

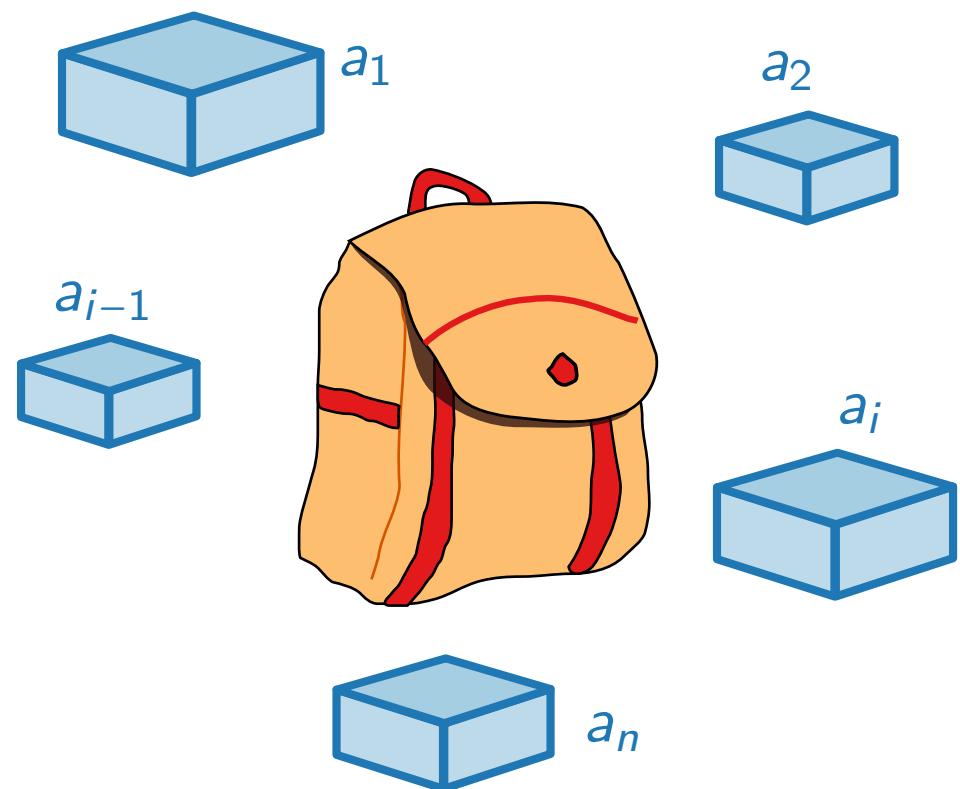
Approximation Algorithms

Lecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part I:
KNAPSACK

KNAPSACK

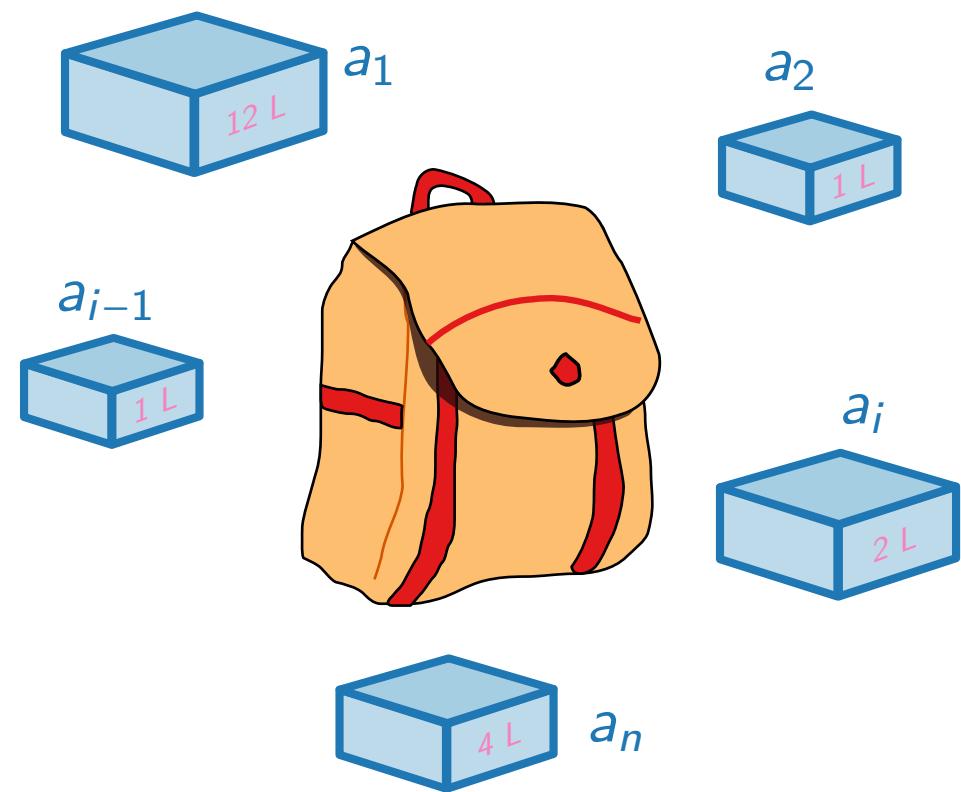
Given: ■ A set $S = \{a_1, \dots, a_n\}$ of **objects**.



KNAPSACK

Given: ■ A set $S = \{a_1, \dots, a_n\}$ of **objects**.

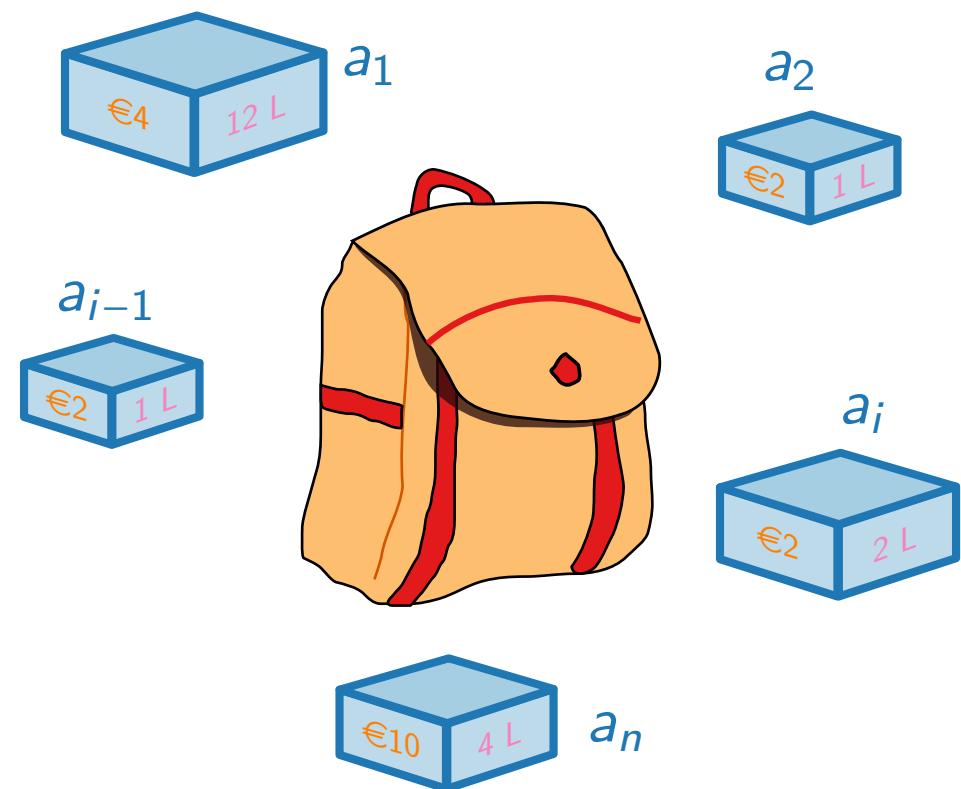
■ For every object a_i a **size** $\text{size}(a_i) \in \mathbb{N}^+$



KNAPSACK

Given:

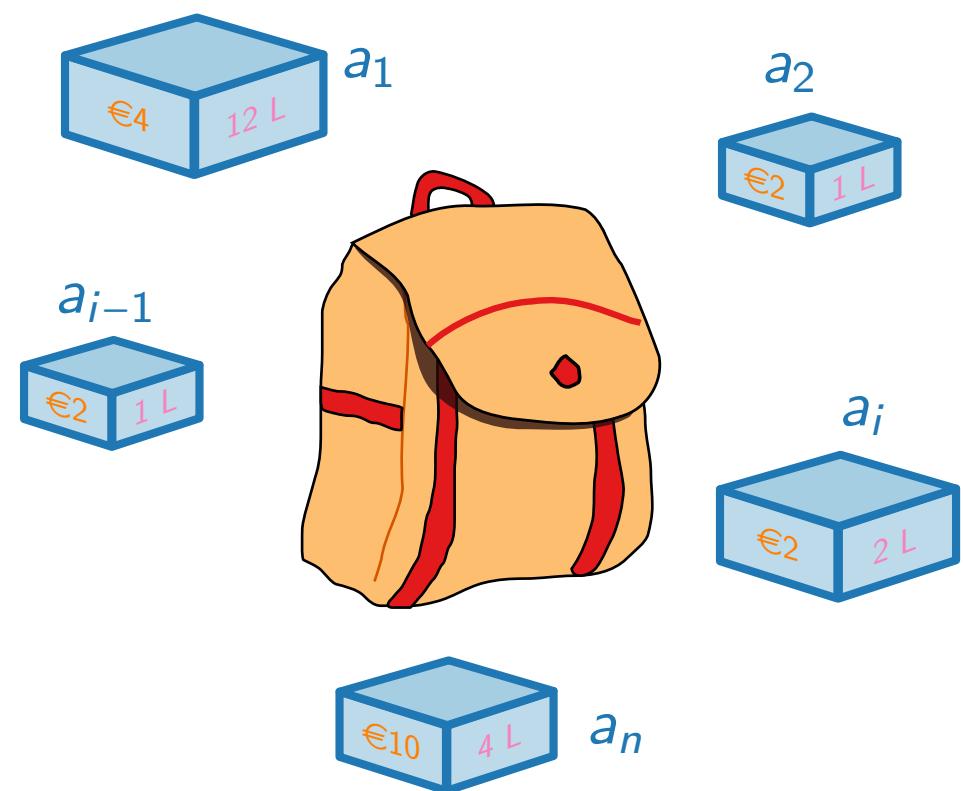
- A set $S = \{a_1, \dots, a_n\}$ of **objects**.
- For every object a_i a **size** $\text{size}(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** $\text{profit}(a_i) \in \mathbb{N}^+$



KNAPSACK

Given:

- A set $S = \{a_1, \dots, a_n\}$ of **objects**.
- For every object a_i a **size** $\text{size}(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** $\text{profit}(a_i) \in \mathbb{N}^+$
- A knapsack **capacity** $B \in \mathbb{N}^+$



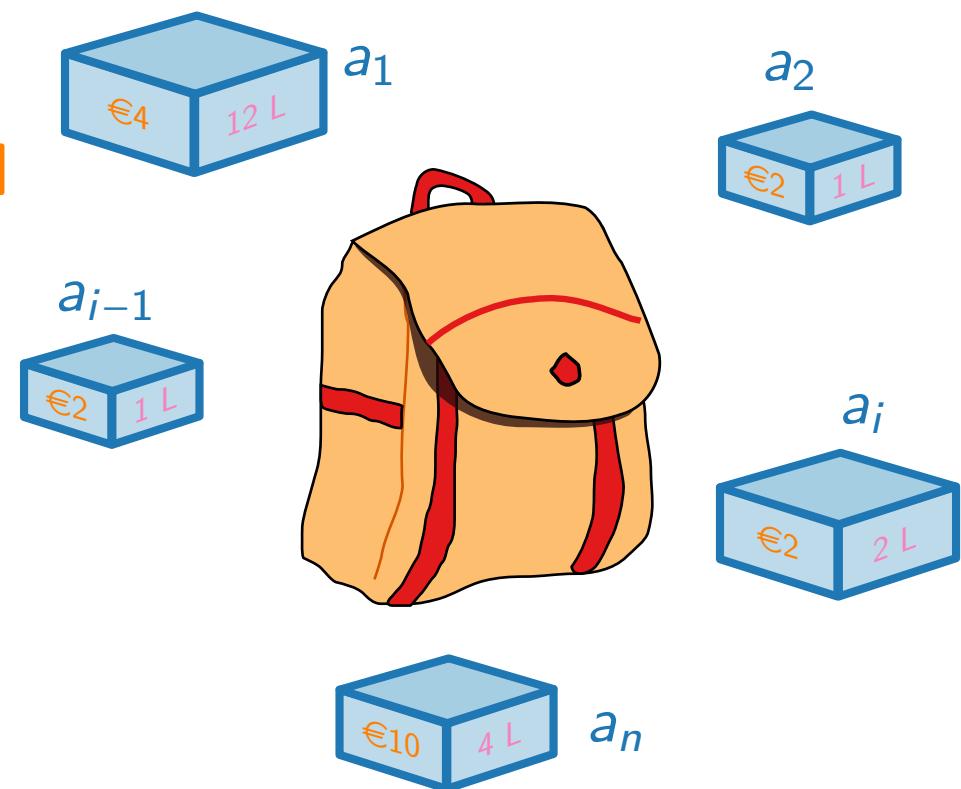
KNAPSACK

Given:

- A set $S = \{a_1, \dots, a_n\}$ of **objects**.
- For every object a_i a **size** $\text{size}(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** $\text{profit}(a_i) \in \mathbb{N}^+$
- A knapsack **capacity** $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose **total size** is at most B and whose **total profit** is maximum.



