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Knapsack

∎ A set S = {a1, . . . , an} of objects.Given:
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∎ For every object ai a size size(ai) ∈ N+
∎ For every object ai a profit profit(ai) ∈ N+
∎ A knapsack capacity B ∈ N+

Task: Find a subset of objects
whose total size is at
most B and whose total
profit is maximum.
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NP-hard
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Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)
and numbers (such as costs, weights, profits).

The running time of a polynomial algorithm for Π is
polynomial in ∣I ∣.
The running time of a pseudo-polynomial algorithm is
polynomial in ∣I ∣u.
The running time of a pseudo-polynomial algorithm may not
be polynomial in ∣I ∣.

∣I ∣: The size of an instance I ∈ DΠ , where all numbers in I are
encoded in binary.
∣I ∣u: The size of an instance I ∈ DΠ , where all numbers in I are
encoded in unary.

(5 ≙ 101b ⇒ ∣I ∣ = 3)

(5 ≙ 11111u ⇒ ∣I ∣u = 5)
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Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a pseudo-polynomial
algorithm.

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.
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Pseudo-Polynomial Alg. for Knapsack

an
P

Let P ∶= maxi profit(ai)

For every i ∈ {1, . . . ,n} and every p ∈ {1, . . . ,nP},
let Si ,p be a subset of {a1, . . . , ai} whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties. Such a set may not exist.

Let A[i ,p] be the total size of Si ,p
(set A[i ,p] = ∞ if no such set
exists).

If all A[i ,p] are known, then we can
compute
OPT = max{p ∣ A[n,p] ≤ B }.

⇒ P ≤ OPT ≤ nP
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A[i , 4] = 2
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(assuming size(⋅) ≤ B)
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Pseudo-Polynomial Alg. for Knapsack

A[1,p] can be computed for every p ∈ {0, . . . ,nP}.

A[i + 1,p] = min{A[i ,p], size(ai+1) +A[i ,p − profit(ai+1)]}
Set A[i ,p] ∶= ∞ for p < 0 (for convenience).

⇒ All values A[i ,p] can be computed in total time O(
OPT can be computed in
O(n2P) total time.

⇒

Knapsack can be solved optimally in
pseudo-polynomial time O(n2P).

Theorem.

Knapsack is weakly NP-hard.Corollary.

n2P).

The running time O(n2P) is polynomial in n
if P is polynomial in n.

Observe.
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Approximation Schemes

Let Π be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for Π
if it outputs, for every input (I , ε) with I ∈ DΠ and ε > 0,
a solution s ∈ SΠ(I ) such that
∎ objΠ(I , s) ≤ (1 + ε) ⋅OPT if Π is a minimization problem,
∎ objΠ(I , s) ≥ (1 − ε) ⋅OPT if Π is a maximization problem,
and the runtime of A is polynomial in ∣I ∣ for every fixed ε > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in ∣I ∣ and 1/ε.

Example running times
∎ O(n1/ε) ↝ PTAS
∎ O(n3/ε2) ↝ FPTAS
∎ O(21/εn4) ↝ PTAS
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An FPTAS for Knapsack via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ε). . .

KnapsackScaling (I , ε)

K = εP/n
for i = 1 to n do profit′(ai) = ⌊profit(ai)/K ⌋
Compute optimal solution S ′ for I w.r.t. profit′(⋅).
return S ′

Proof. Let OPT = {o1, . . . ,oℓ}.
For i = 1, . . . , ℓ∶ profit(oi) −K ≤ K ⋅ profit′(oi) ≤ profit(oi)

profit(S ′) ≥ K ⋅ profit′(S′) ≥ K ⋅ ∑i profit
′(oi) ≥

≥ OPT − ε OPT = (1 − ε) ⋅OPT

⇒ K ⋅ ∑i profit
′(oi) ≥ OPT − ℓK ≥ OPT − nK = OPT − εP.

// scaling factor

Lemma. profit(S ′) ≥ (1 − ε) ⋅OPT.

Obs. 1.

Obs. 2.

[Ibarra & Kim, ’75]

Theorem. KnapsackScaling is an FPTAS for Knapsack with

running time O(n3/ε) = O (n2 ⋅ P
εP/n
).

OPT − εP

◻
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FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard
minimization problem with integral objective
function and OPT(I ) < p(∣I ∣u) for all instances I
of Π. If Π has an FPTAS, then there is a
pseudo-polynomial algorithm for Π.

Proof.

Assume that there is an FPTAS for Π (in q(∣I ∣, 1/ε) time).

Set ε = 1/p(∣I ∣u).
⇒ ALG ≤ (1 + ε)OPT < OPT + εp(∣I ∣u) = OPT + 1.
⇒ ALG = OPT.
Running time: q(∣I ∣,p(∣I ∣u)) , so poly(∣I ∣u).
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FPTAS and Strong NP-Hardness

Corollary. Let Π be an NP-hard optimization problem that
fulfills the restrictions above.
If Π is strongly NP-hard, then there is no FPTAS
for Π (unless P = NP).

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

Theorem. Let p be a polynomial and let Π be an NP-hard
minimization problem with integral objective
function and OPT(I ) < p(∣I ∣u) for all instances I
of Π. If Π has an FPTAS, then there is a
pseudo-polynomial algorithm for Π.

Recall:

New:
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