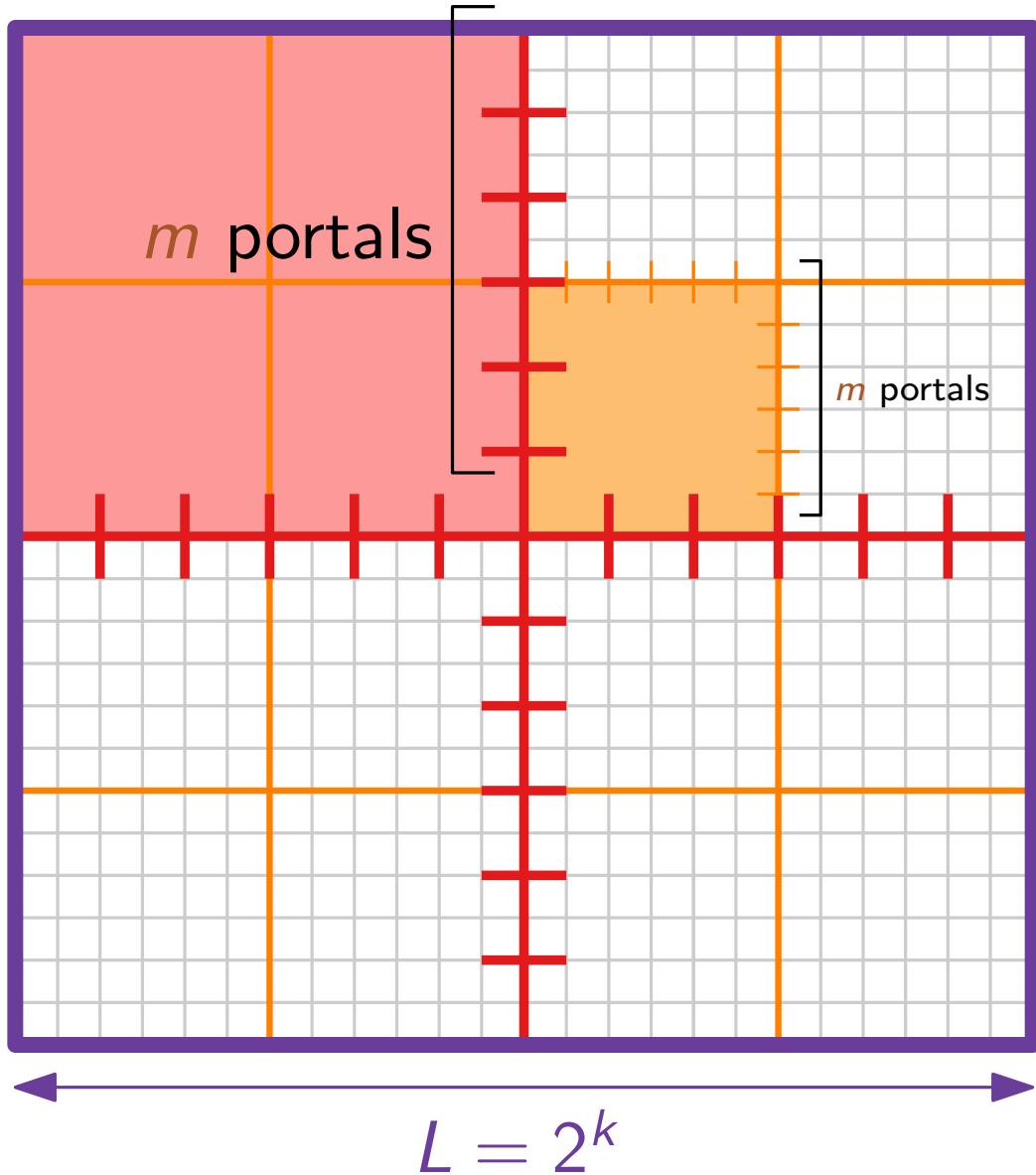
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals on level- i line are at a distance of $L/(2^i m)$.
- Every level- i square has size $L/2^i \times L/2^i$.

Portals



- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
 Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals on level- i line are at a distance of $L/(2^i m)$.
- Every level- i square has size $L/2^i \times L/2^i$.

Portals



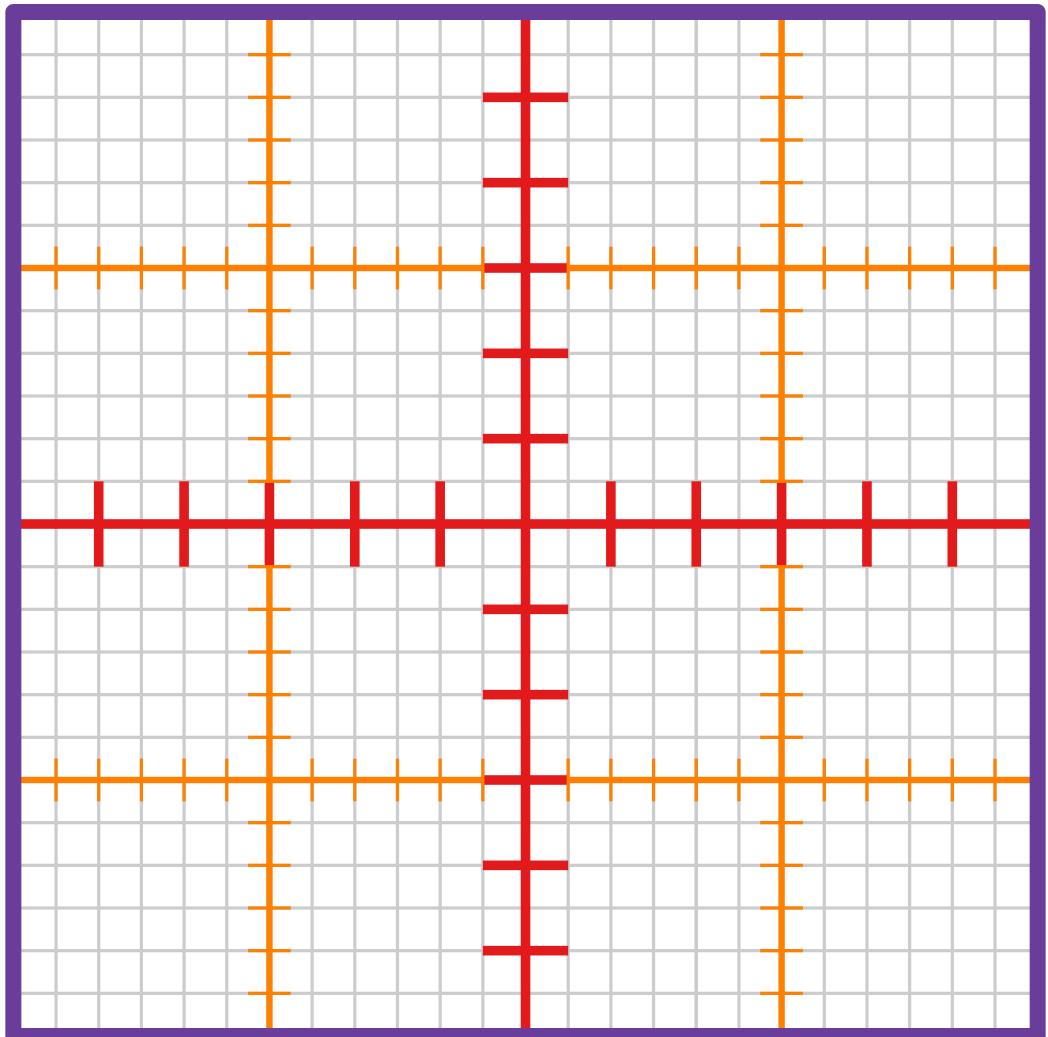
- Let m be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.
Recall that $k = 2 + 2 \log_2 n$.
 $\Rightarrow m \in O((\log n)/\varepsilon)$
- Portals on level- i line are at a distance of $L/(2^i m)$.
- Every level- i square has size $L/2^i \times L/2^i$.
- A level- i square has $\leq 4m$ portals on its boundary.

