1/15

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part |
KNAPSACK

Alexander Wolff Winter term 2025

2/15

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.

N}
%

q. &

-

2/15

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.
m For every object a; a

N}
%

q. &

<>

2/15

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.
m For every object a; a
m For every object a; a profit profit(a;) ¢ N7

2/15

KNAPSACK

Given: Aset S=1{a,..., a,} of objects.
For every object a; a
For every object a; a profit profit(a;) ¢ N©

A knapsack capacity B € N*

2/15

KNAPSACK

Given:

Task:

m Aset S={ay,..., a,} of objects.

m For every object a; a

m For every object a; a profit profit(a;) ¢ N7
m A knapsack capacity B € N*

Find a subset of objects
whose s at 31
most B and whose total

di-1

profit is maximum.

q. &

o o

2/15

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.

m For every object a; a

m For every object a; a profit profit(a;) ¢ N7
o

A knapsack capacity B € N*

Task: Find a subset of objects
whose is at $ 1
most B and whose total
profit is maximum.

2/15

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.

m For every object a; a

m For every object a; a profit profit(a;) ¢ N7
o

A knapsack capacity B € N*

Task: Find a subset of objects
whose is at $ 1
most B and whose total
profit is maximum.

g .)
NP-hard

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part Il
Pseudo-Polynomial Algorithms and
Strong NP-Hardness

3/15

4/15

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)
and numbers (such as costs, weights, profits).

4/15

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)
and (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary.

4/15

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)
and numbers (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

4/15

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).
/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary.

4/15

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).
/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary. (5211111, = |/|, =5)

4/15

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary. (5211111, = |/|, =5)

The running time of a polynomial algorithm for /] is
polynomial in |/].

4/15

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary. (5211111, = |/|, =5)

The running time of a polynomial algorithm for /] is
polynomial in |/].

The running time of a pseudo-polynomial algorithm is
polynomial in |/],.

4/15

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary. (5211111, = |/|, =5)

The running time of a polynomial algorithm for /] is
polynomial in |/].

The running time of a pseudo-polynomial algorithm is
polynomial in |/],.

The running time of a pseudo-polynomial algorithm may not
be polynomial in |/|.

5/15

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

5/15

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a pseudo-polynomial
algorithm.

5/15

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a pseudo-polynomial
algorithm.

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

6/15

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part |1l
Pseudo-Polynomial Algorithm for KNAPSACK

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let P := max; profit(a;)

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let P := max; profit(a;)

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let / := max; profit(a,-) = <OPT < (assuming size(+) < B)

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let P :=max;profit(a;) = P <OPT < nP (assuming size(-) < B)

7/15

Pseudo-Polynomial Alg. for KNAPSACK
Let P :=max;profit(a;) = P <OPT <nP (assuming size(-) < B)

For every i € {1, ..., n} and every pe{l,..., nP},

7/15

Pseudo-Polynomial Alg. for KNAPSACK
Let P :=max;profit(a;) = P <OPT <nP (assuming size(-) < B)

For every i€ {1,..., n} and every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p

7/15

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

For every i€ {1,..., n} and every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p

7/15

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

For every i€ {1,..., n} and every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size iIs minimum among all subsets

with these properties.

7/15

Pseudo-Polynomial Alg. for KNAPSACK
Let P := max;profit(a;) = P <OPT<nP
For every i€ {1,..., n} and every pe{l,..., nP},

let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size iIs minimum among all subsets

with these properties.
& s

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT <n

For every i€ {1,..., n} and every pe{l,..., nP},

let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties. Such a set may not exist.

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT <n

For every i€ {1,..., n} and every pe{l,..., nP},

let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT <n

For every i€ {1,..., n} and every pe{l,..., nP},

let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT <n

For every i€ {1,..., n} and every pe{l,..., nP},

let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

If all are known, then we can

compute
OPT =

7/15

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT <n

For every i€ {1,..., n} and every pe{l,..., nP},

let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size is minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

If all are known, then we can

compute
OPT =max{p| < B}.

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.

Set for p <0 (for convenience).

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.

Set for p <0 (for convenience).

8/15
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0 (for convenience).

= min{

8/15
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0 (for convenience).

= min{

8/15
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0 (for convenience).

= min{ , +

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.

Set for p <0 (for convenience).