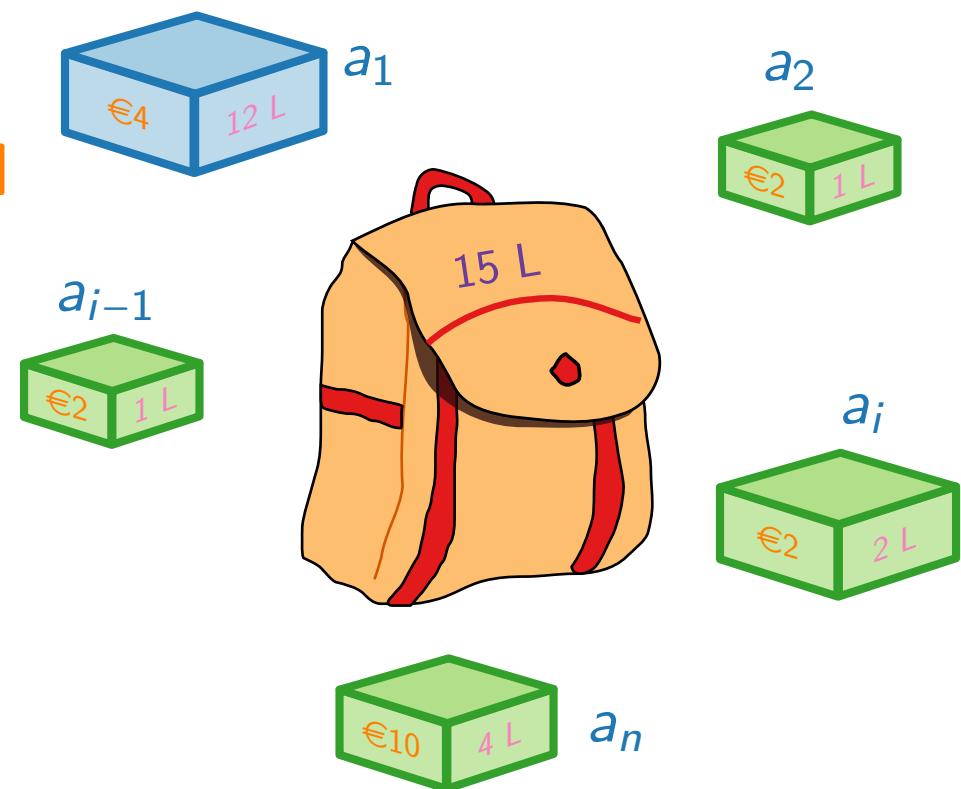
KNAPSACK

Given:

- A set $S = \{a_1, \dots, a_n\}$ of **objects**.
- For every object a_i a **size** $\text{size}(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** $\text{profit}(a_i) \in \mathbb{N}^+$
- A knapsack **capacity** $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose **total size** is at most B and whose **total profit** is maximum.



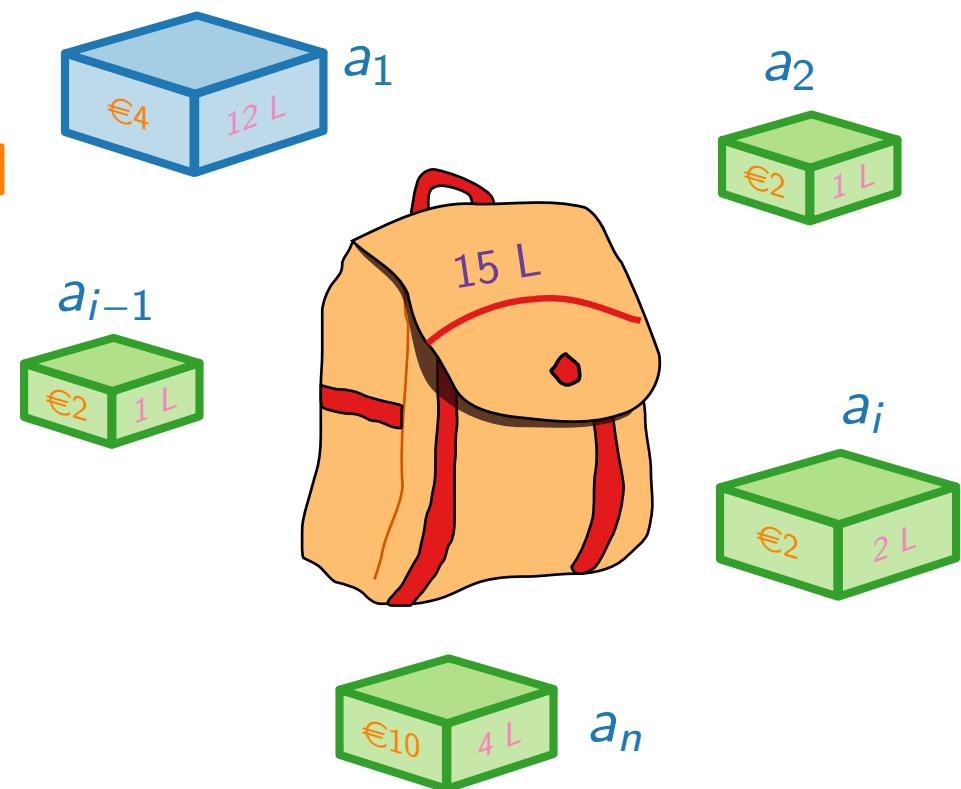
KNAPSACK

Given:

- A set $S = \{a_1, \dots, a_n\}$ of **objects**.
- For every object a_i a **size** $\text{size}(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** $\text{profit}(a_i) \in \mathbb{N}^+$
- A knapsack **capacity** $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose **total size** is at most B and whose **total profit** is maximum.



NP-hard

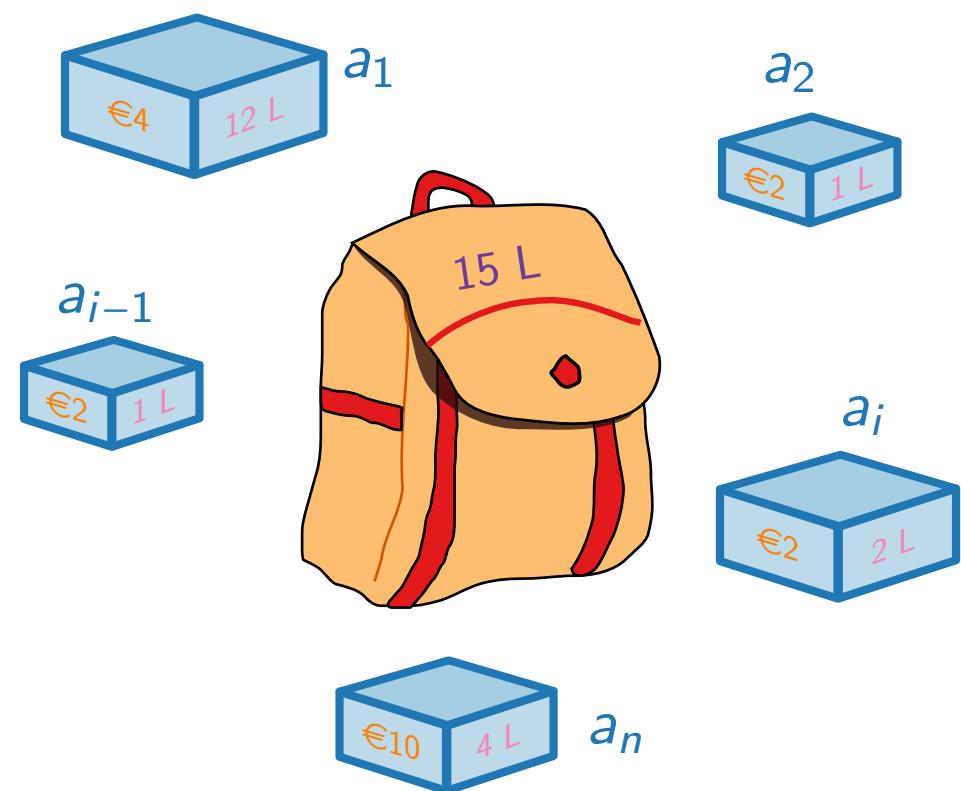
Approximation Algorithms

Lecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part II:
Pseudo-Polynomial Algorithms and
Strong NP-Hardness

Pseudo-Polynomial Algorithms

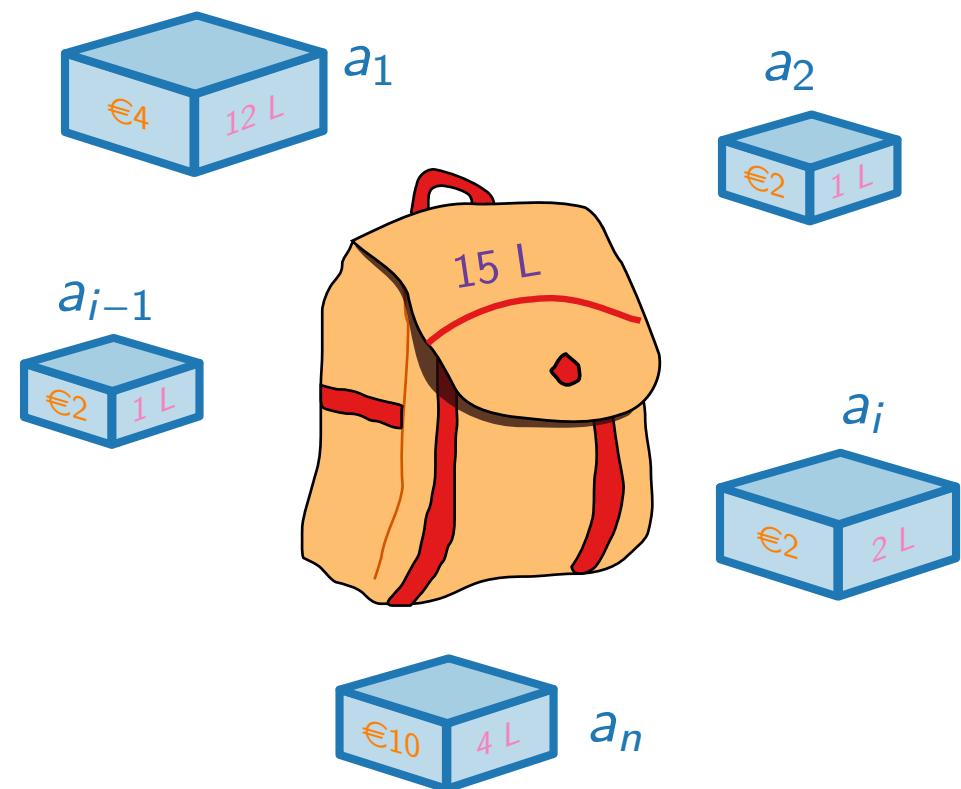
Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).



Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

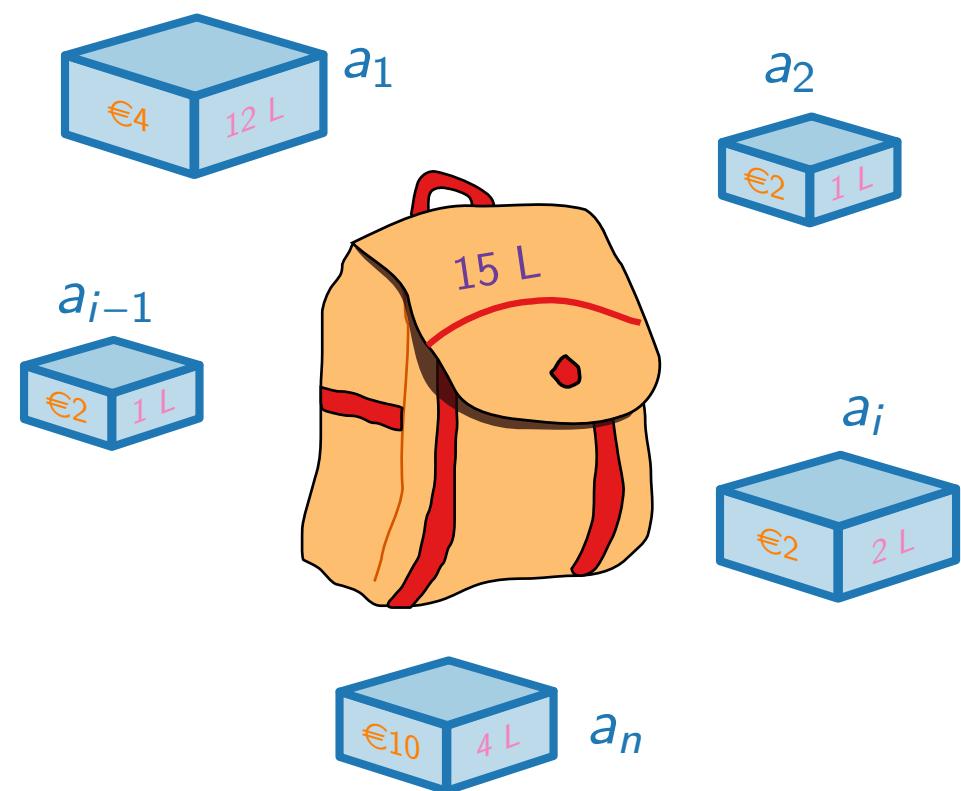
$|I|$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **binary**.



Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

$|I|$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **binary**. $(5 \hat{=} 101_b \Rightarrow |I| = 3)$



Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

$|I|$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **binary**. $(5 \hat{=} 101_b \Rightarrow |I| = 3)$

$|I|_u$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **unary**.

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

$|I|$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **binary**. $(5 \hat{=} 101_b \Rightarrow |I| = 3)$

$|I|_u$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **unary**. $(5 \hat{=} 11111_u \Rightarrow |I|_u = 5)$

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

$|I|$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **binary**. $(5 \hat{=} 101_b \Rightarrow |I| = 3)$

$|I|_u$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **unary**. $(5 \hat{=} 11111_u \Rightarrow |I|_u = 5)$

The running time of a polynomial algorithm for Π is polynomial in $|I|$.

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

$|I|$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **binary**. $(5 \hat{=} 101_b \Rightarrow |I| = 3)$

$|I|_u$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **unary**. $(5 \hat{=} 11111_u \Rightarrow |I|_u = 5)$

The running time of a polynomial algorithm for Π is polynomial in $|I|$.

The running time of a **pseudo-polynomial algorithm** is polynomial in $|I|_u$.

Pseudo-Polynomial Algorithms

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

$|I|$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **binary**. $(5 \hat{=} 101_b \Rightarrow |I| = 3)$

$|I|_u$: The size of an instance $I \in D_\Pi$, where all numbers in I are encoded in **unary**. $(5 \hat{=} 11111_u \Rightarrow |I|_u = 5)$

The running time of a polynomial algorithm for Π is polynomial in $|I|$.

The running time of a **pseudo-polynomial algorithm** is polynomial in $|I|_u$.

The running time of a pseudo-polynomial algorithm may not be polynomial in $|I|$.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

An optimization problem is called **weakly NP-hard** if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

An optimization problem is called **weakly NP-hard** if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $P = NP$.

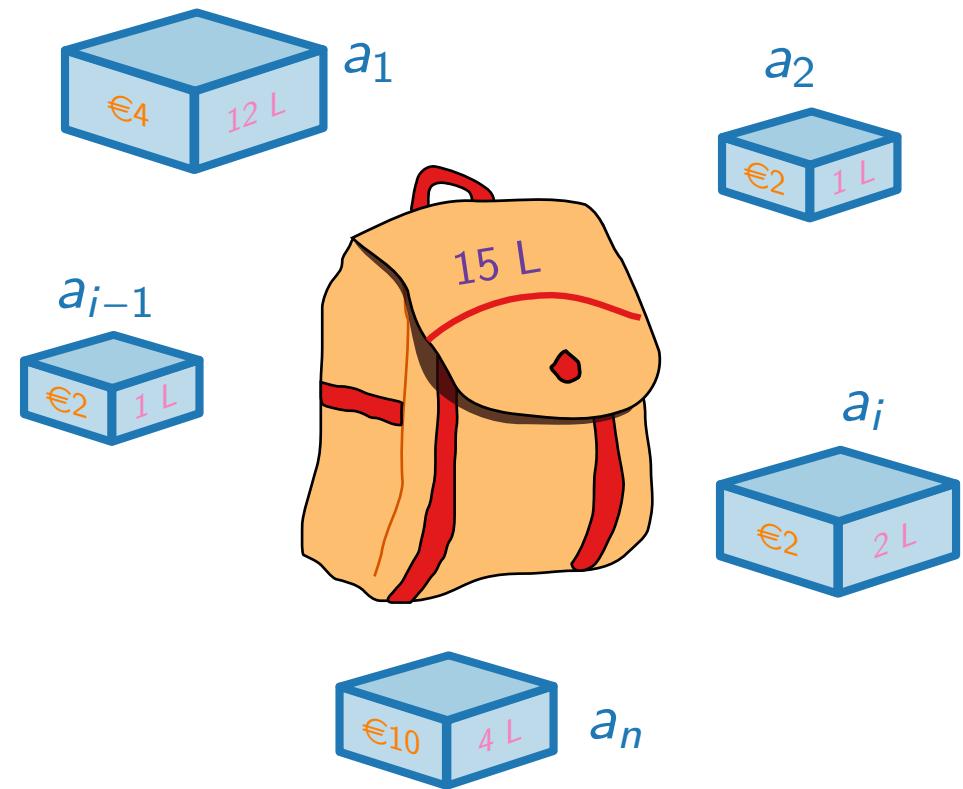
Approximation Algorithms

Lecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part III:
Pseudo-Polynomial Algorithm for KNAPSACK

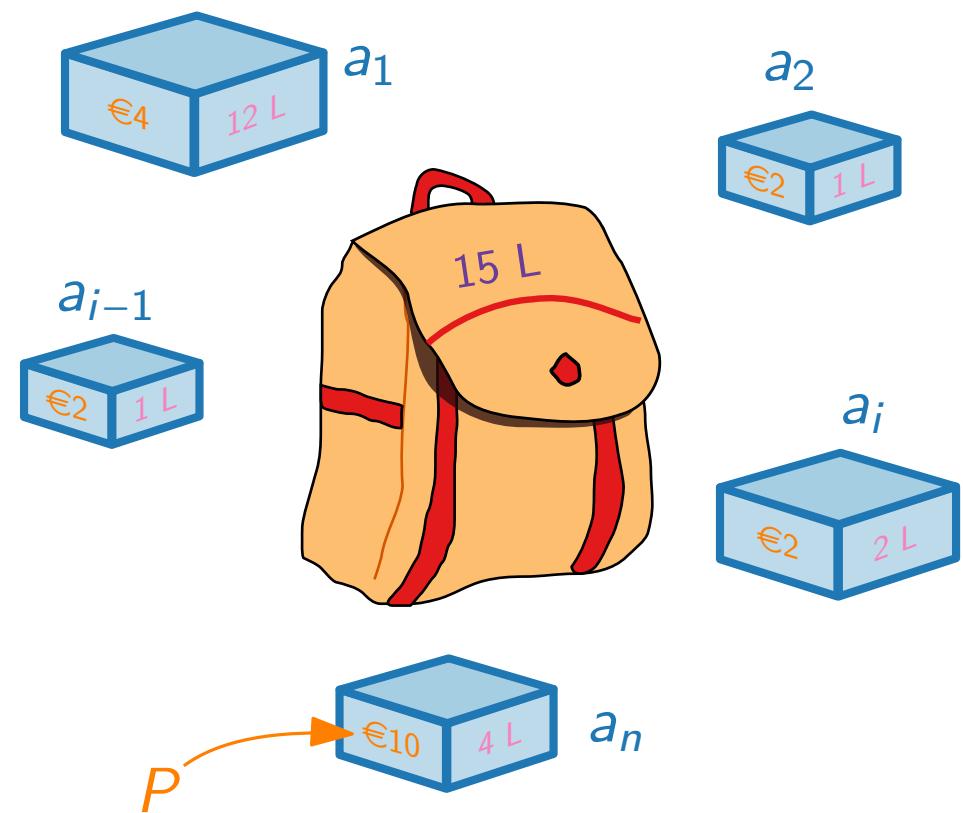
Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i)$



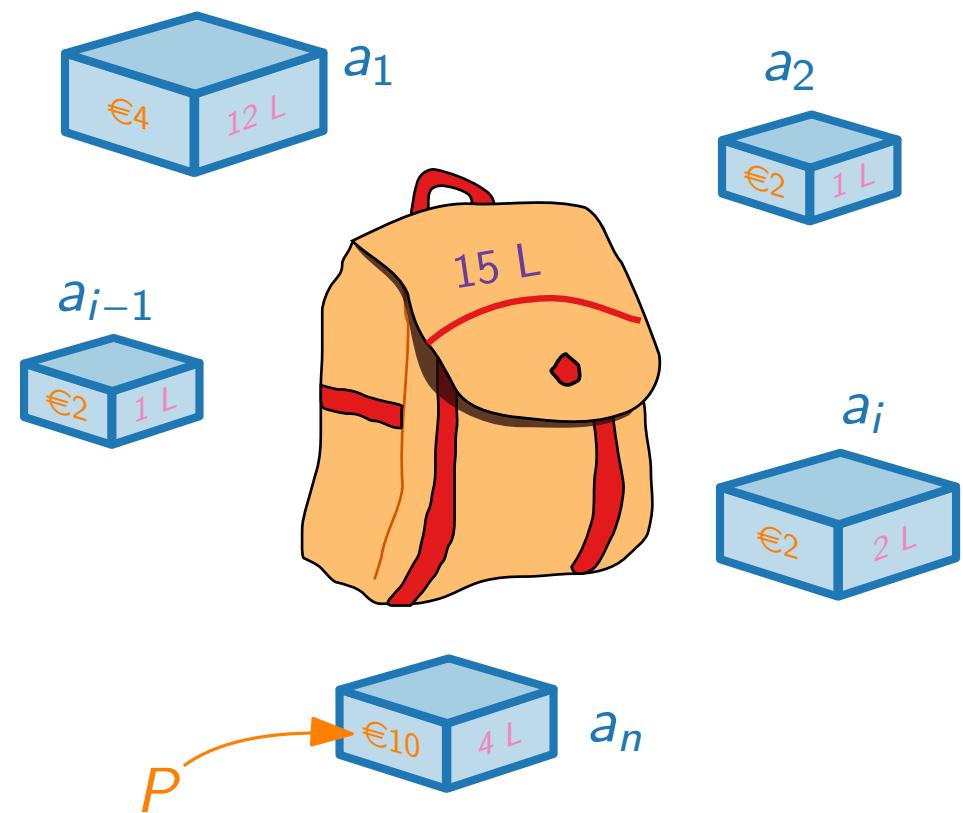
Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i)$



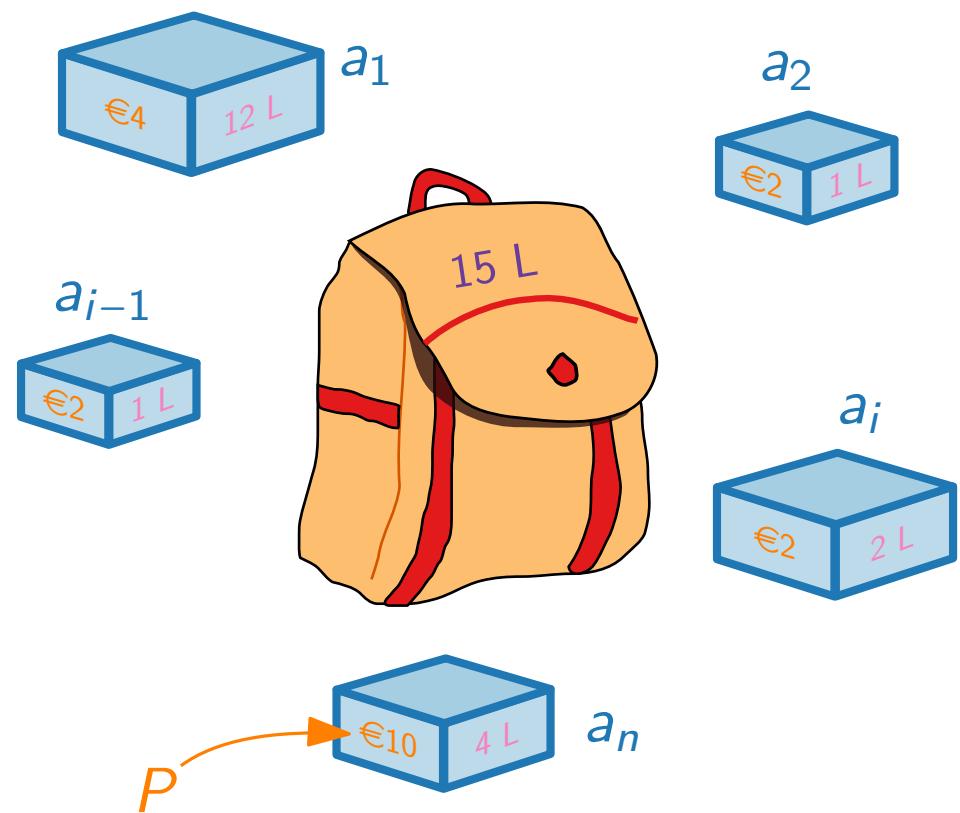
Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow \leq \text{OPT} \leq \text{ (assuming } \text{size}(\cdot) \leq B)$