Approximation Algorithms

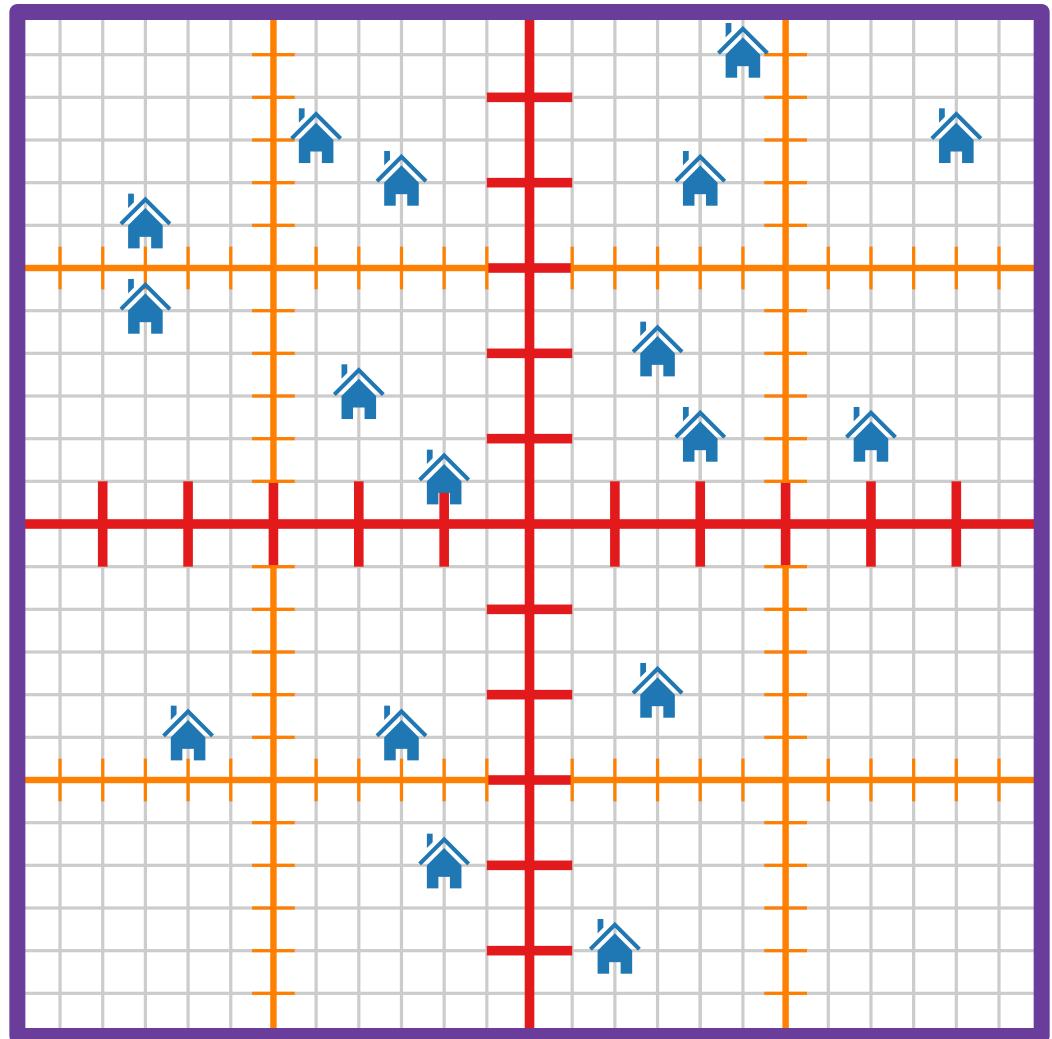
Lecture 9:
A PTAS for EUCLIDEAN TSP

Part III:
Well-Behaved Tours

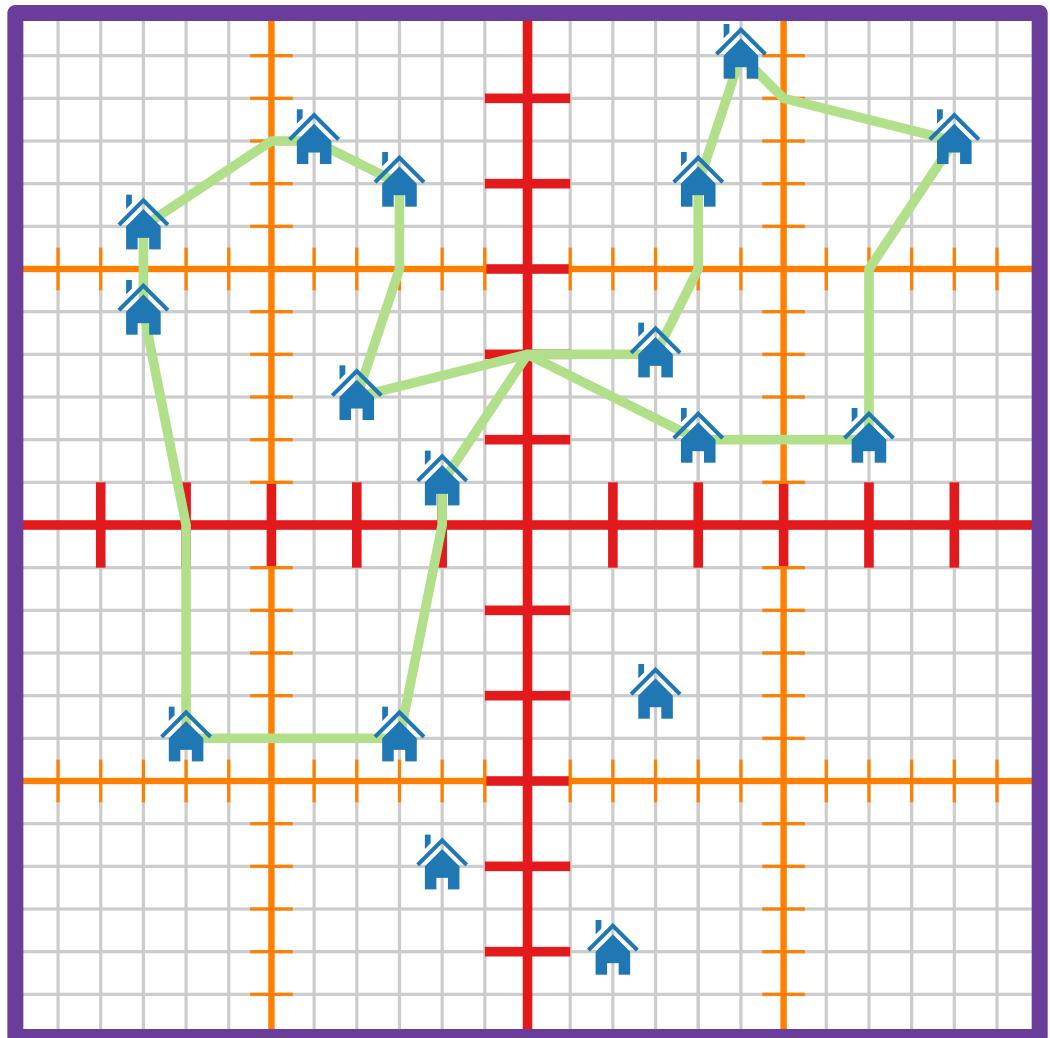
Well-Behaved Tours



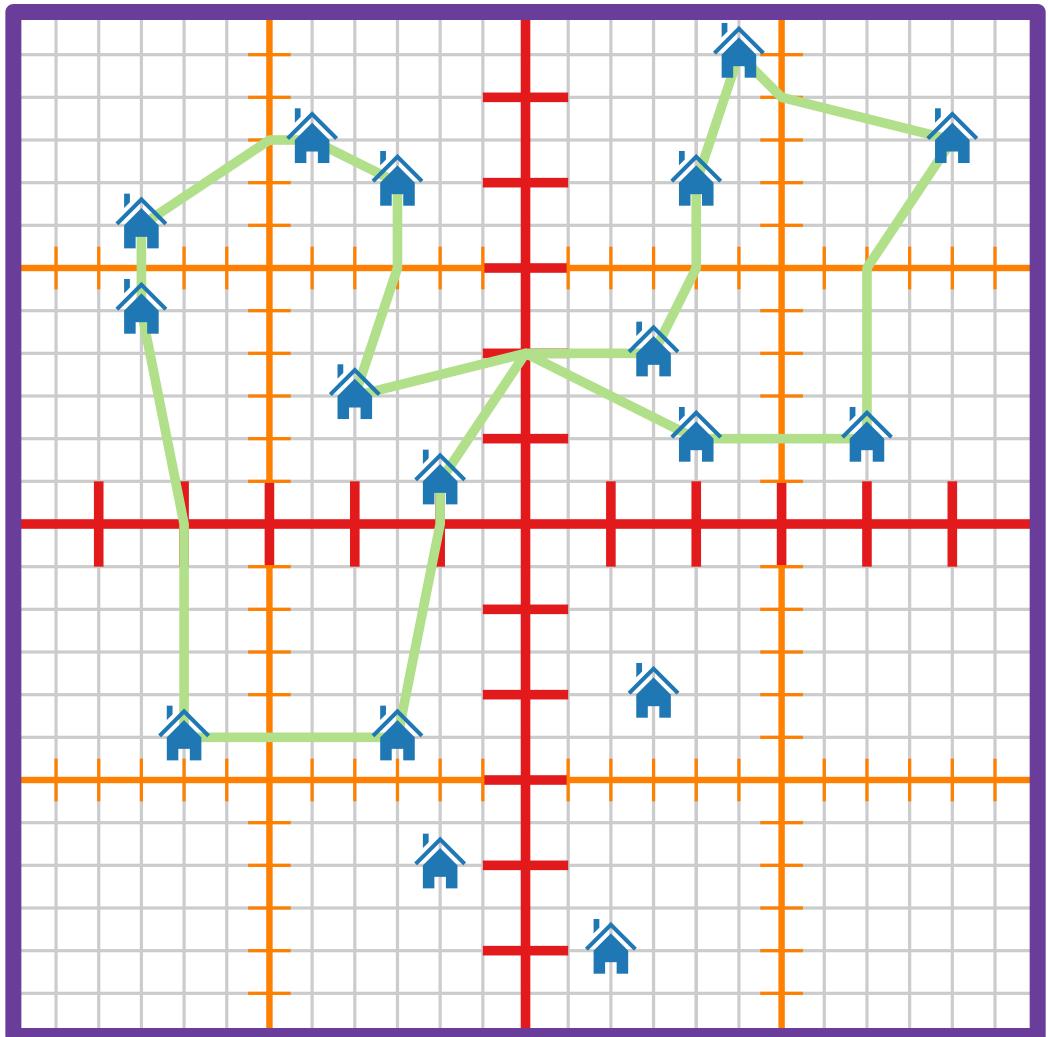
Well-Behaved Tours



Well-Behaved Tours

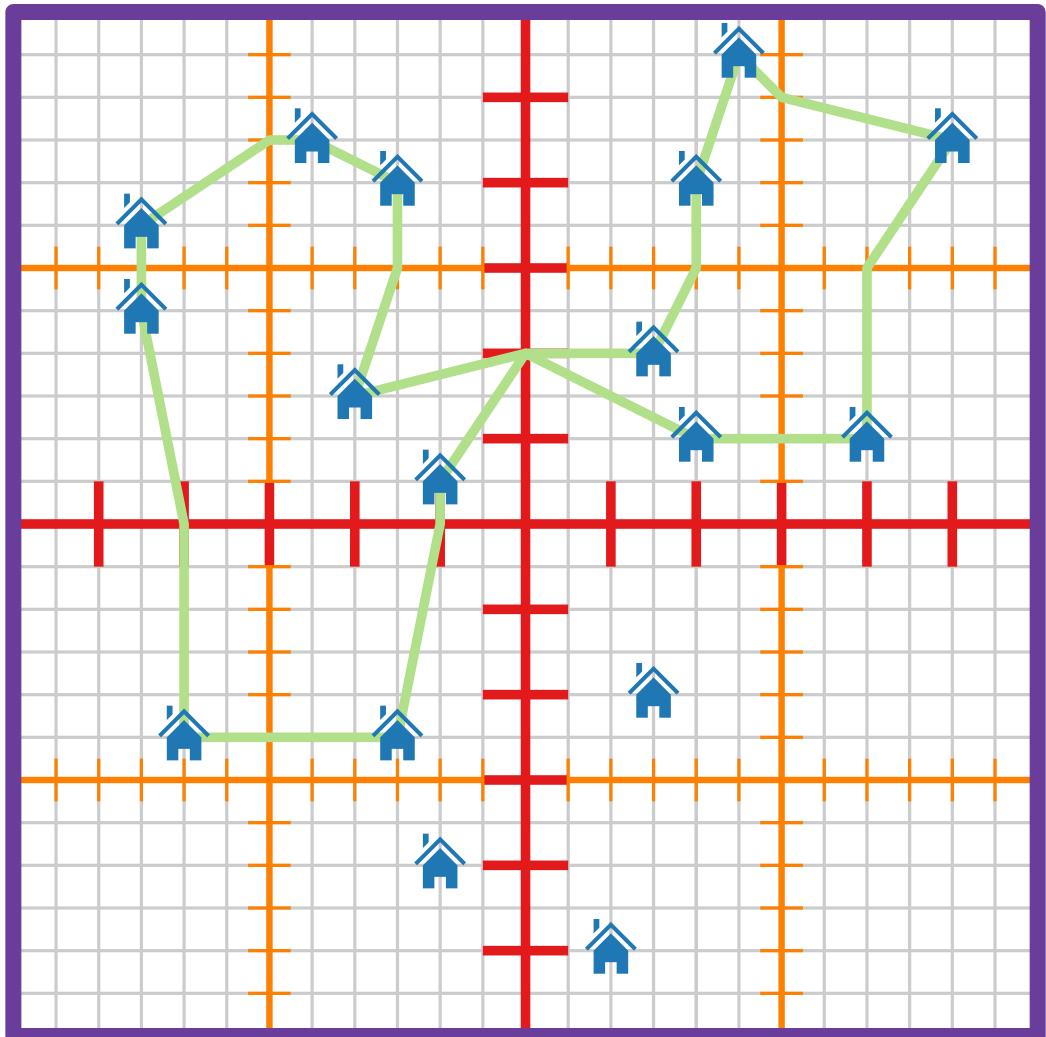


Well-Behaved Tours



A tour is *well-behaved* if

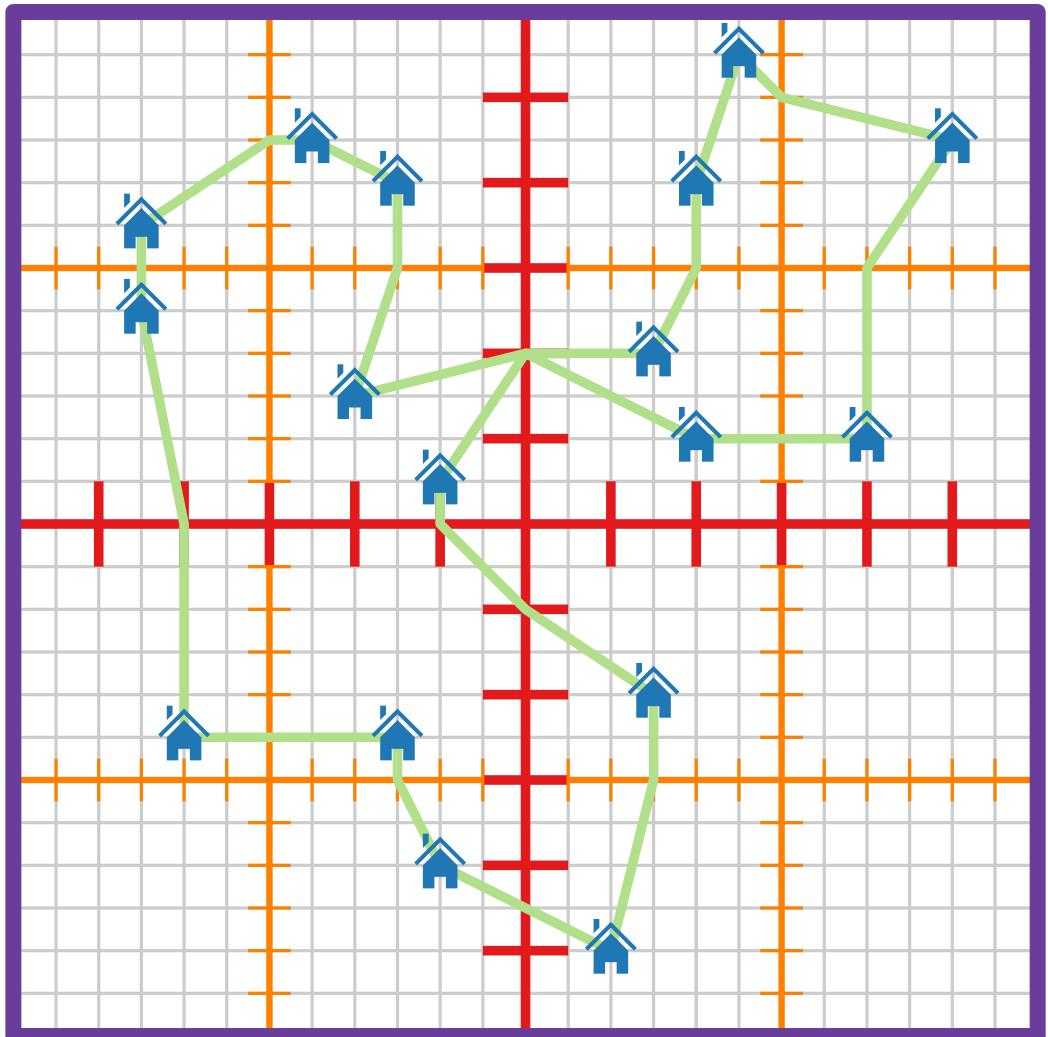
Well-Behaved Tours



A tour is *well-behaved* if

- it involves all houses

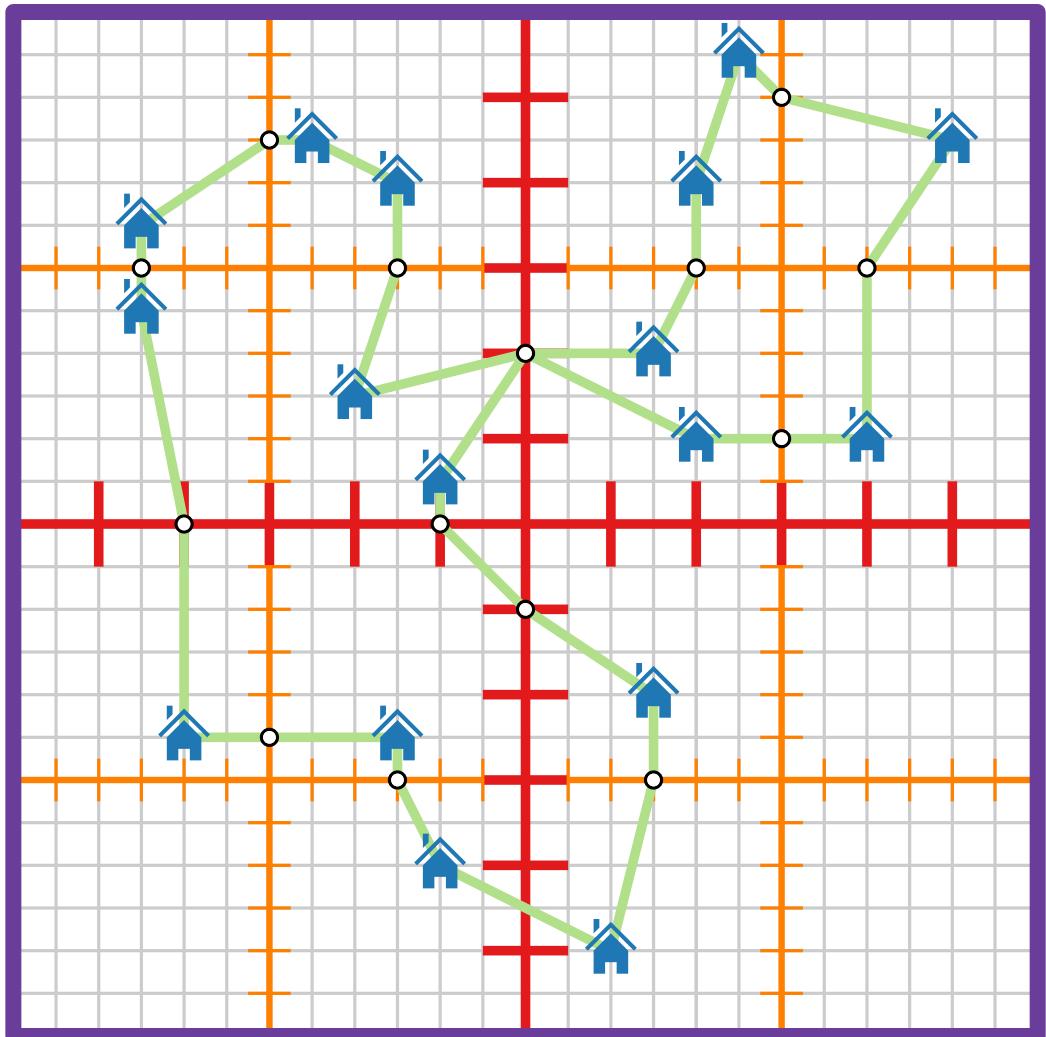
Well-Behaved Tours



A tour is *well-behaved* if

- it involves all houses

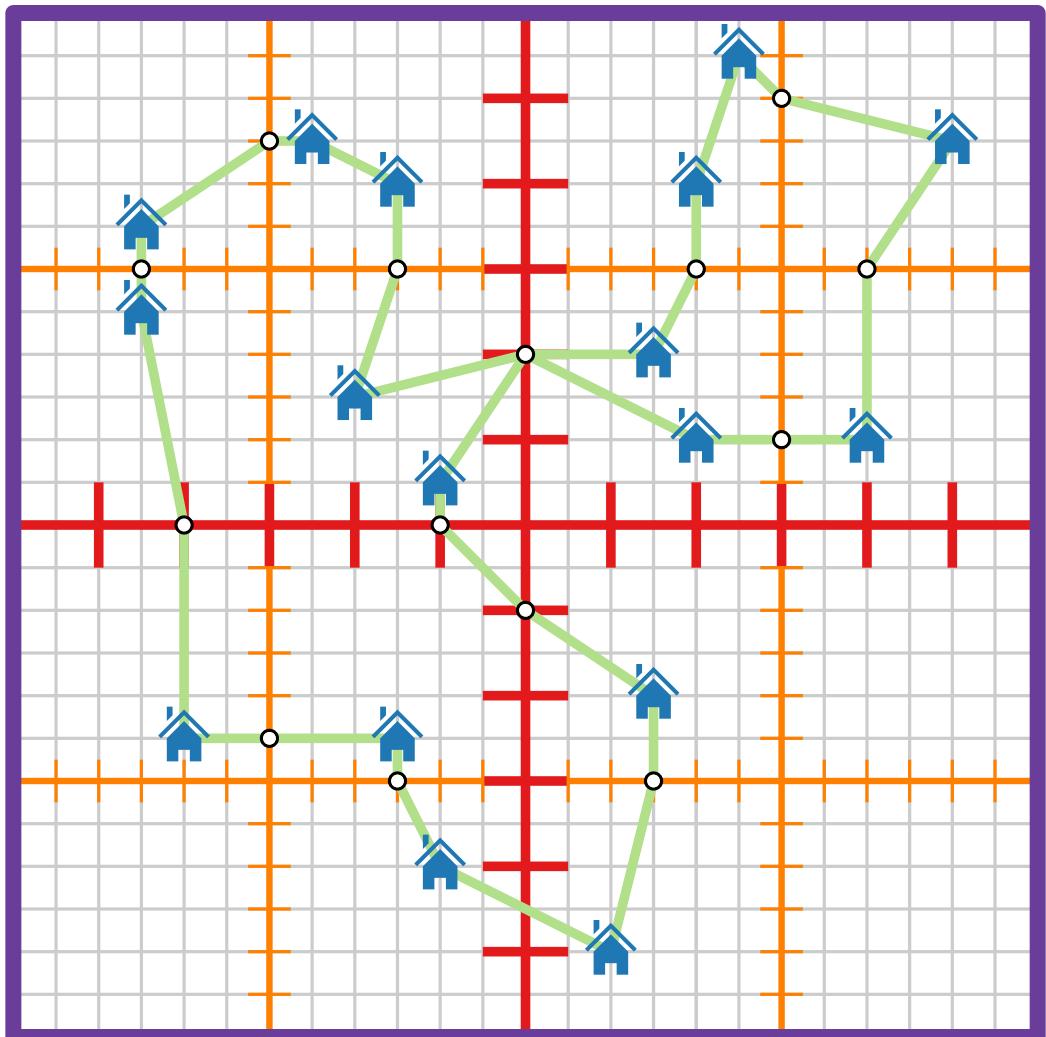
Well-Behaved Tours



A tour is *well-behaved* if

- it involves all houses and a subset of the portals,

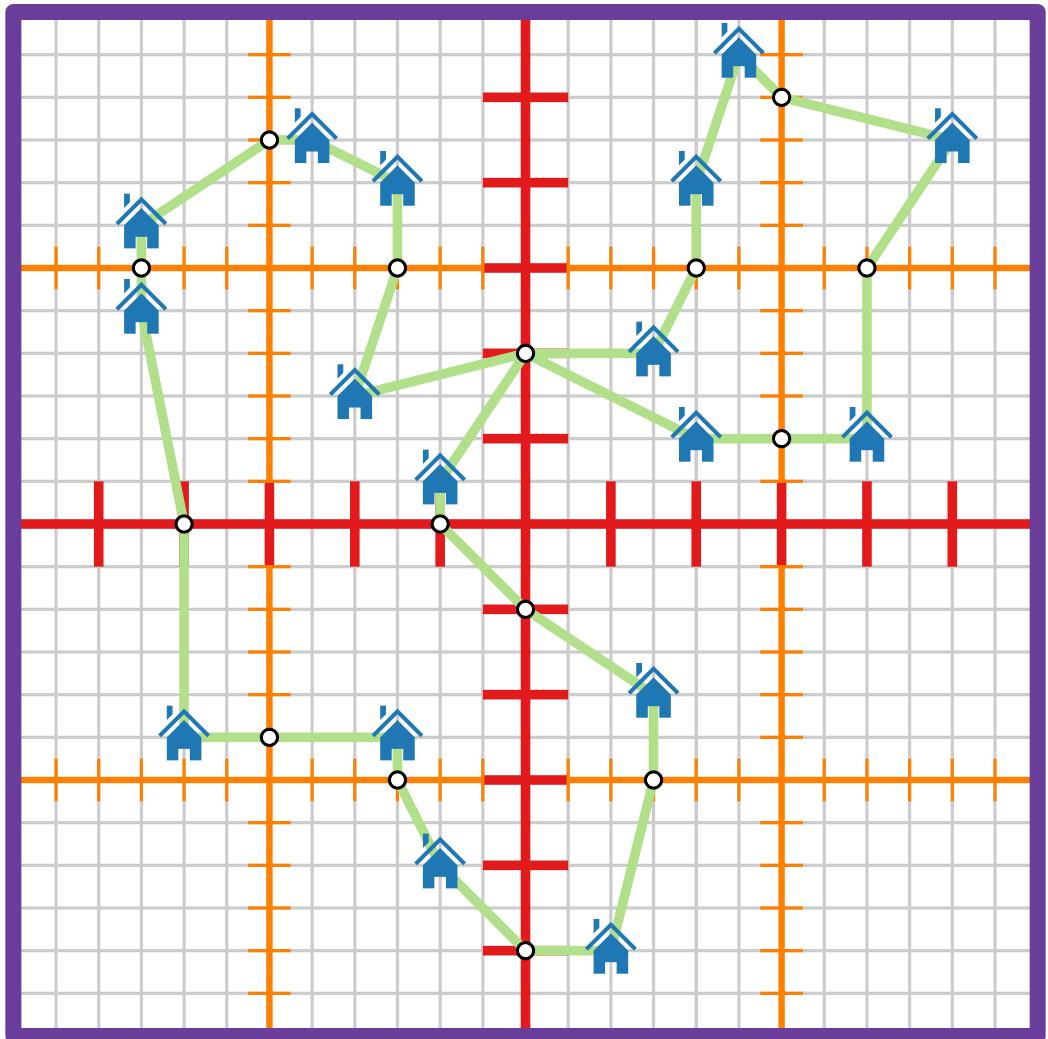
Well-Behaved Tours



A tour is *well-behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,

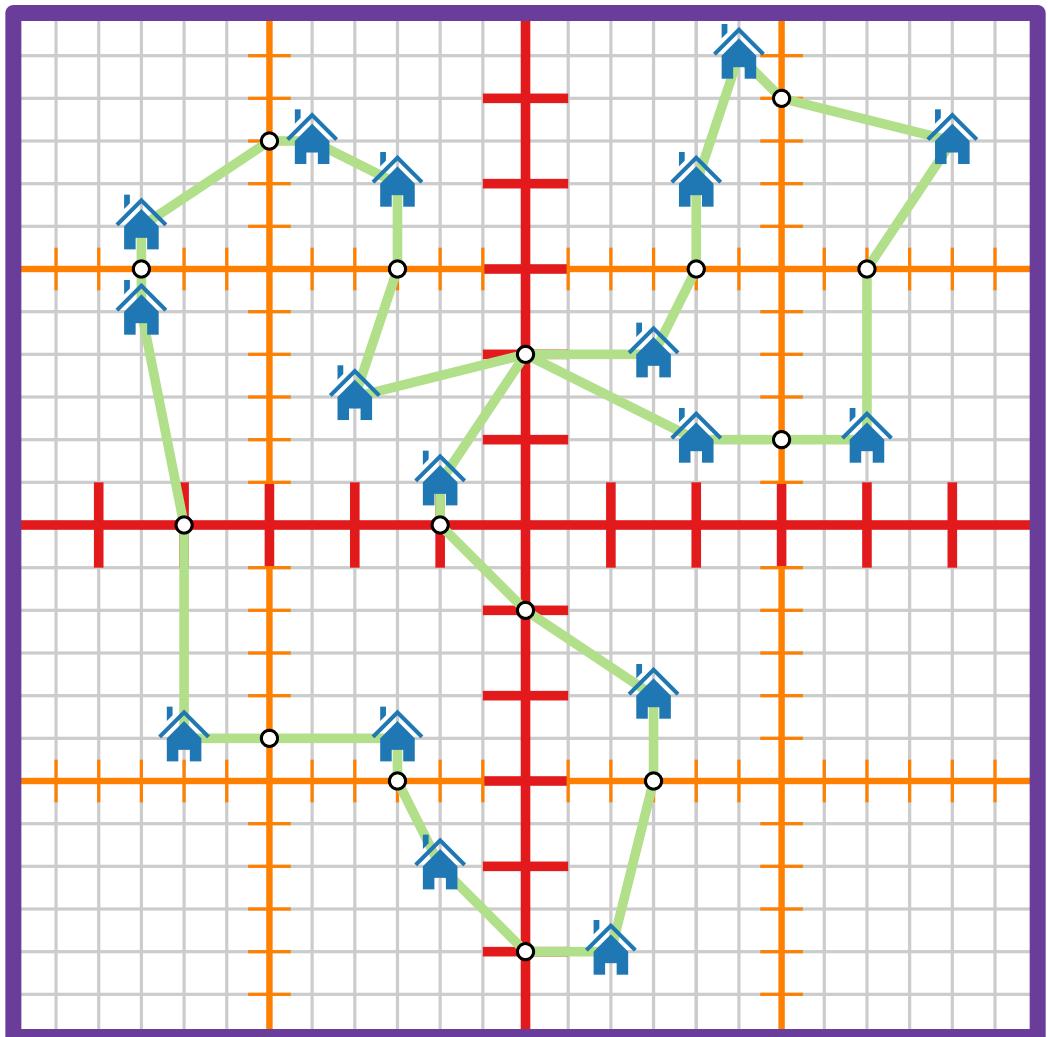
Well-Behaved Tours



A tour is *well-behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,

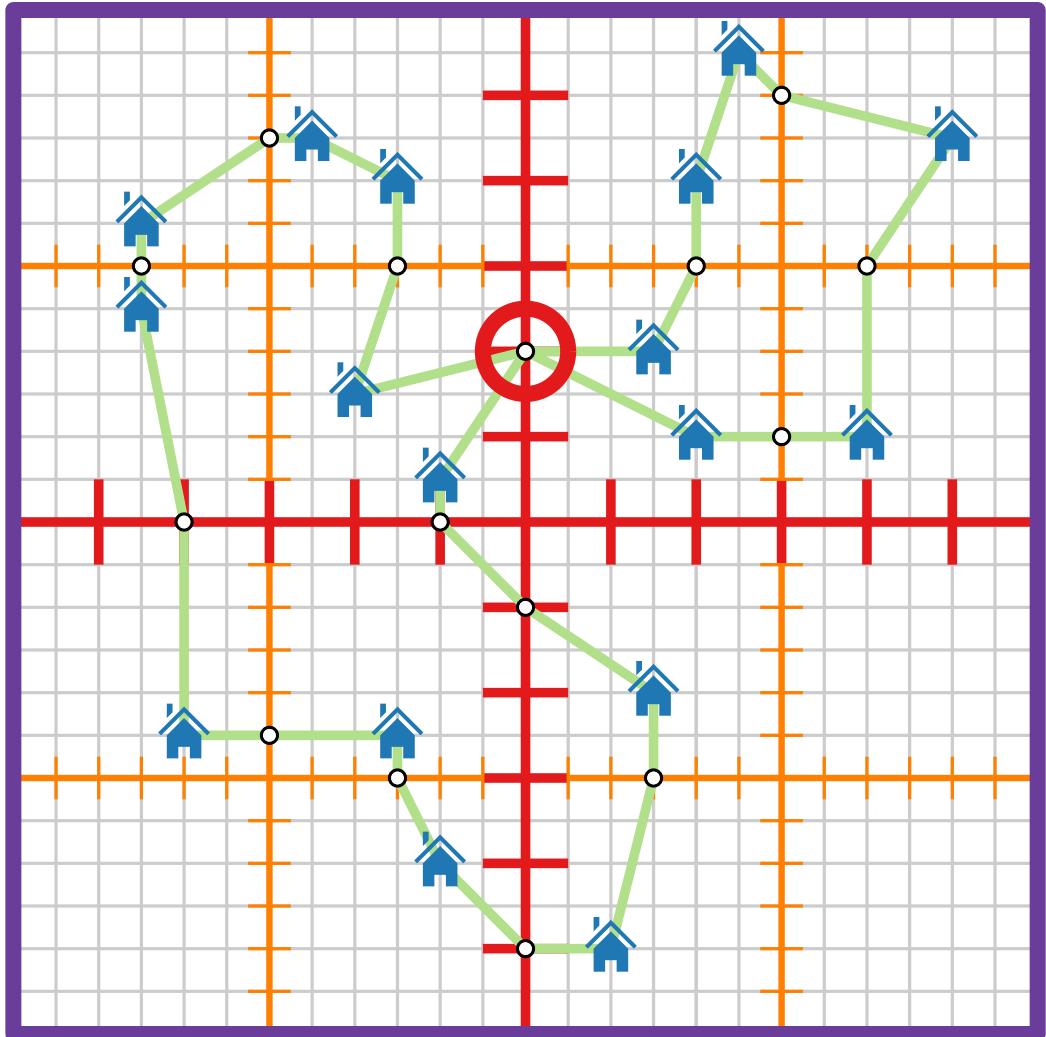
Well-Behaved Tours



A tour is *well-behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

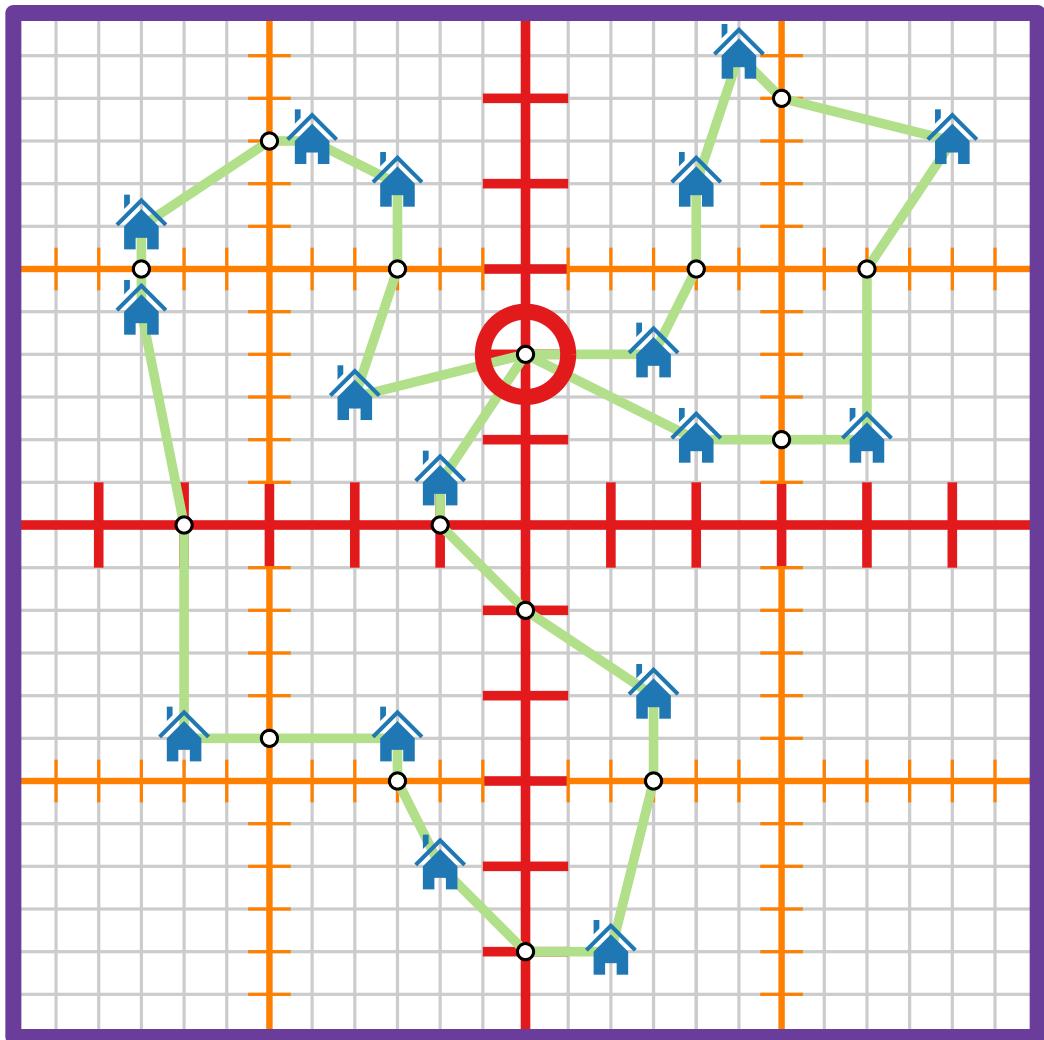
Well-Behaved Tours



A tour is *well-behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

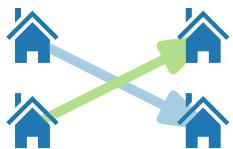
Well-Behaved Tours



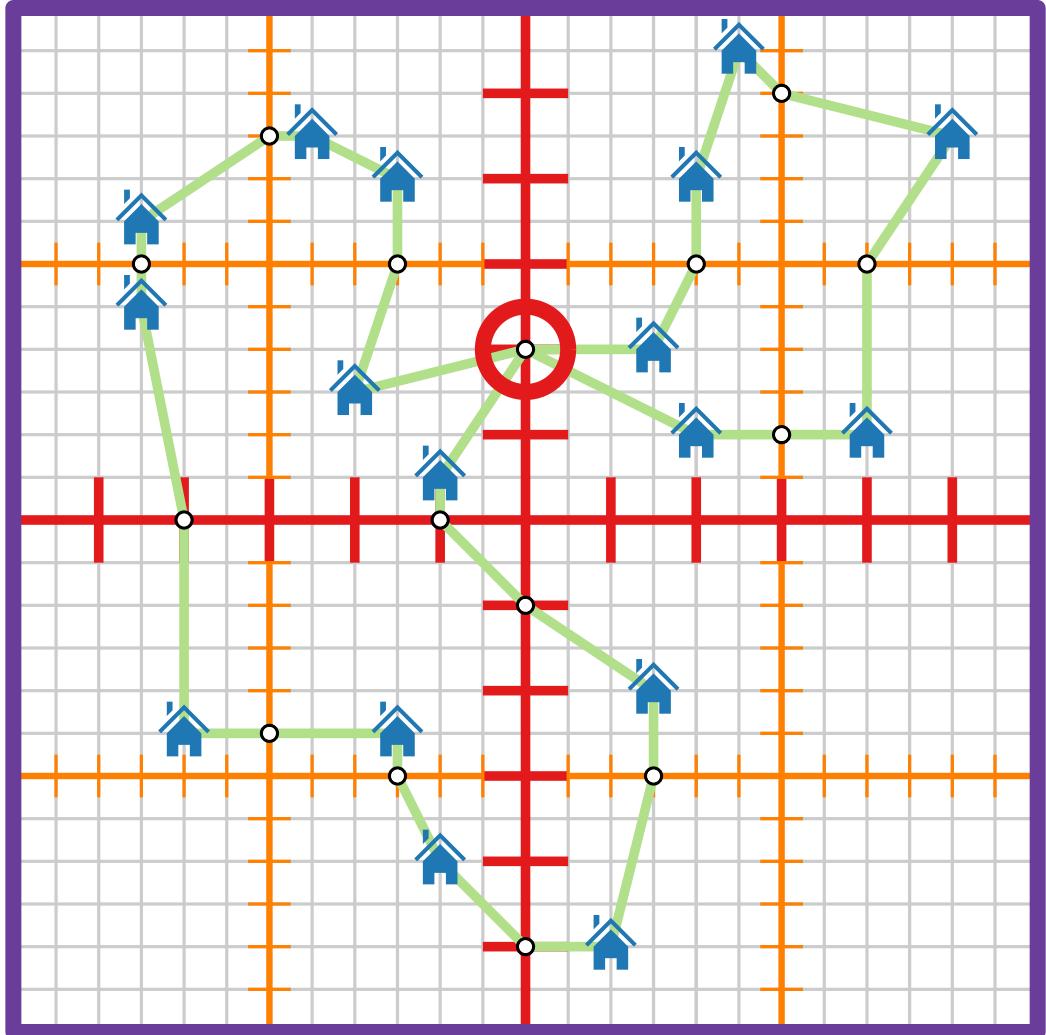
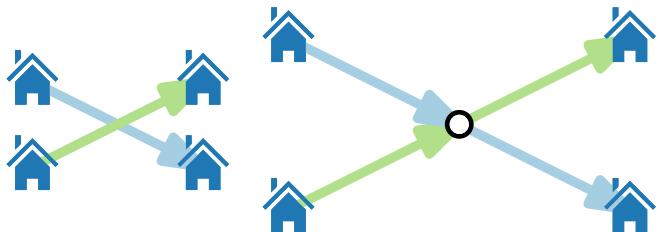
A tour is *well-behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

Crossing



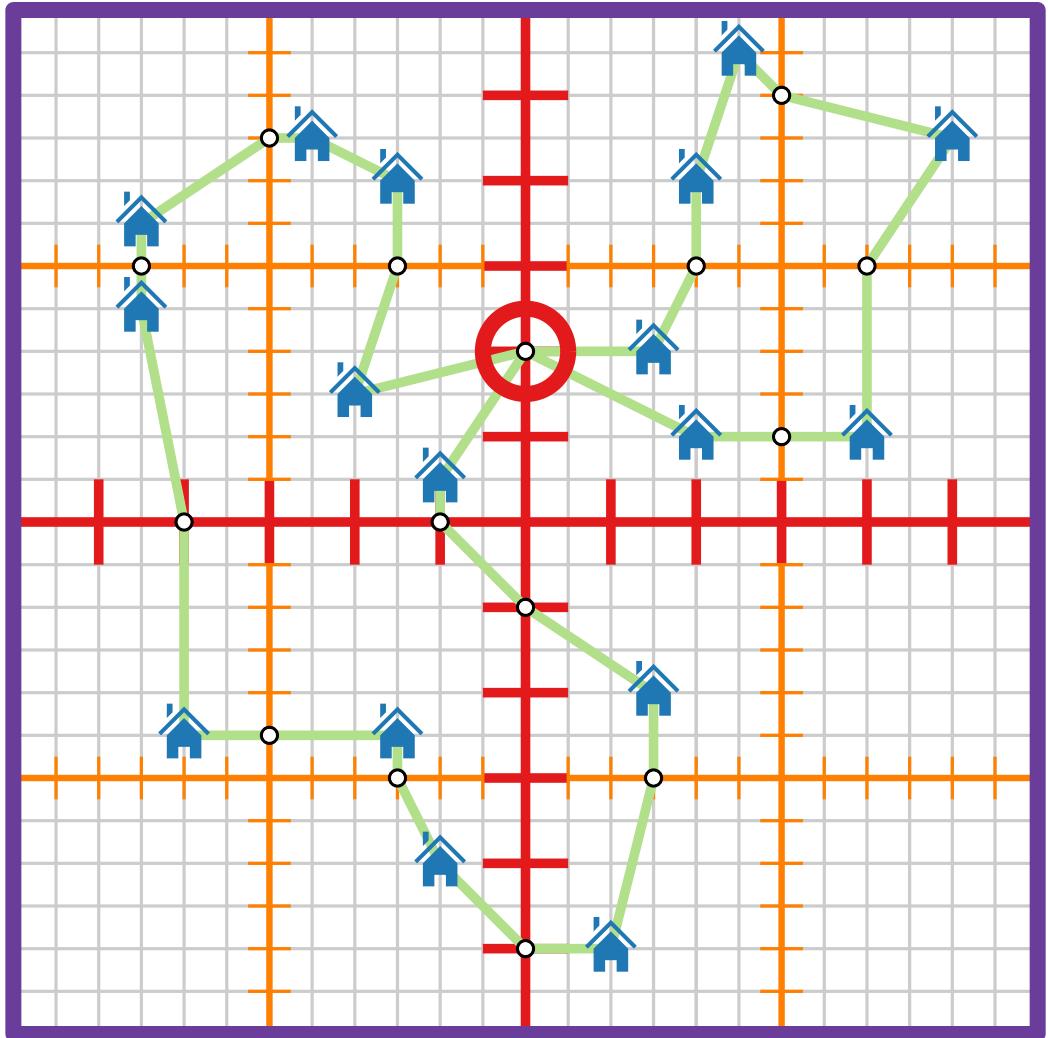
Well-Behaved Tours



A tour is *well-behaved* if

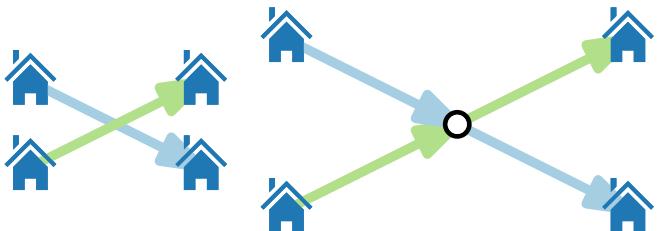
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

Well-Behaved Tours



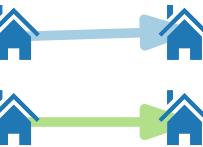
A tour is *well-behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

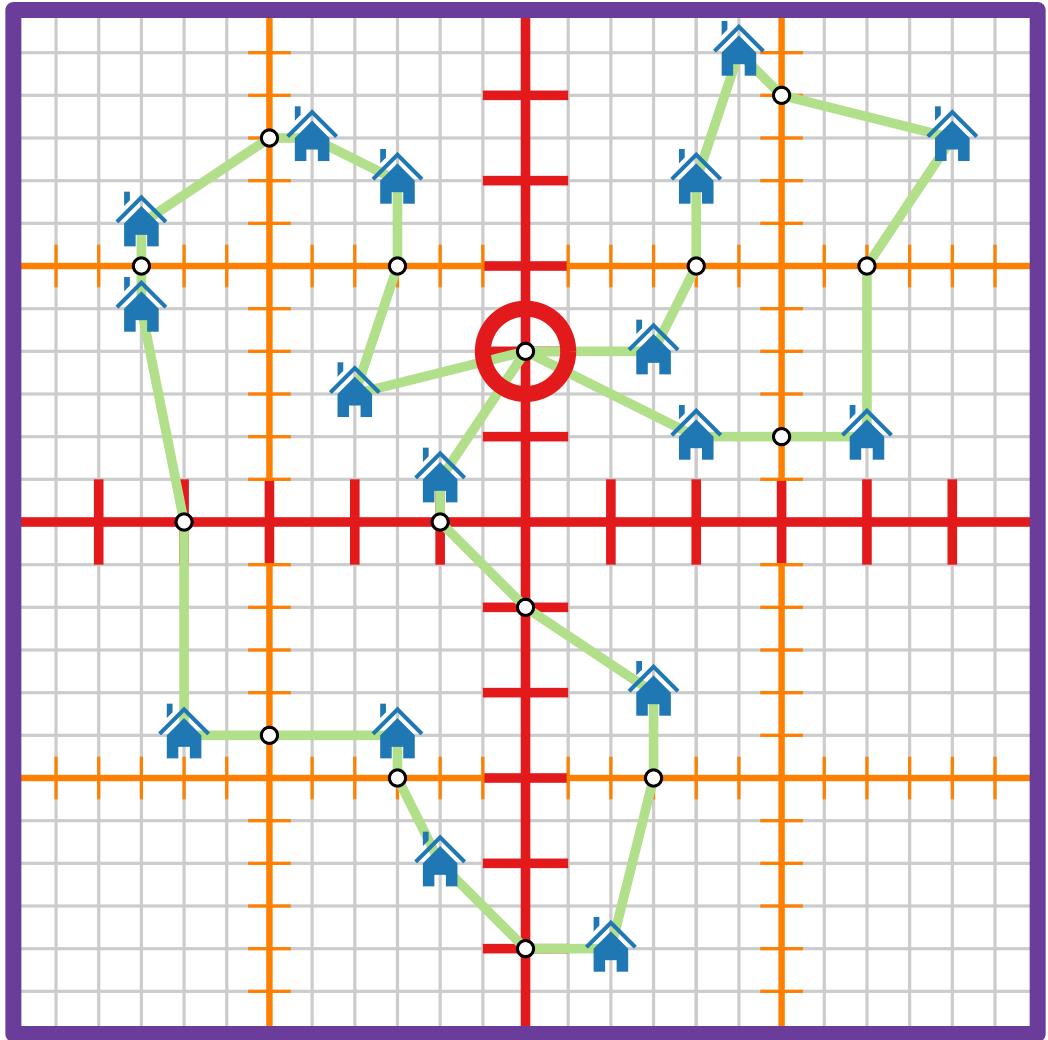


Crossing

No crossing

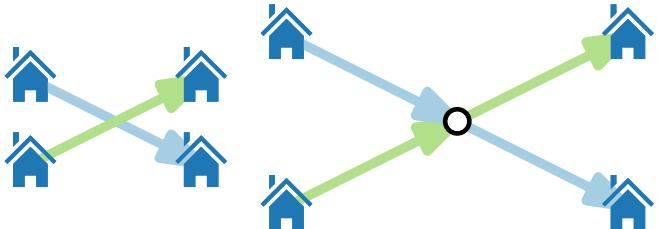


Well-Behaved Tours

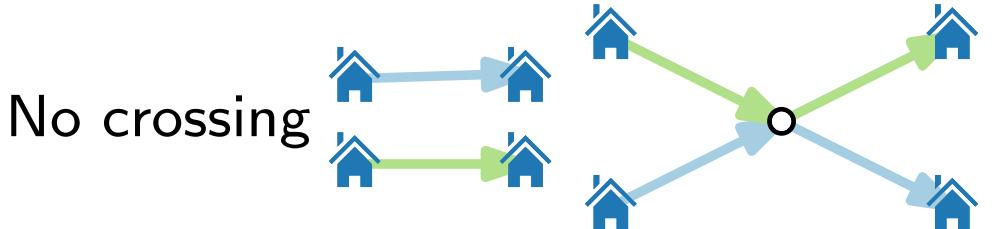


A tour is *well-behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

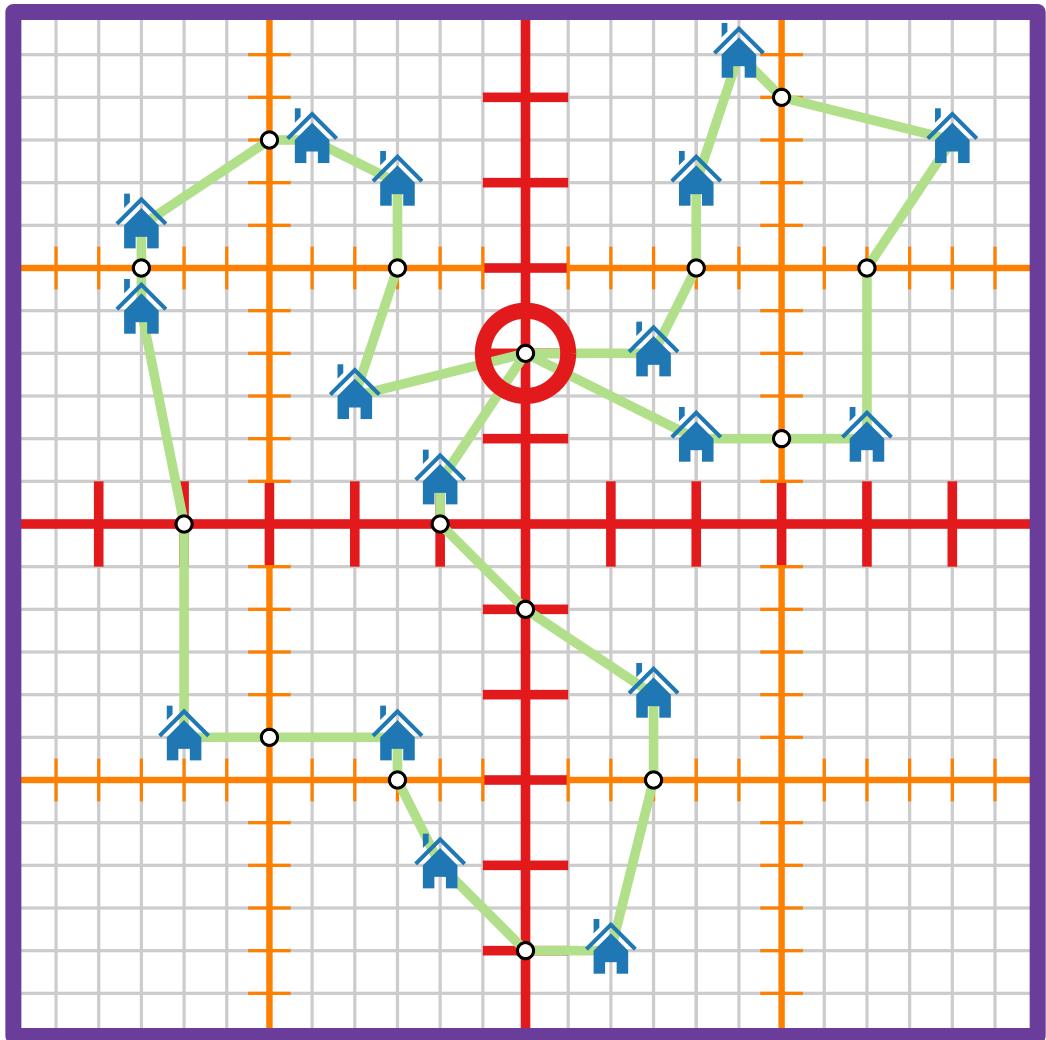


Crossing



No crossing

Well-Behaved Tours

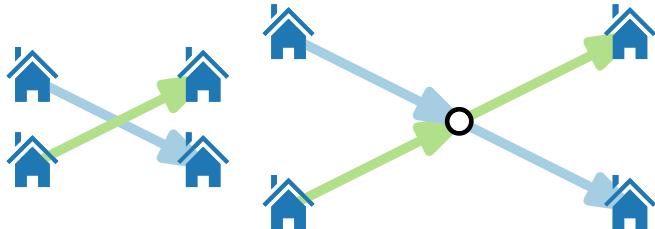


A tour is *well-behaved* if

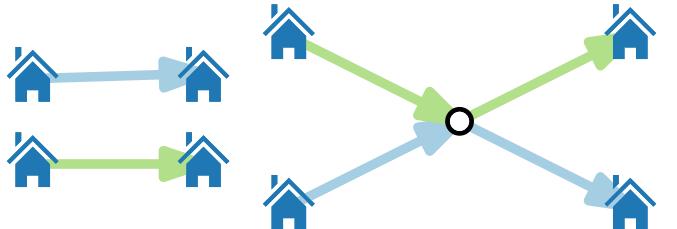
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

W.l.o.g. (**homework**):
No portal visited more than twice

Crossing



No crossing



Computing a Well-Behaved Tour

Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be computed in $2^{O(\textcolor{brown}{m})} = n^{O(1/\varepsilon)}$ time.

Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be computed in $2^{O(\textcolor{brown}{m})} = n^{O(1/\varepsilon)}$ time.

Sketch.

Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be computed in $2^{O(\textcolor{brown}{m})} = n^{O(1/\varepsilon)}$ time.

Sketch. • Dynamic programming!



Computing a Well-Behaved Tour

Lemma.

An optimal well-behaved tour can be computed in $2^{O(\textcolor{brown}{m})} = n^{O(1/\varepsilon)}$ time.

Sketch.

- Dynamic programming!
- Compute sub-structure of an optimal tour for each square in the dissection tree.

Computing a Well-Behaved Tour

Lemma.

An optimal well-behaved tour can be computed in $2^{O(\textcolor{brown}{m})} = n^{O(1/\varepsilon)}$ time.

Sketch.

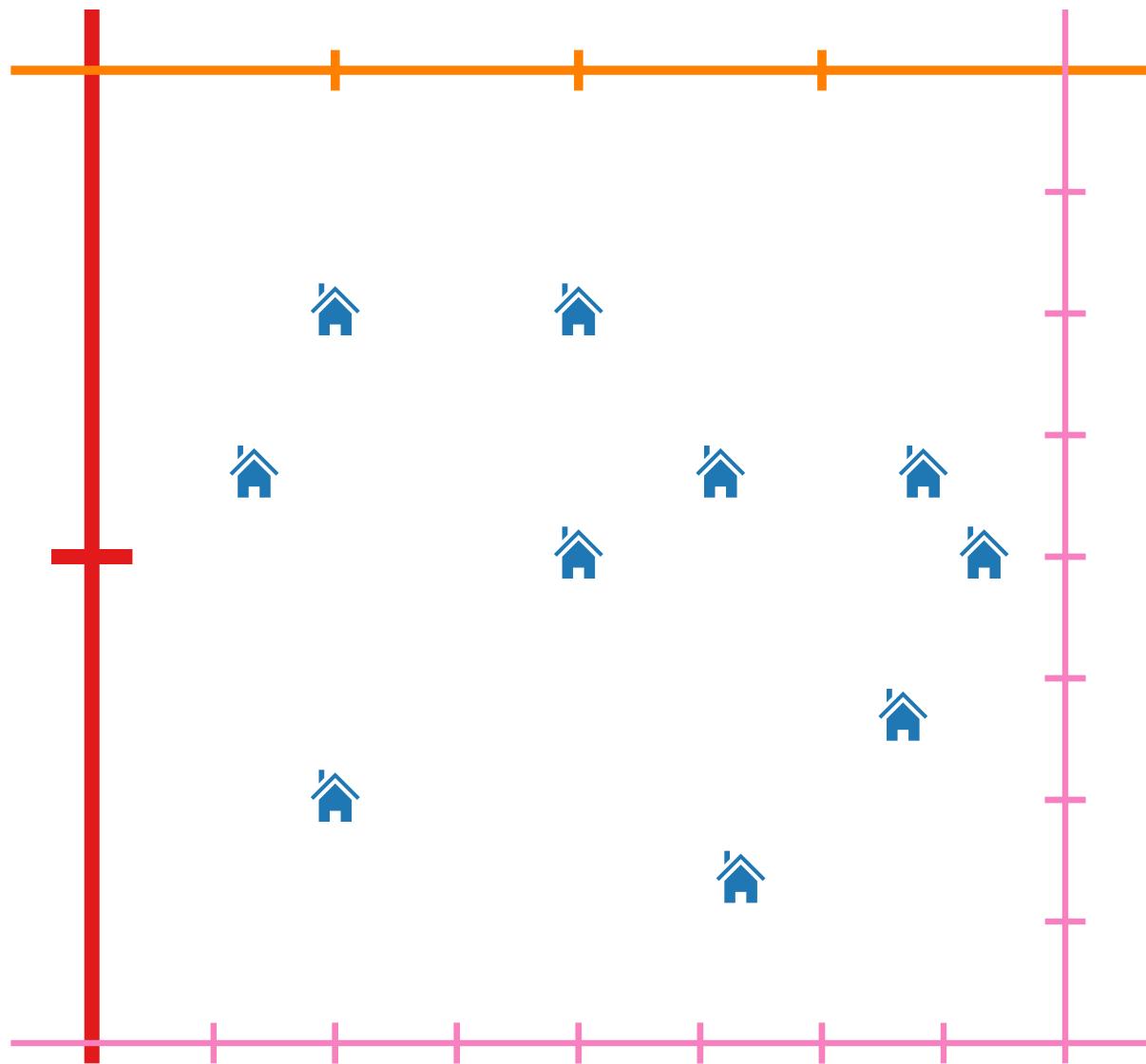
- Dynamic programming!
- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

Approximation Algorithms

Lecture 9:
A PTAS for EUCLIDEAN TSP

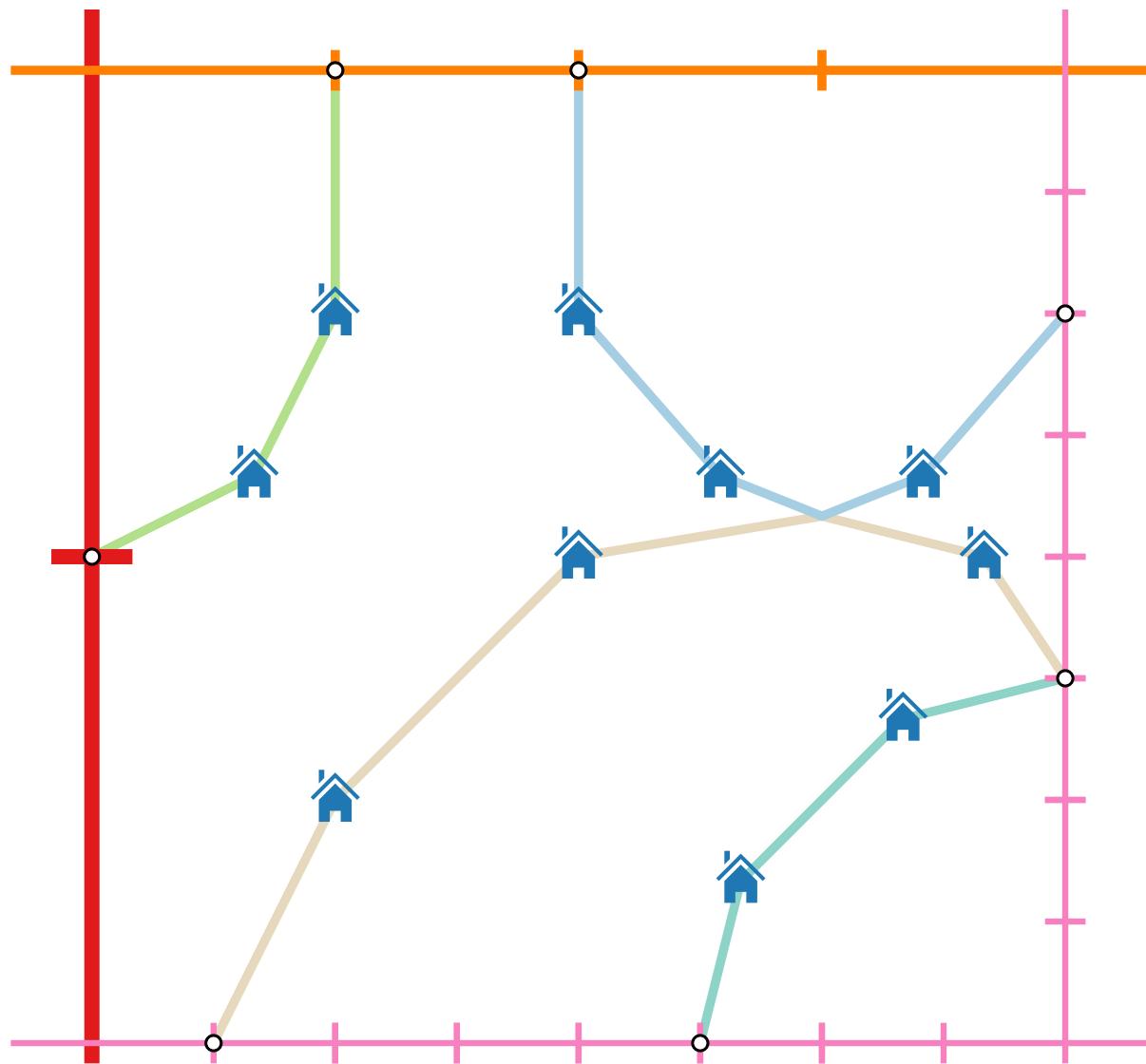
Part IV:
Dynamic Program

Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

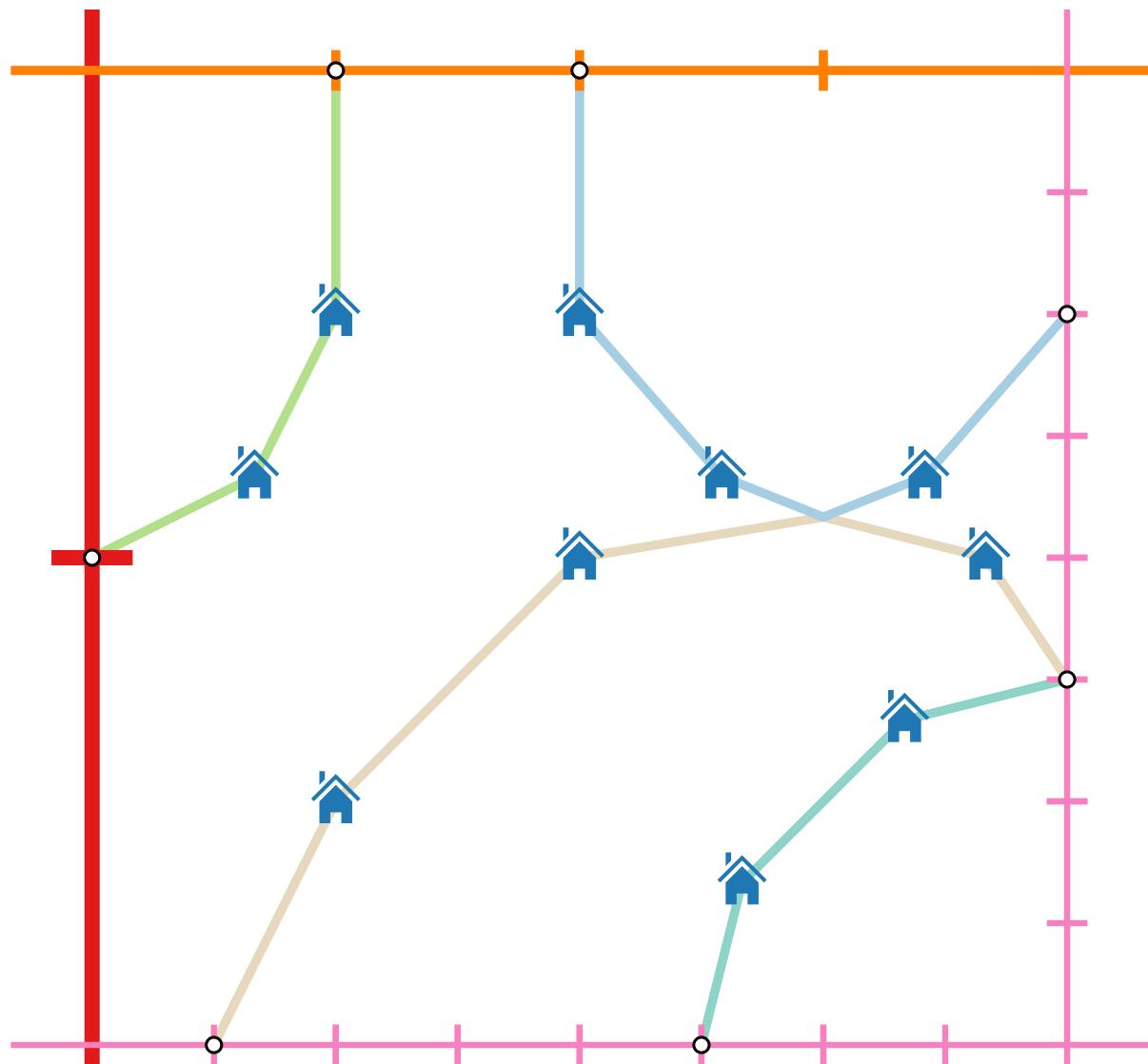
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,

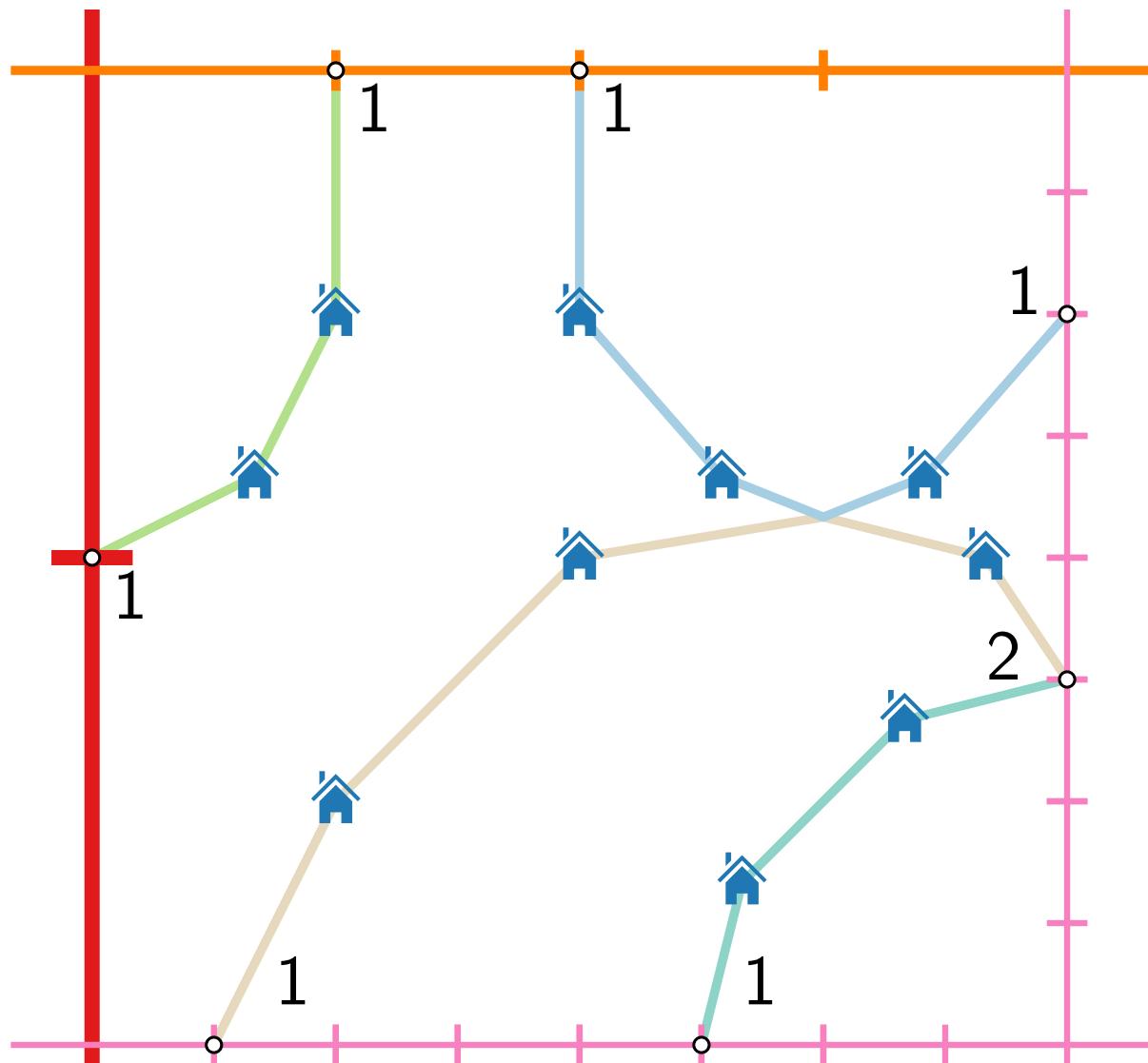
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,

