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The running time of a polynomial algorithm for /] is
polynomial in |/].

The running time of a pseudo-polynomial algorithm is
polynomial in |/],.
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Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a pseudo-polynomial
algorithm.

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.
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For every i€ {1,..., n} and every pe{l,..., nP},

let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

If all are known, then we can

compute
OPT =max{p| < B}.
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can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + }
= All values can be computed in total time O(n?P).

= OPT can be computed in
O(n*P) total time.

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /).

Corollary. KNAPSACK is weakly NP-hard.

Observe. The running time O(n?/) is polynomial in n
if " is polynomial in n.
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‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
- K.Y, > OPT - ¢K » OPT — nK = OPT - &P,
Obs. 2. > K- > K-, > OPT - ¢
>0PT-c0PT=(1-¢)-0PT O

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with
running time O(n’/s) = O (n2 : elf/n).
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Theorem.

Theorem.

Corollary.

A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

Let © be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < »(]/|,) for all instances /
of 1. If [] has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Let /] be an NP-hard optimization problem that
fulfills the restrictions above.

If /'] is strongly NP-hard, then there is no FPTAS
for /1 (unless P = NP).
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