Pseudo-Polynomial Alg. for KNAPSACK

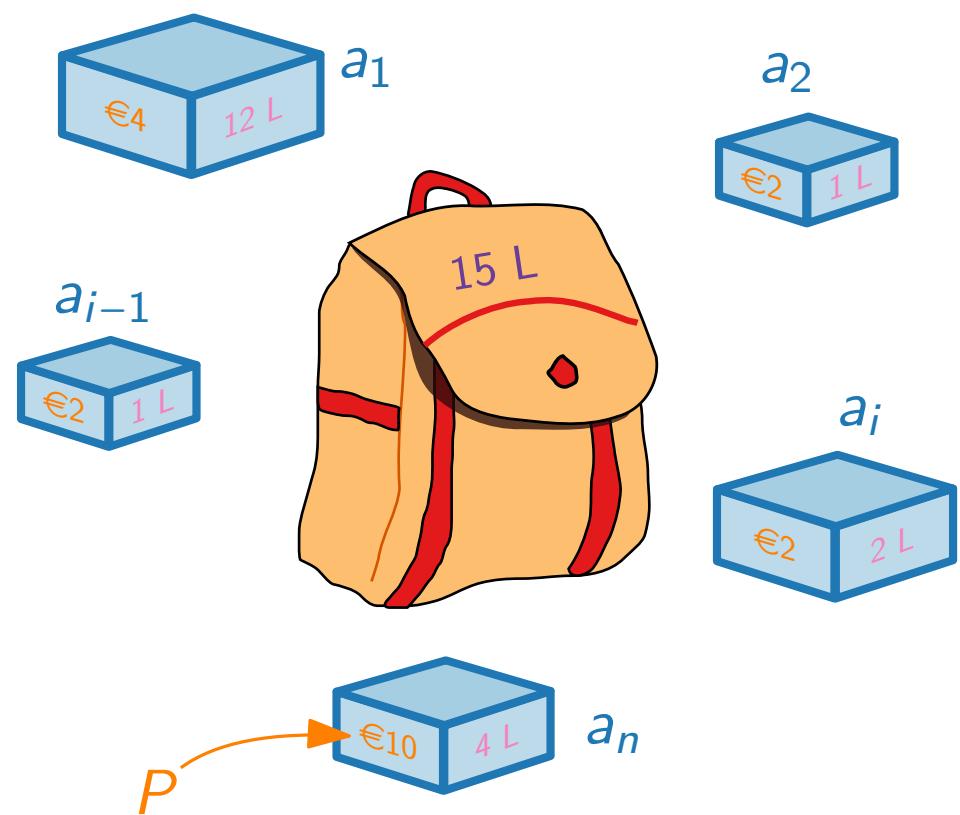
Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)



Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

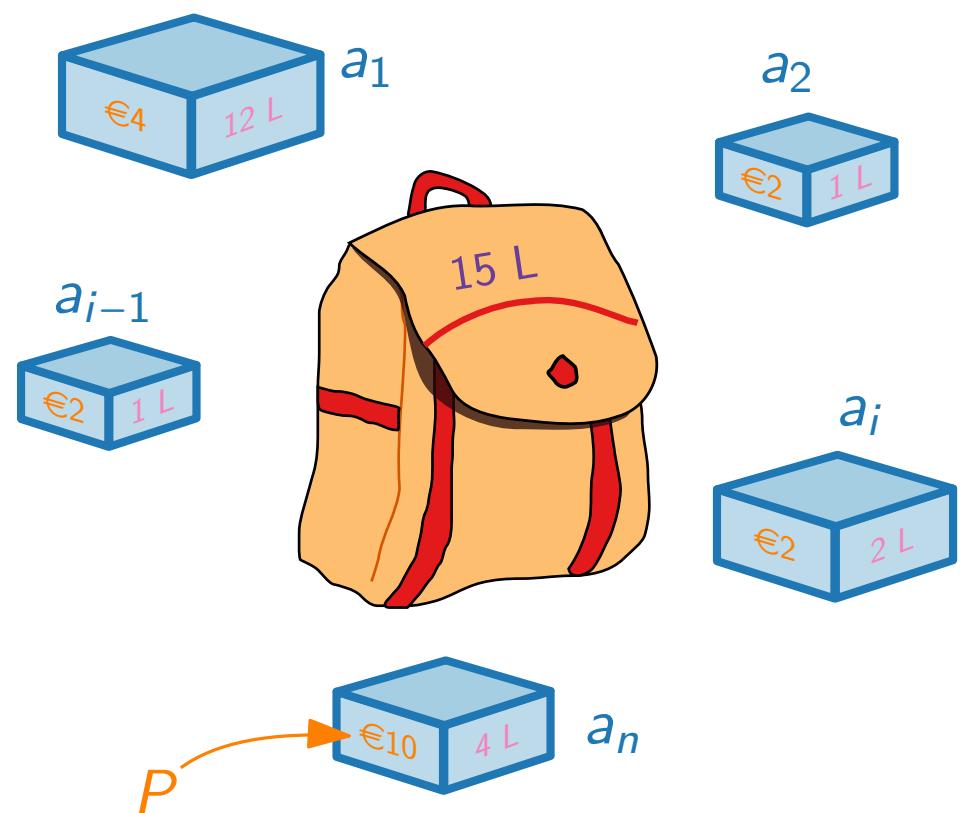
For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$,



Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

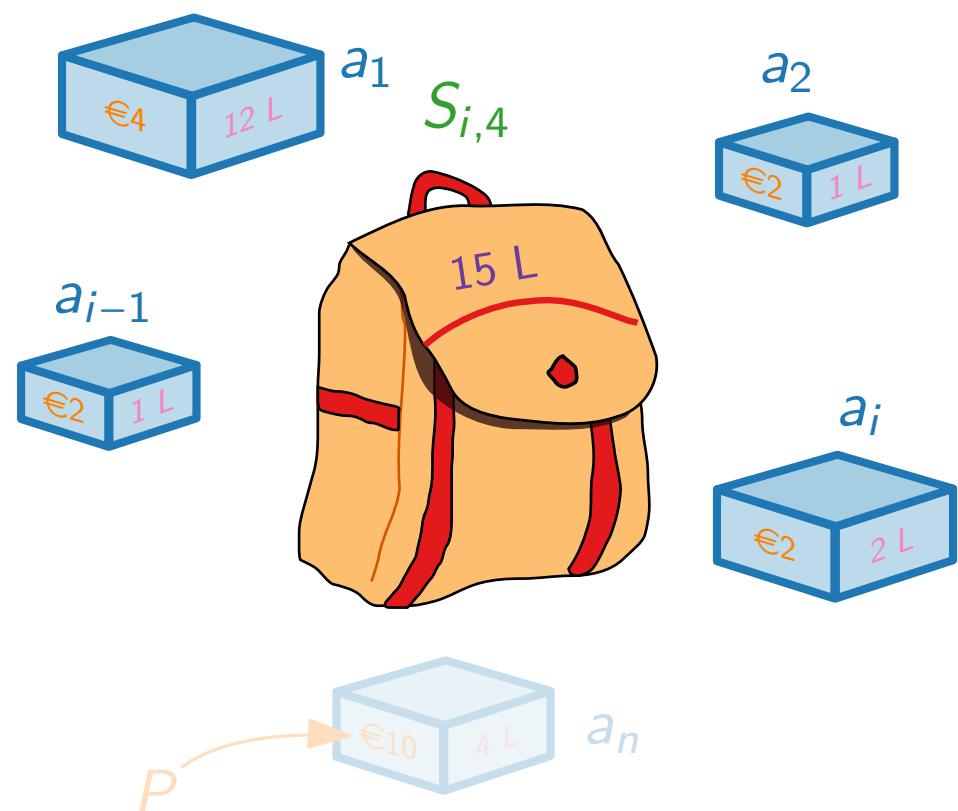
For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$,
let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is precisely p



Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

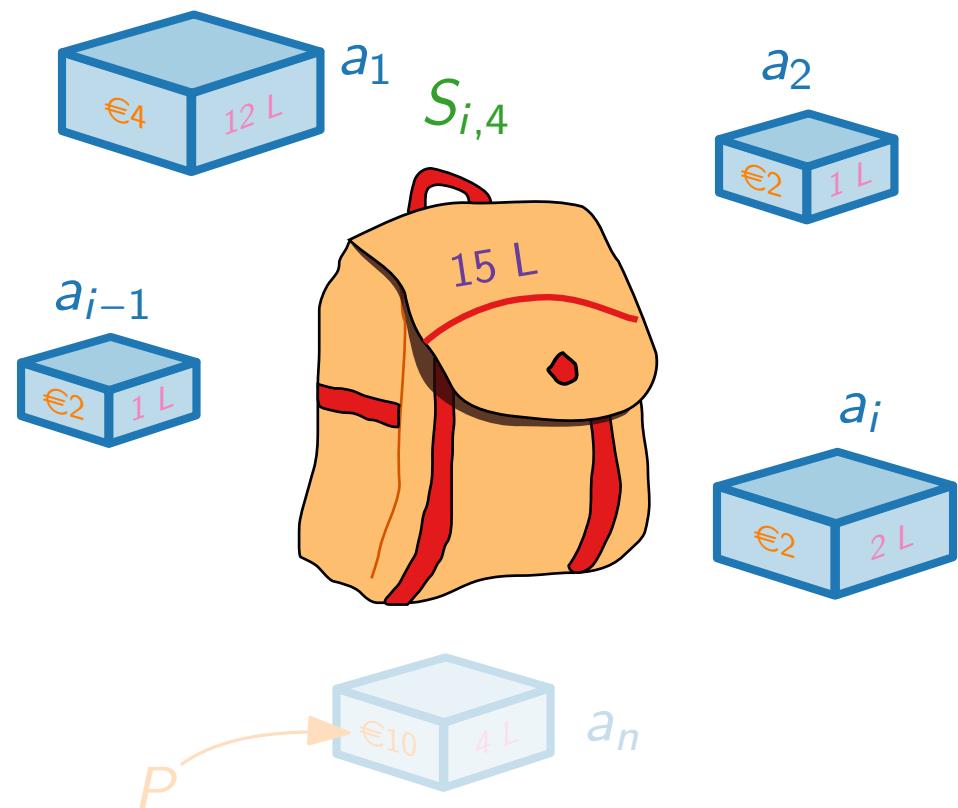
For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$,
let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is precisely p



Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

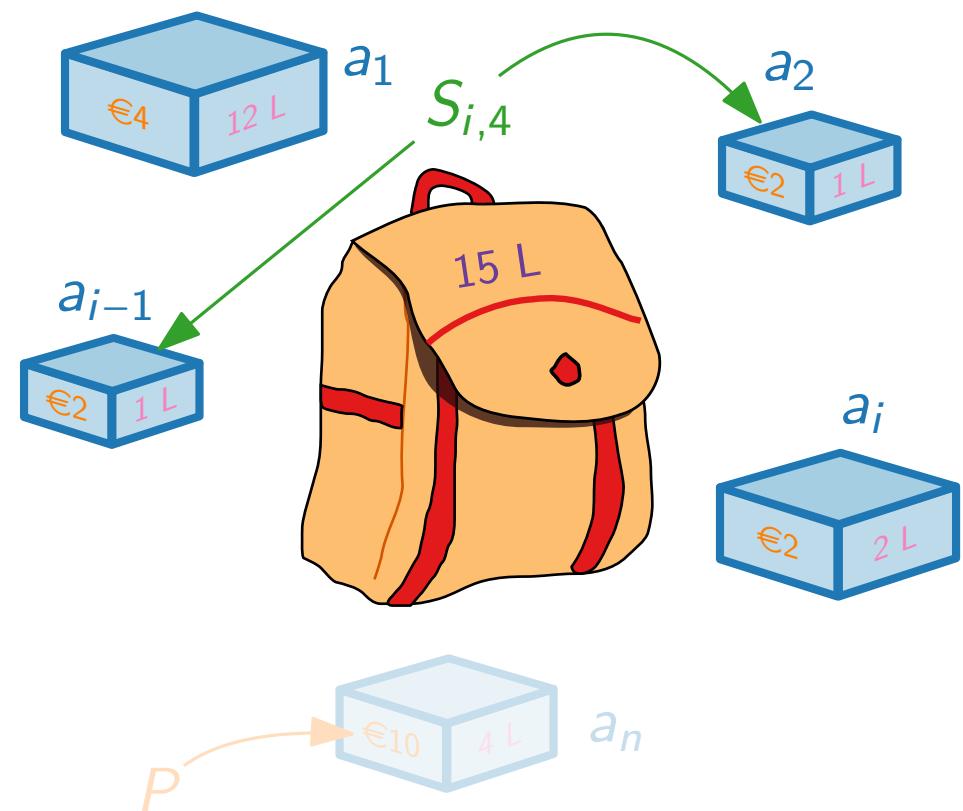
For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$,
let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties.



Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

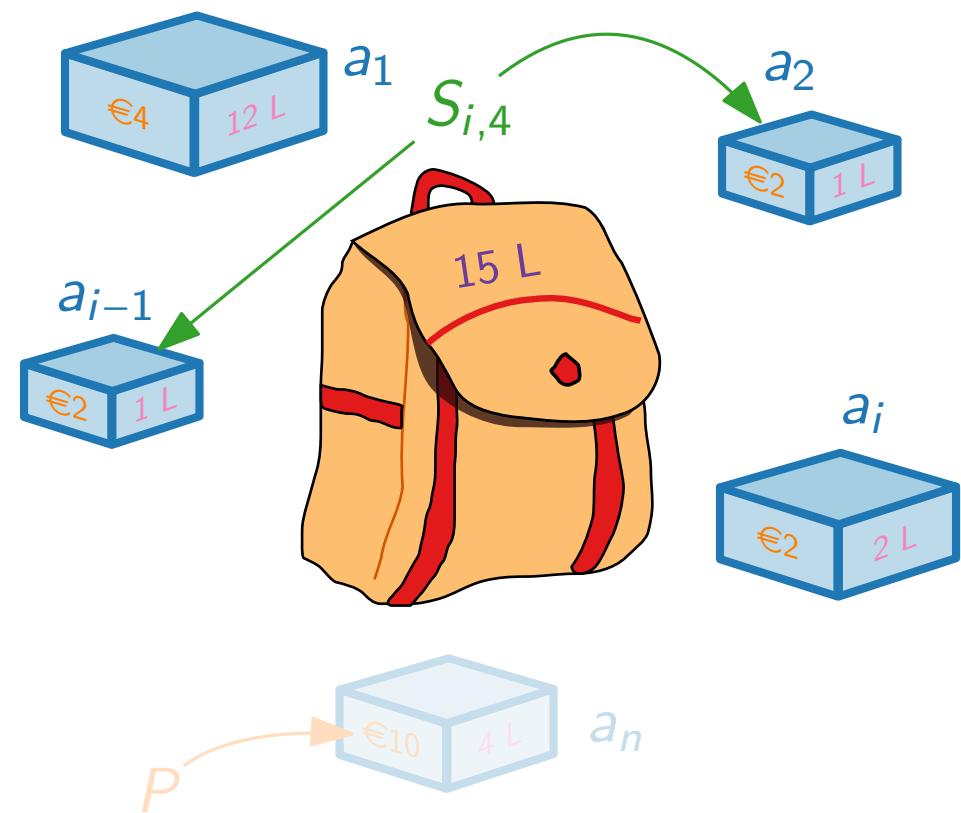
For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$,
let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties.



Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$, let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

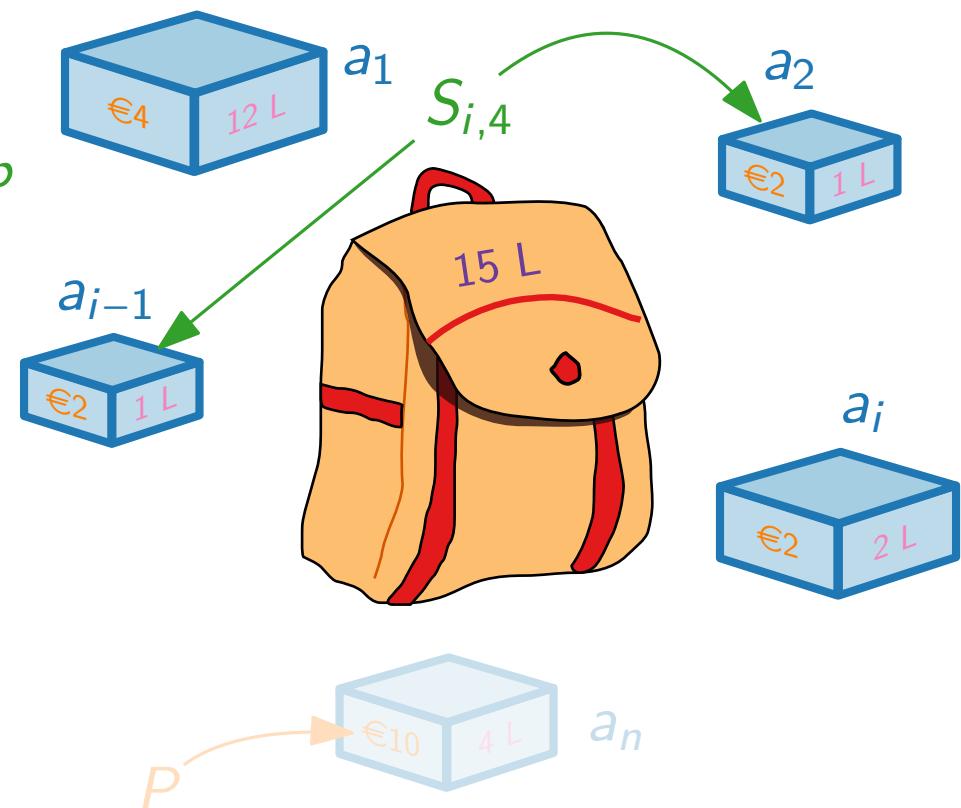


Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i)$ \Rightarrow $P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$, let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

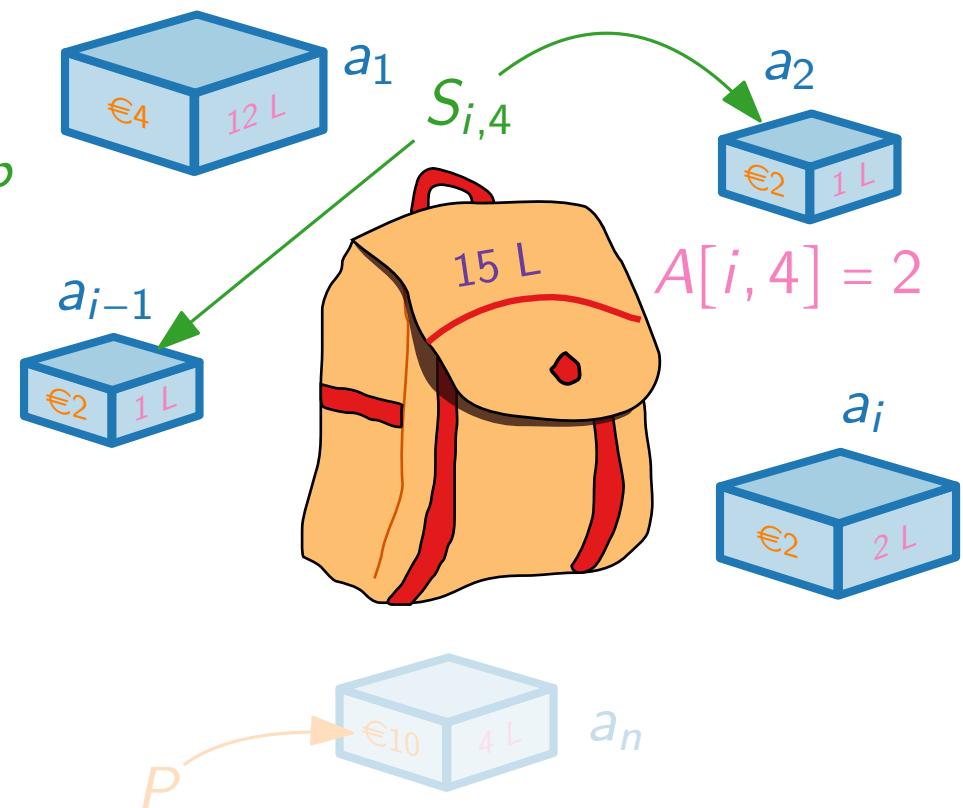


Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$, let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).



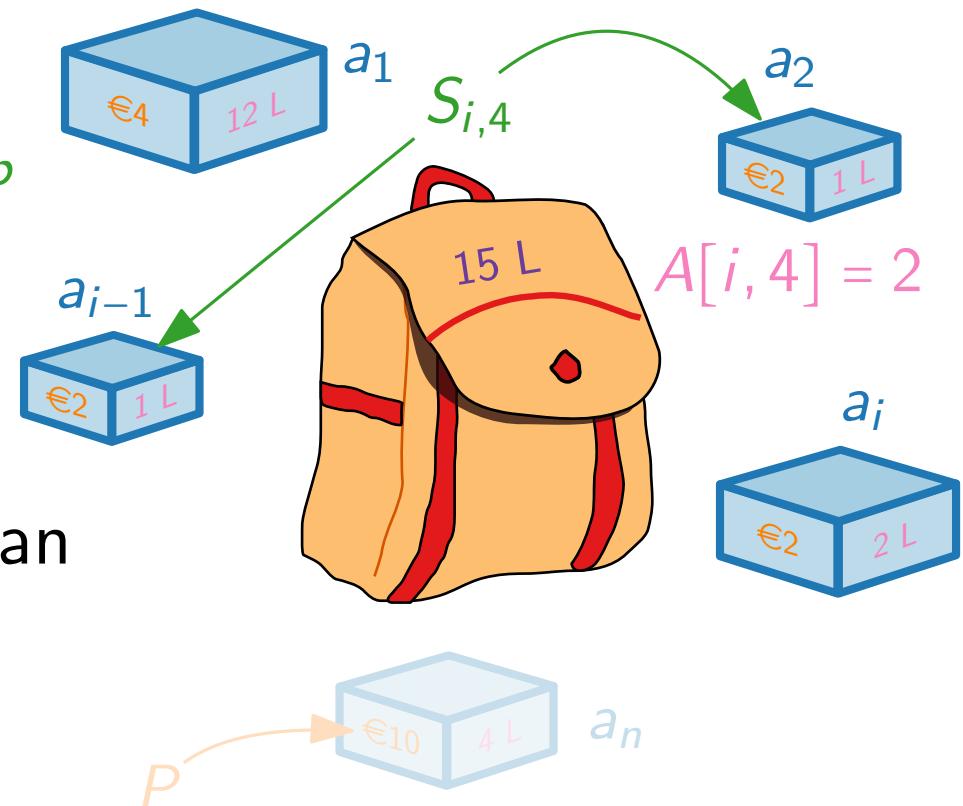
Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$, let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

If all $A[i, p]$ are known, then we can compute $\text{OPT} =$

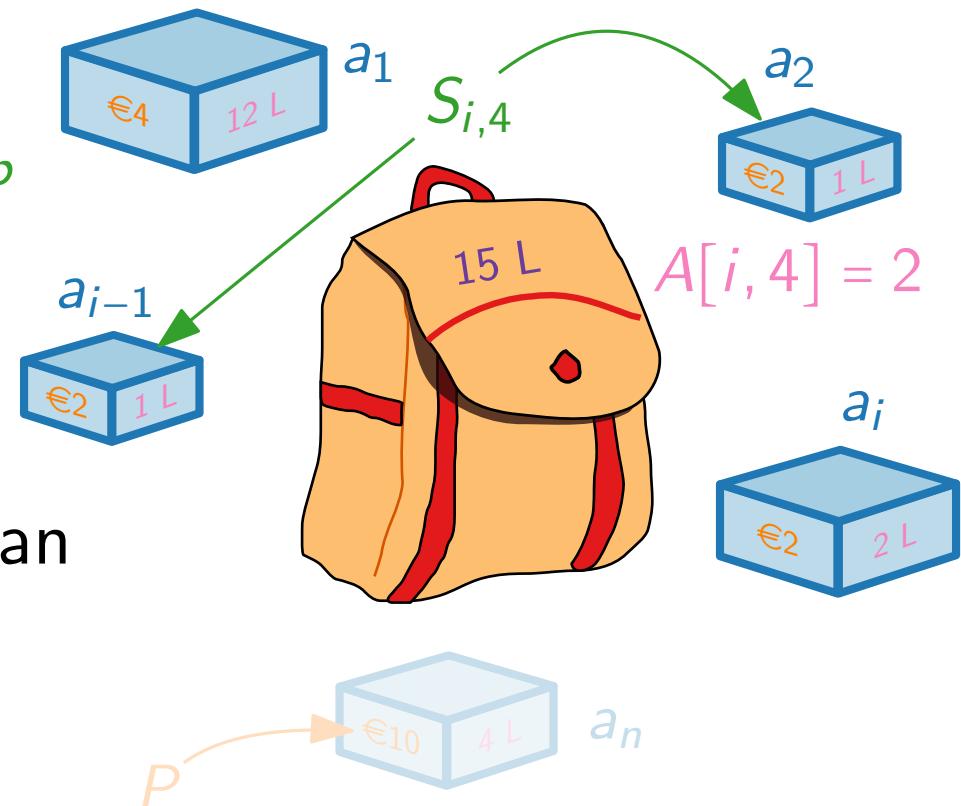


Pseudo-Polynomial Alg. for KNAPSACK

Let $P := \max_i \text{profit}(a_i) \Rightarrow P \leq \text{OPT} \leq nP$ (assuming $\text{size}(\cdot) \leq B$)