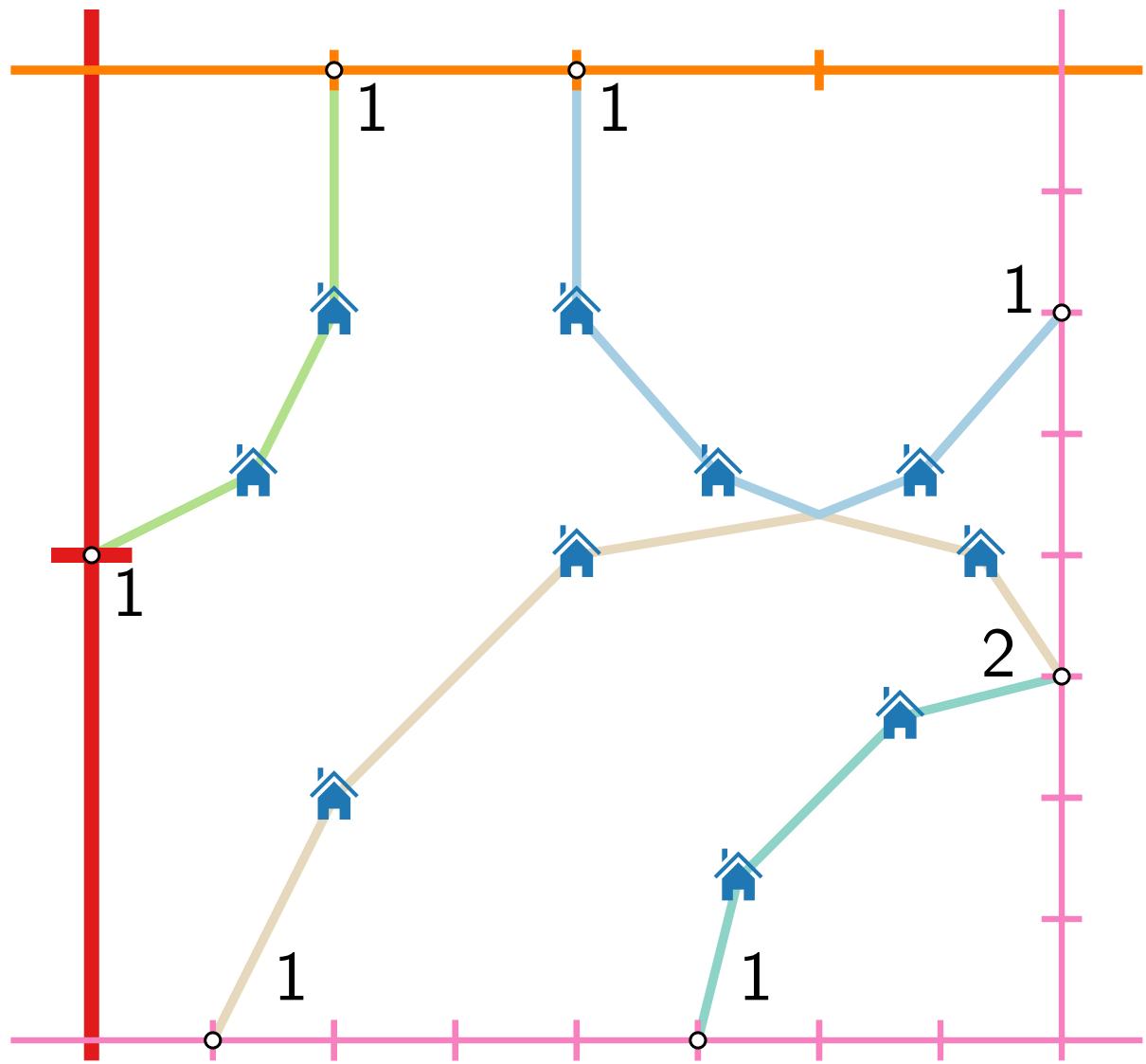
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,

Dynamic Program (I)



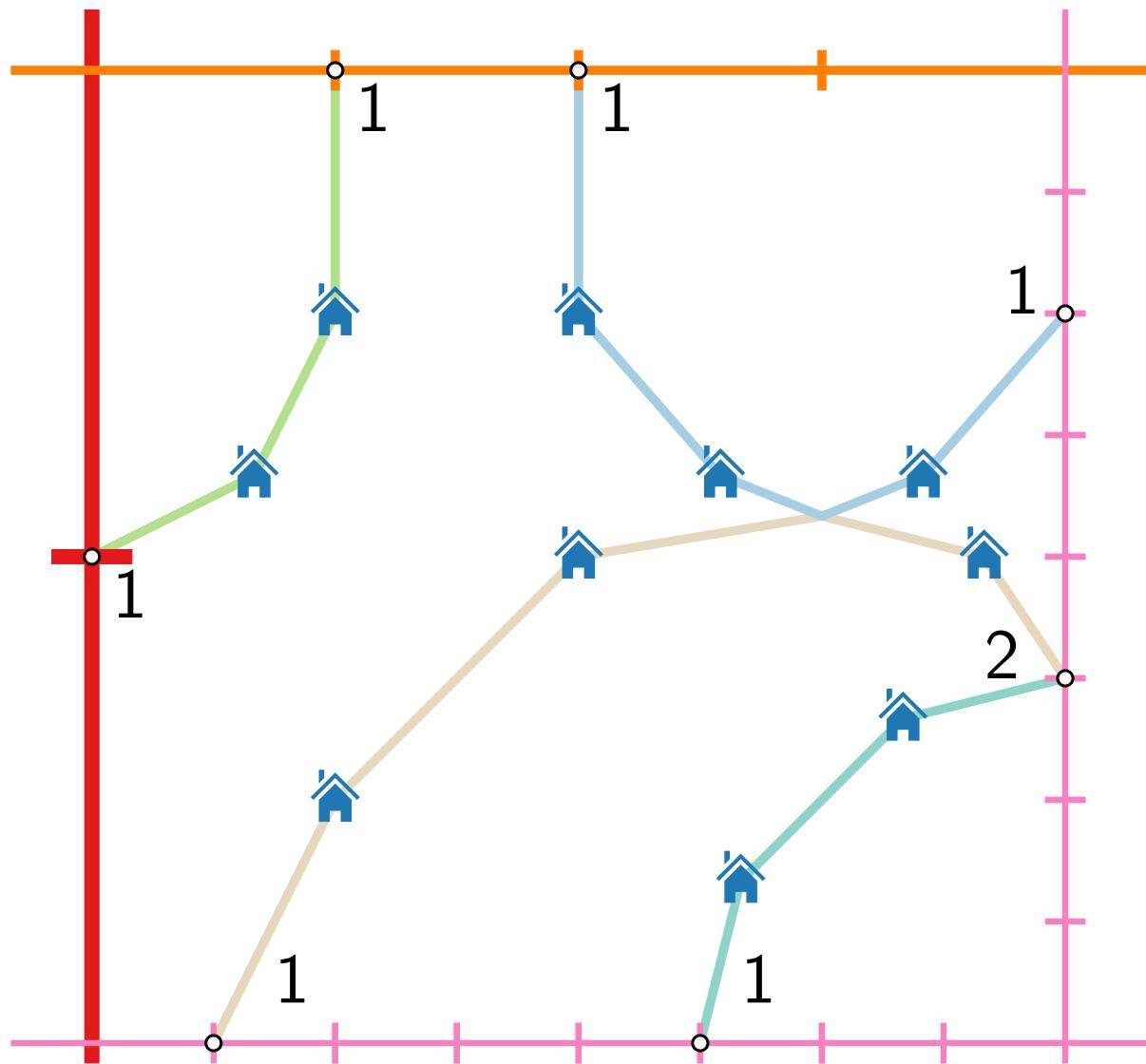
⇒ at most

Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,

possibilities

Dynamic Program (I)



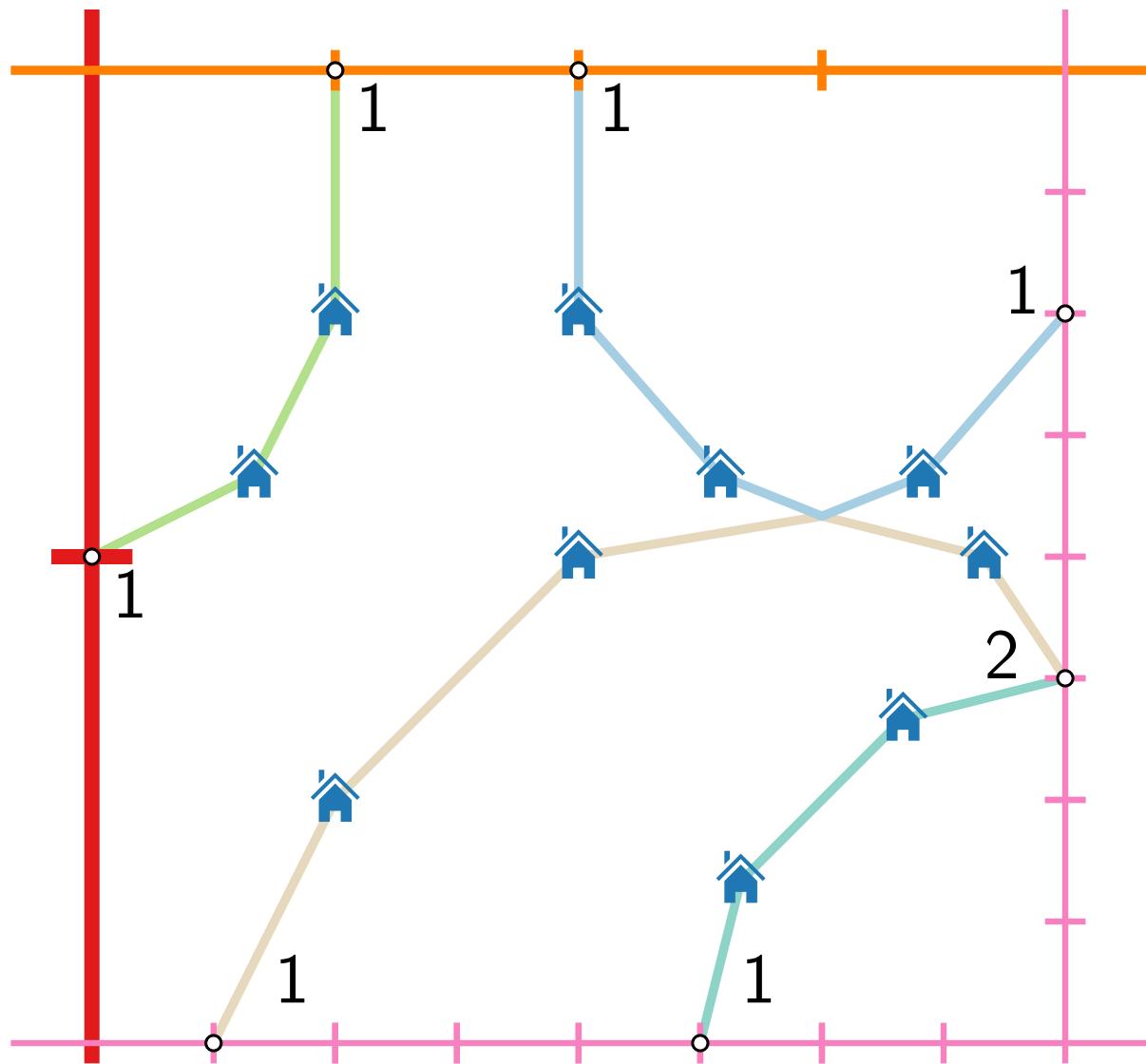
\Rightarrow at most $3^{4m} \in$

Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,

possibilities

Dynamic Program (I)



⇒ at most $3^{4m} \in$

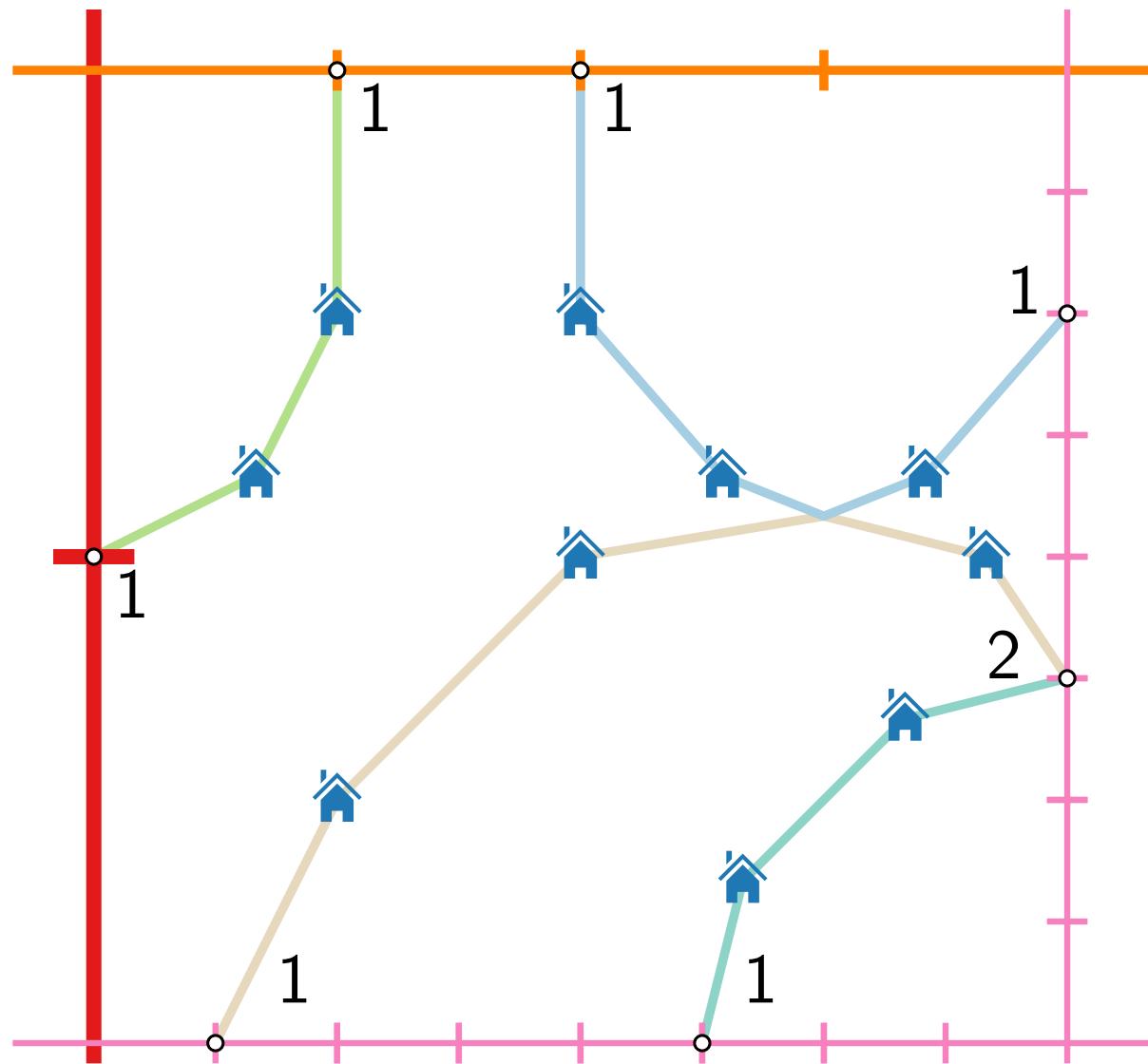
$$m = O((\log n)/\varepsilon)$$

Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,

possibilities

Dynamic Program (I)



\Rightarrow at most $3^{4m} \in 3^{O((\log n)/\varepsilon)} =$

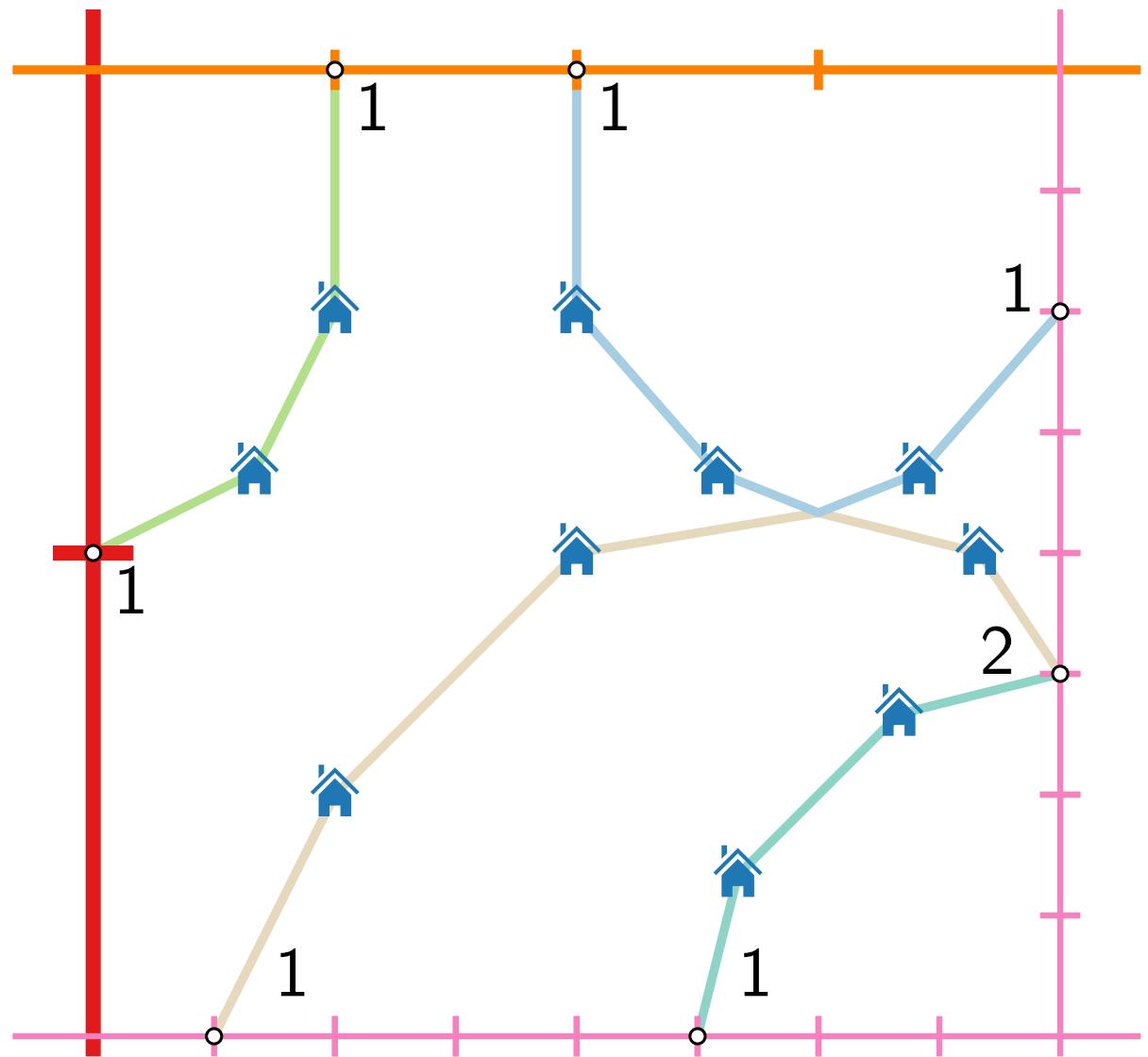
$$m = O((\log n)/\varepsilon)$$

Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,

possibilities

Dynamic Program (I)



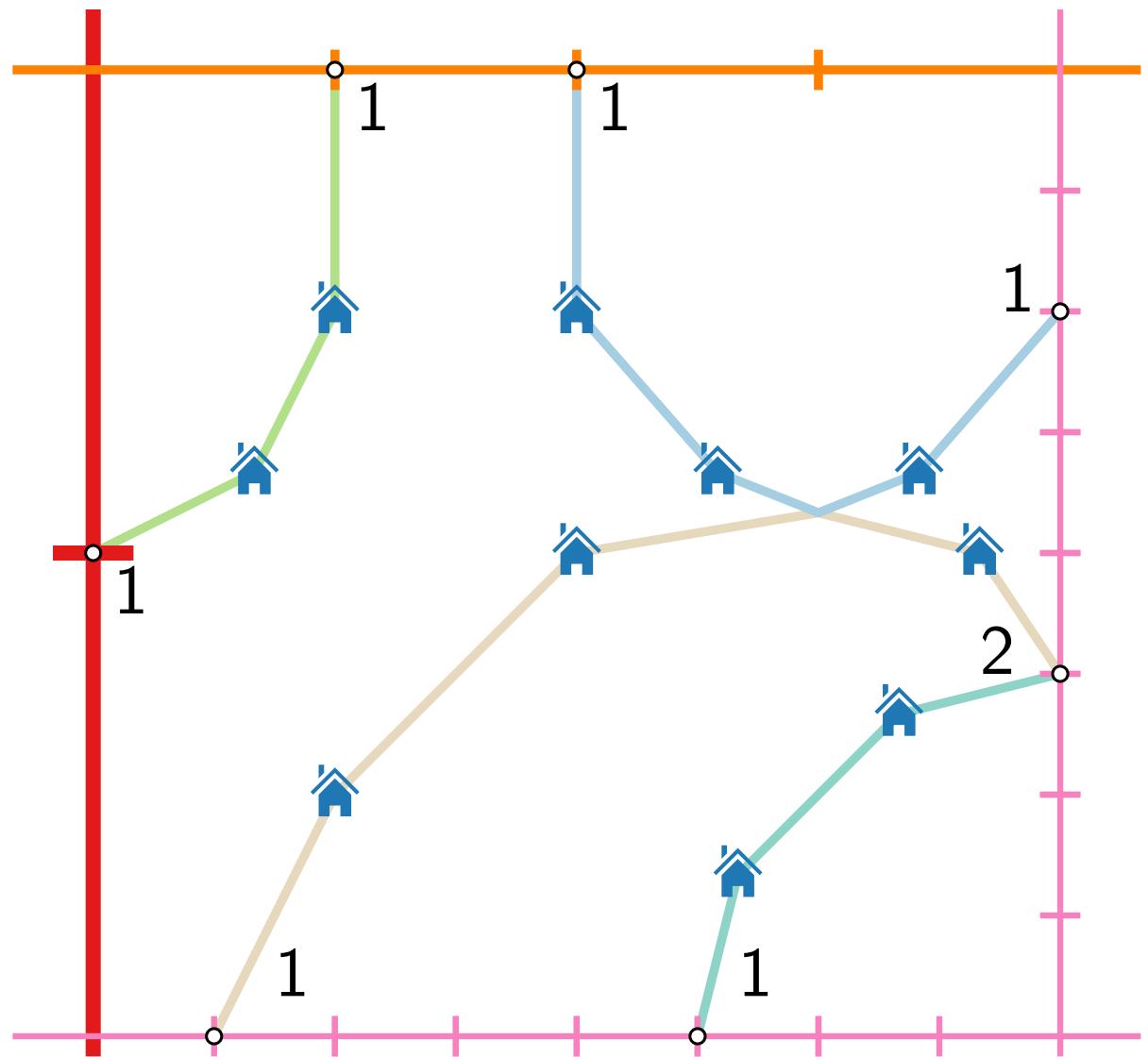
\Rightarrow at most $3^{4m} \in 3^{O((\log n)/\varepsilon)} = n^{O(1/\varepsilon)}$ possibilities

$$m = O((\log n)/\varepsilon)$$

Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,

Dynamic Program (I)



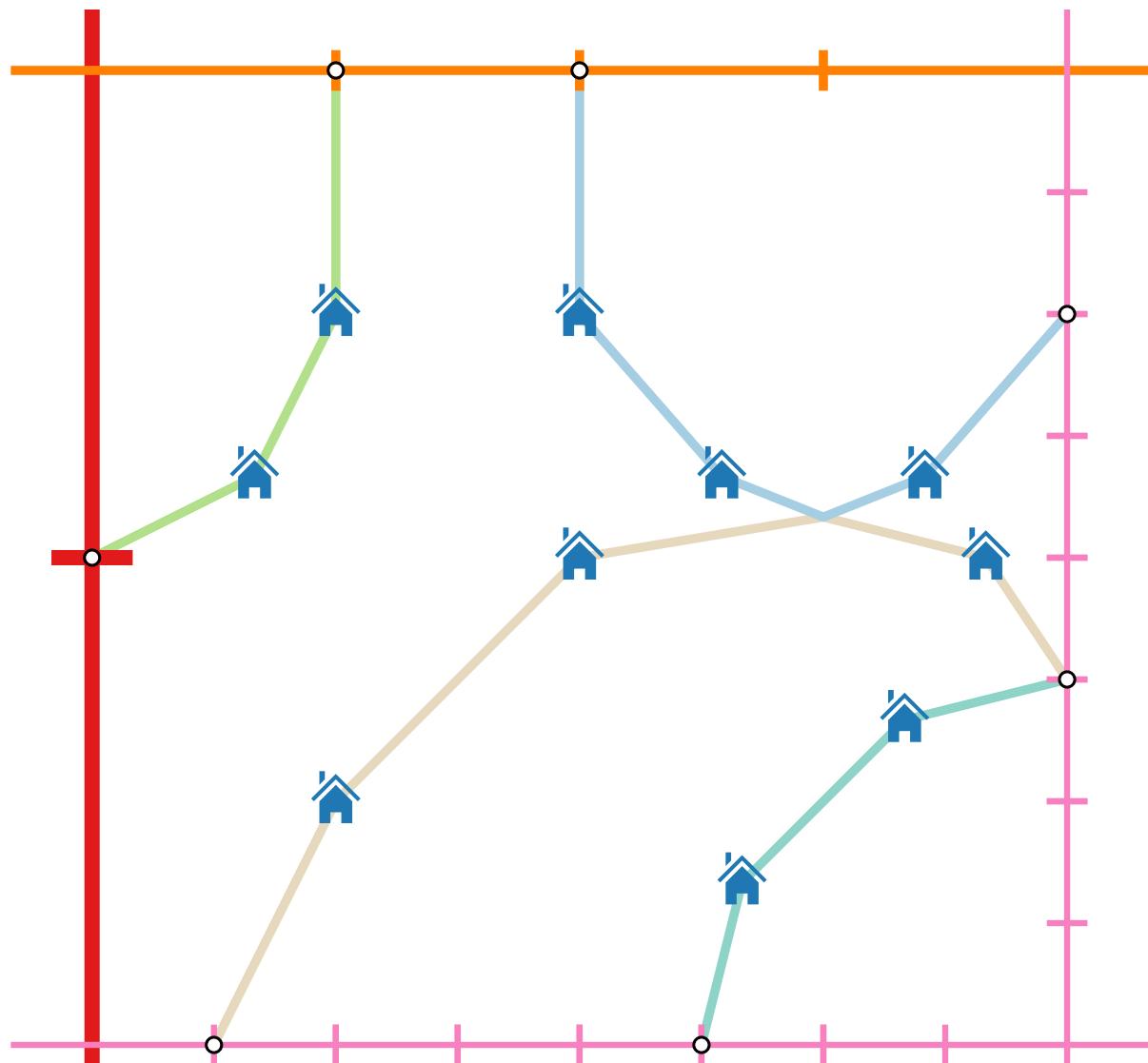
\Rightarrow at most $3^{4m} \in 3^{O((\log n)/\varepsilon)} = n^{O(1/\varepsilon)}$ possibilities
(visit vectors)

$$m = O((\log n)/\varepsilon)$$

Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,

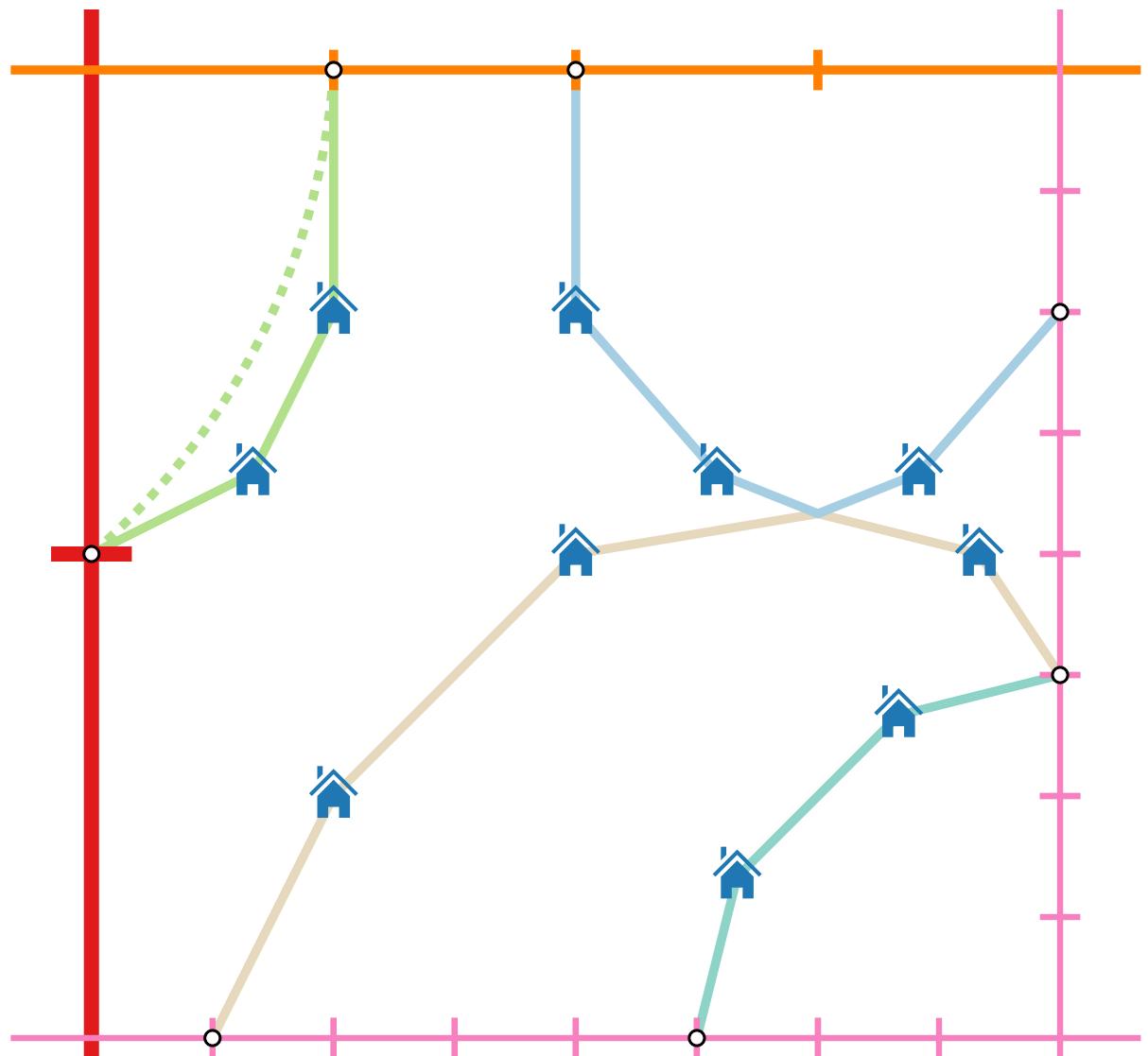
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.

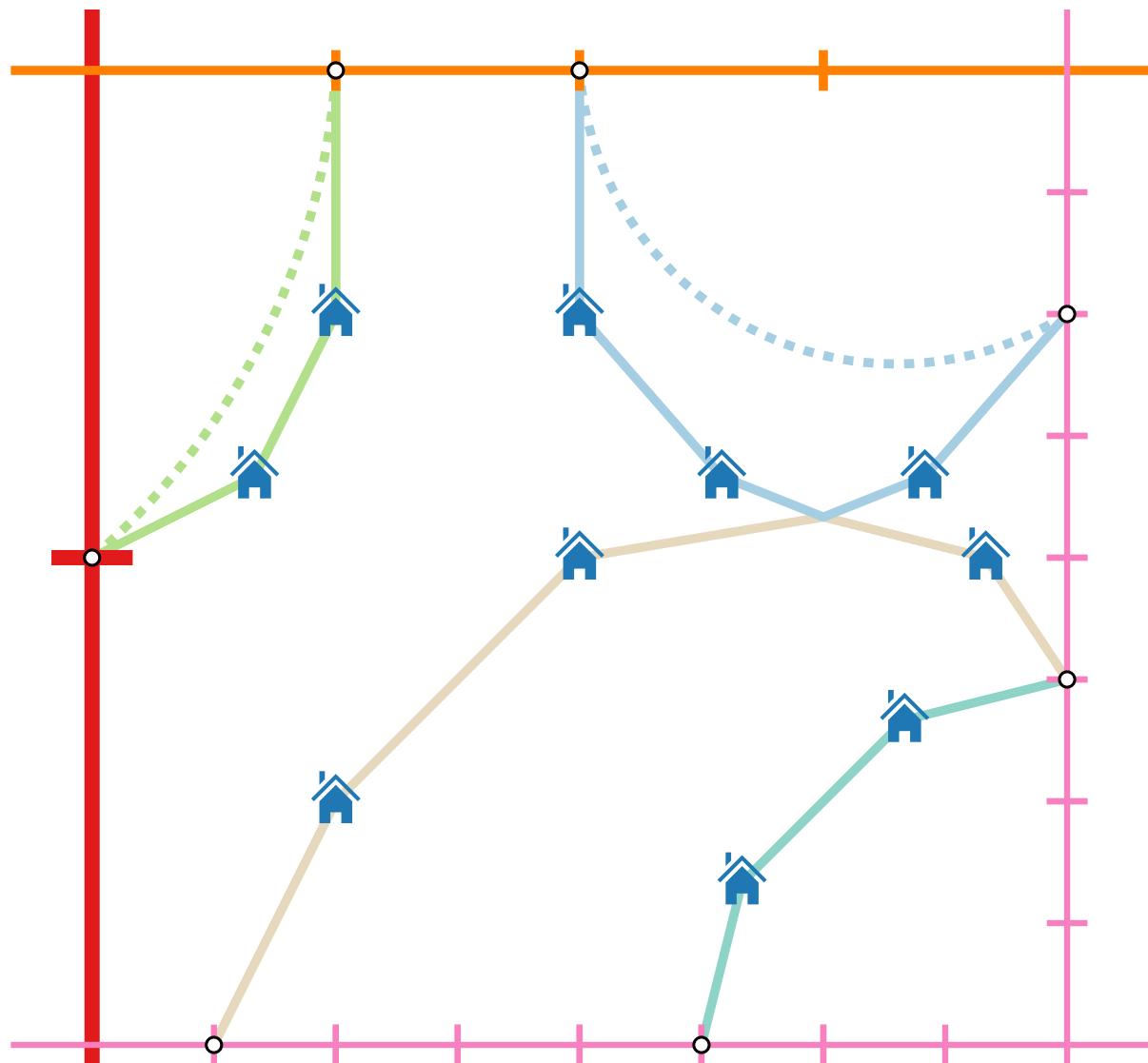
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.

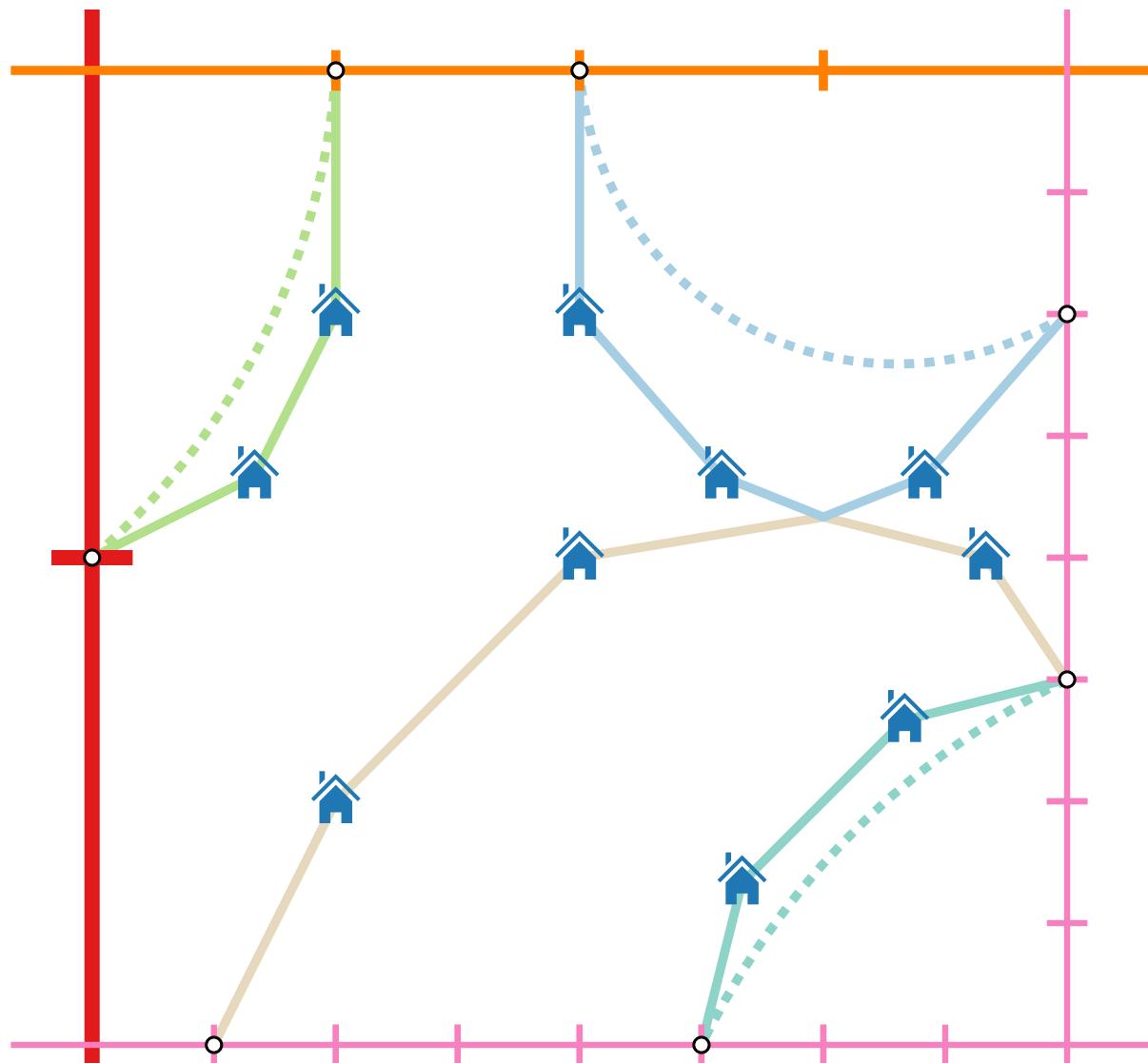
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.

