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Let m be a power of 2 in
the interval [k/e, 2k /¢].

Recall that kK = 2 4- 2 log, n.
= m € O((logn)/e)

Portals on level-i line are at
a distance of L/(2'm).

Every level-i square has size
L/2" x L/2".

A level-i square has < 4m
portals on its boundary.
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Well-Behaved Tours

A tour is well-behaved if

e it involves all houses and a
subset of the portals,

e no edge of the tour crosses a
line of the basic dissection,

e it is crossing-free.

W.l.o.g. (homework):
No portal visited more than twice

2\ 2\
A A
Crossing

» »

a
No crossing
() () () ()
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Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be computed
in 2007 = pO(/e) time.

Sketch. e Dynamic programming!

e Compute sub-structure of an optimal tour for
each square in the dissection tree.

e These solutions can be efficiently propagated
bottom-up through the dissection tree.
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Dynamic Program (ll)

Compute

o e for each square Q in the
dissection and

»
»

’ .
() e for each crossing-free

A A pairing P of Q,

5. an optimal path cover that

A respects P.

How?
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1 pairing P:
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n O O

Lemma. An optimal well-behaved tour can be computed
in 2007 = pO(1/¢) time.
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HEEEEN IIII'I&_

B N e Consider an (a, b)-shifted

dissection:

X+ (x4 a)mod L

- T y+— (y+ b)mod L

EBEEE EEEE e Squares in the dissection tree

. + are “wrapped around”.

o e Dynamic program must be
modified accordingly.
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e Consider an intersection point between 7 and a line / of the
(L x L)-grid.

e With probability at most 2'/L = 2=, line | is a level-i line.
= Increase in tour length < L/(2'm) (inter-portal distance).

e Thus, the expected increase in tour length due to this

intersection is at most: m € |k/e, 2k /€]
k .
2" L k+1 k41
— e — < — < —— . < 26

e Summing over all N(7) < +/2-OPT intersection points
and applying linearity of expectation yields the claim.
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Polynomial-Time Approximation Scheme

Theorem. Let a, b € [0, L — 1] be chosen independently and
uniformly at random. Then the expected cost of an
optimal well-behaved tour with respect to the

(a, b)-shifted dissection is at most (1 + 2/2¢)OPT.

Theorem. There is a deterministic algorithm (PTAS) for
EUCLIDEAN TSP that provides, for every € > 0,
a (1 + £)-approximation in n®1/¢) time.

Proof. Try all L2 € O(n*) many (a, b)-shifted dissections.
By the previous theorem and the pigeon-hole
principle, one of them is good enough.
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