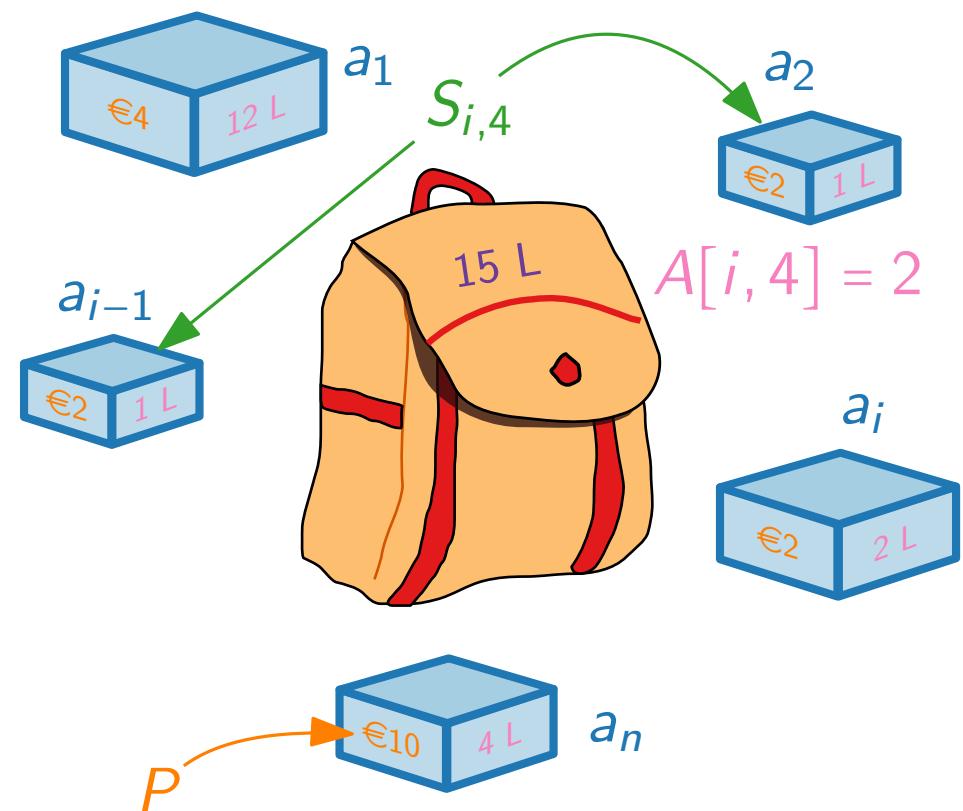
For every $i \in \{1, \dots, n\}$ and every $p \in \{1, \dots, nP\}$, let $S_{i,p}$ be a subset of $\{a_1, \dots, a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $A[i, p]$ be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).



Pseudo-Polynomial Alg. for KNAPSACK

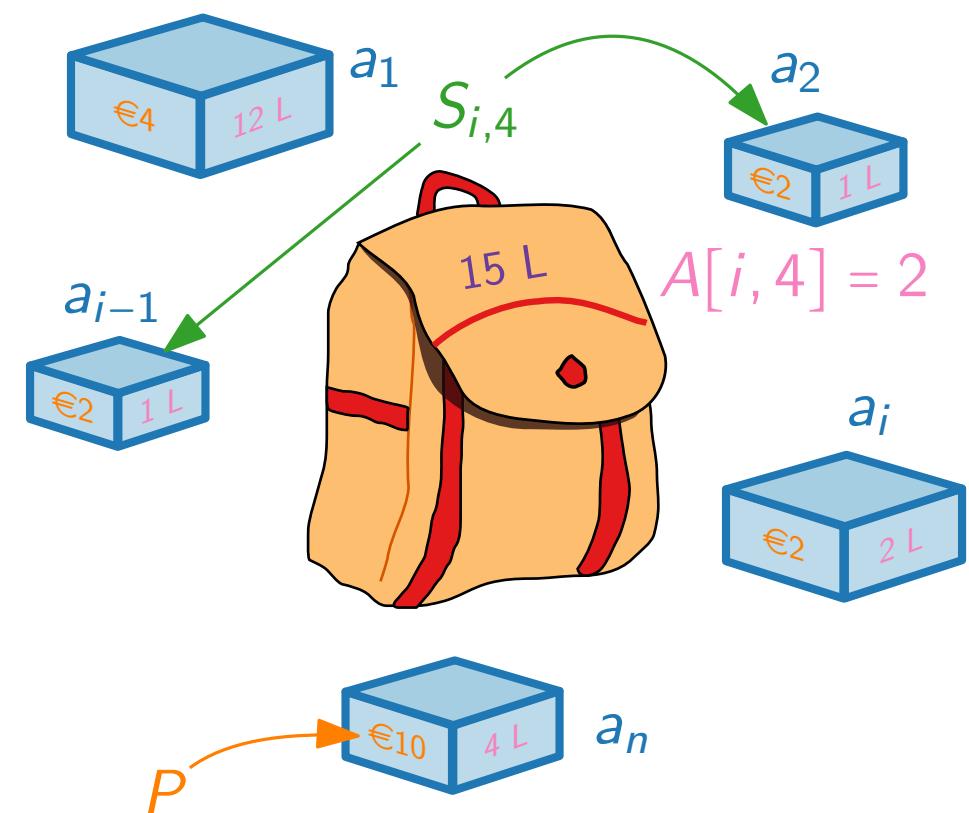
$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.



Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

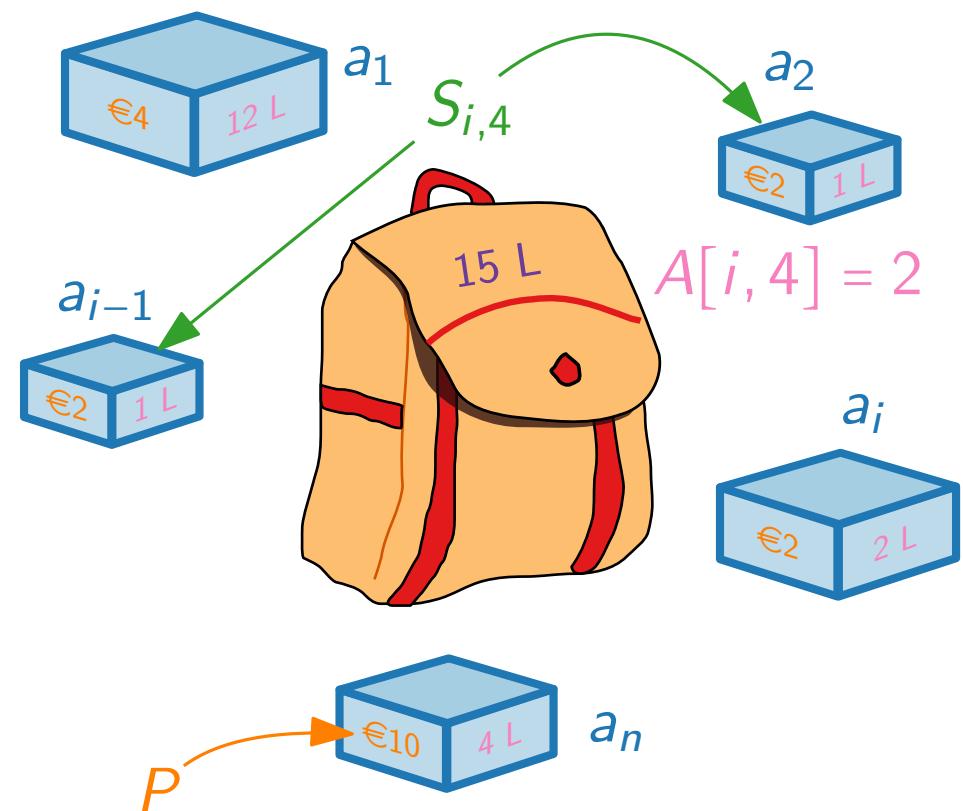


Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$A[i + 1, p] =$

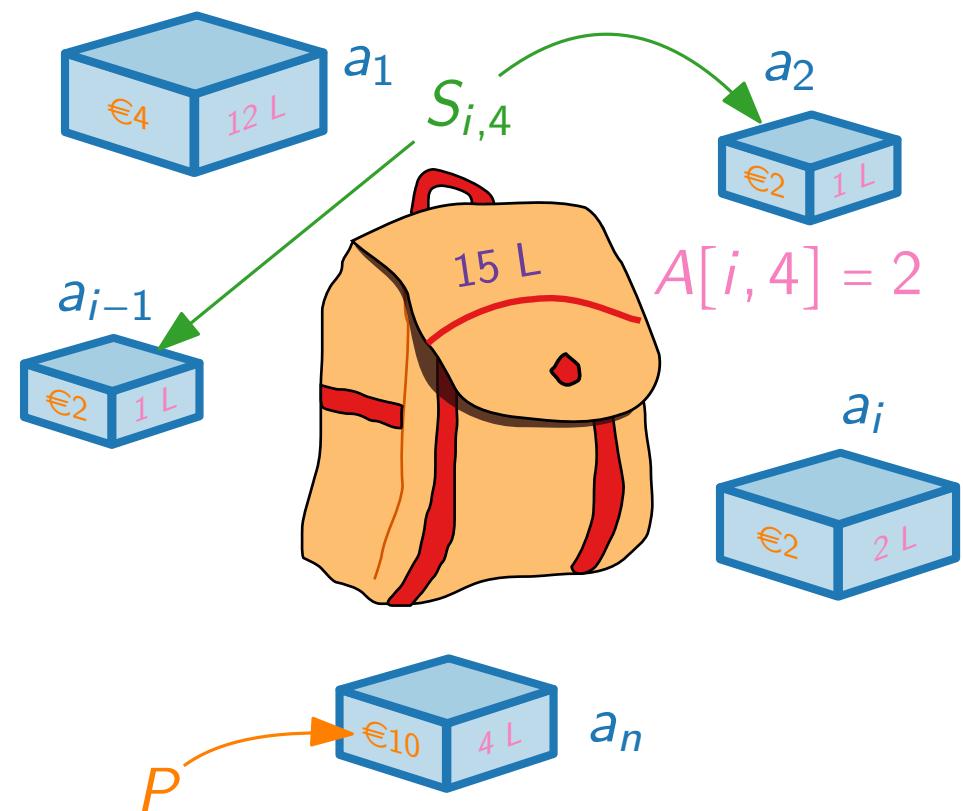


Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$A[i + 1, p] = \min\{$

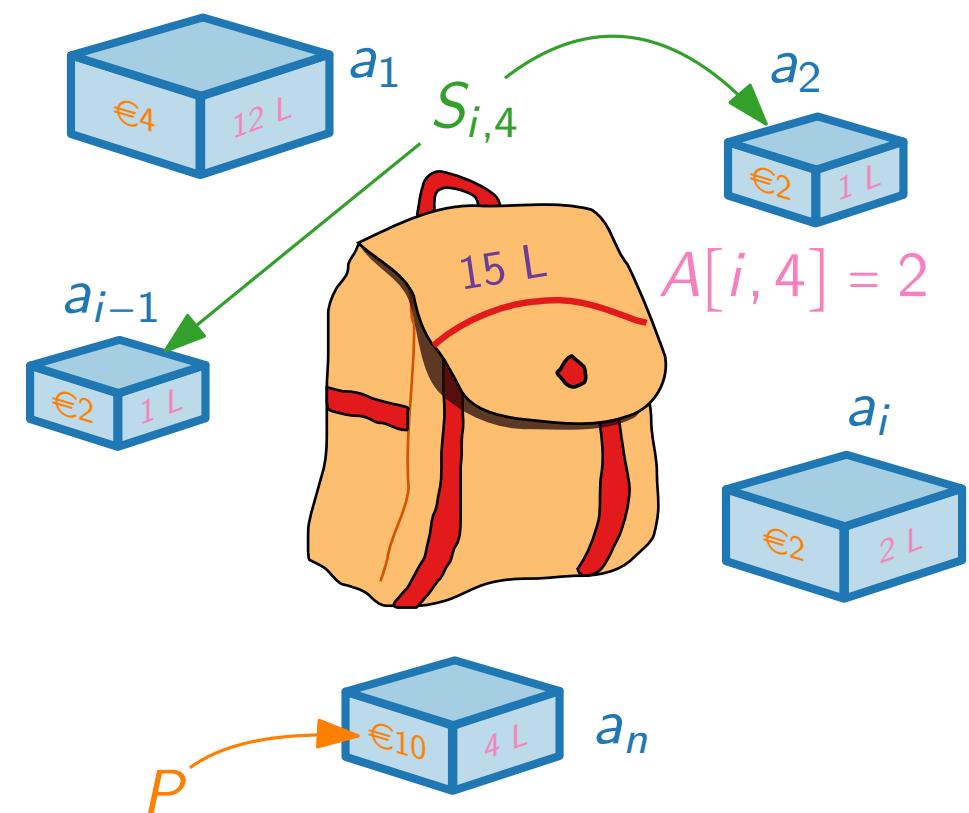


Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$A[i + 1, p] = \min\{A[i, p],$