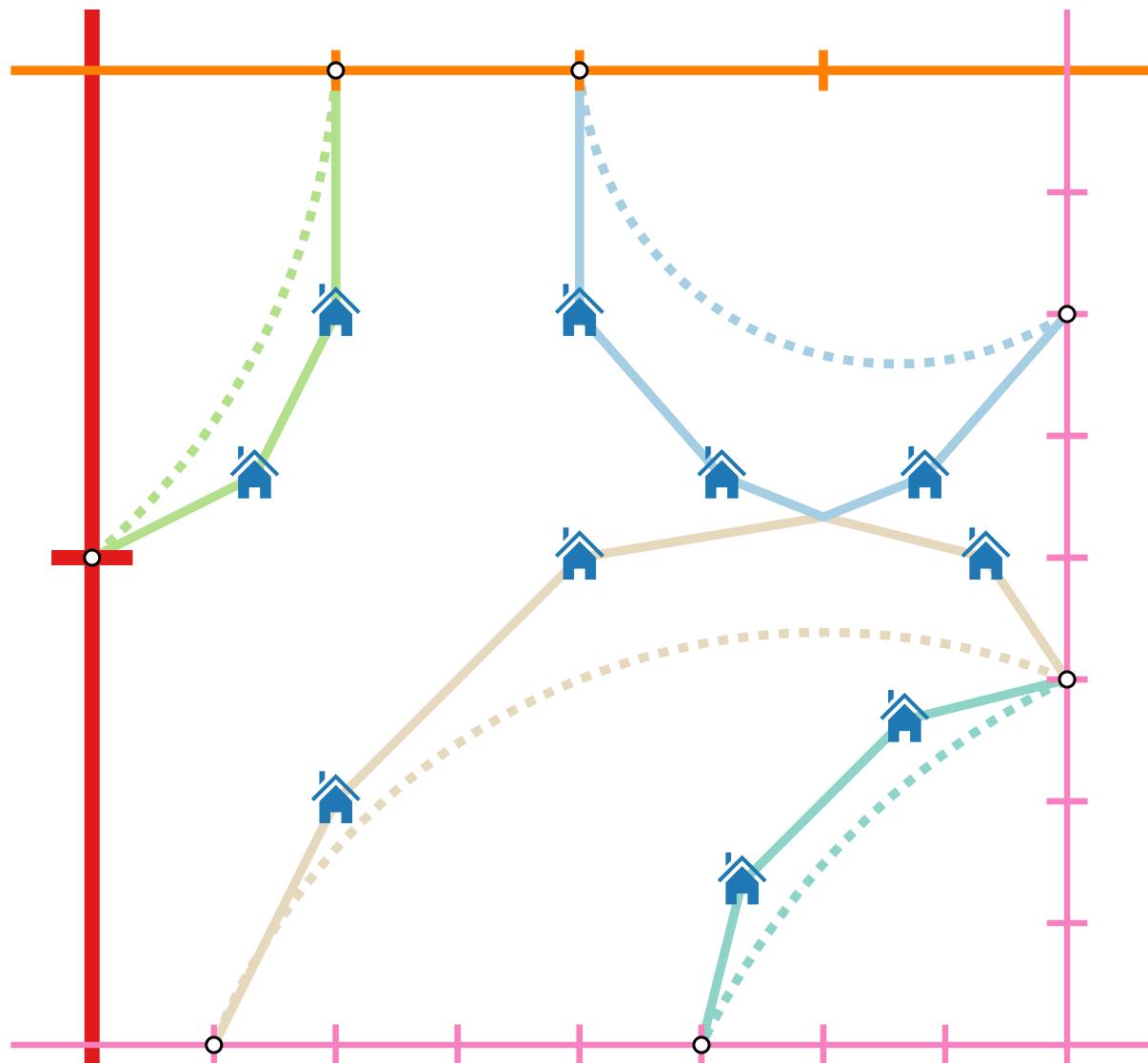
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.

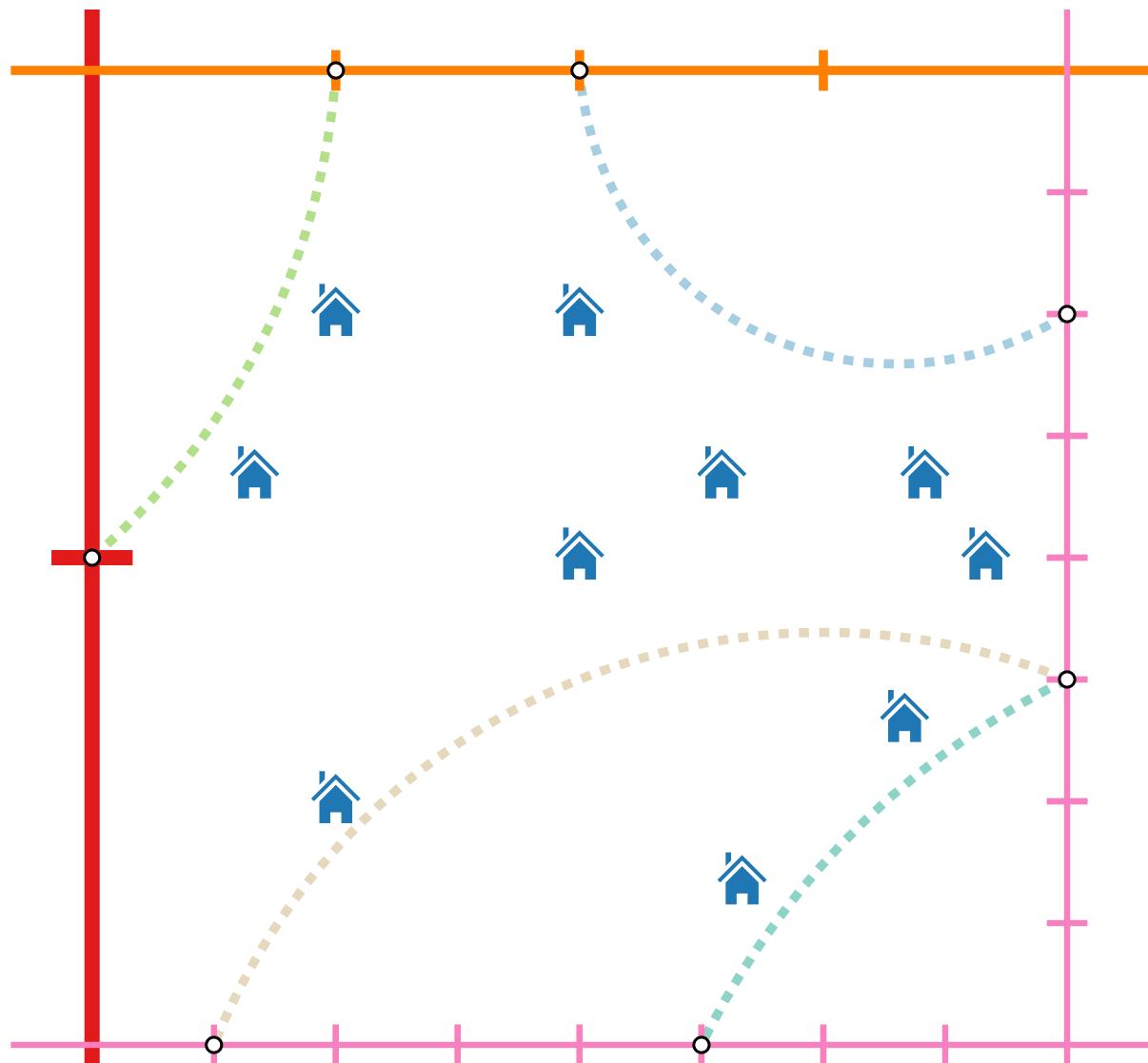
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.

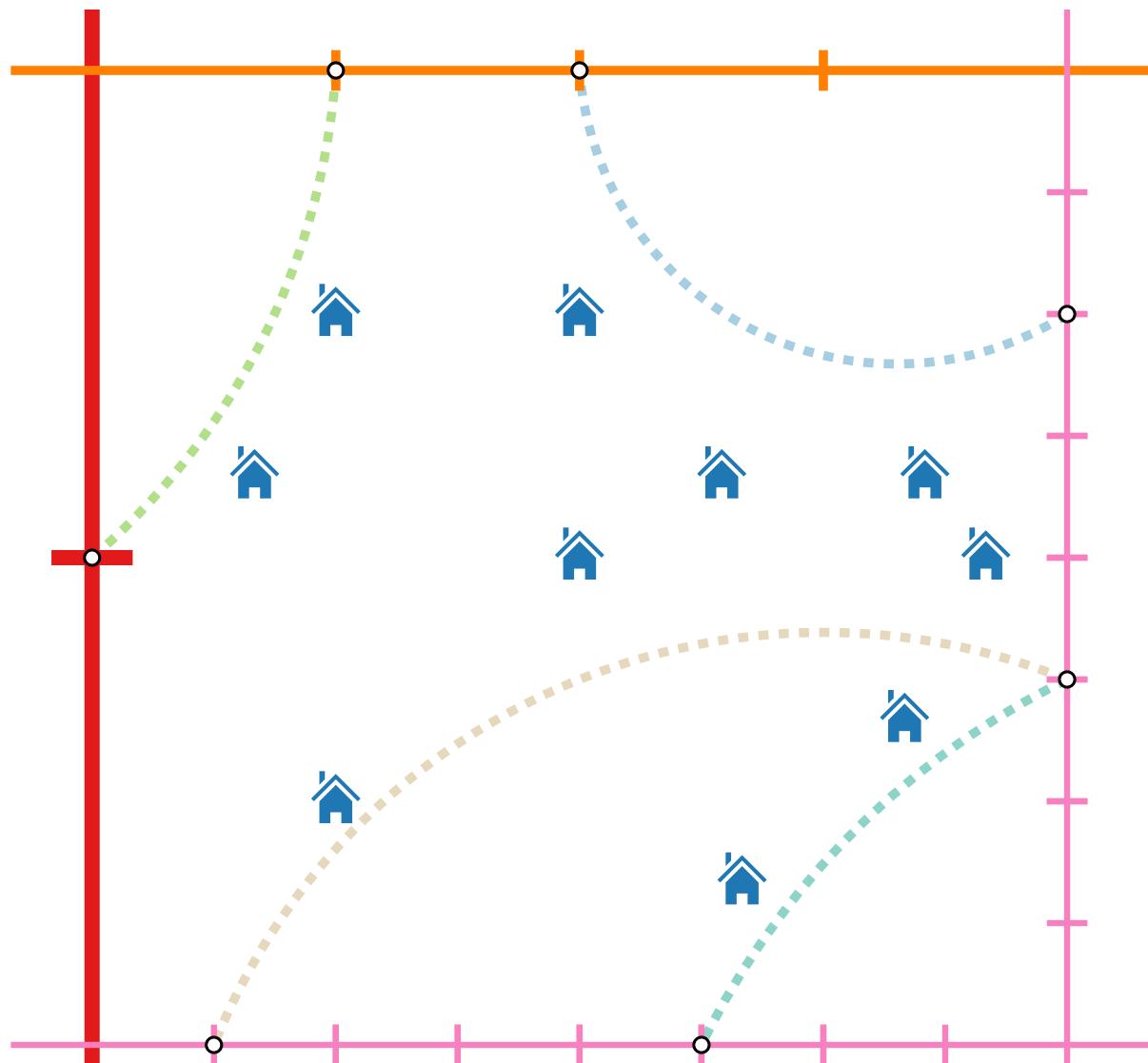
Dynamic Program (I)



Each well-behaved tour induces the following in each square Q of the dissection:

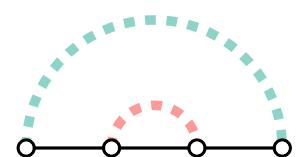
- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.

Dynamic Program (I)

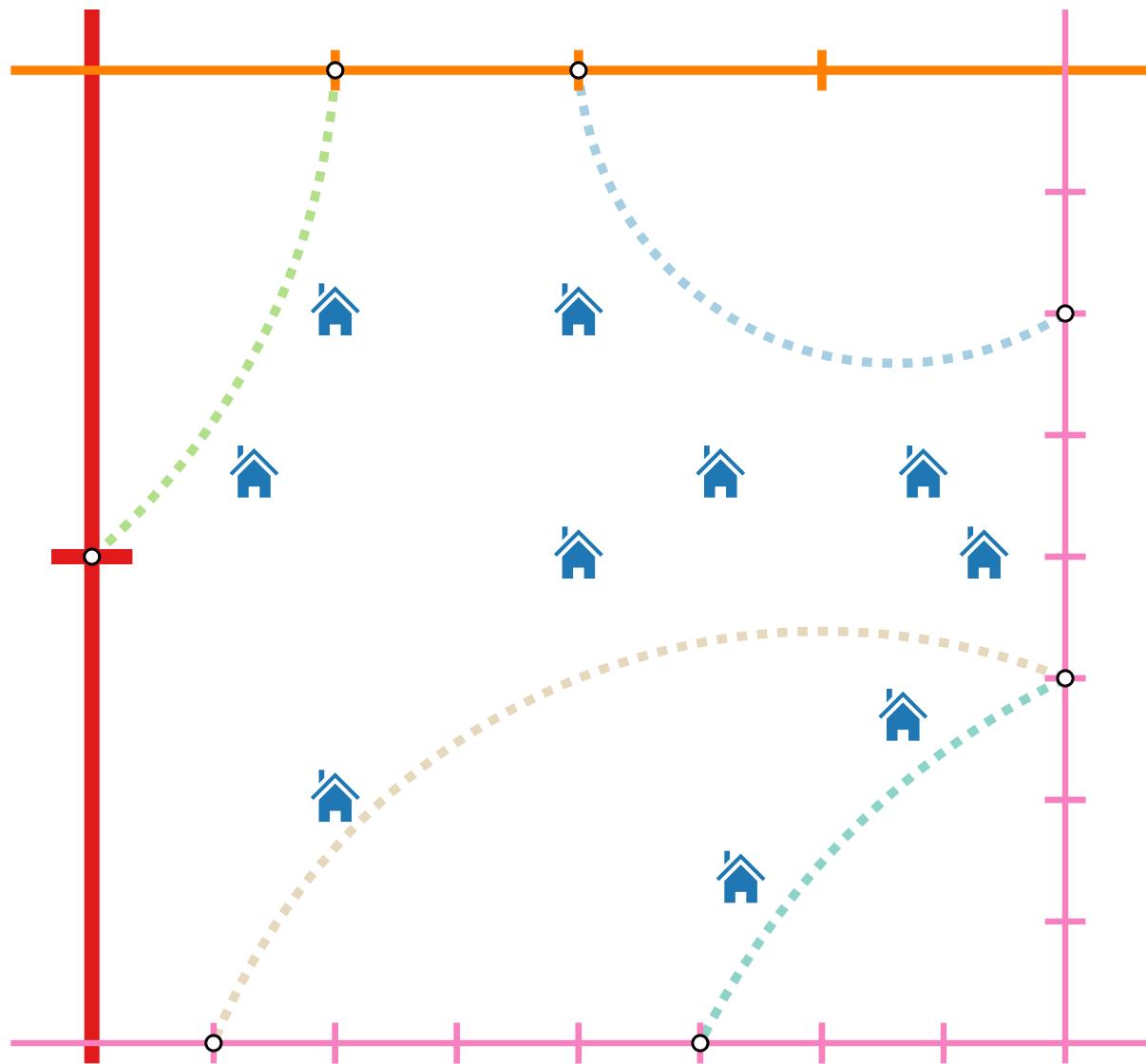


Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.

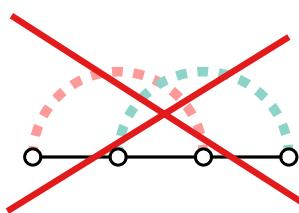
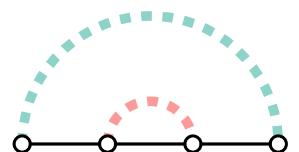


Dynamic Program (I)

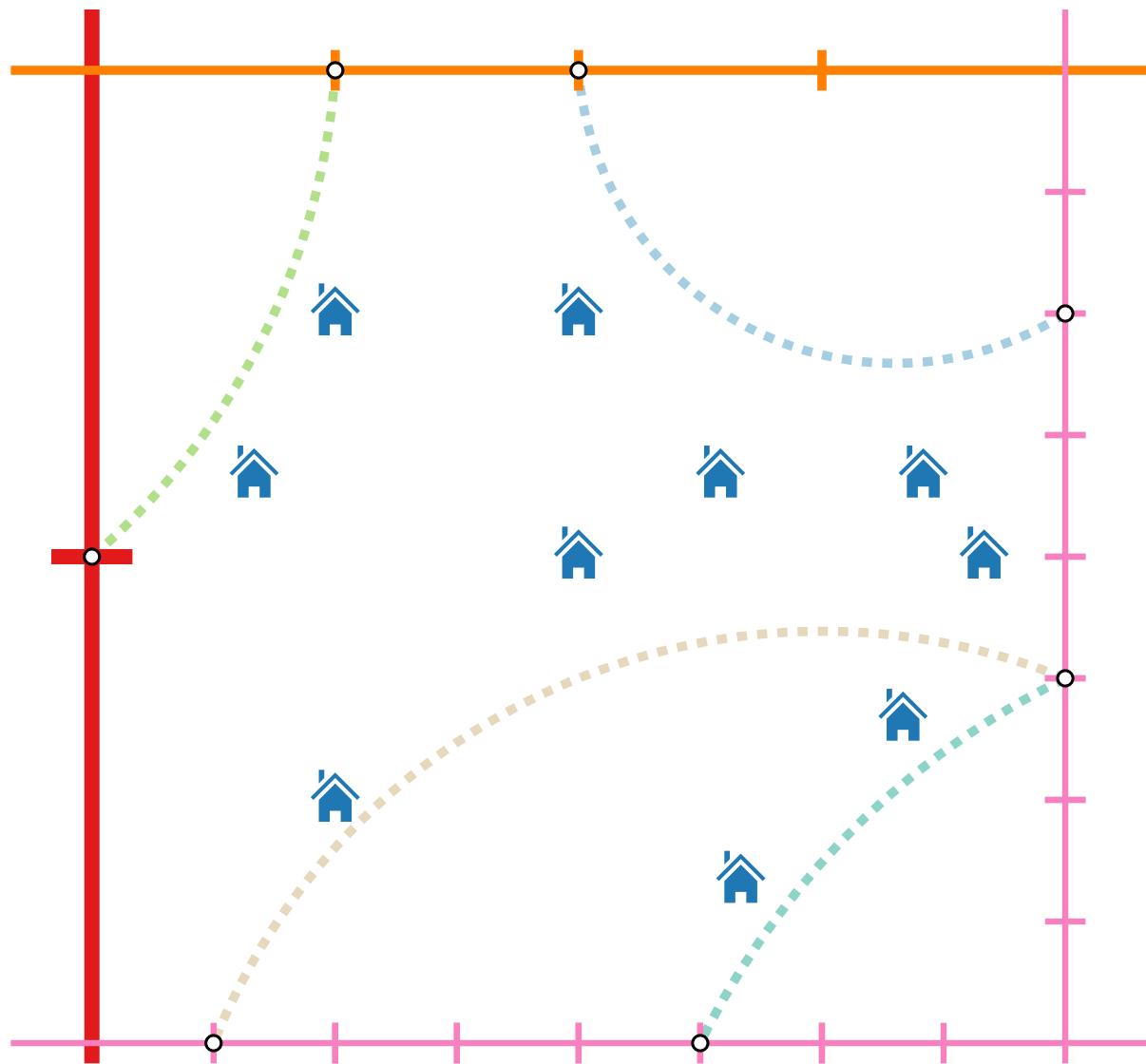


Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.



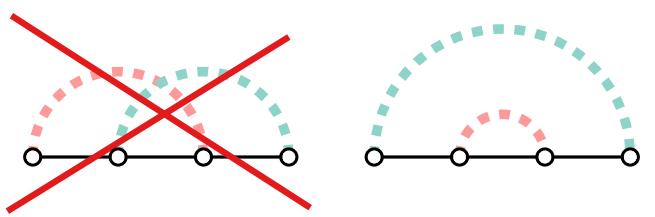
Dynamic Program (I)



⇒ at most

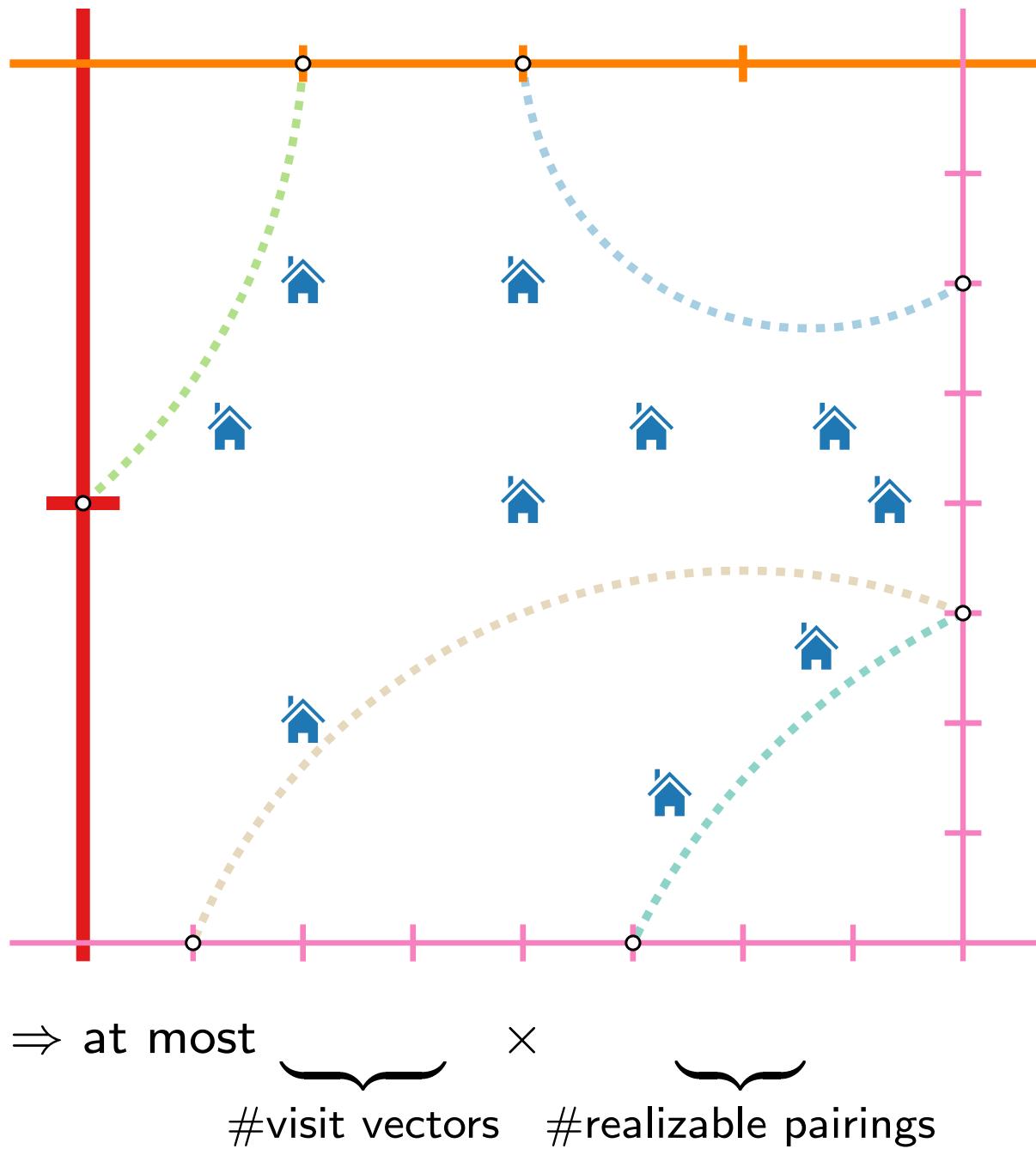
Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.



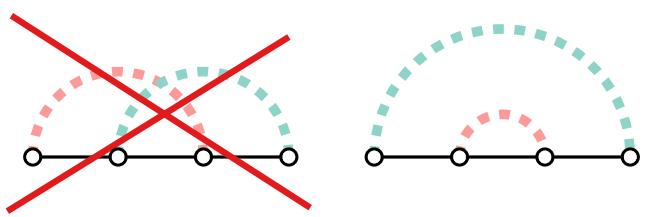
crossing-free pairings

Dynamic Program (I)



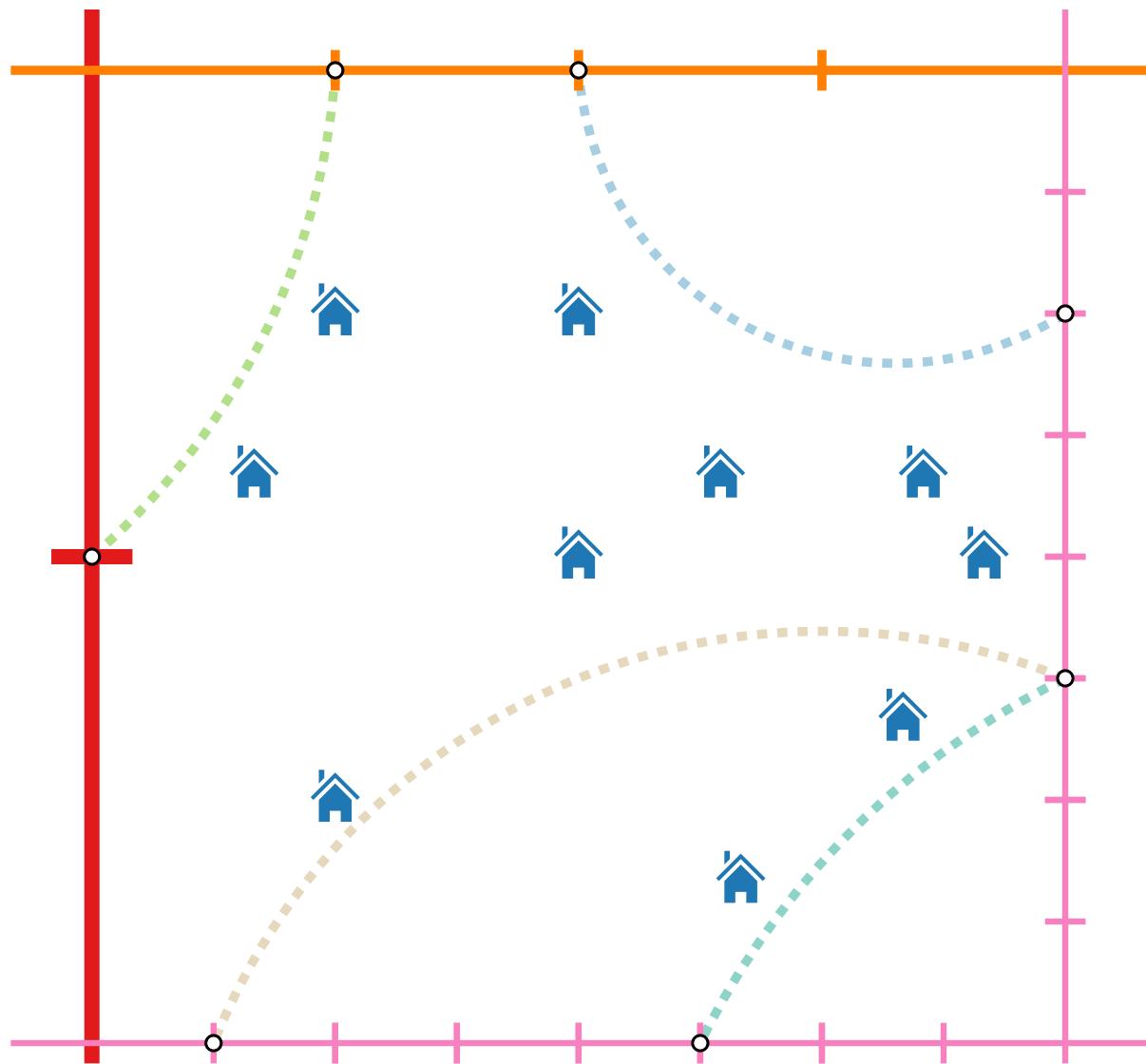
Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.



crossing-free pairings

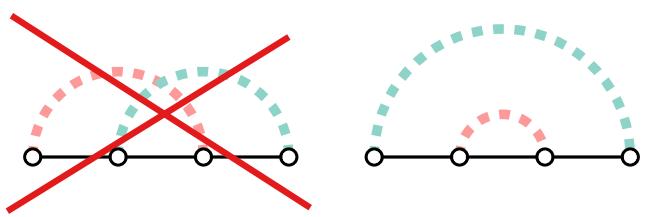
Dynamic Program (I)



\Rightarrow at most $n^{\underbrace{O(1/\varepsilon)}_{\text{\#visit vectors}}} \times \underbrace{\quad}_{\text{\#realizable pairings}}$

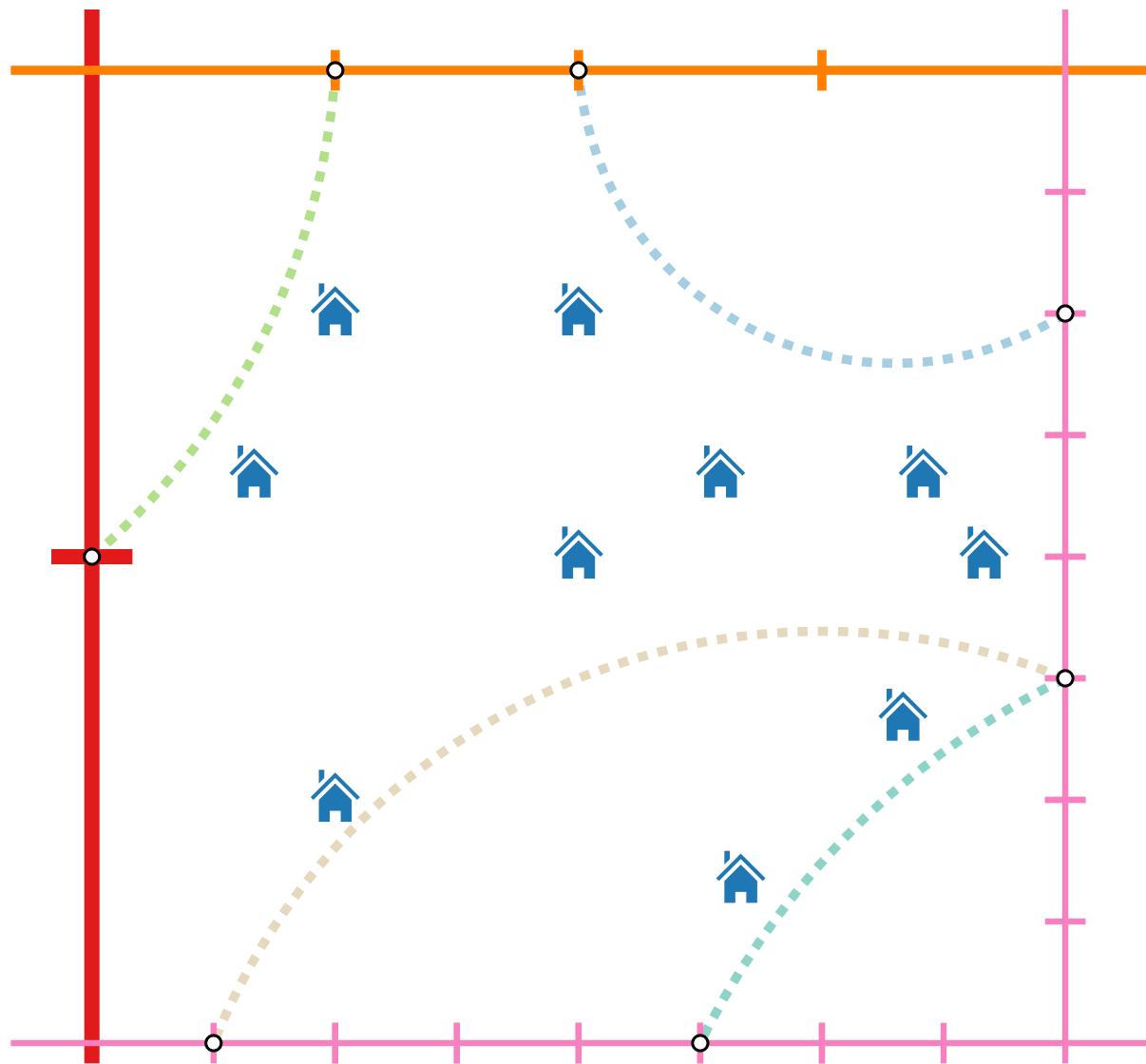
Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.



crossing-free pairings

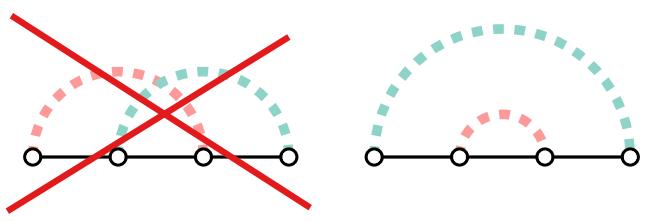
Dynamic Program (I)



\Rightarrow at most $n^{\underbrace{O(1/\varepsilon)}_{\text{\#visit vectors}}} \times \underbrace{\text{\#realizable pairings}}$

Each well-behaved tour induces the following in each square Q of the dissection:

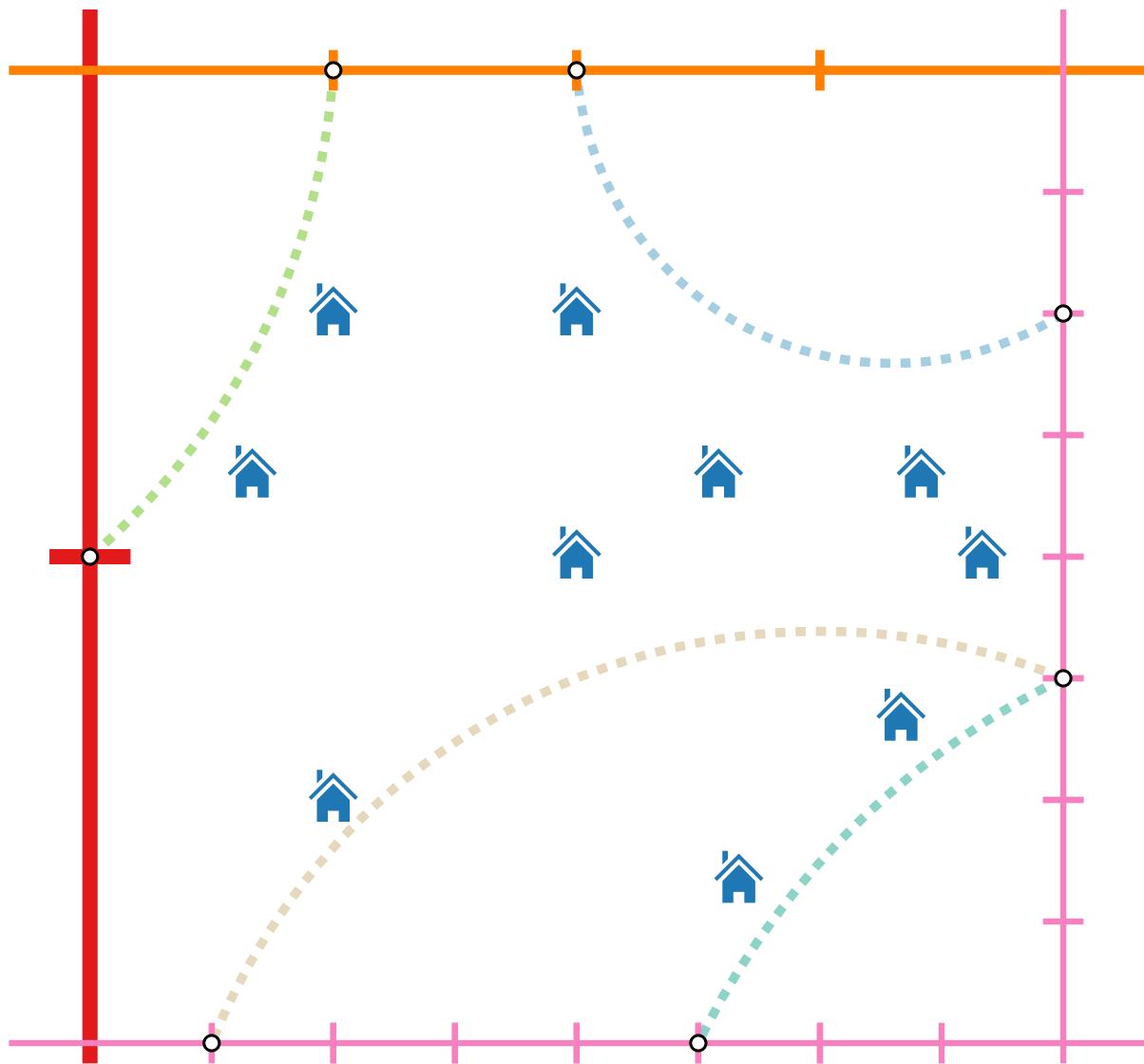
- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.



crossing-free pairings

$=$ # well-formed expr. with $\leq 4m$ pairs of parentheses

Dynamic Program (I)



\Rightarrow at most $n^{\underbrace{O(1/\varepsilon)}}$

\times

$2^{\underbrace{O(m)}}$

$=$

crossing-free pairings

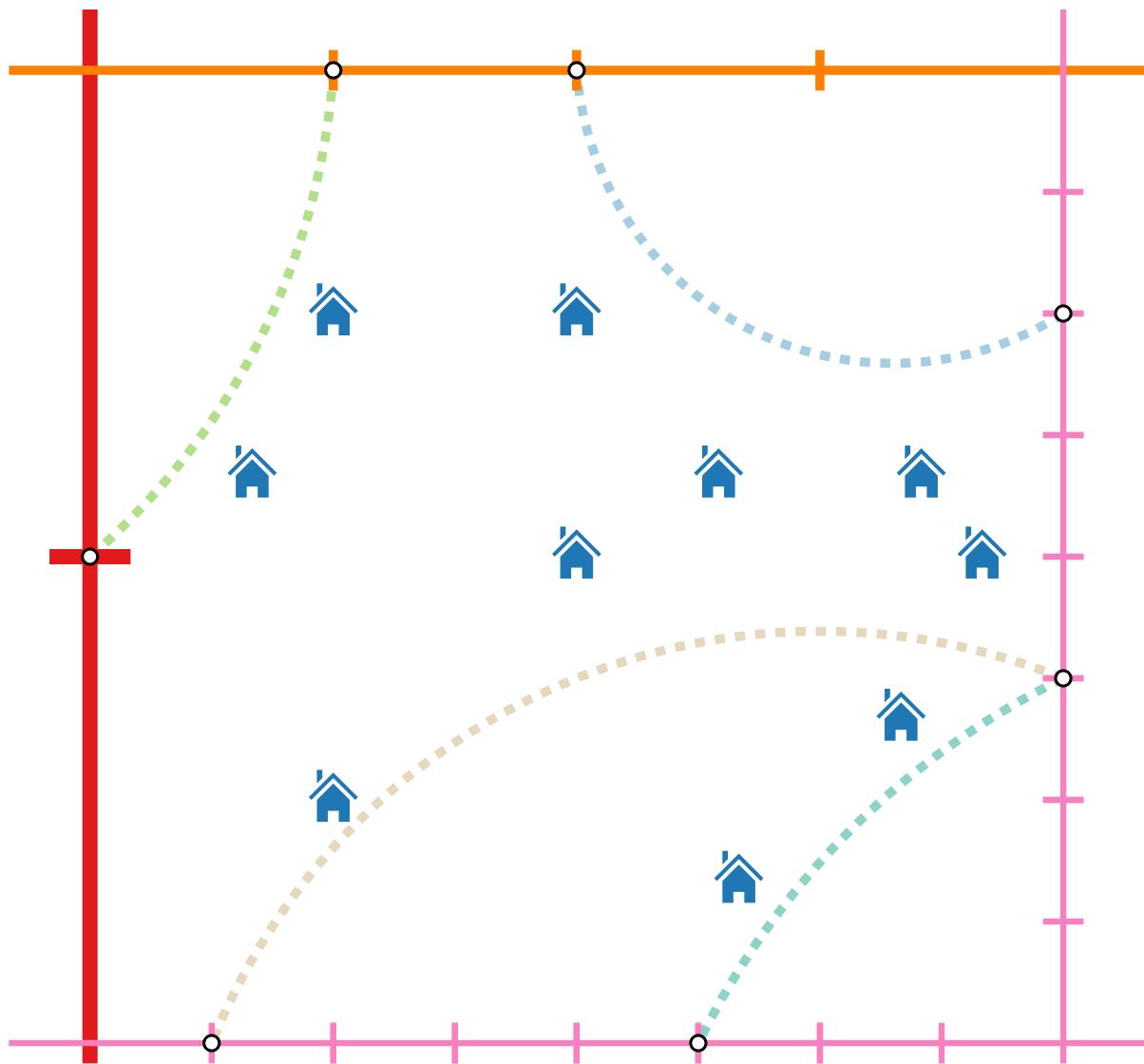
$\#$ visit vectors $\#$ realizable pairings $=$ $\#$ well-formed expr. with $\leq 4m$ pairs of parentheses

Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.



Dynamic Program (I)



\Rightarrow at most $n^{\underbrace{O(1/\varepsilon)}}$

\times

$2^{\underbrace{O(m)}}$

$=$

$n^{\underbrace{O(1/\varepsilon)}} \text{ crossing-free pairings}$

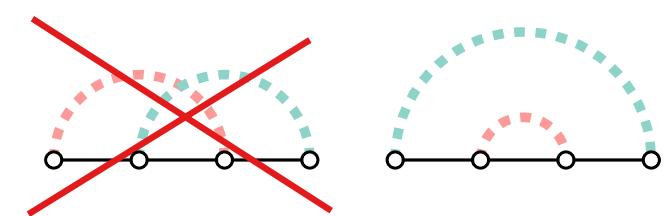
#visit vectors

#realizable pairings

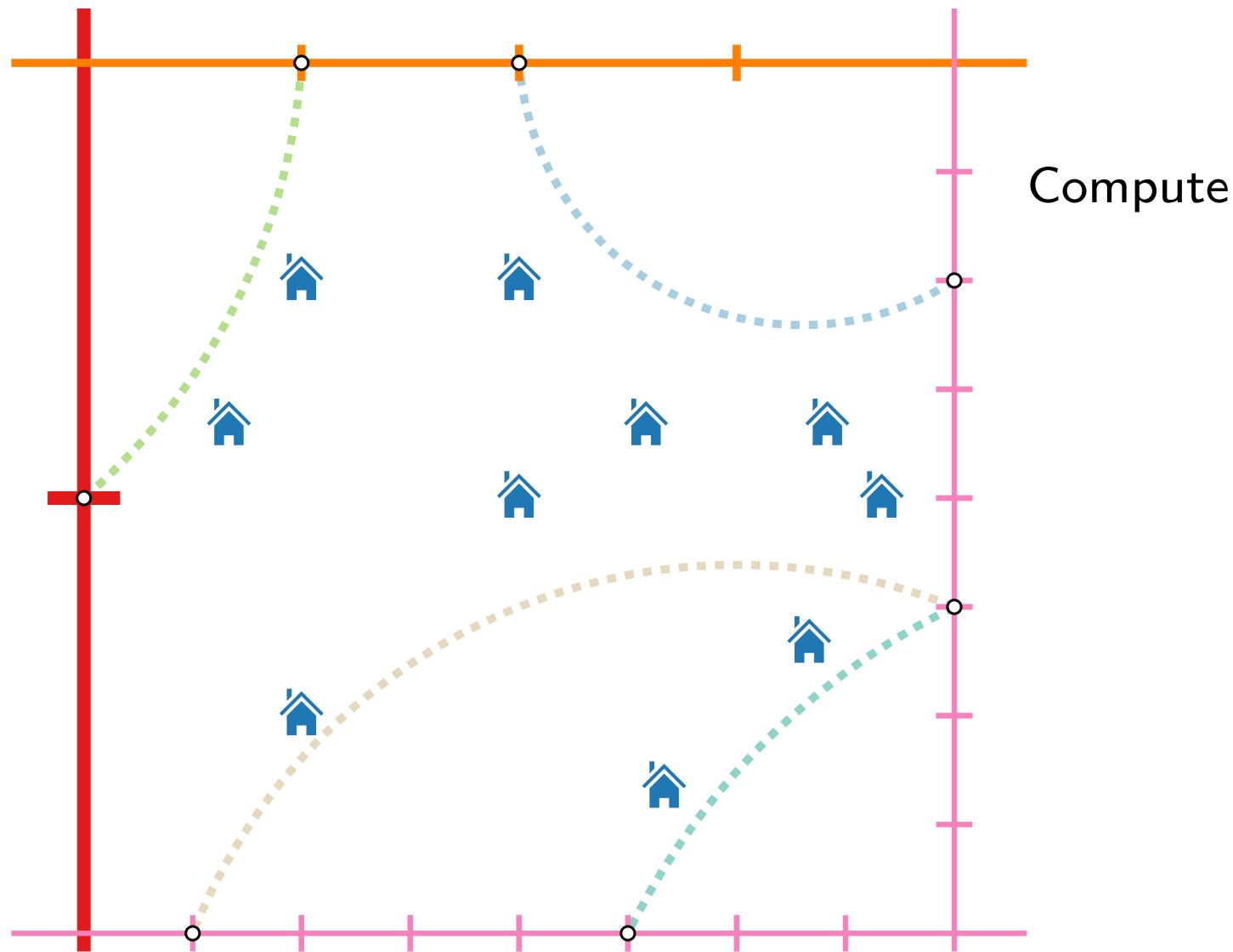
= # well-formed expr. with $\leq 4m$ pairs of parentheses

Each well-behaved tour induces the following in each square Q of the dissection:

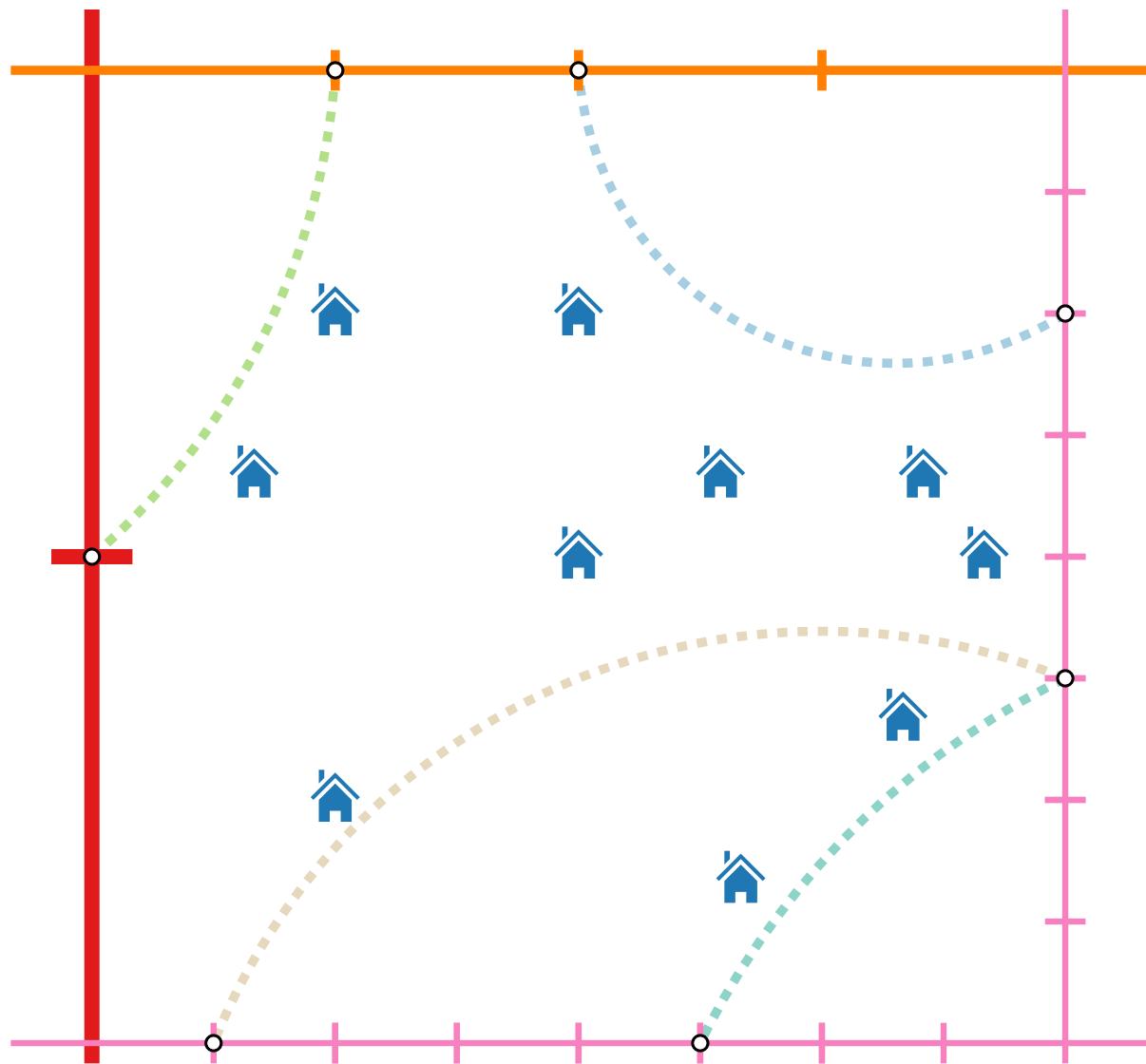
- a path cover of the houses in Q ,
- ...such that each portal of Q is visited 0, 1 or 2 times,
- a **crossing-free pairing** of the visited portals.



Dynamic Program (II)



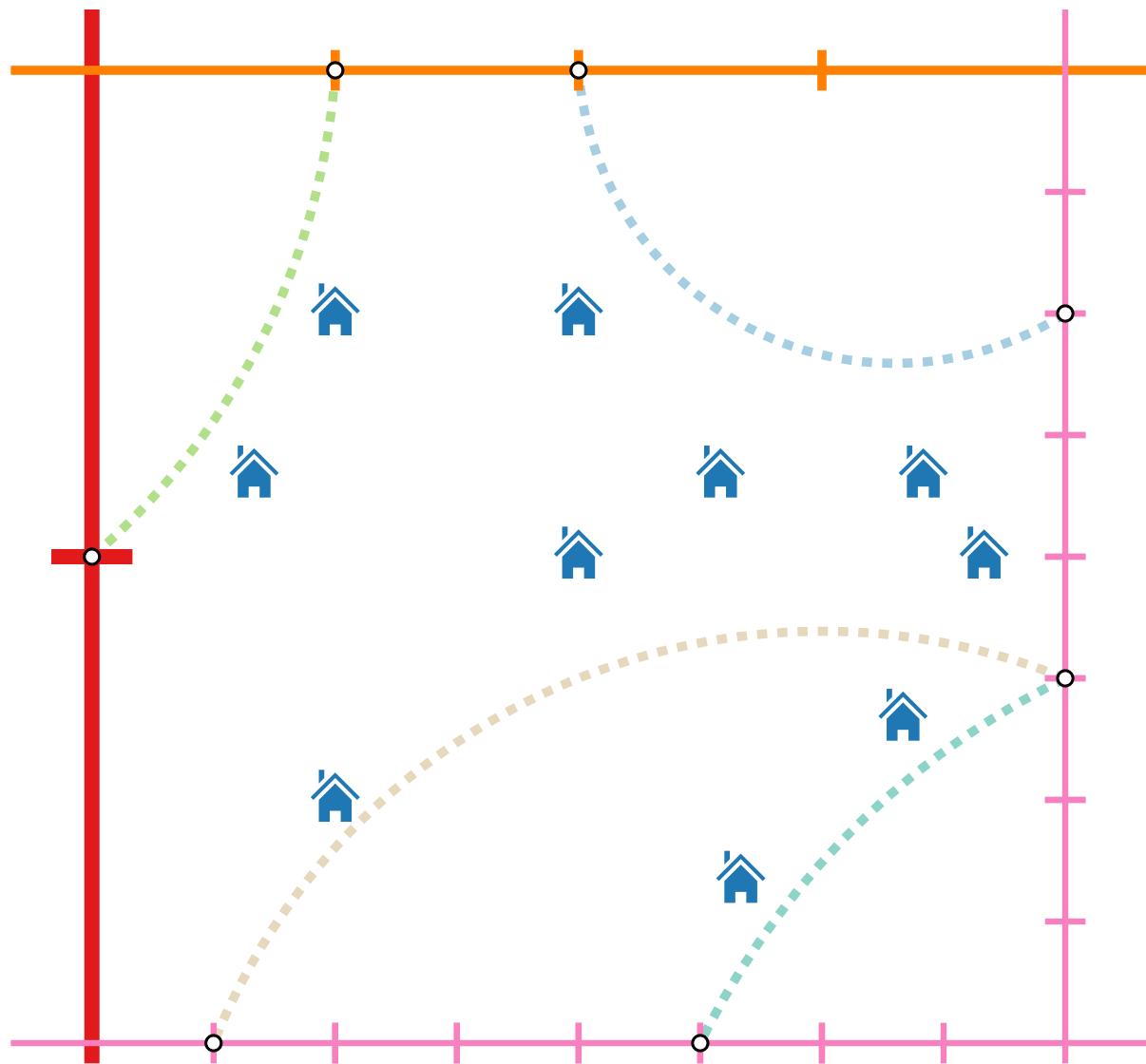
Dynamic Program (II)



Compute

- for each square Q in the dissection and

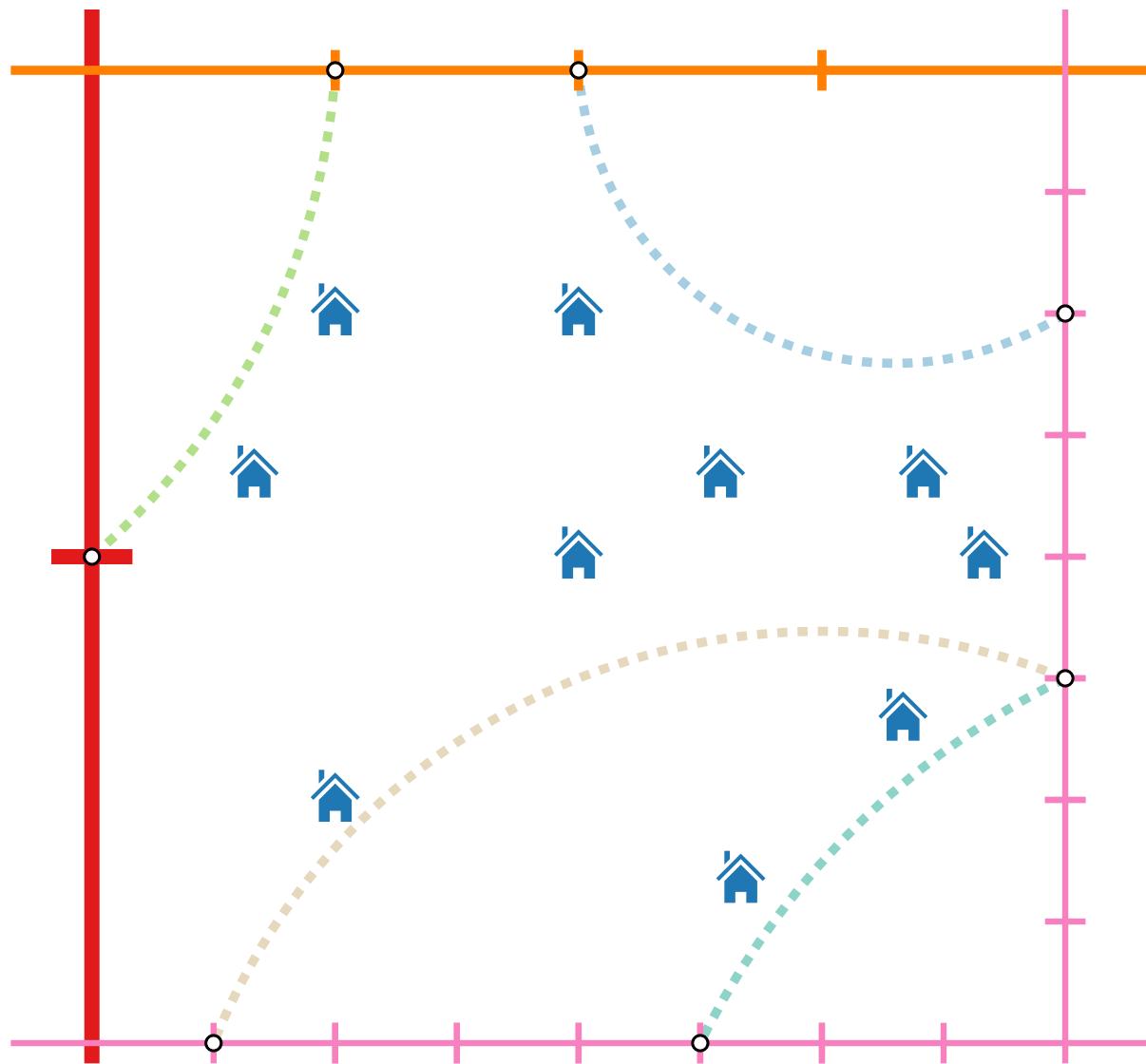
Dynamic Program (II)



Compute

- for each square Q in the dissection and
- for each crossing-free pairing P of Q ,

Dynamic Program (II)

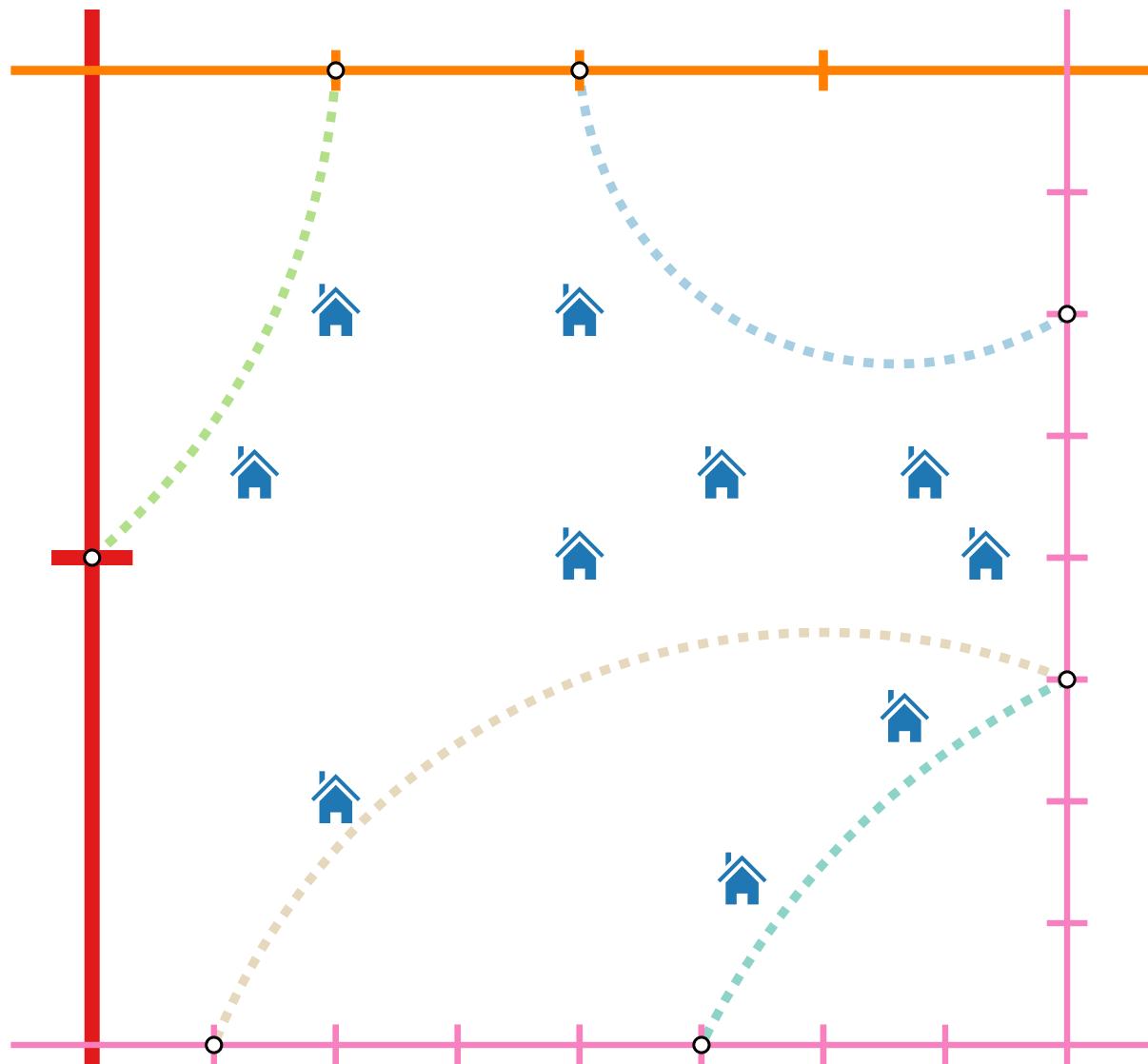


Compute

- for each square Q in the dissection and
- for each crossing-free pairing P of Q ,

an optimal path cover that respects P .

Dynamic Program (II)



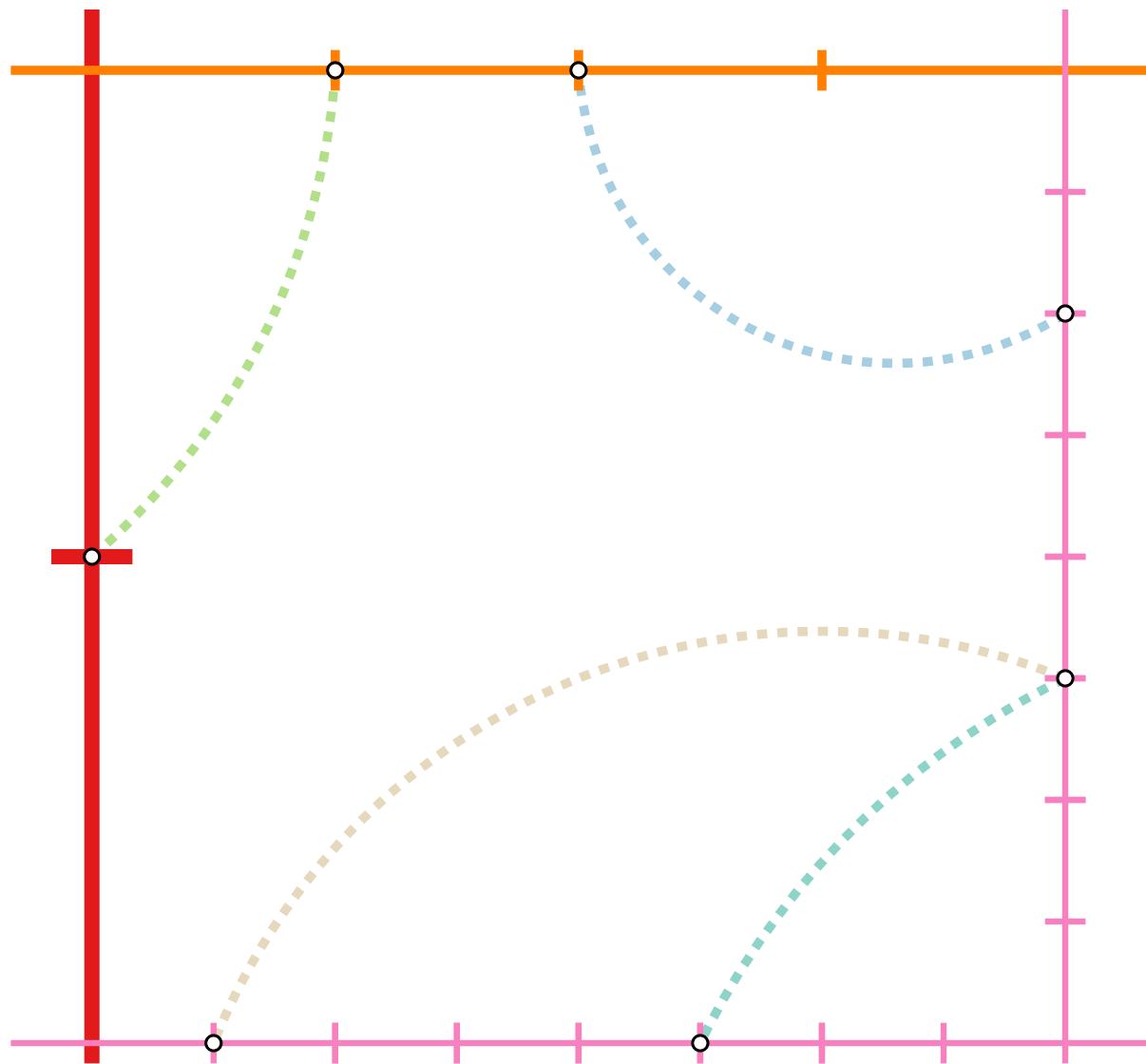
Compute

- for each square Q in the dissection and
- for each crossing-free pairing P of Q ,

an optimal path cover that respects P .

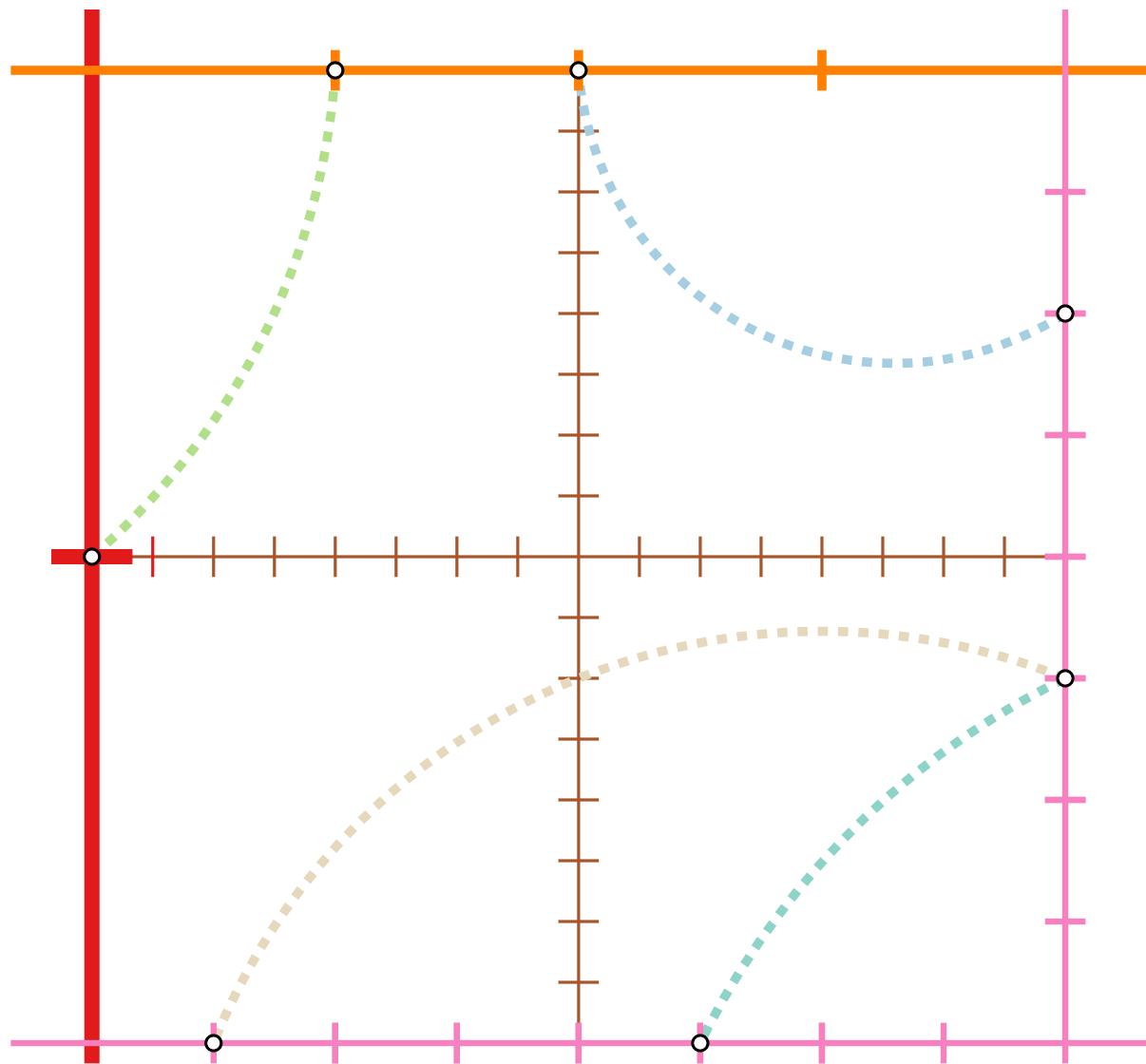
How?

Dynamic Program (III)



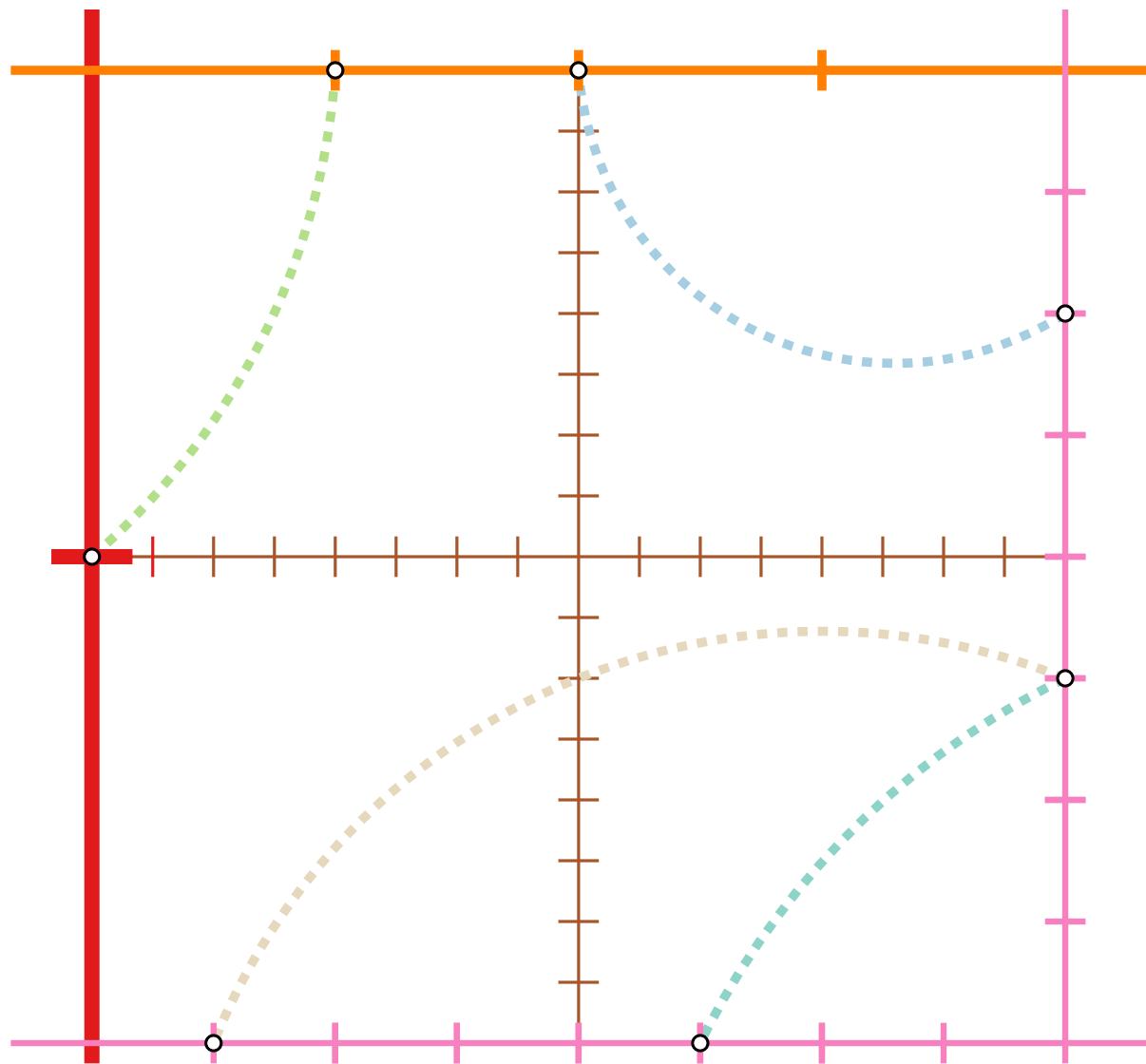
For a given square Q and pairing P :

Dynamic Program (III)



For a given square Q and pairing P :

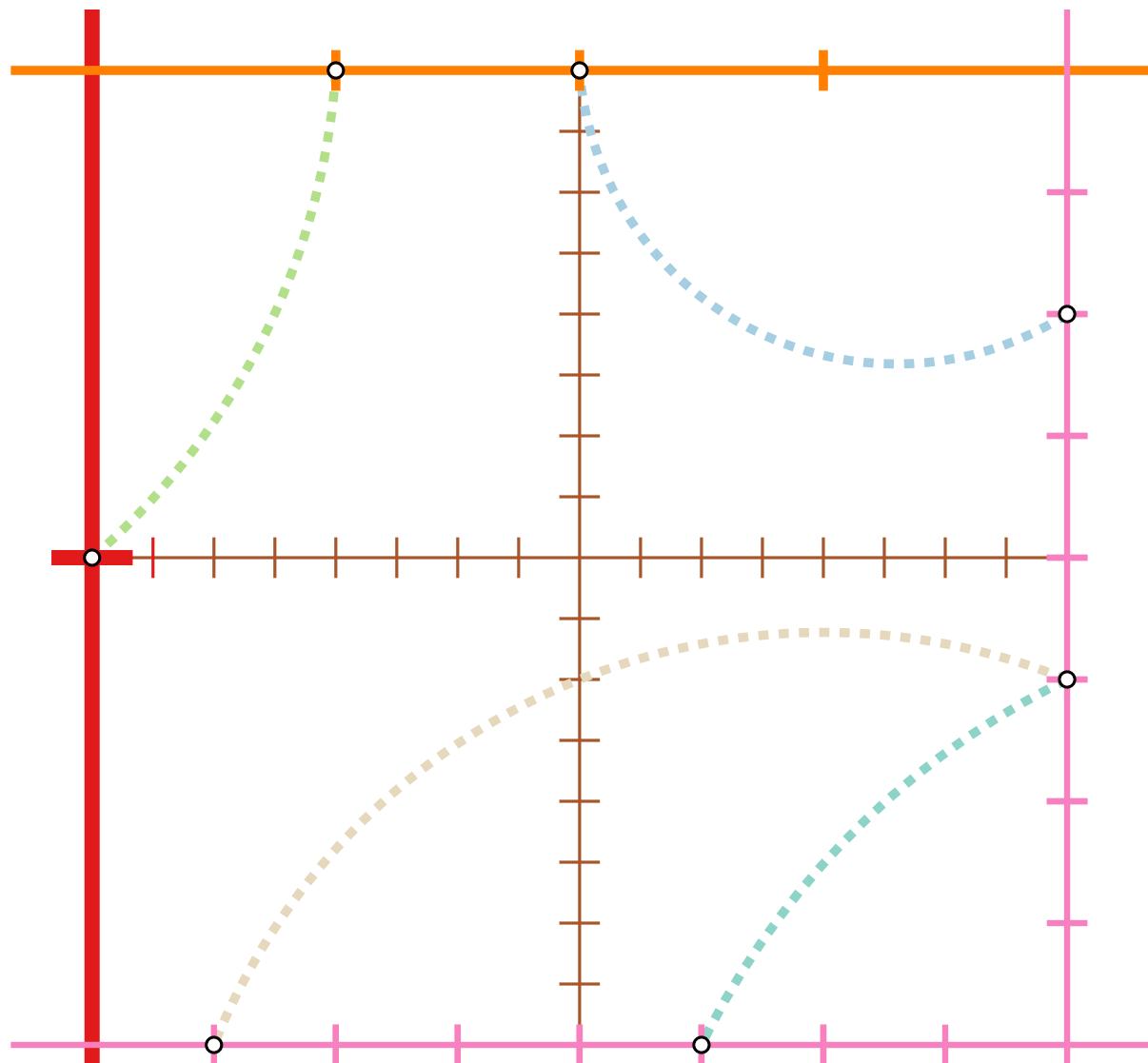
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all crossing-free pairings of the child squares.

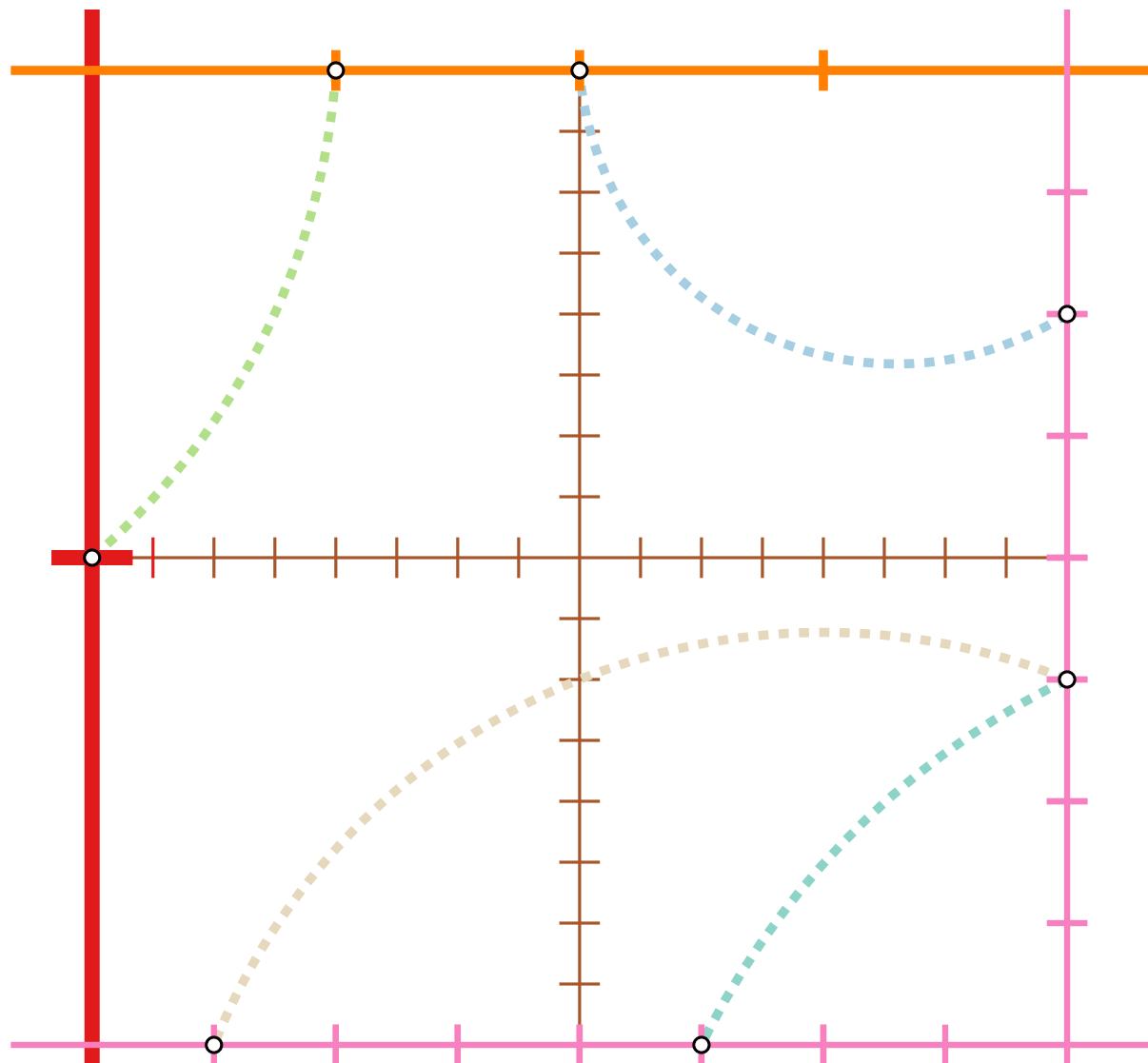
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 =$ crossing-free pairings of the child squares.