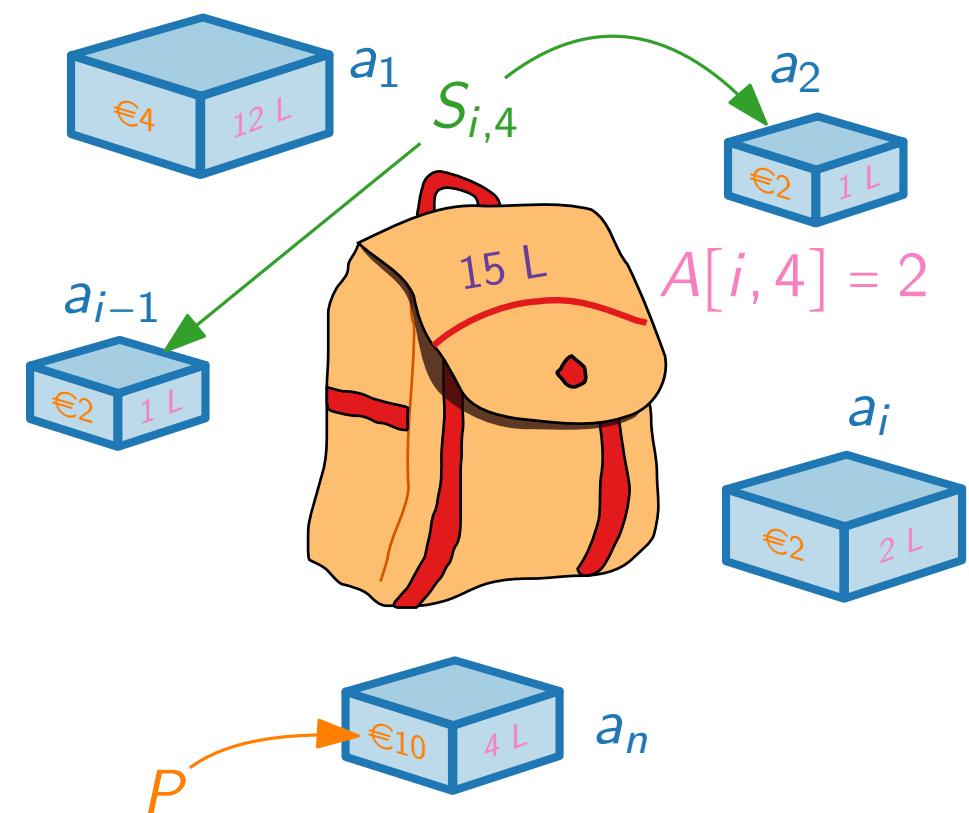


Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$A[i + 1, p] = \min\{A[i, p], \text{size}(a_{i+1}) +$

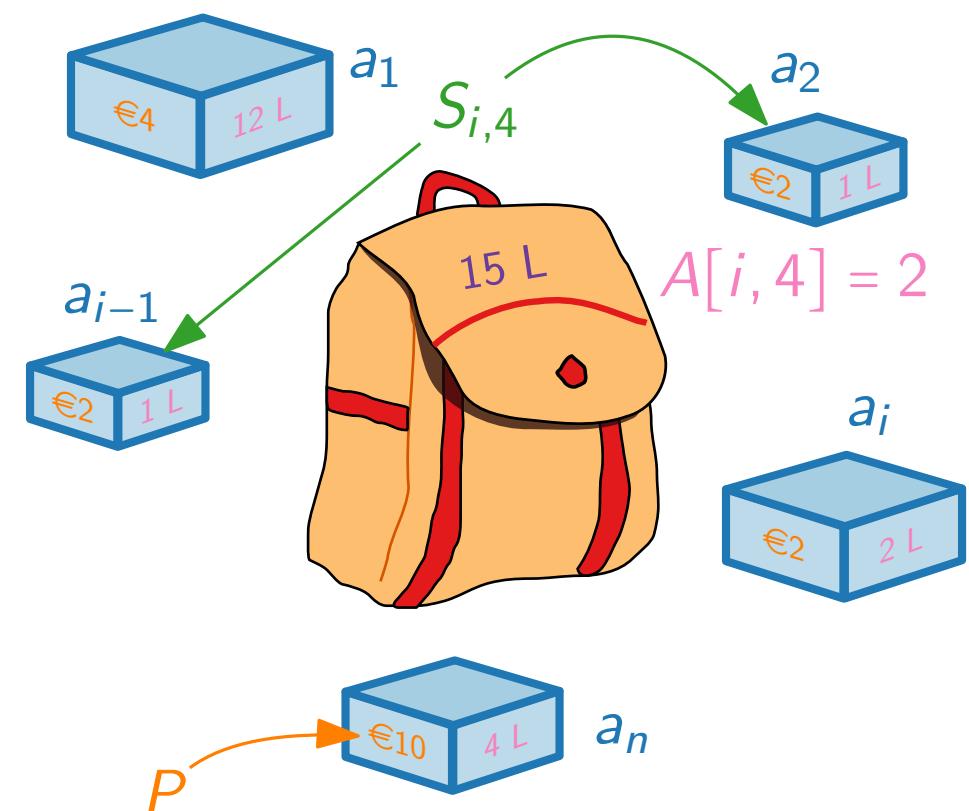


Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$$A[i + 1, p] = \min\{A[i, p], \text{size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$



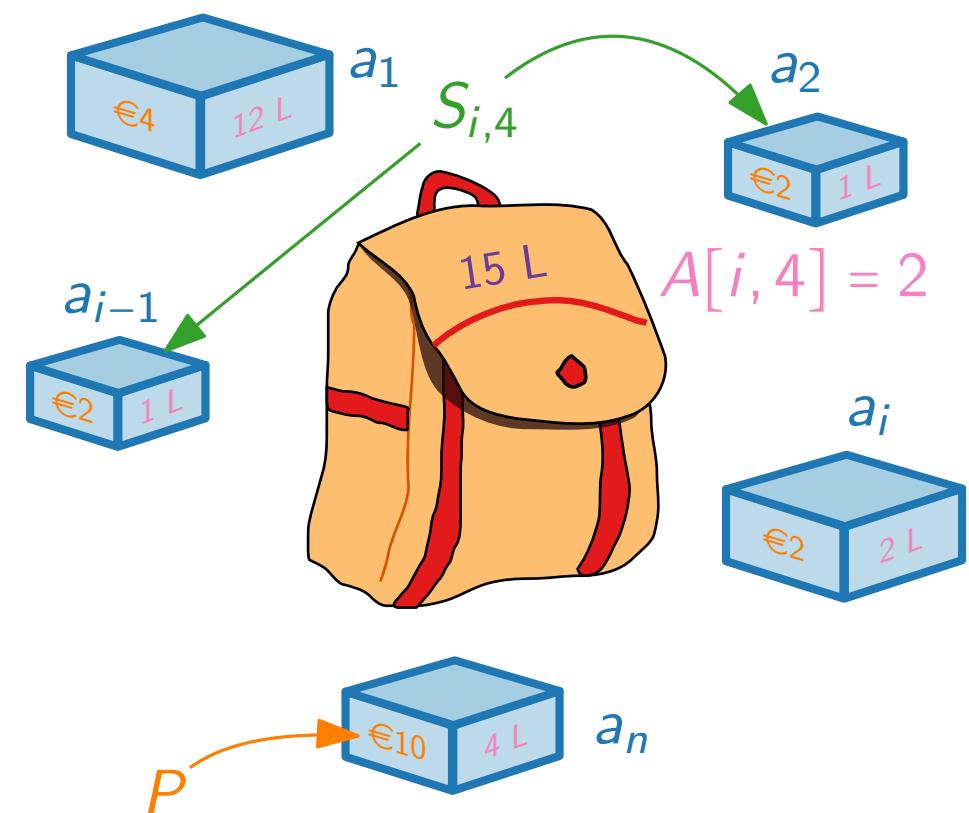
Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$A[i + 1, p] = \min\{A[i, p], \text{size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$

\Rightarrow All values $A[i, p]$ can be computed in total time $O($



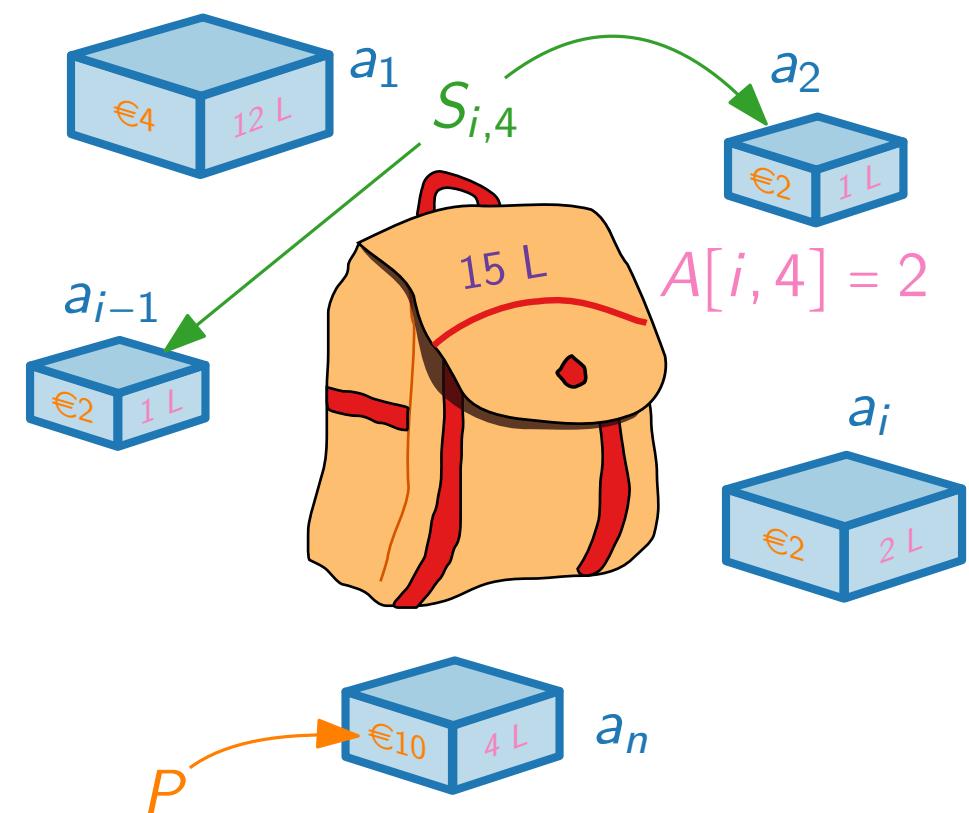
Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$A[i + 1, p] = \min\{A[i, p], \text{size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$

\Rightarrow All values $A[i, p]$ can be computed in total time $O(n^2 P)$.