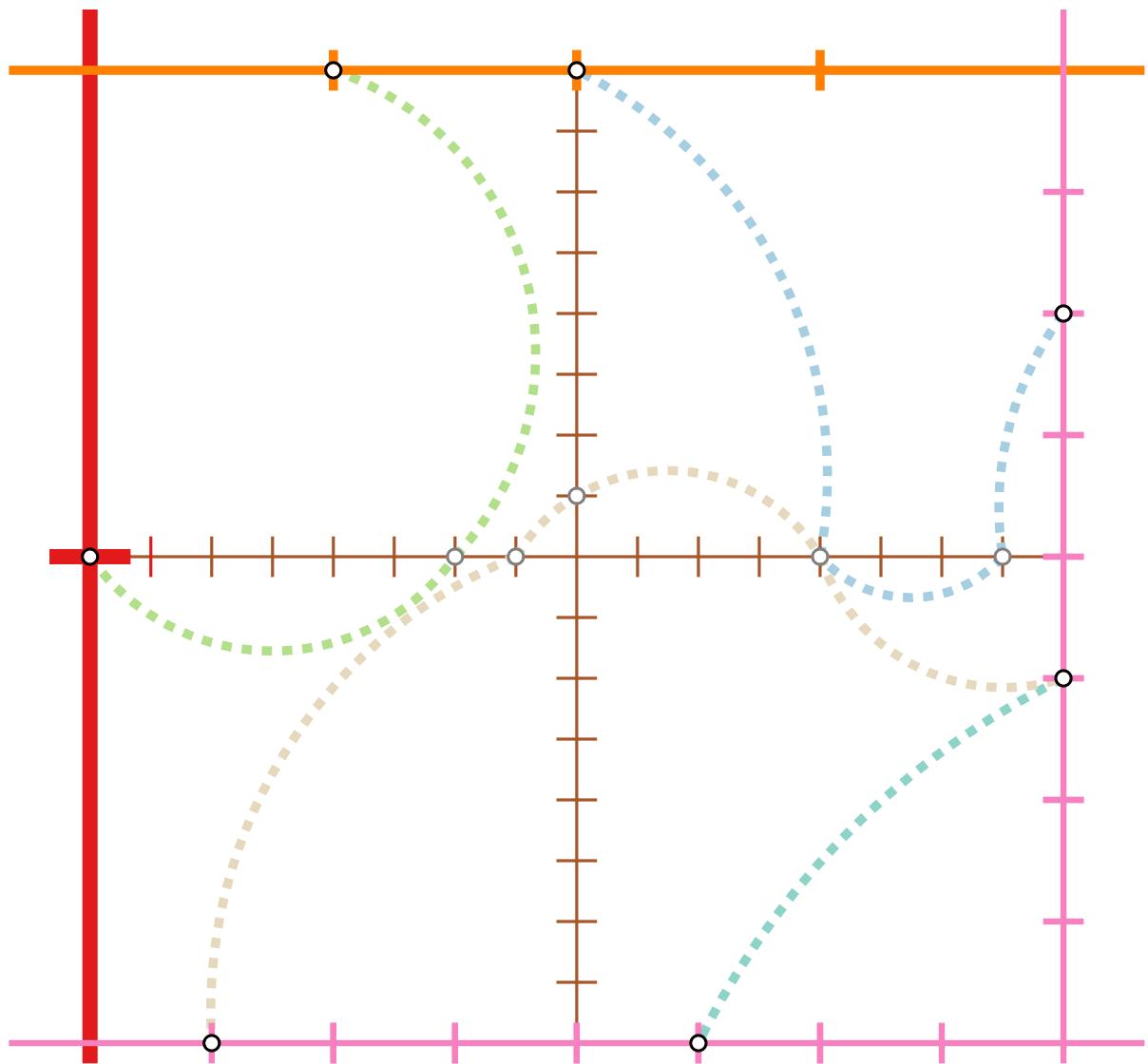
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.

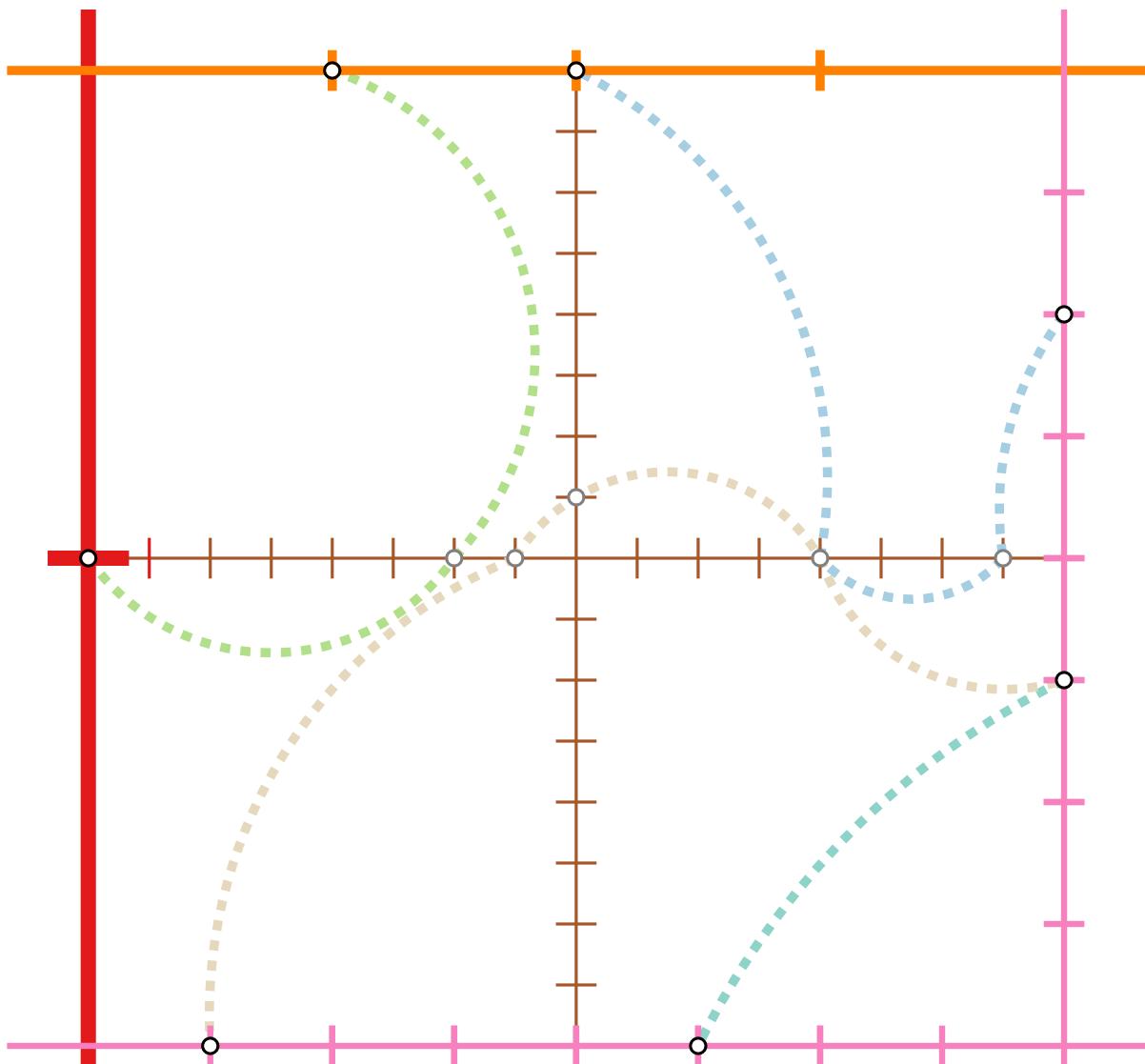
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.

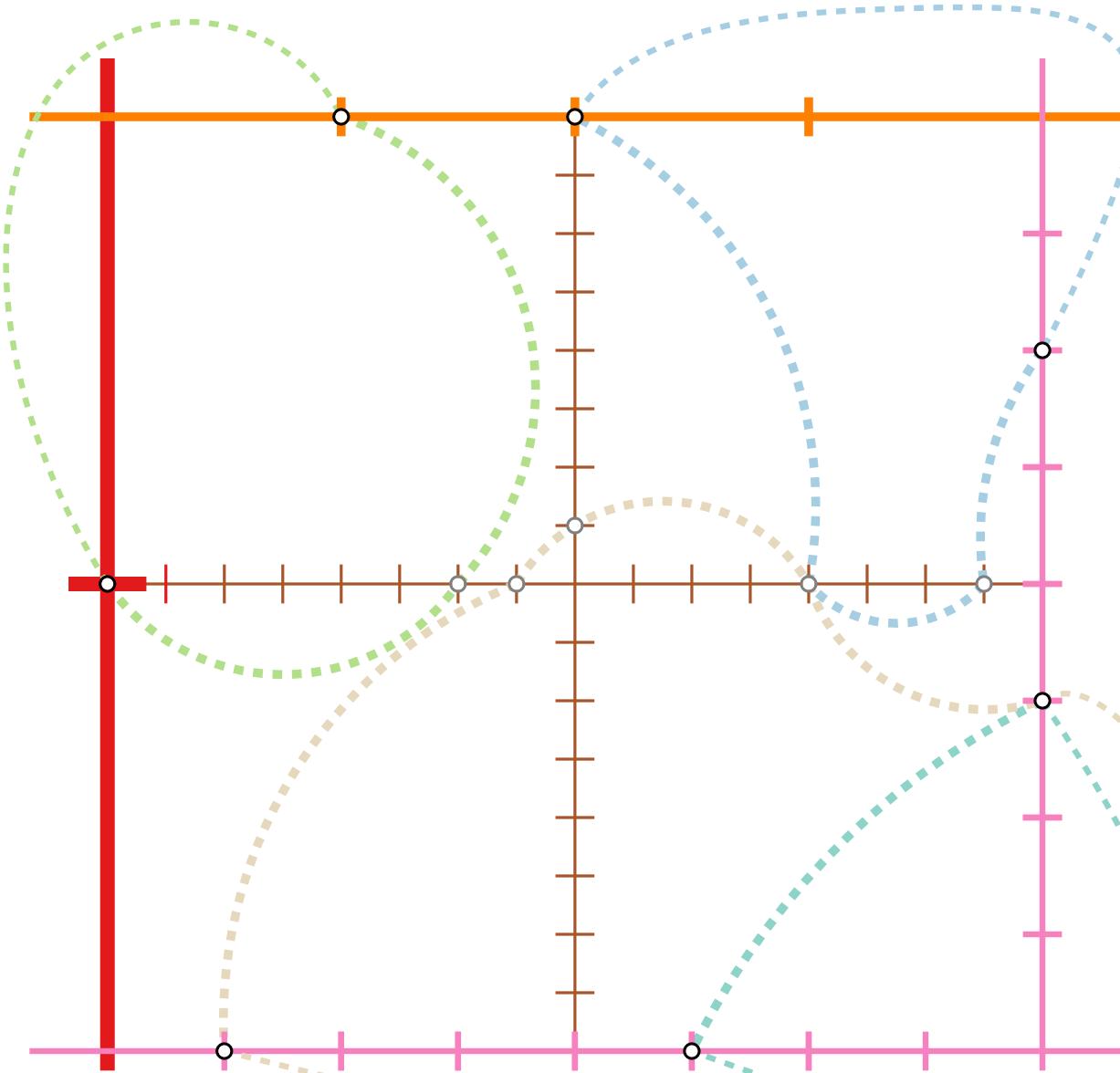
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

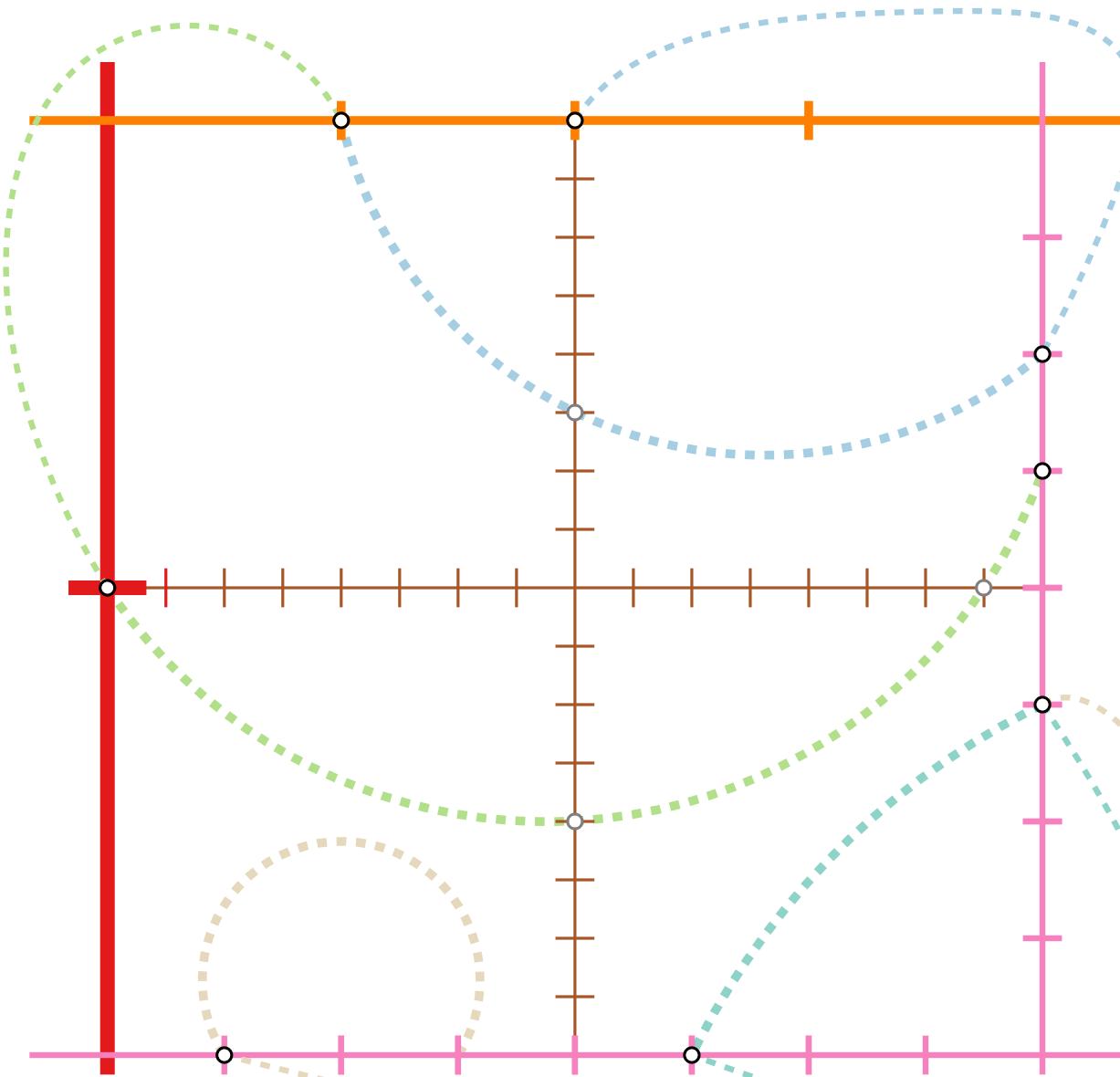
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

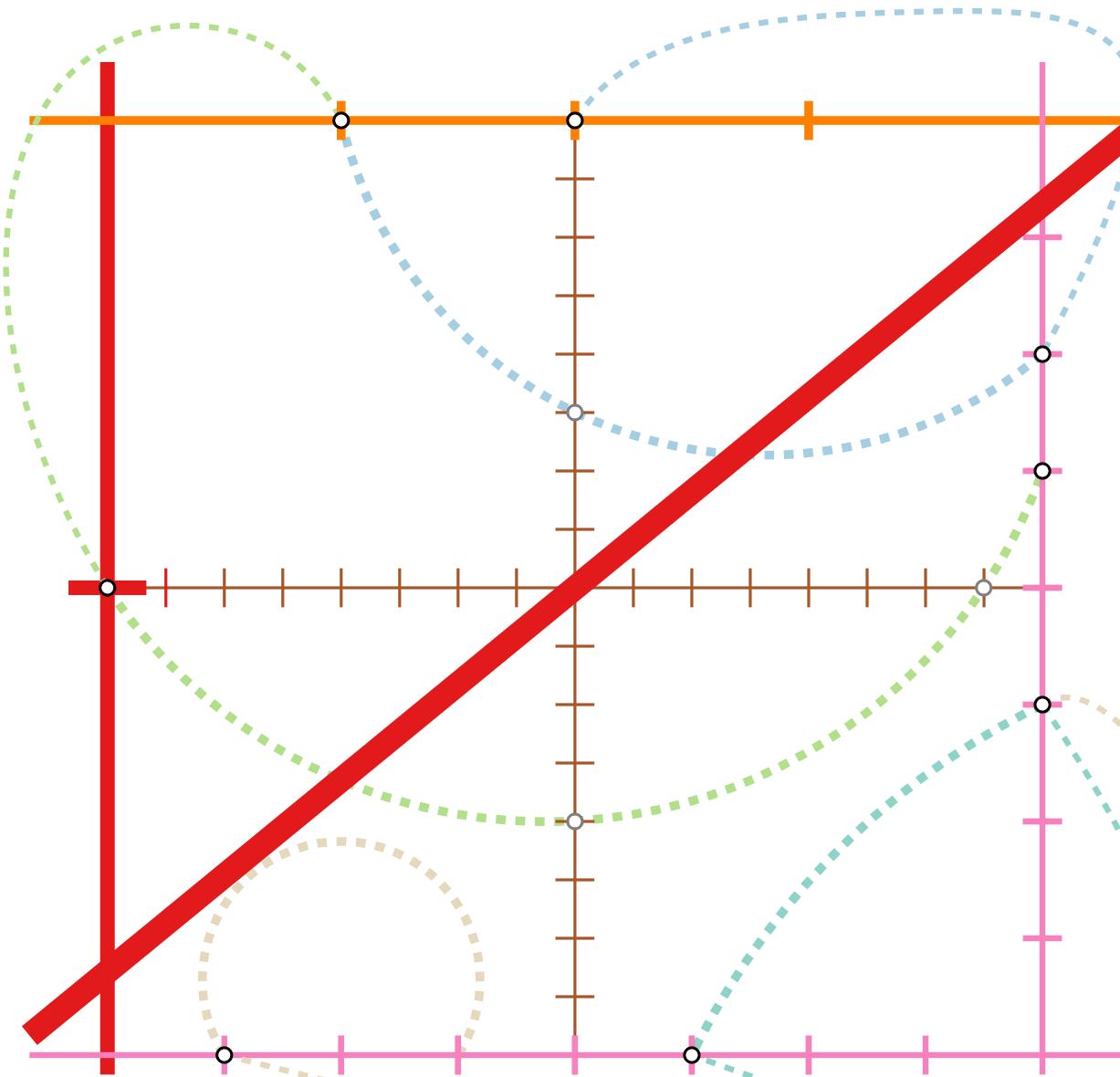
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

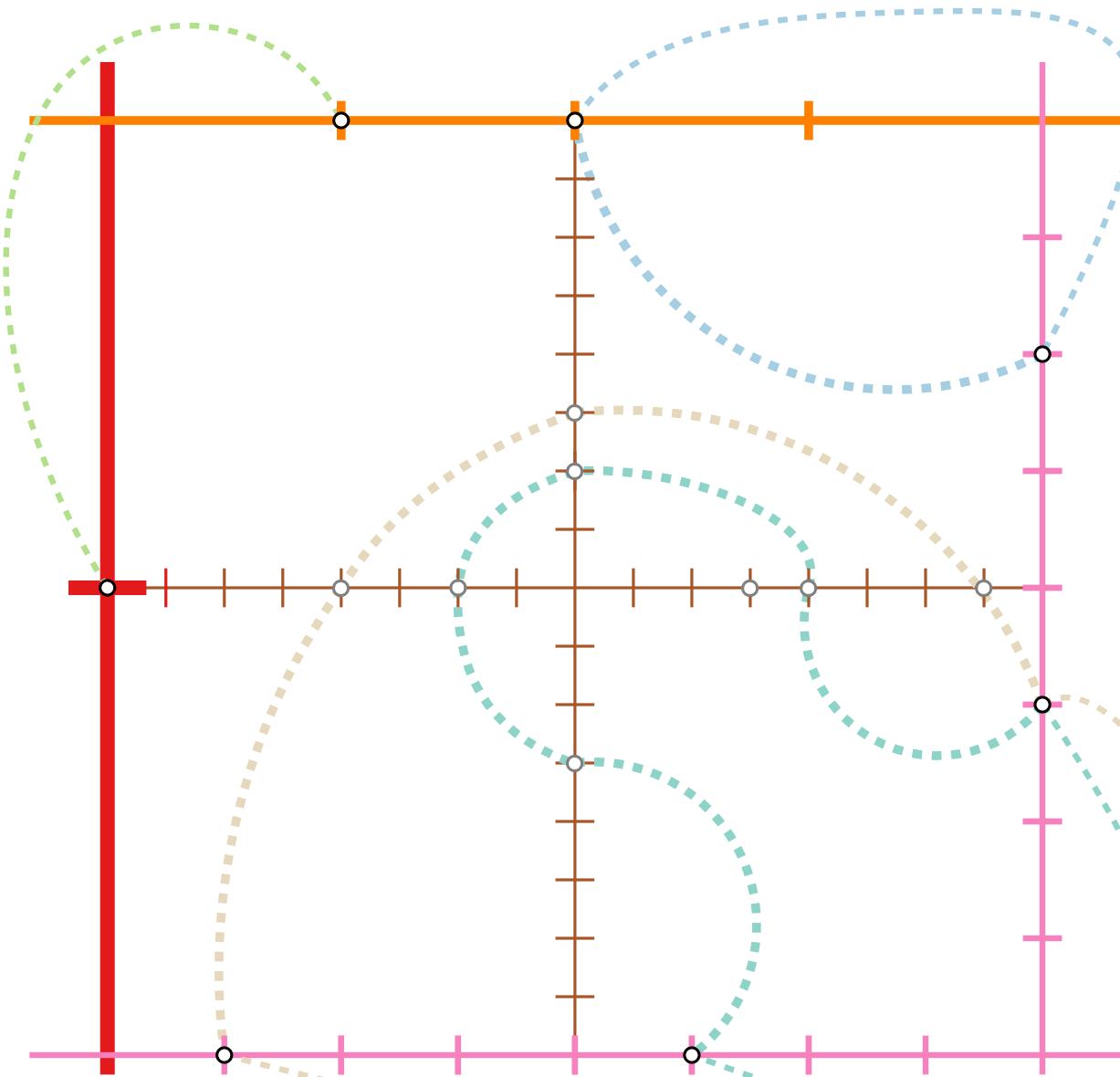
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

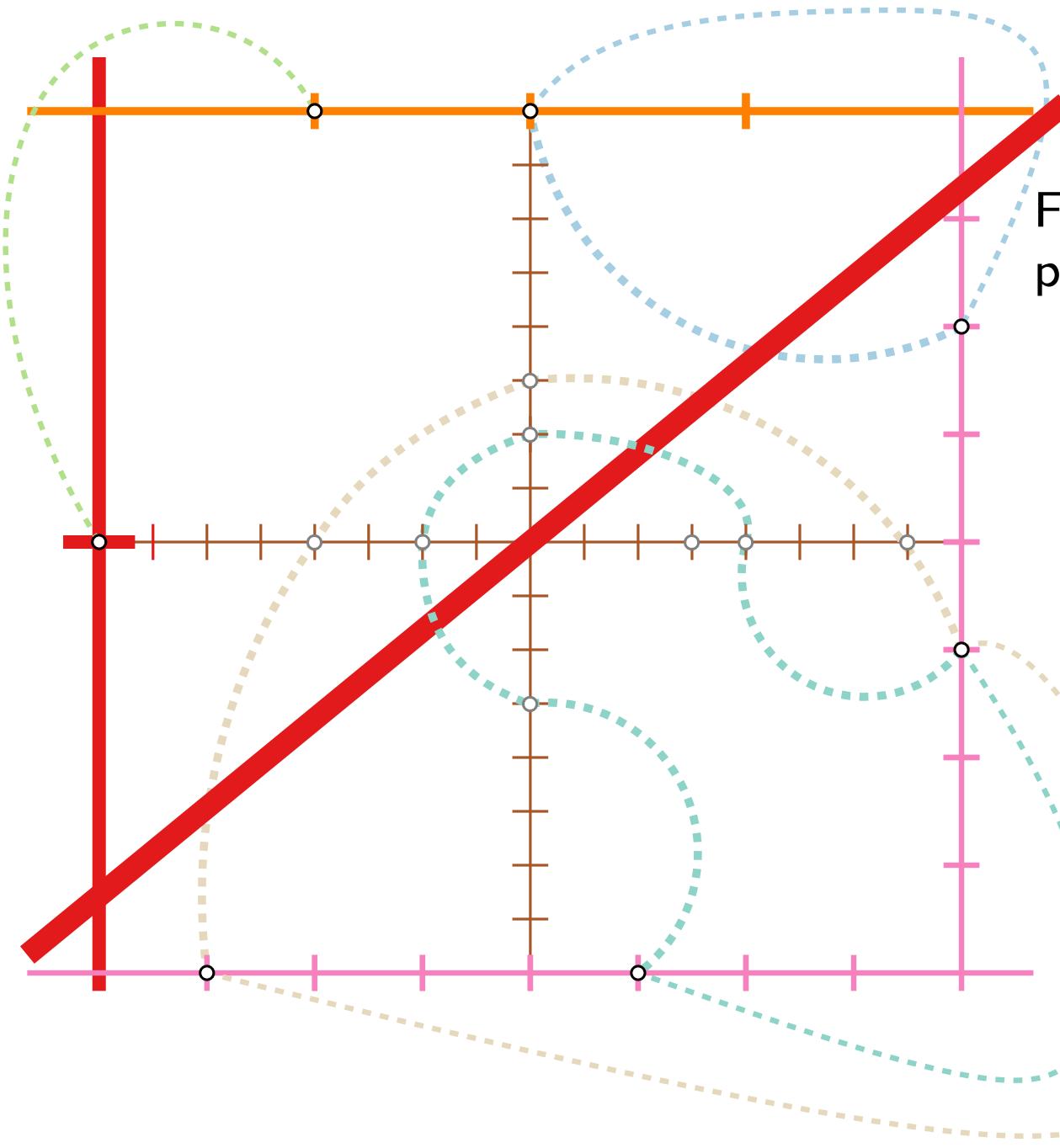
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

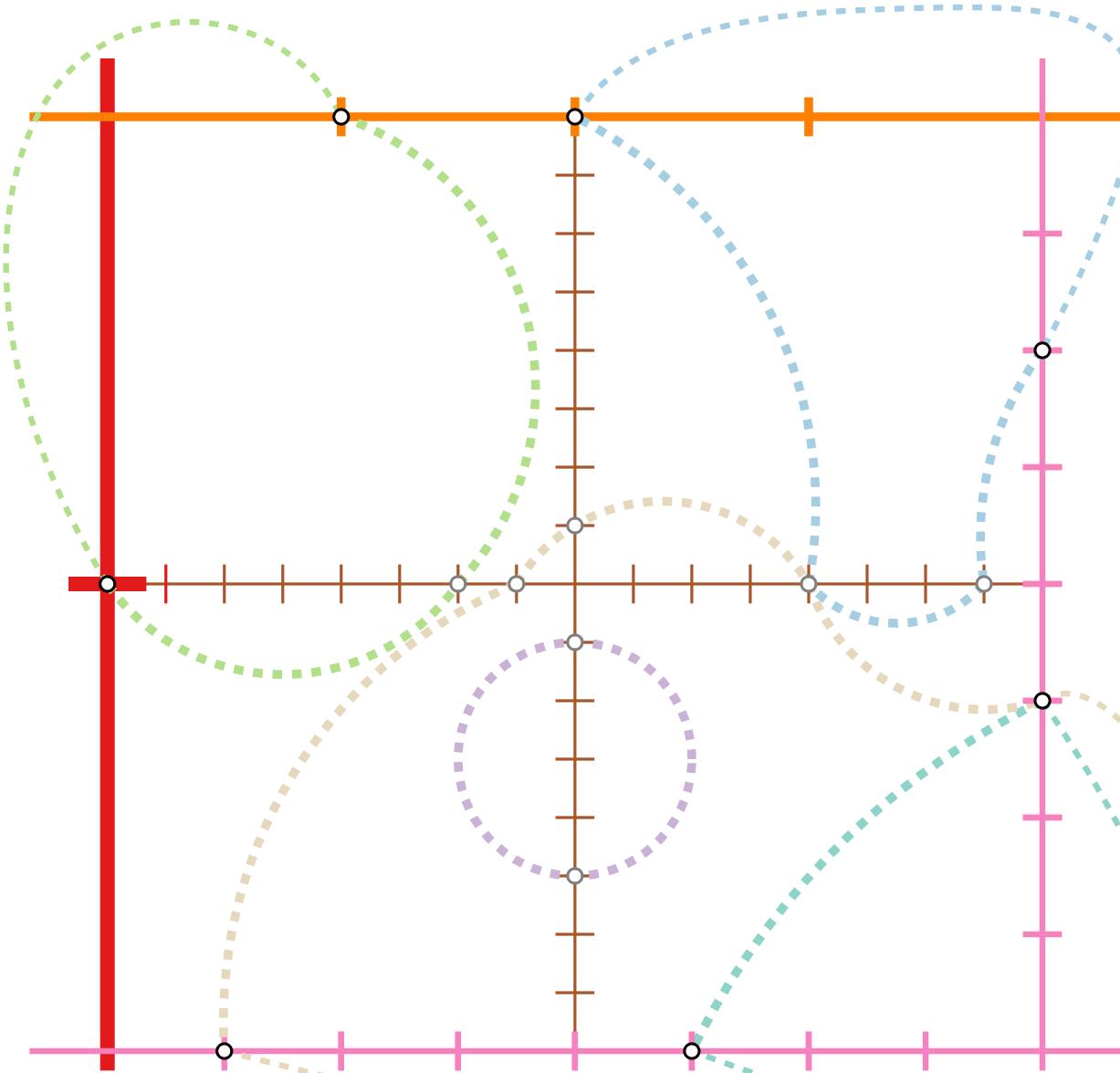
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

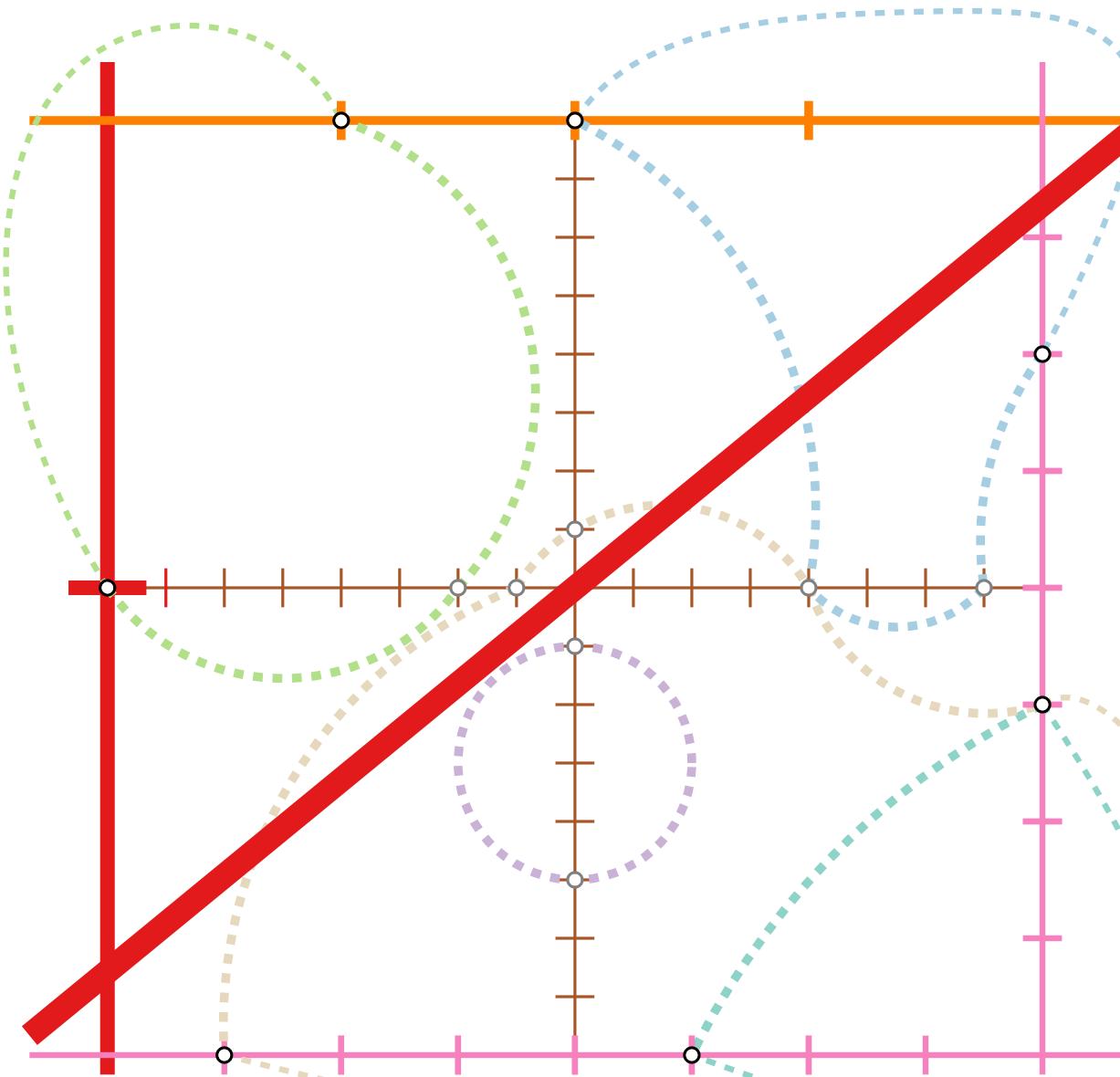
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

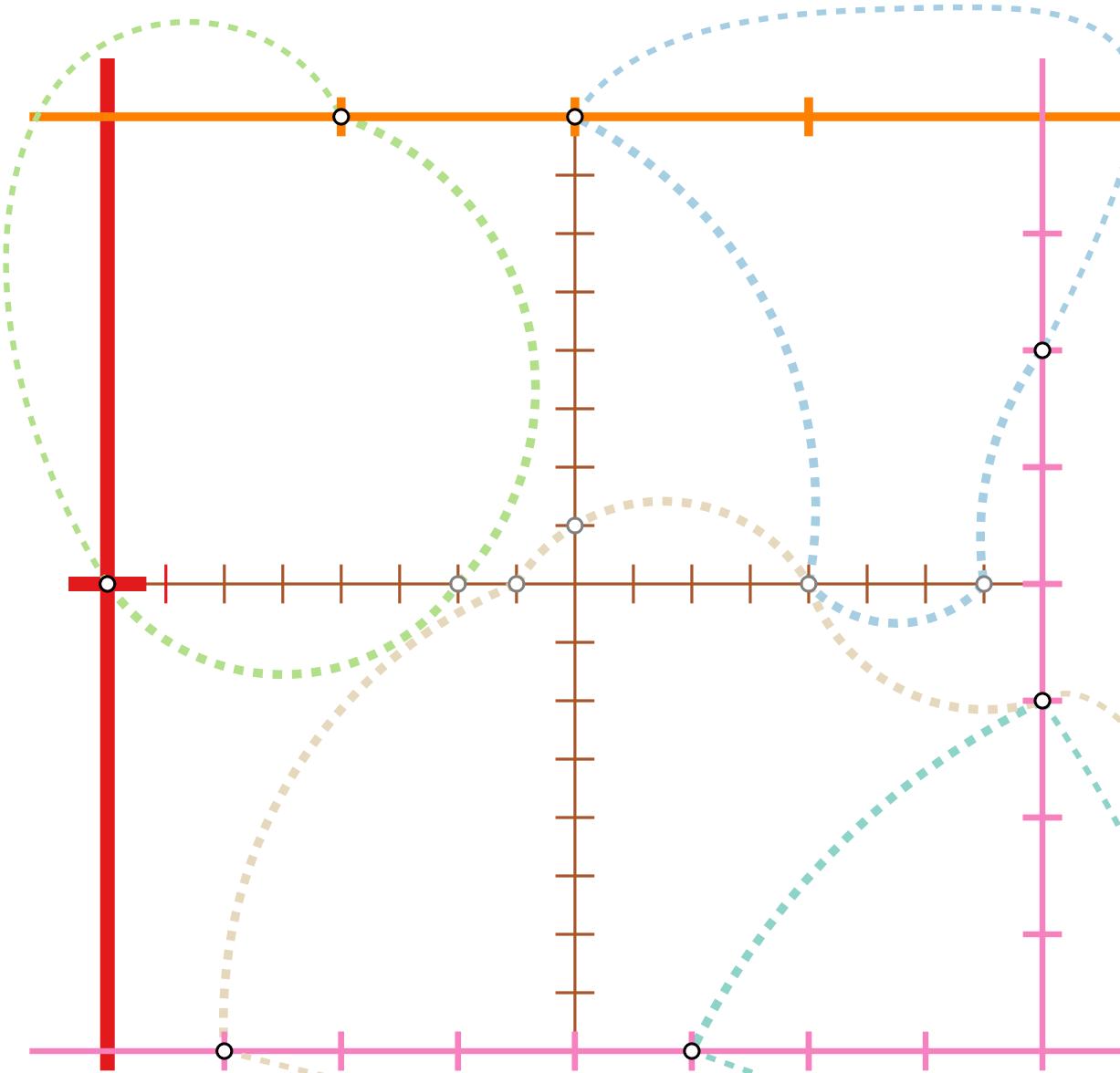
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

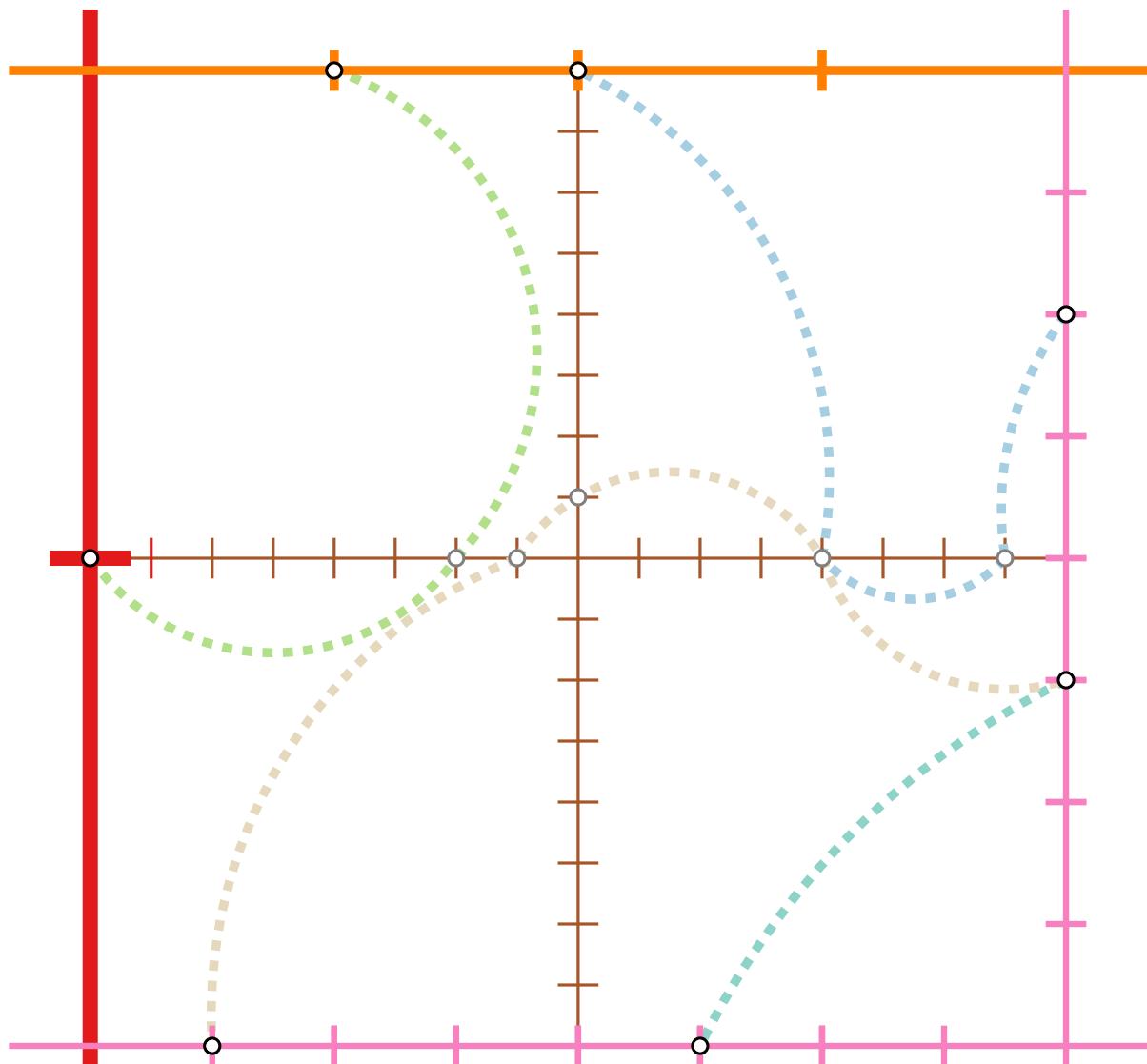
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .

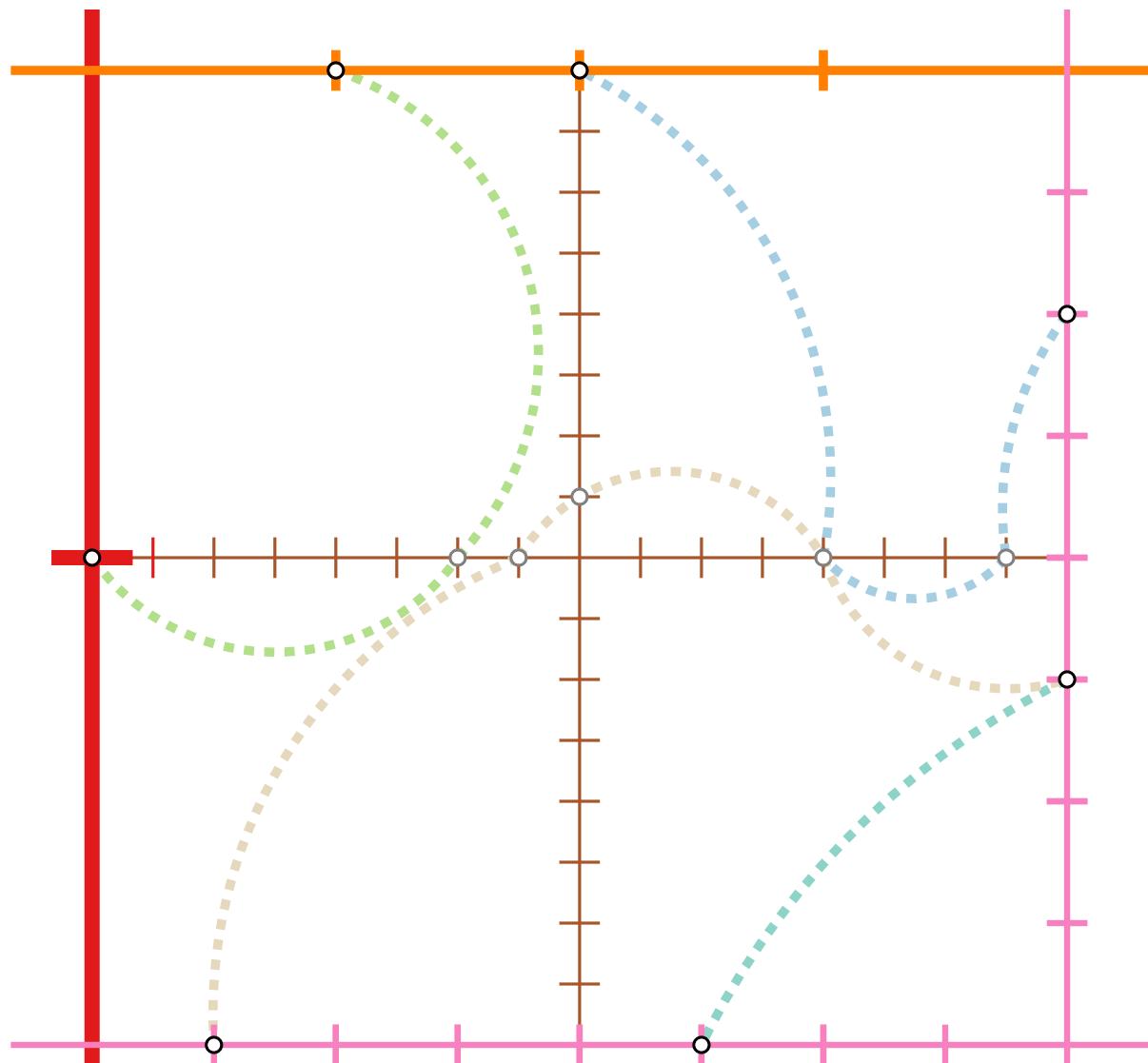
Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .
- Correctness follows by induction.

Dynamic Program (III)



For a given square Q and pairing P :

- Iterate over all $(n^{O(1/\varepsilon)})^4 = n^{O(1/\varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P .
- Correctness follows by induction.

Lemma.

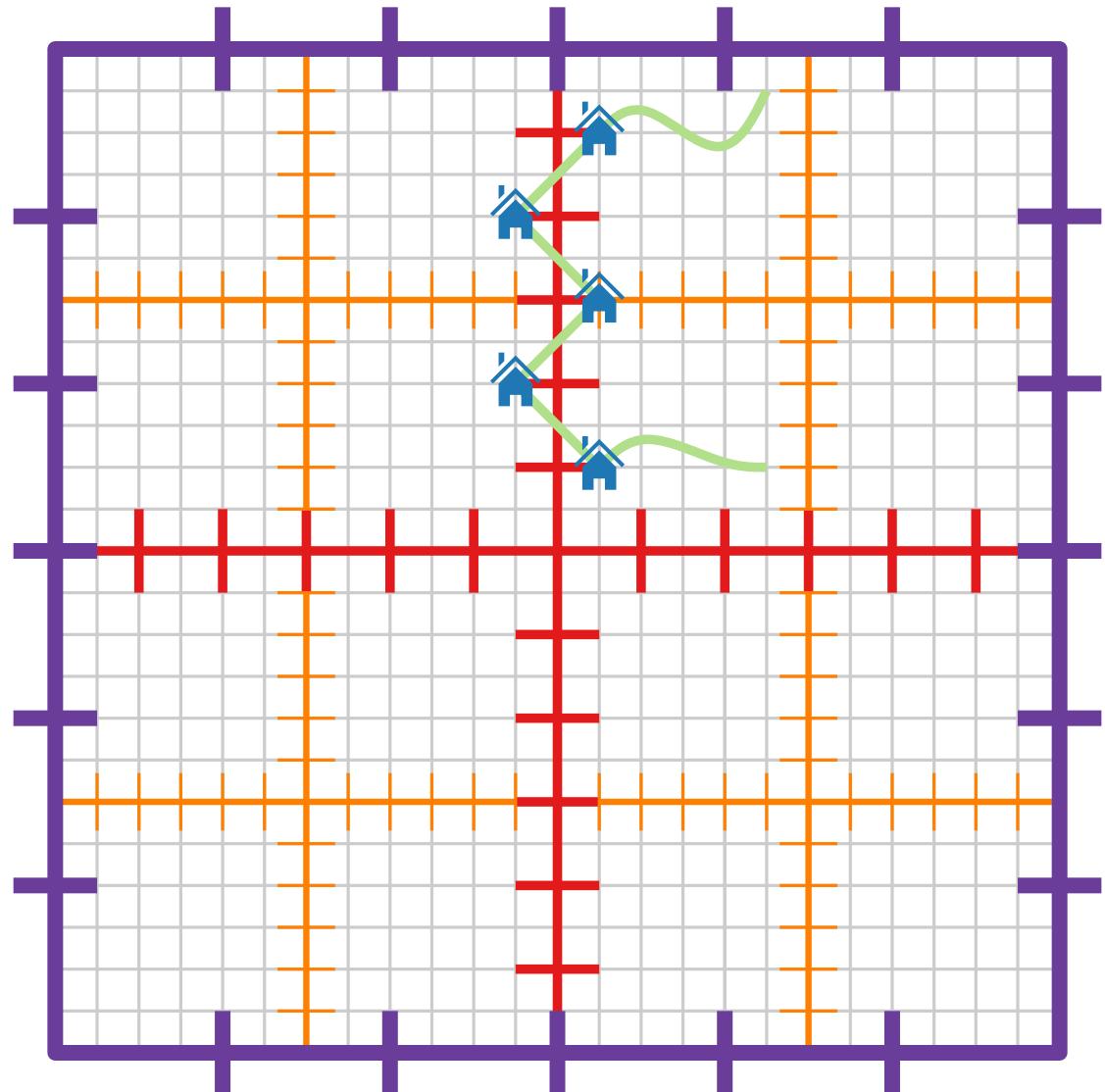
An optimal well-behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

Approximation Algorithms

Lecture 9:
A PTAS for EUCLIDEAN TSP

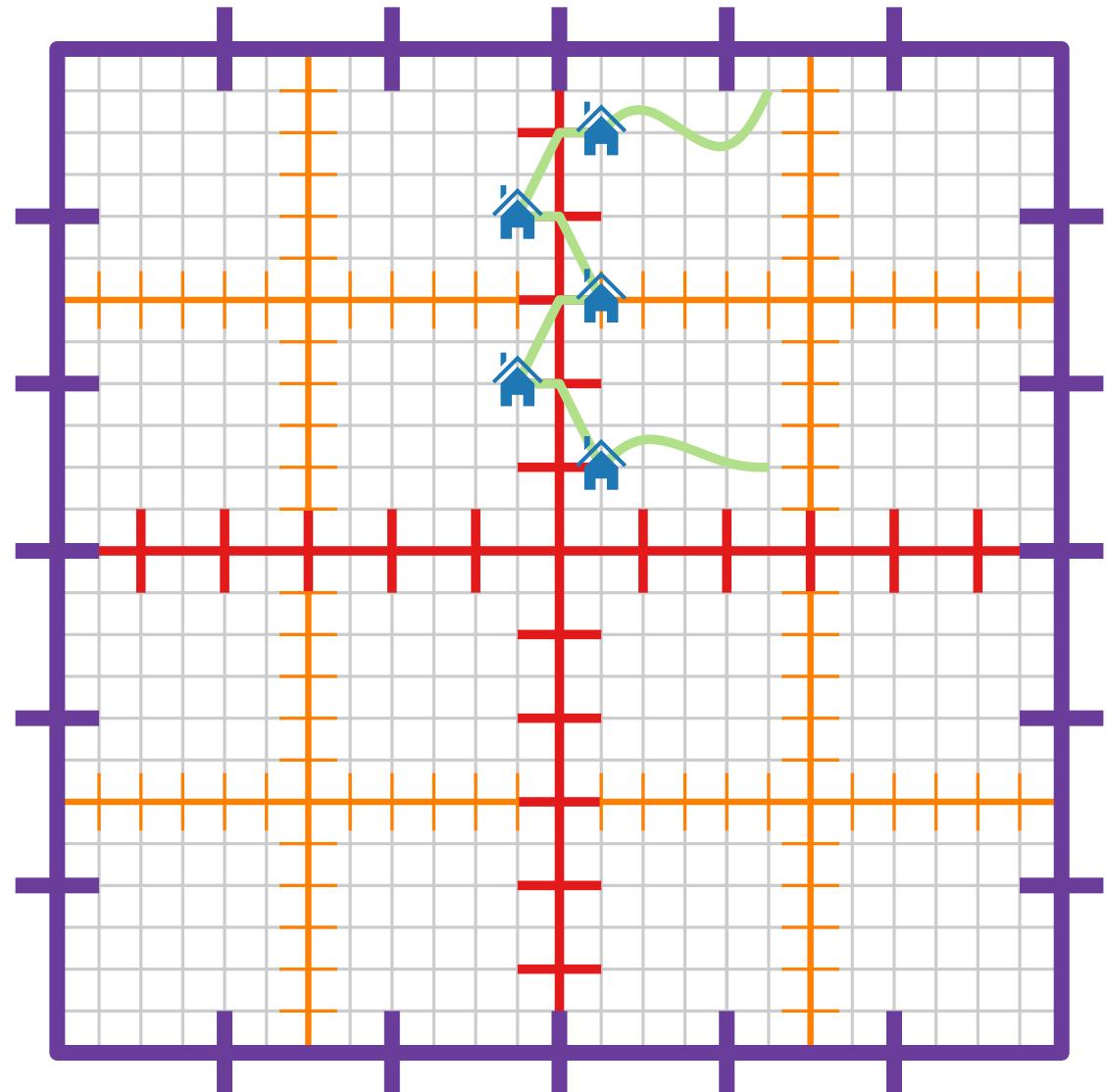
Part V:
Shifted Dissections

Shifted Dissections



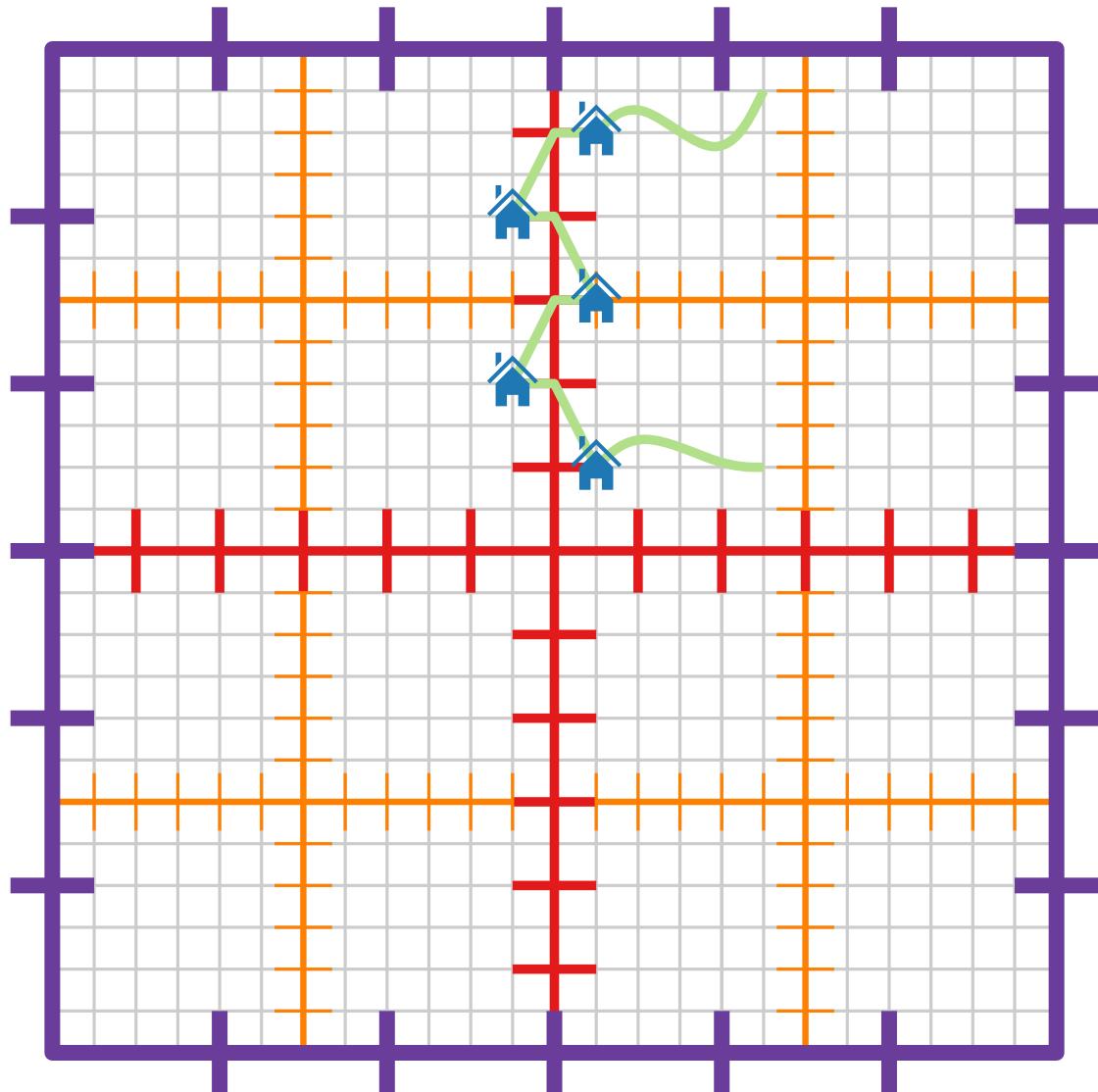
- The best well-behaved tour can be a bad approximation.

Shifted Dissections



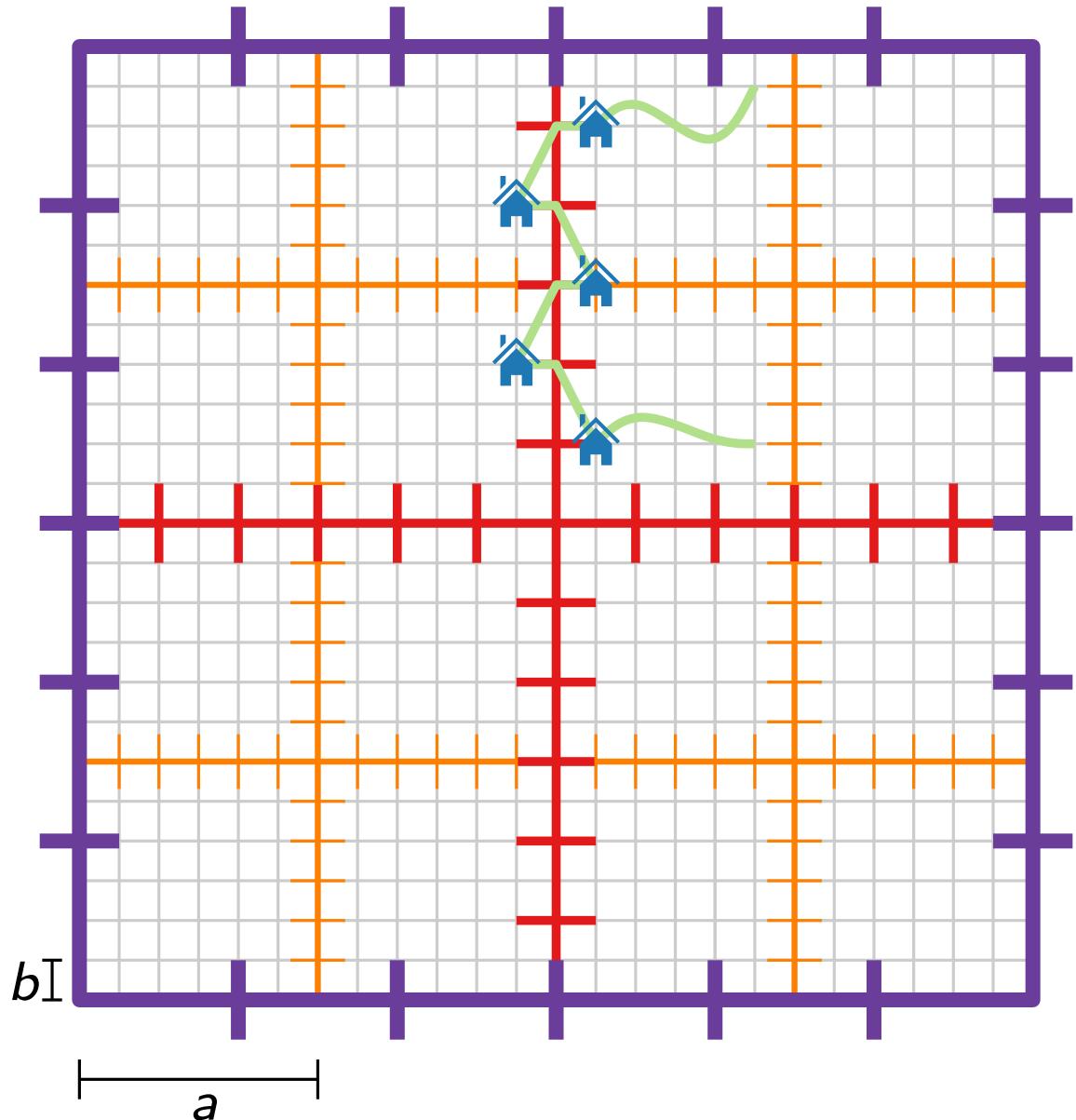
- The best well-behaved tour can be a bad approximation.

Shifted Dissections



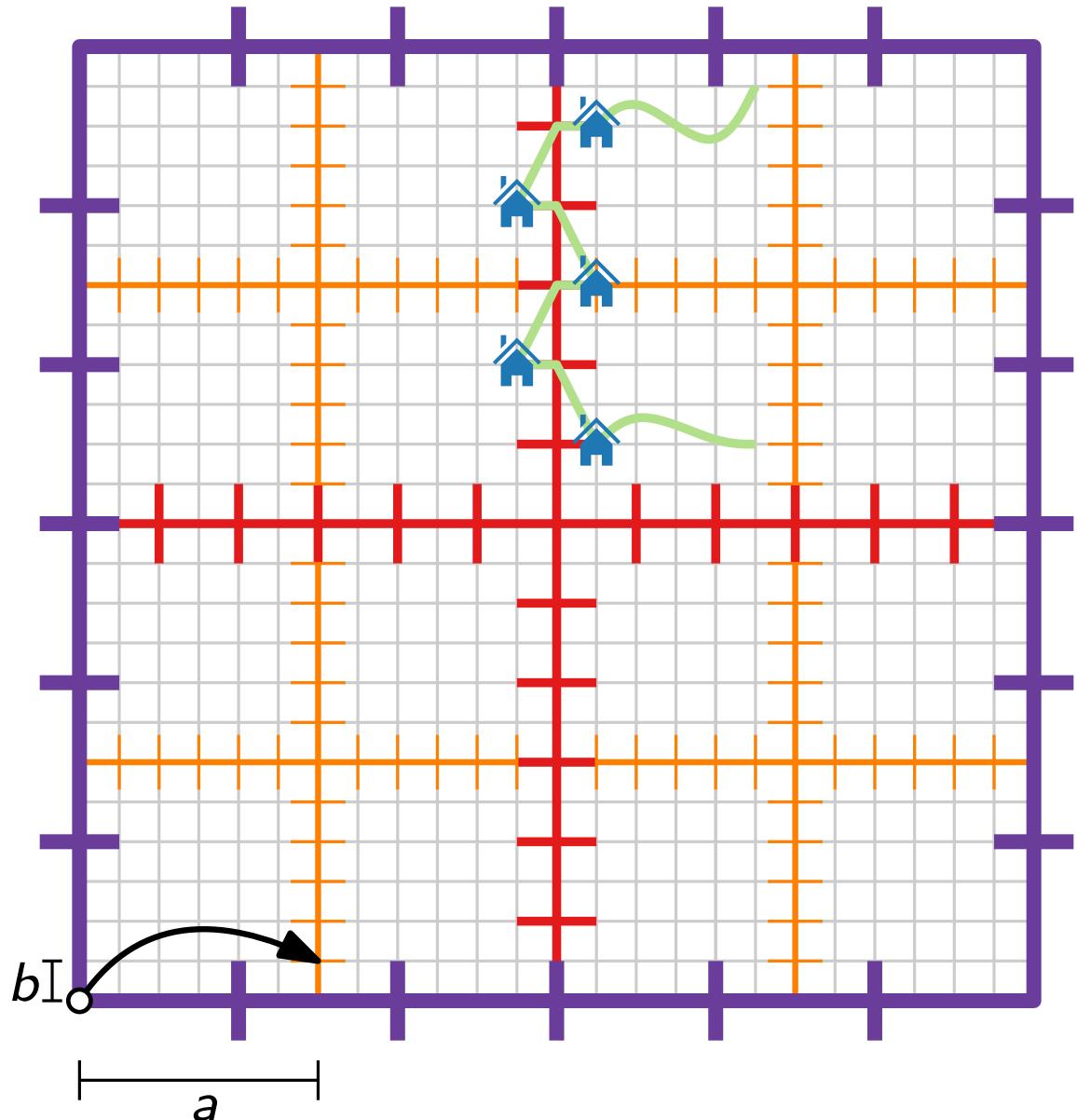
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b) -shifted dissection:
$$x \mapsto (x + a) \bmod L$$
$$y \mapsto (y + b) \bmod L$$

Shifted Dissections



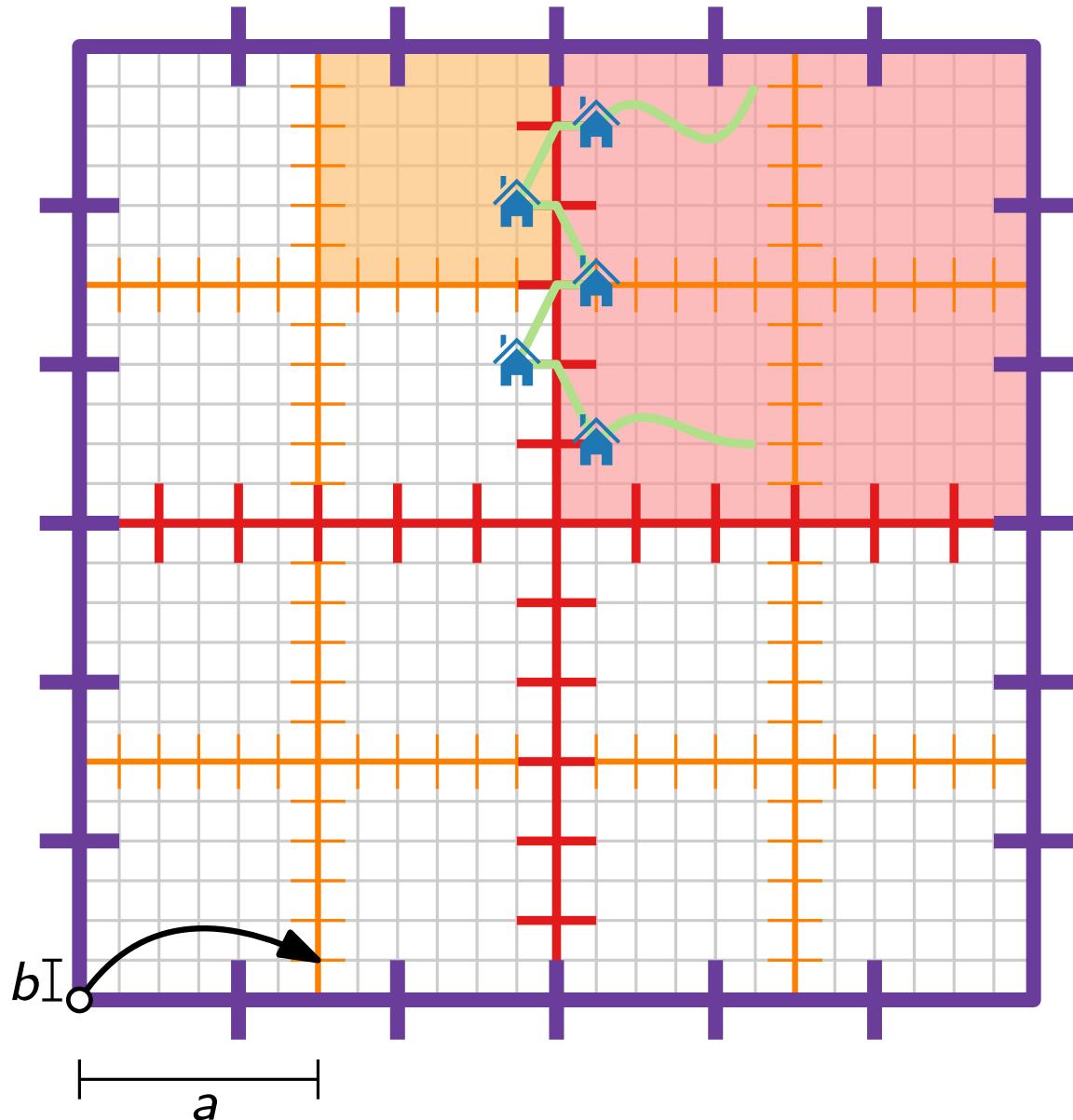
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b) -shifted dissection:
$$x \mapsto (x + a) \bmod L$$
$$y \mapsto (y + b) \bmod L$$

Shifted Dissections



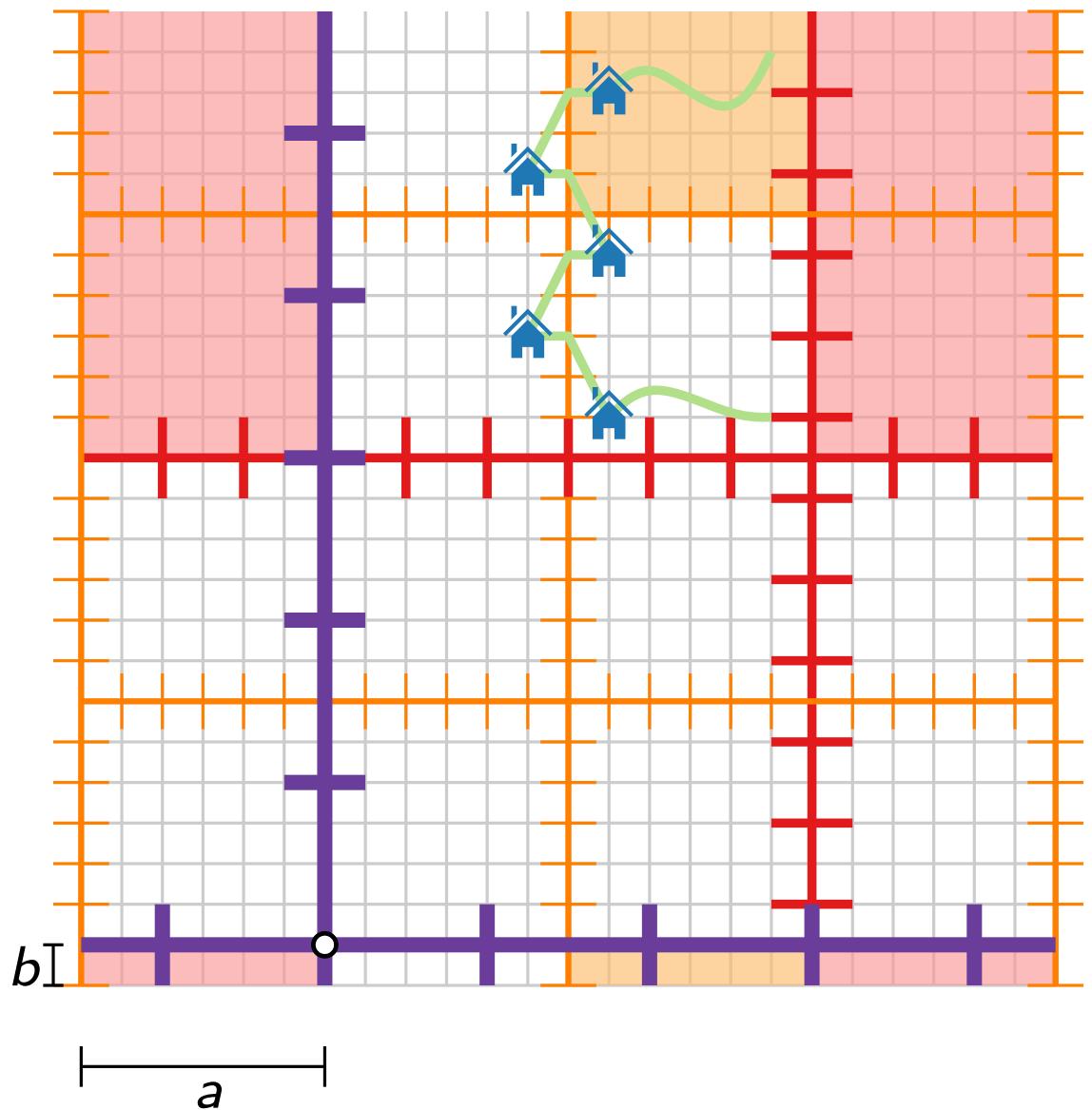
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b) -shifted dissection:
$$x \mapsto (x + a) \bmod L$$
$$y \mapsto (y + b) \bmod L$$

Shifted Dissections



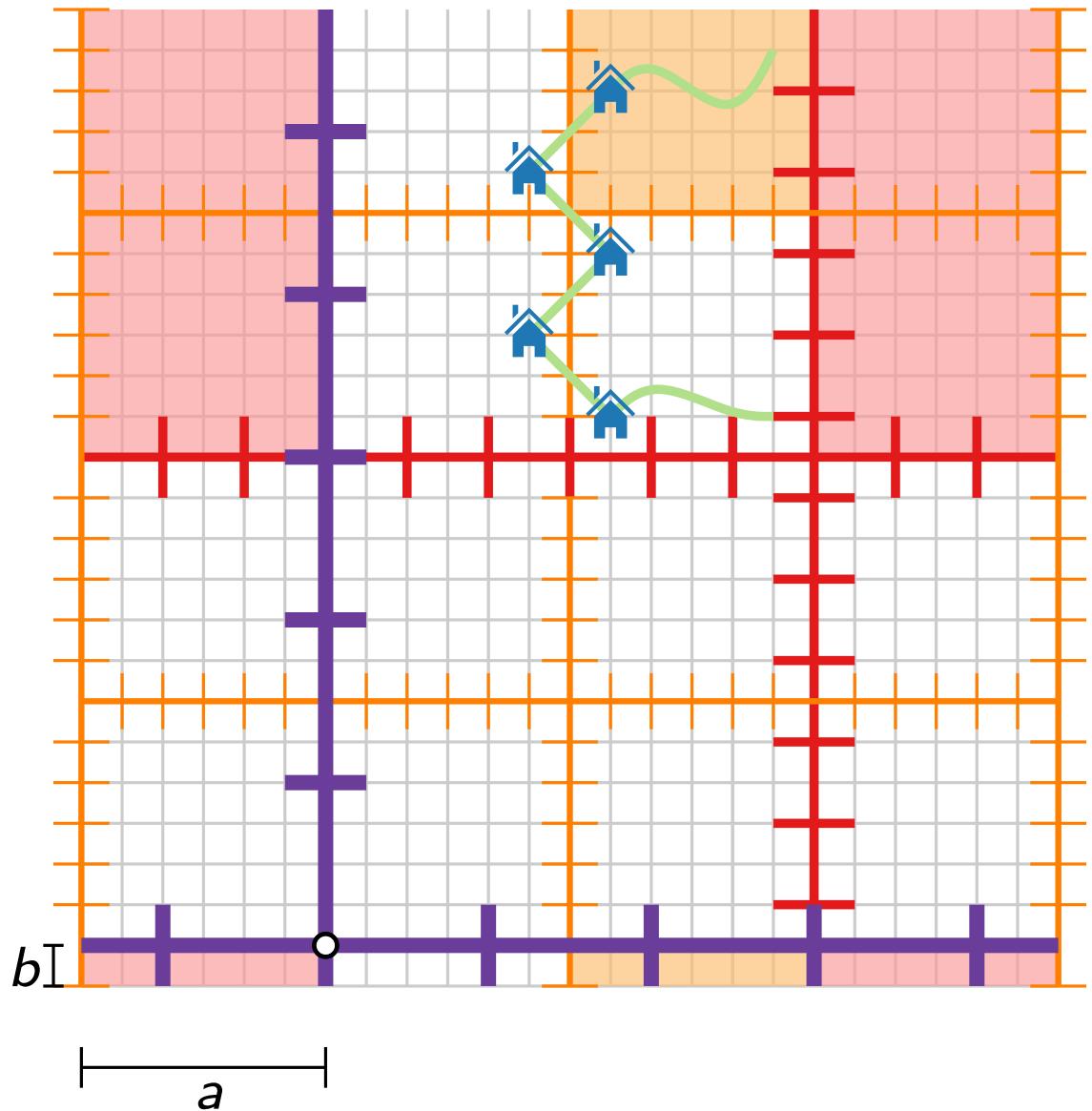
- The best well-behaved tour can be a bad approximation.
- Consider an (a, b) -shifted dissection:
$$x \mapsto (x + a) \bmod L$$
$$y \mapsto (y + b) \bmod L$$

Shifted Dissections



- The best well-behaved tour can be a bad approximation.
- Consider an (a, b) -shifted dissection:
$$x \mapsto (x + a) \bmod L$$
$$y \mapsto (y + b) \bmod L$$

Shifted Dissections

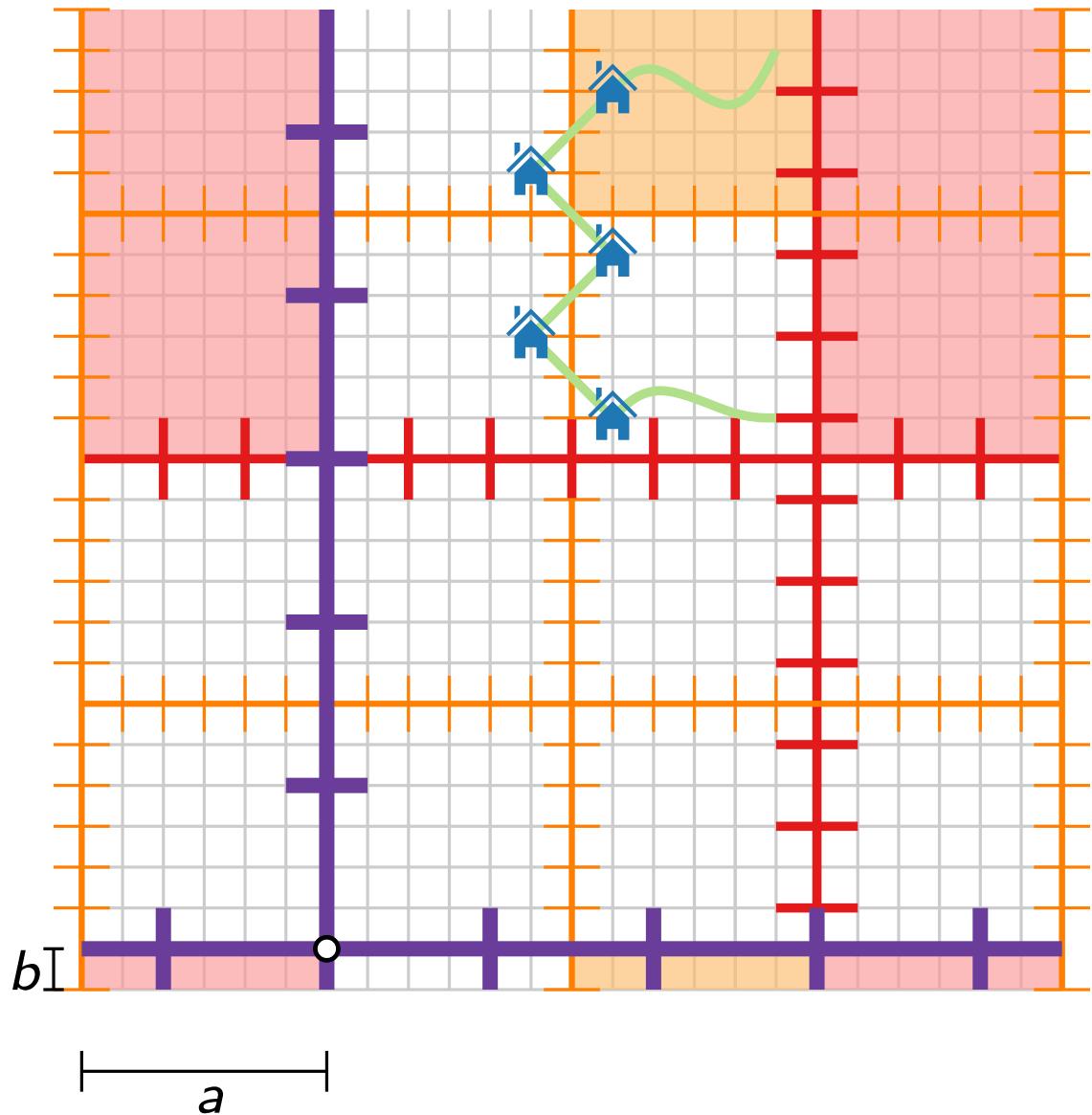


- The best well-behaved tour can be a bad approximation.
- Consider an (a, b) -shifted dissection:

$$x \mapsto (x + a) \bmod L$$

$$y \mapsto (y + b) \bmod L$$

Shifted Dissections

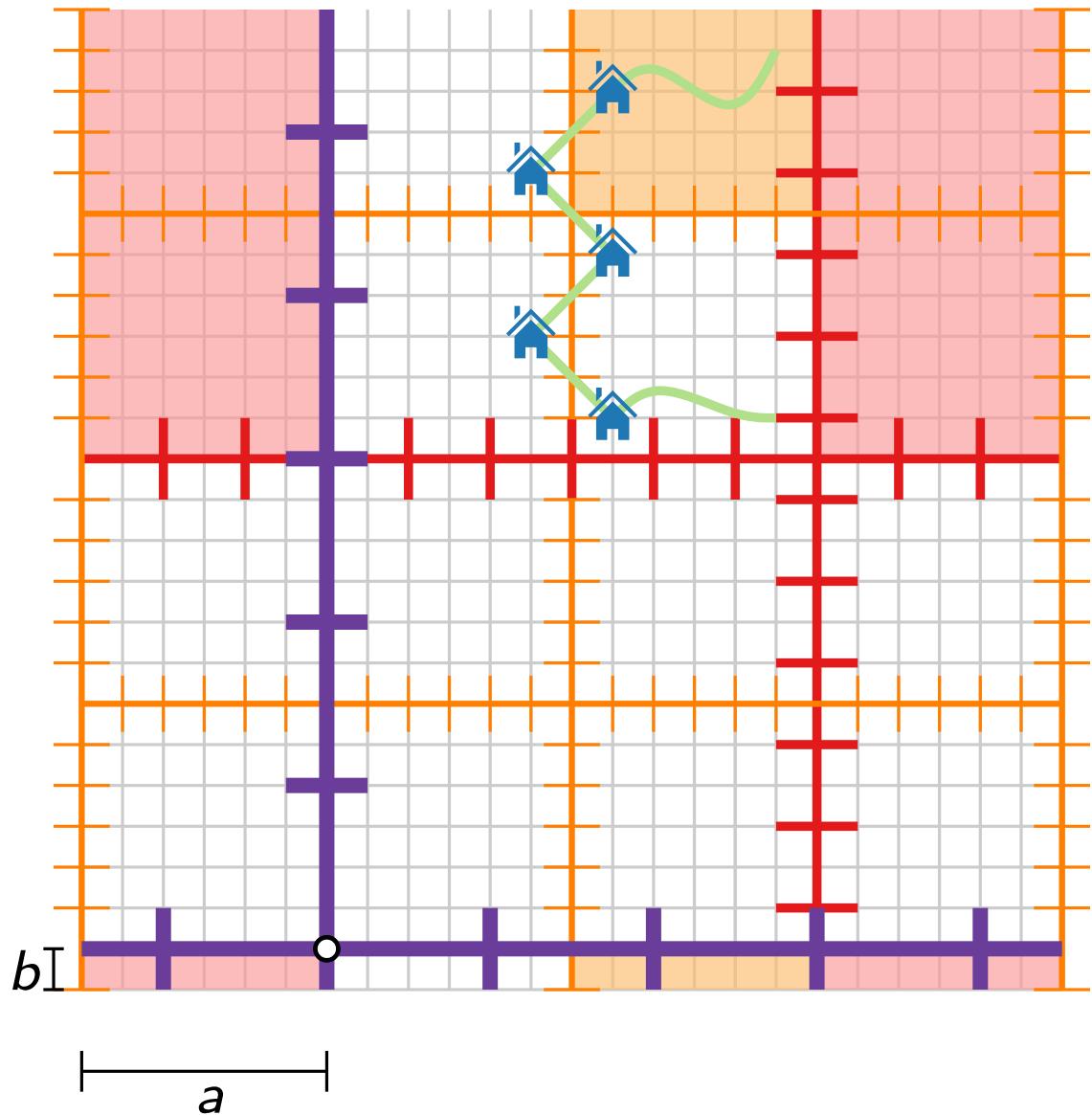


- The best well-behaved tour can be a bad approximation.
- Consider an (a, b) -shifted dissection:

$$x \mapsto (x + a) \bmod L$$

$$y \mapsto (y + b) \bmod L$$
- Squares in the dissection tree are “wrapped around”.