Pseudo-Polynomial Alg. for KNAPSACK

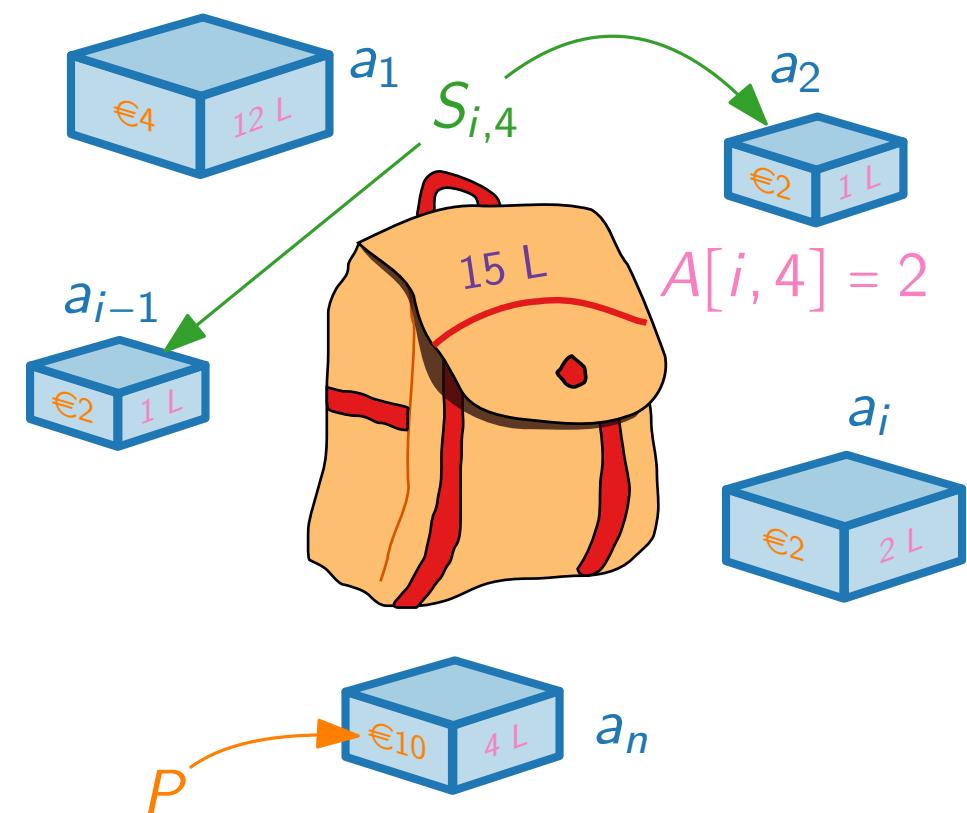
$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

⇒ All values $A[i, p]$ can be computed in total time $O(n^2 P)$.

⇒ OPT can be computed in $O(n^2 P)$ total time.



Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

\Rightarrow All values $A[i, p]$ can be computed in total time $O(n^2P)$.

\Rightarrow OPT can be computed in $O(n^2P)$ total time.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$A[i + 1, p] = \min\{A[i, p], \text{size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$

\Rightarrow All values $A[i, p]$ can be computed in total time $O(n^2P)$.

\Rightarrow OPT can be computed in $O(n^2P)$ total time.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Corollary. KNAPSACK is weakly NP-hard.

Pseudo-Polynomial Alg. for KNAPSACK

$A[1, p]$ can be computed for every $p \in \{0, \dots, nP\}$.

Set $A[i, p] := \infty$ for $p < 0$ (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

\Rightarrow All values $A[i, p]$ can be computed in total time $O(n^2P)$.

\Rightarrow OPT can be computed in $O(n^2P)$ total time.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Corollary. KNAPSACK is weakly NP-hard.

Observe. The running time $O(n^2P)$ is polynomial in n if P is polynomial in n .

Approximation Algorithms

Lecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part IV:
Approximation Schemes

Approximation Schemes

Let Π be an optimization problem.

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

- $\text{obj}_\Pi(I, s) \leq (1 + \varepsilon) \cdot \text{OPT}$ if Π is a minimization problem,

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

- $\text{obj}_\Pi(I, s) \leq (1 + \varepsilon) \cdot \text{OPT}$ if Π is a minimization problem,
- $\text{obj}_\Pi(I, s) \geq (1 - \varepsilon) \cdot \text{OPT}$ if Π is a maximization problem,

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

- $\text{obj}_\Pi(I, s) \leq (1 + \varepsilon) \cdot \text{OPT}$ if Π is a minimization problem,
- $\text{obj}_\Pi(I, s) \geq (1 - \varepsilon) \cdot \text{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in $|I|$ for **every fixed** $\varepsilon > 0$.

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

- $\text{obj}_\Pi(I, s) \leq (1 + \varepsilon) \cdot \text{OPT}$ if Π is a minimization problem,
- $\text{obj}_\Pi(I, s) \geq (1 - \varepsilon) \cdot \text{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in $|I|$ for **every fixed** $\varepsilon > 0$.

\mathcal{A} is called **fully polynomial-time approximation scheme (FPTAS)** if its running time is polynomial in $|I|$ and $1/\varepsilon$.

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

- $\text{obj}_\Pi(I, s) \leq (1 + \varepsilon) \cdot \text{OPT}$ if Π is a minimization problem,
- $\text{obj}_\Pi(I, s) \geq (1 - \varepsilon) \cdot \text{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in $|I|$ for **every fixed** $\varepsilon > 0$.

\mathcal{A} is called **fully polynomial-time approximation scheme (FPTAS)** if its running time is polynomial in $|I|$ and $1/\varepsilon$.

Example running times

- $O(n^{1/\varepsilon}) \rightsquigarrow$
- $O(n^3/\varepsilon^2) \rightsquigarrow$
- $O(2^{1/\varepsilon} n^4) \rightsquigarrow$

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

- $\text{obj}_\Pi(I, s) \leq (1 + \varepsilon) \cdot \text{OPT}$ if Π is a minimization problem,
- $\text{obj}_\Pi(I, s) \geq (1 - \varepsilon) \cdot \text{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in $|I|$ for **every fixed** $\varepsilon > 0$.

\mathcal{A} is called **fully polynomial-time approximation scheme (FPTAS)** if its running time is polynomial in $|I|$ and $1/\varepsilon$.

Example running times

- $O(n^{1/\varepsilon}) \rightsquigarrow$ PTAS
- $O(n^3/\varepsilon^2) \rightsquigarrow$
- $O(2^{1/\varepsilon} n^4) \rightsquigarrow$

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

- $\text{obj}_\Pi(I, s) \leq (1 + \varepsilon) \cdot \text{OPT}$ if Π is a minimization problem,
- $\text{obj}_\Pi(I, s) \geq (1 - \varepsilon) \cdot \text{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in $|I|$ for **every fixed** $\varepsilon > 0$.

\mathcal{A} is called **fully polynomial-time approximation scheme (FPTAS)** if its running time is polynomial in $|I|$ and $1/\varepsilon$.

Example running times

- $O(n^{1/\varepsilon}) \rightsquigarrow \text{PTAS}$
- $O(n^3/\varepsilon^2) \rightsquigarrow \text{FPTAS}$
- $O(2^{1/\varepsilon} n^4) \rightsquigarrow$

Approximation Schemes

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** for Π if it outputs, for every input (I, ε) with $I \in D_\Pi$ and $\varepsilon > 0$, a solution $s \in S_\Pi(I)$ such that

- $\text{obj}_\Pi(I, s) \leq (1 + \varepsilon) \cdot \text{OPT}$ if Π is a minimization problem,
- $\text{obj}_\Pi(I, s) \geq (1 - \varepsilon) \cdot \text{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in $|I|$ for **every fixed** $\varepsilon > 0$.

\mathcal{A} is called **fully polynomial-time approximation scheme (FPTAS)** if its running time is polynomial in $|I|$ and $1/\varepsilon$.

Example running times

- $O(n^{1/\varepsilon}) \rightsquigarrow \text{PTAS}$
- $O(n^3/\varepsilon^2) \rightsquigarrow \text{FPTAS}$
- $O(2^{1/\varepsilon} n^4) \rightsquigarrow \text{PTAS}$

Approximation Algorithms

Lecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part V:
FPTAS for KNAPSACK

An FPTAS for KNAPSACK via Scaling

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I , ε)

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

```
KnapsackScaling ( $I$ ,  $\varepsilon$ )
```

```
 $K$  = // scaling factor
```

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

```
KnapsackScaling ( $I$ ,  $\varepsilon$ )
```

```
 $K =$  // scaling factor  
for  $i = 1$  to  $n$  do  $\text{profit}'(a_i) =$ 
```

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

```
KnapsackScaling ( $I$ ,  $\varepsilon$ )
```

```
 $K =$  // scaling factor  
for  $i = 1$  to  $n$  do  $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$ 
```

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K =$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K =$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\leq K \cdot \text{profit}'(o_i) \leq$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK =$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

Obs. 2. $\geq K \cdot \sum_i \text{profit}'(o_i) \geq$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

Obs. 2. $\geq K \cdot \text{profit}'(S') \geq K \cdot \sum_i \text{profit}'(o_i) \geq$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

Obs. 2. $\text{profit}(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_i \text{profit}'(o_i) \geq$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

Obs. 2. $\text{profit}(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \varepsilon P$
 \geq

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

Obs. 2. $\text{profit}(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \varepsilon P$
 $\geq \text{OPT} - \varepsilon \text{OPT} =$

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

Obs. 2. $\text{profit}(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \varepsilon P$
 $\geq \text{OPT} - \varepsilon \text{OPT} = (1 - \varepsilon) \cdot \text{OPT}$ □

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

Obs. 2. $\text{profit}(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \varepsilon P$
 $\geq \text{OPT} - \varepsilon \text{OPT} = (1 - \varepsilon) \cdot \text{OPT}$ □

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with running time $O(n^3/\varepsilon)$

An FPTAS for KNAPSACK via Scaling

KnapsackScaling (I, ε)

$K = \varepsilon P/n$ // scaling factor

for $i = 1$ **to** n **do** $\text{profit}'(a_i) = \lfloor \text{profit}(a_i)/K \rfloor$

Compute optimal solution S' for I w.r.t. $\text{profit}'(\cdot)$.

return S'

Lemma. $\text{profit}(S') \geq (1 - \varepsilon) \cdot \text{OPT}$.

Proof. Let $\text{OPT} = \{o_1, \dots, o_\ell\}$.

Obs. 1. For $i = 1, \dots, \ell$: $\text{profit}(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$
 $\Rightarrow K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \ell K \geq \text{OPT} - nK = \text{OPT} - \varepsilon P$.

Obs. 2. $\text{profit}(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_i \text{profit}'(o_i) \geq \text{OPT} - \varepsilon P$
 $\geq \text{OPT} - \varepsilon \text{OPT} = (1 - \varepsilon) \cdot \text{OPT}$ □

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with running time $O(n^3/\varepsilon) = O\left(n^2 \cdot \frac{P}{\varepsilon P/n}\right)$.

Approximation Algorithms

Lecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part VI:
Connections Between the Concepts

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π .

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS,

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon =$

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} <$

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} <$

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$$\Rightarrow \text{ALG} \leq (1 + \varepsilon) \text{OPT} < \text{OPT} + \varepsilon p(|I|_u) =$$

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} < \text{OPT} + \varepsilon p(|I|_u) =$$

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} < \text{OPT} + \varepsilon p(|I|_u) = \text{OPT} + 1.$$

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} < \text{OPT} + \varepsilon p(|I|_u) = \text{OPT} + 1.$$

$$\Rightarrow \text{ALG} = \text{OPT}.$$

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} < \text{OPT} + \varepsilon p(|I|_u) = \text{OPT} + 1.$$

$$\Rightarrow \text{ALG} = \text{OPT}.$$

Running time:

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} < \text{OPT} + \varepsilon p(|I|_u) = \text{OPT} + 1.$$

$$\Rightarrow \text{ALG} = \text{OPT}.$$

Running time: $q(|I|, p(|I|_u))$

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} < \text{OPT} + \varepsilon p(|I|_u) = \text{OPT} + 1.$$

$$\Rightarrow \text{ALG} = \text{OPT}.$$

Running time: $q(|I|, p(|I|_u))$, so

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\text{OPT}(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set $\varepsilon = 1/p(|I|_u)$.

$$\Rightarrow \text{ALG} \leq (1 + \varepsilon)\text{OPT} < \text{OPT} + \varepsilon p(|I|_u) = \text{OPT} + 1.$$

$$\Rightarrow \text{ALG} = \text{OPT}.$$

Running time: $q(|I|, p(|I|_u))$, so $\text{poly}(|I|_u)$.

FPTAS and Strong NP-Hardness

Recall:

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $P = NP$.

FPTAS and Strong NP-Hardness

Recall:

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $P = NP$.

New:

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

FPTAS and Strong NP-Hardness

Recall:

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless $P = NP$.

New:

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Corollary. Let Π be an NP-hard optimization problem that fulfills the restrictions above.
If Π is strongly NP-hard, then there is no FPTAS for Π (unless $P = NP$).