Shifted Dissections



- The best well-behaved tour can be a bad approximation.
- Consider an (a, b) -shifted dissection:

$$x \mapsto (x + a) \bmod L$$

$$y \mapsto (y + b) \bmod L$$
- Squares in the dissection tree are “wrapped around”.
- Dynamic program must be modified accordingly.

Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq$

Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

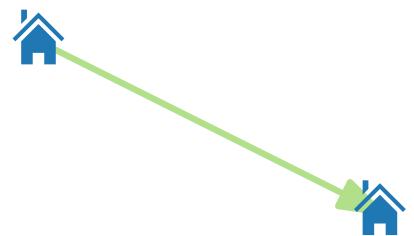
- Consider a tour as an ordered cyclic sequence.

Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.



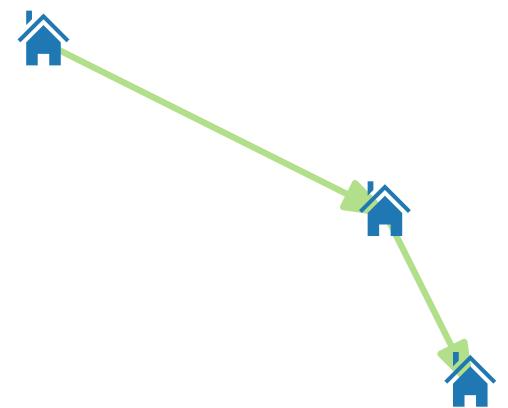
π

Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.



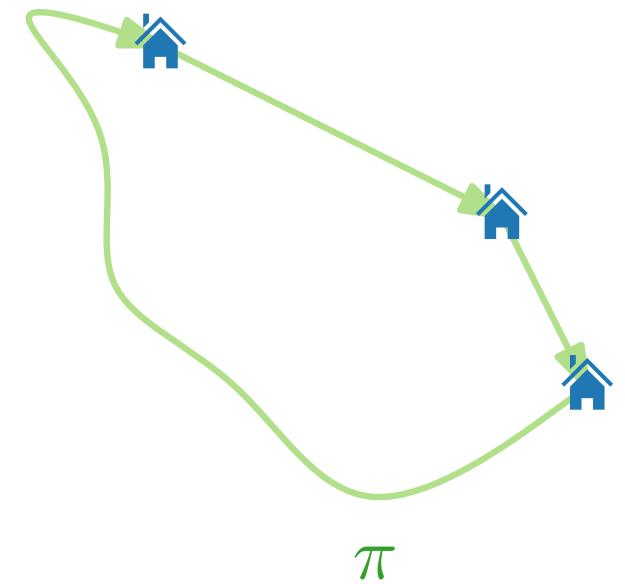
π

Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.

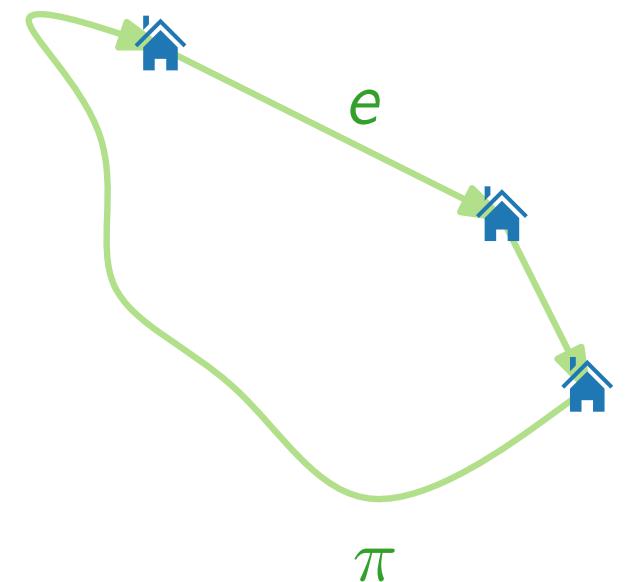


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.

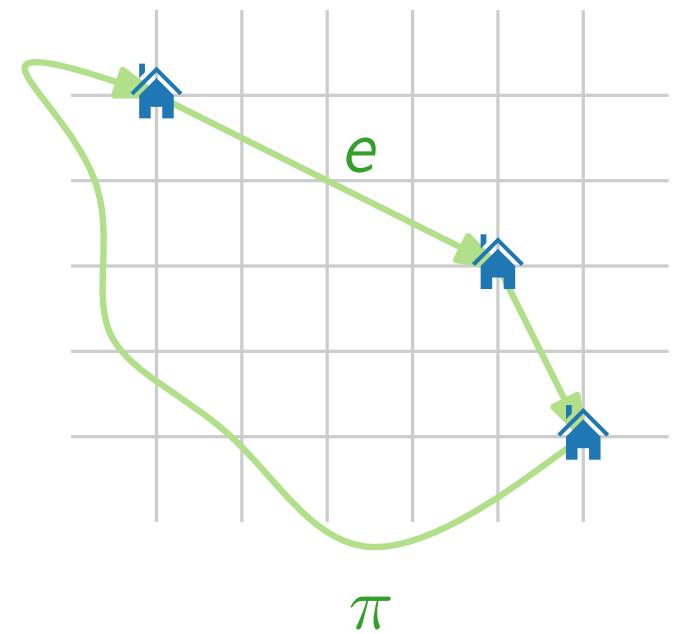


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.

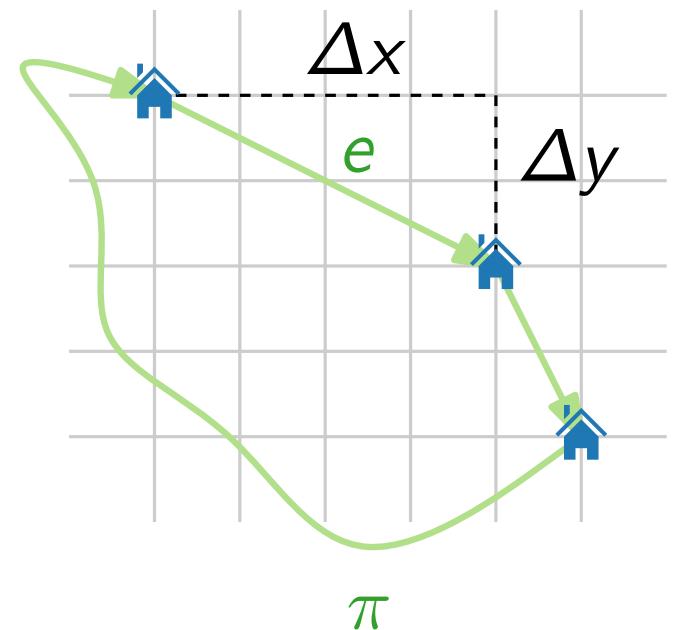


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.

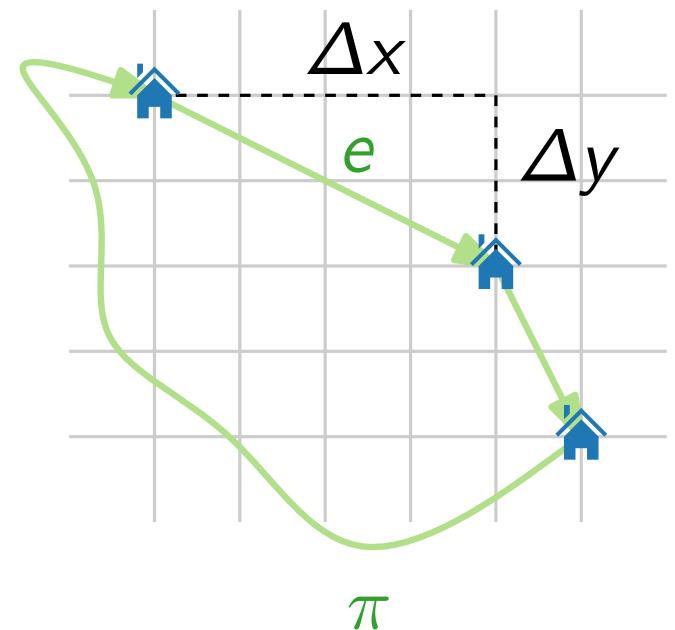


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.

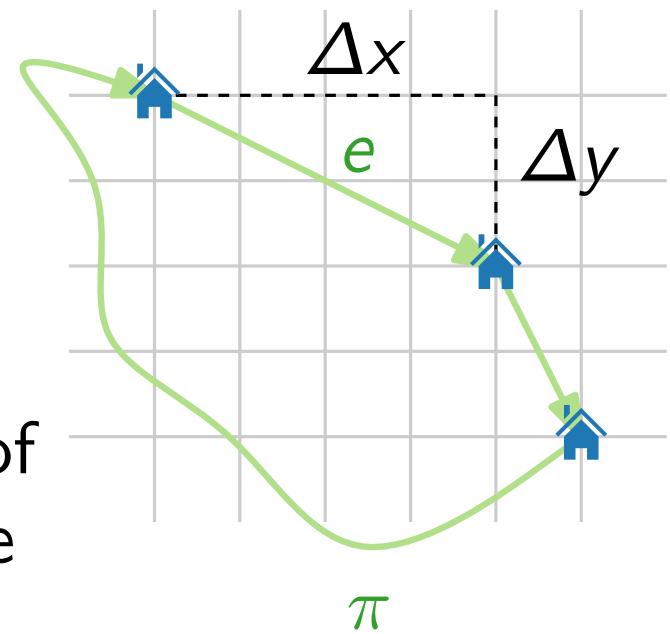


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

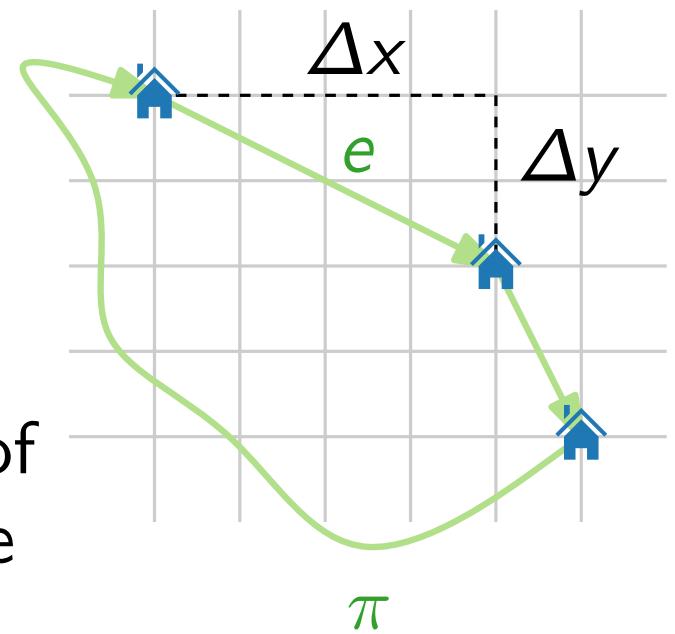


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.
- $N_e^2 \leq$

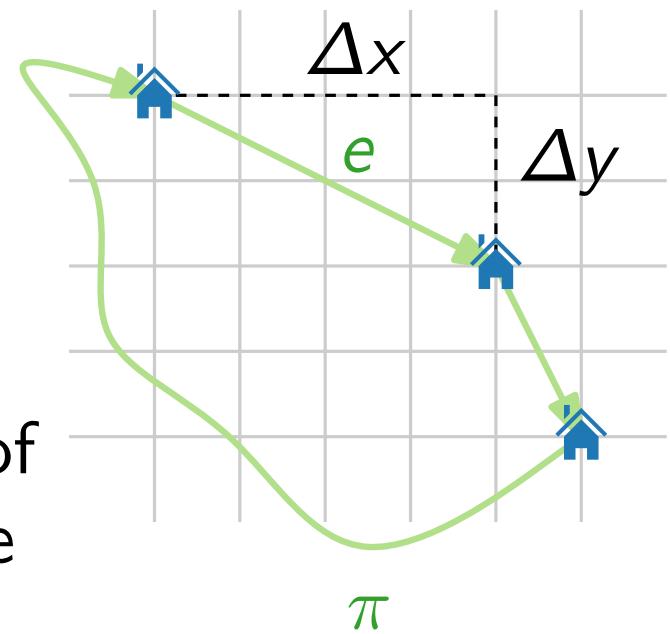


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.
- $N_e^2 \leq (\Delta x + \Delta y)^2 \leq$

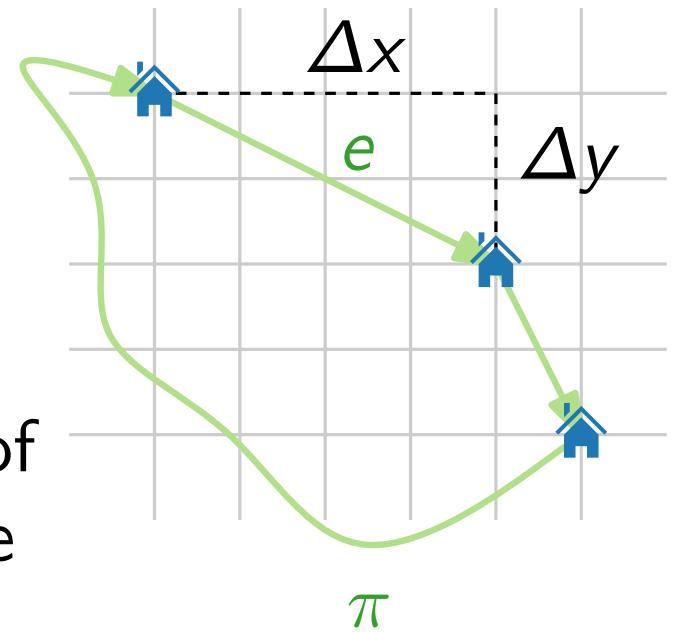


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.
- $N_e^2 \leq (\Delta x + \Delta y)^2 \leq 2(\Delta x^2 + \Delta y^2) =$

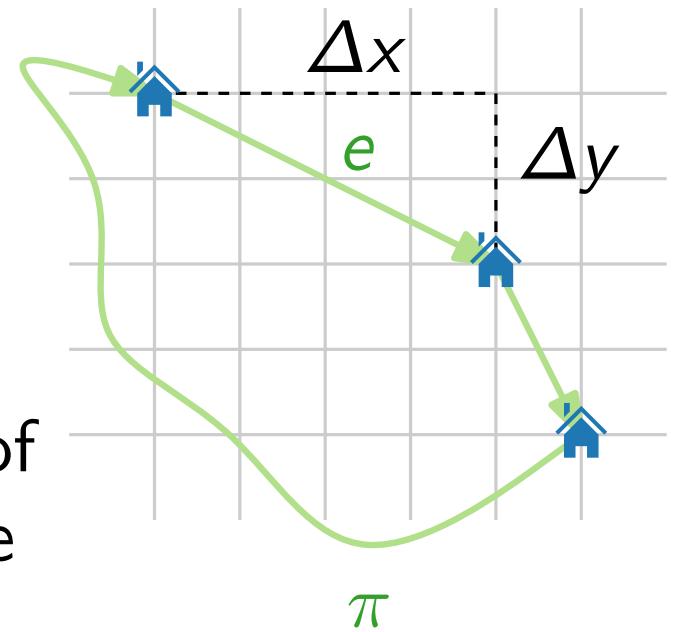


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.
- $N_e^2 \leq (\Delta x + \Delta y)^2 \leq 2(\Delta x^2 + \Delta y^2) = 2|e|^2$.

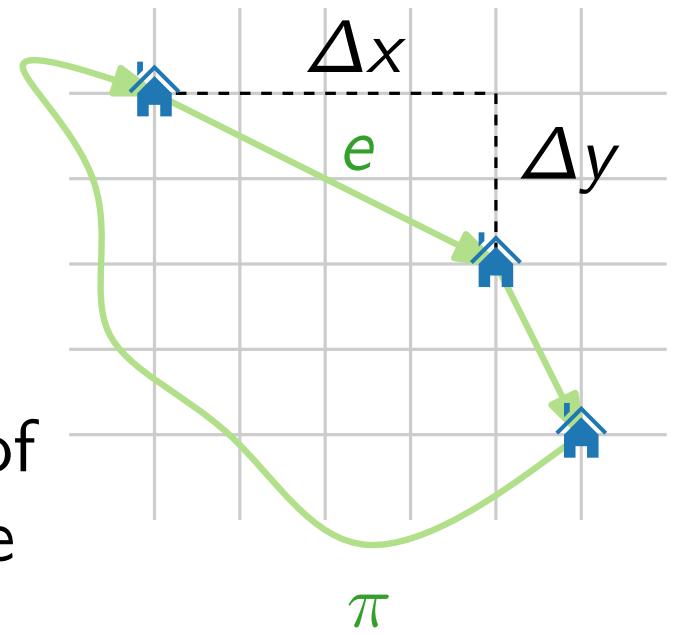


Shifted Dissections (II)

Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.
- $N_e^2 \leq (\Delta x + \Delta y)^2 \leq 2(\Delta x^2 + \Delta y^2) = 2|e|^2$.



$$0 \leq (\Delta x - \Delta y)^2$$

Shifted Dissections (II)

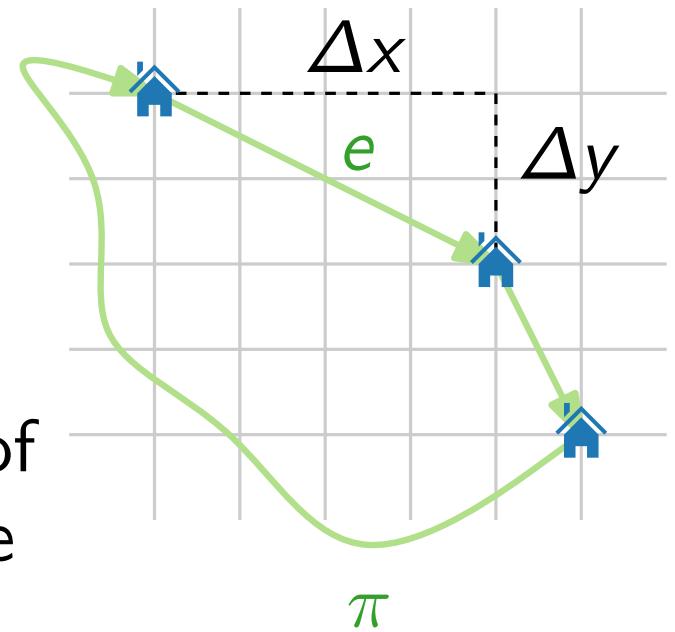
Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

$$0 \leq (\Delta x - \Delta y)^2$$

- $N_e^2 \leq (\Delta x + \Delta y)^2 \leq 2(\Delta x^2 + \Delta y^2) = 2|e|^2$.
- $N(\pi) =$



Shifted Dissections (II)

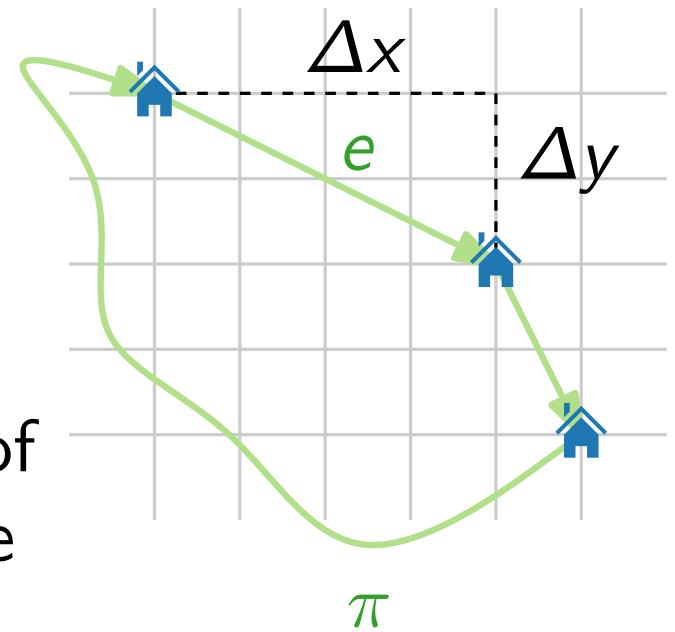
Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

$$0 \leq (\Delta x - \Delta y)^2$$

- $N_e^2 \leq (\Delta x + \Delta y)^2 \leq 2(\Delta x^2 + \Delta y^2) = 2|e|^2$.
- $N(\pi) = \sum_{e \in \pi} N_e \leq$



Shifted Dissections (II)

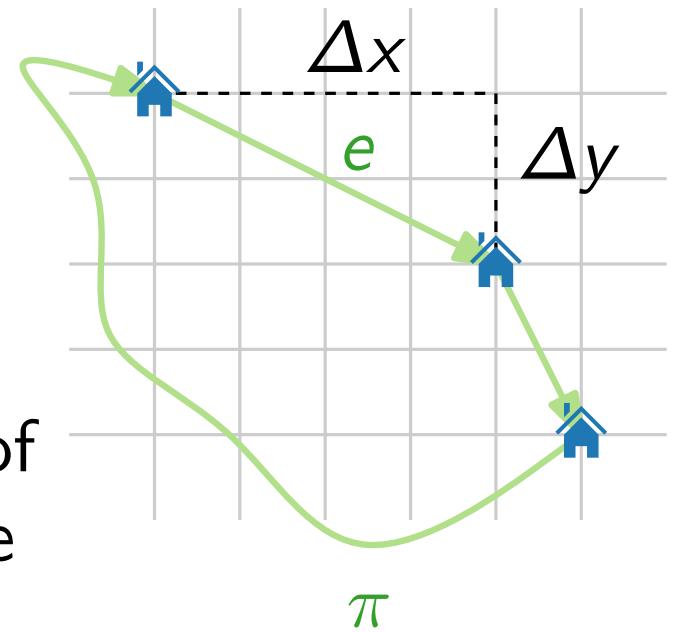
Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

$$0 \leq (\Delta x - \Delta y)^2$$

- $N_e^2 \leq (\Delta x + \Delta y)^2 \leq 2(\Delta x^2 + \Delta y^2) = 2|e|^2$.
- $N(\pi) = \sum_{e \in \pi} N_e \leq \sum_{e \in \pi} \sqrt{2|e|^2}$



Shifted Dissections (II)

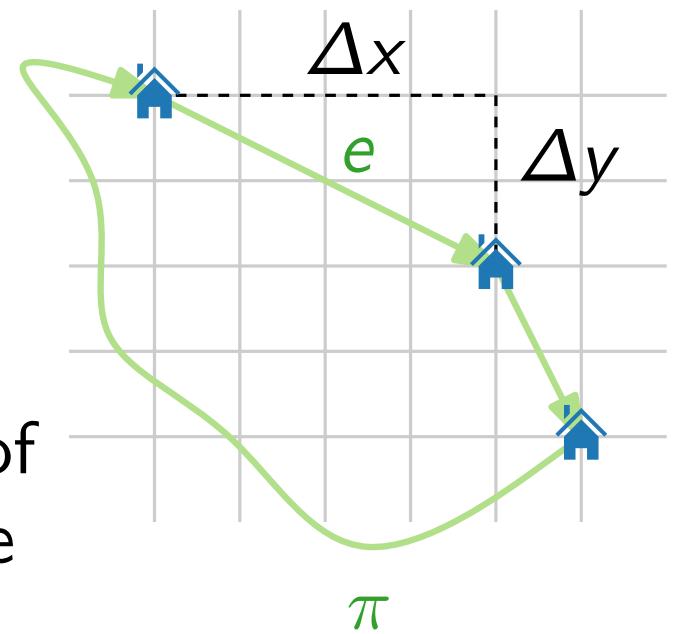
Lemma. If π is an optimal tour and $N(\pi)$ is the number of crossings of π with the lines of the $(L \times L)$ -grid, then $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge e generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

$$0 \leq (\Delta x - \Delta y)^2$$

- $N_e^2 \leq (\Delta x + \Delta y)^2 \leq 2(\Delta x^2 + \Delta y^2) = 2|e|^2$.
- $N(\pi) = \sum_{e \in \pi} N_e \leq \sum_{e \in \pi} \sqrt{2|e|^2} = \sqrt{2} \cdot \text{OPT}$.



□

Approximation Algorithms

Lecture 9:
A PTAS for EUCLIDEAN TSP

Part VI:
Approximation Factor

Shifted Dissections (III)

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random.

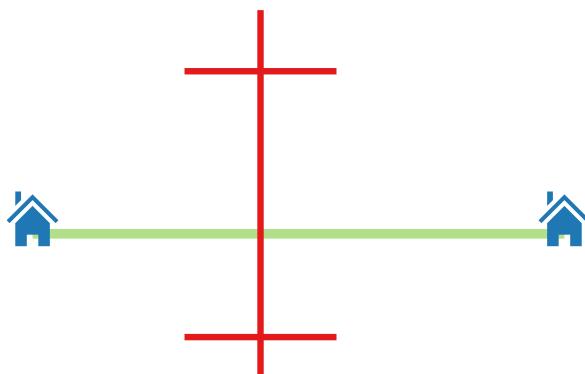
Shifted Dissections (III)

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

Shifted Dissections (III)

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

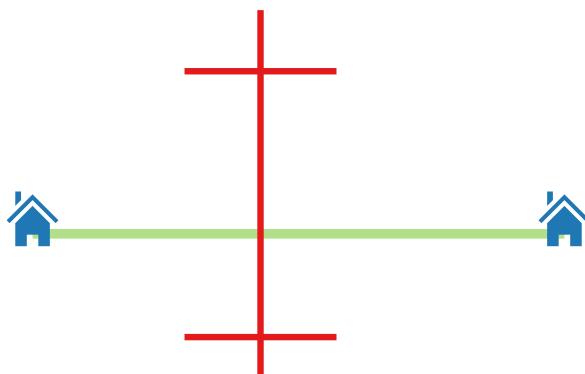
Proof. Consider optimal tour π .



Shifted Dissections (III)

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

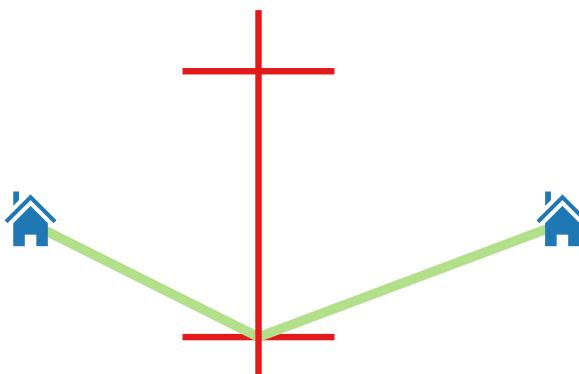
Proof. Consider optimal tour π . Make π well-behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.



Shifted Dissections (III)

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

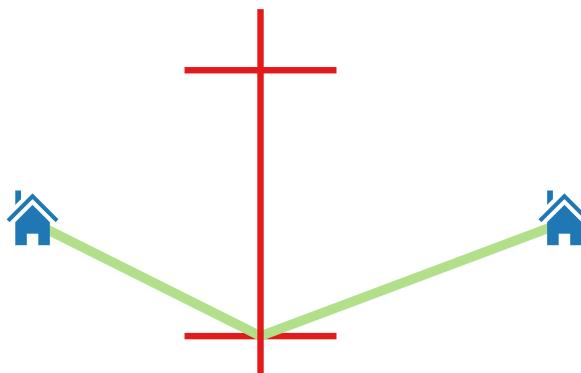
Proof. Consider optimal tour π . Make π well-behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.



Shifted Dissections (III)

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

Proof. Consider optimal tour π . Make π well-behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.

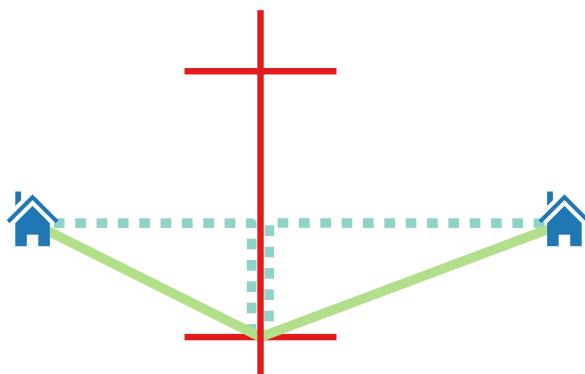


\Rightarrow Detour per intersection \leq inter-portal distance.

Shifted Dissections (III)

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

Proof. Consider optimal tour π . Make π well-behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.



\Rightarrow Detour per intersection \leq inter-portal distance.

Shifted Dissections (III)

- Consider an intersection point between π and a line ℓ of the $(L \times L)$ -grid.

Shifted Dissections (III)

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $\frac{1}{L}$ the line l is a level- i line.

Shifted Dissections (III)

- Consider an intersection point between π and a line ℓ of the $(L \times L)$ -grid.
- With probability at most $2^i/L = 2^{i-k}$, line ℓ is a level- i line.

Shifted Dissections (III)

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L = 2^{i-k}$, line l is a level- i line.
 \Rightarrow Increase in tour length \leq (inter-portal distance).

Shifted Dissections (III)

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L = 2^{i-k}$, line l is a level- i line.
 \Rightarrow Increase in tour length $\leq L/(2^i m)$ (inter-portal distance).

Shifted Dissections (III)

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L = 2^{i-k}$, line l is a level- i line.
⇒ Increase in tour length $\leq L/(2^i m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

Shifted Dissections (III)

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L = 2^{i-k}$, line l is a level- i line.
⇒ Increase in tour length $\leq L/(2^i m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^k$$

Shifted Dissections (III)

- Consider an intersection point between π and a line $\textcolor{red}{l}$ of the $(\textcolor{violet}{L} \times \textcolor{violet}{L})$ -grid.
- With probability at most $2^i/\textcolor{violet}{L} = 2^{i-k}$, line $\textcolor{red}{l}$ is a level- i line.
 \Rightarrow Increase in tour length $\leq \textcolor{violet}{L}/(2^i \textcolor{brown}{m})$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^k \frac{2^i}{\textcolor{violet}{L}} \cdot \frac{\textcolor{violet}{L}}{2^i \textcolor{brown}{m}} \leq$$

Shifted Dissections (III)

- Consider an intersection point between π and a line $\textcolor{red}{l}$ of the $(\textcolor{violet}{L} \times \textcolor{violet}{L})$ -grid.
- With probability at most $2^i/\textcolor{violet}{L} = 2^{i-k}$, line $\textcolor{red}{l}$ is a level- i line.
 \Rightarrow Increase in tour length $\leq \textcolor{violet}{L}/(2^i \textcolor{brown}{m})$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^k \frac{2^i}{\textcolor{violet}{L}} \cdot \frac{\textcolor{violet}{L}}{2^i \textcolor{brown}{m}} \leq \frac{k+1}{\textcolor{brown}{m}}$$

Shifted Dissections (III)

- Consider an intersection point between π and a line ℓ of the $(L \times L)$ -grid.
- With probability at most $2^i/L = 2^{i-k}$, line ℓ is a level- i line.
 \Rightarrow Increase in tour length $\leq L/(2^i m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\varepsilon, 2k/\varepsilon]$

$$\sum_{i=0}^k \frac{2^i}{L} \cdot \frac{L}{2^i m} \leq \frac{k+1}{m}$$

Shifted Dissections (III)

- Consider an intersection point between π and a line $\textcolor{red}{l}$ of the $(\textcolor{violet}{L} \times \textcolor{violet}{L})$ -grid.
- With probability at most $2^i/\textcolor{violet}{L} = 2^{i-k}$, line $\textcolor{red}{l}$ is a level- i line.
 \Rightarrow Increase in tour length $\leq \textcolor{violet}{L}/(2^i \textcolor{brown}{m})$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:
$$\textcolor{brown}{m} \in [k/\varepsilon, 2k/\varepsilon]$$

$$\sum_{i=0}^k \frac{2^i}{\textcolor{violet}{L}} \cdot \frac{\textcolor{violet}{L}}{2^i \textcolor{brown}{m}} \leq \frac{k+1}{\textcolor{brown}{m}} \leq \frac{k+1}{k} \cdot \varepsilon$$

Shifted Dissections (III)

- Consider an intersection point between π and a line $\textcolor{red}{l}$ of the $(\textcolor{violet}{L} \times \textcolor{violet}{L})$ -grid.
- With probability at most $2^i/\textcolor{violet}{L} = 2^{i-k}$, line $\textcolor{red}{l}$ is a level- i line.
 \Rightarrow Increase in tour length $\leq \textcolor{violet}{L}/(2^i \textcolor{brown}{m})$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:
$$\textcolor{brown}{m} \in [k/\varepsilon, 2k/\varepsilon]$$

$$\sum_{i=0}^k \frac{2^i}{\textcolor{violet}{L}} \cdot \frac{\textcolor{violet}{L}}{2^i \textcolor{brown}{m}} \leq \frac{k+1}{\textcolor{brown}{m}} \leq \frac{k+1}{k} \cdot \varepsilon \leq 2\varepsilon.$$

Shifted Dissections (III)

- Consider an intersection point between π and a line l of the $(L \times L)$ -grid.
- With probability at most $2^i/L = 2^{i-k}$, line l is a level- i line.
 \Rightarrow Increase in tour length $\leq L/(2^i m)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\varepsilon, 2k/\varepsilon]$

$$\sum_{i=0}^k \frac{2^i}{L} \cdot \frac{L}{2^i m} \leq \frac{k+1}{m} \leq \frac{k+1}{k} \cdot \varepsilon \leq 2\varepsilon.$$

- Summing over all $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$ intersection points and applying linearity of expectation yields the claim.

Polynomial-Time Approximation Scheme

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

Polynomial-Time Approximation Scheme

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEAN TSP that provides, for every $\varepsilon > 0$, a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Polynomial-Time Approximation Scheme

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEAN TSP that provides, for every $\varepsilon > 0$, a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Proof. Try all $L^2 \in O(n^4)$ many (a, b) -shifted dissections.

Polynomial-Time Approximation Scheme

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b) -shifted dissection is at most $(1 + 2\sqrt{2}\varepsilon)\text{OPT}$.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEAN TSP that provides, for every $\varepsilon > 0$, a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Proof. Try all $L^2 \in O(n^4)$ many (a, b) -shifted dissections. By the previous theorem and the pigeon-hole principle, one of them is good enough. □

Literature

- William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.
Princeton University Press, 2011.

Literature

- William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.
Princeton University Press, 2011.
- Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems.
J. ACM, 45(5):753–782, 1998.
- Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k -MST, and Related Problems.
SIAM J. Comput., 28(4):1298–1309, 1999.

Literature

- William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.
Princeton University Press, 2011.
- Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems.
J. ACM, 45(5):753–782, 1998.
- Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k -MST, and Related Problems.
SIAM J. Comput., 28(4):1298–1309, 1999.
- Sanjeev Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems.
Network Design 1–2, 1997

Literature

- William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.
Princeton University Press, 2011.
- Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems.
J. ACM, 45(5):753–782, 1998.
- Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k -MST, and Related Problems.
SIAM J. Comput., 28(4):1298–1309, 1999.
- Sanjeev Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems.
Network Design 1–2, 1997

Randomized, $O\left(n(\log n)^{O(1/\varepsilon)}\right)$ time

Literature (cont'd)

- Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Wołoszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SODA, p. 33–41, 1998.

Literature (cont'd)

Runtime $O\left(n^{O(1/\varepsilon^2)}\right)$

- Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Wołoszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SODA, p. 33–41, 1998.

Literature (cont'd)

Runtime $O\left(n^{O(1/\varepsilon^2)}\right)$

- Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Wołoszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SODA, p. 33–41, 1998.
- Nicos Christofides: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, CMU, February 1976.

Literature (cont'd)

Runtime $O\left(n^{O(1/\varepsilon^2)}\right)$

- Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Wołoszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SODA, p. 33–41, 1998.
- Nicos Christofides: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, CMU, February 1976.
- Anatoliy Serdyukov: On some extremal walks in graphs. Upravlyaemye Sistemy, 17:76–79, 1978 (submitted January 27, 1976)

Literature (cont'd)

Runtime $O\left(n^{O(1/\varepsilon^2)}\right)$

- Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Wołoszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SODA, p. 33–41, 1998.
- Nicos Christofides: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, CMU, February 1976.
- Anatoliy Serdyukov: On some extremal walks in graphs. Upravlyayemye Sistemy, 17:76–79, 1978 (submitted January 27, 1976)
- René van Bevern, Viktoriia A. Slugina: A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem. Historia Mathematica, 53:118–127, 2020.
<https://arxiv.org/abs/2004.02437>

Literature (cont'd)

Runtime $O\left(n^{O(1/\varepsilon^2)}\right)$

- Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Wołoszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SODA, p. 33–41, 1998.
- Nicos Christofides: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, CMU, February 1976.
- Anatoliy Serdyukov: On some extremal walks in graphs. Upravlyayemye Sistemy, 17:76–79, 1978 (submitted January 27, 1976)
- René van Bevern, Viktoriia A. Slugina: A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem. Historia Mathematica, 53:118–127, 2020.
<https://arxiv.org/abs/2004.02437>
- Anna R. Karlin, Nathan Klein, Shayan Oveis Gharan: A (slightly) improved approximation algorithm for metric TSP. Proc. STOC, p. 32–45, 2021: approximation factor $1.5 - 10^{-36}$.
Best paper award!