= min{ | + p — profit(aj;1)]}

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.
Set for p <0

= min{ | + p — profit(aj;1)]}

= All values can be computed in total time O(

< >
s

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.
Set for p <0

= min{ | + p — profit(aj;1)]}

= All values can be computed in total time O(n?P).

< >
s

8/15
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + p — profit(a;y1)]}
= All values can be computed in total time O(n?P).

= OPT can be computed in

O(n?P) total time. Q— * S é

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + }
= All values can be computed in total time O(n?P).

= OPT can be computed in
O(n*P) total time.

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /).

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + }
= All values can be computed in total time O(n?P).

= OPT can be computed in
O(n*P) total time.

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /).

Corollary. KNAPSACK is weakly NP-hard.

8/15

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + }
= All values can be computed in total time O(n?P).

= OPT can be computed in
O(n*P) total time.

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /).

Corollary. KNAPSACK is weakly NP-hard.

Observe. The running time O(n?/) is polynomial in n
if " is polynomial in n.

9/15

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part IV:
Approximation Schemes

10/15

Approximation Schemes

Let /] be an optimization problem.

10/15

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1

if it outputs, for every input (/,c) with / € Dy and £ > 0,

a solution s € 5(/) such that

10/15

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1

if it outputs, for every input (/,c) with / € Dy and £ > 0,

a solution s € 5(/) such that

m <(1+¢)-OPT if I1is a minimization problem,

10/15

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

10/15

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [1is a maximization problem,

10/15

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

10/15

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(nt?) ~

m O(n’/e?) ~

o O(2l/€n4) ~

10/15

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if [Tis a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,
and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS
m O(n’/e?) ~
o O(2l/€n4) ~

10/15

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if [Tis a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,
and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS

m O(n/s?) ~ FPTAS
o O(2l/€n4) ~

10/15

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if [Tis a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,
and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS

m O(n/s?) ~ FPTAS
s 0(2n*) ~ PTAS

11/15

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part V:
FPTAS for KNAPSACK

12/15

An FPTAS for KNAPSACK via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K = // scaling factor
for i=1to ndo = | /K|

Compute optimal solution S’ for /| w.r.t.

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K= // scaling factor

for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=¢eP/n // scaling factor

for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return 5’

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=¢eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return 5’

Lemma >(1l-¢)-OPT.

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’

Lemma >(1l-¢)-OPT.

Proof Let OPT ={oy,..., oy}

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return 5’
Lemma >(1l-¢)-OPT.
Proof Let OPT ={oq,..., o}
Obs. 1. Fori=1,..., ¢ < K- <

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return 5’
Lemma >(1l-¢)-OPT.
Proof Let OPT ={oq,..., o}
Obs. 1. Fori=1,..., ¢ < K- <

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return 5’
Lemma >(1l-¢)-OPT.
Proof Let OPT ={oq,..., o}
Obs. 1. Fori=1,..., /: - K < K- <

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = |
Compute optimal solution S’ for /| w.r.t.
return 5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oq,..., or}.
Obs. 1. Fori=1,..., /: - K < K-
= K.Y, > OPT - (K >

VAN

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=¢eP/[n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
- K-, > OPT - ¢K > OPT - nK =

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=¢ecP/[n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oq,..., or}.
Obs. 1. Fori=1,..., /: - K < K- <
- K.Y, > OPT - ¢K > OPT - nK = OPT - £P.

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=¢eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
- K.Y, > OPT - ¢K » OPT — nK = OPT - &P,

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=¢eP/[n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
- K.Y, > OPT - ¢K » OPT — nK = OPT - &P,

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=¢eP/[n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
- K.Y, > OPT - ¢K » OPT — nK = OPT - &P,

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
- K=¢P/n // scaling factor
for i=1to ndo = | /K|

Compute optimal solution S’ for /| w.r.t.
return 5’

Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}

Obs. 1. Fori=1,..., /: - K < K- <
= K-3. > OPT - ¢K > OPT - nK =OPT - ¢P.
Obs. 2 > K- > K-y >OPT - ¢
>

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

12/15

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
= K.Y, > OPT - ¢K > OPT - nK = OPT - £P.
Obs. 2. > K- > K-, > OPT - ¢
>0OPT - ¢ OPT =

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
- K.Y, > OPT - ¢K > OPT - nK = OPT - £P.
Obs. 2. > K- > K-, > OPT - ¢
>0PT-c0PT=(1-¢)-0PT O

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=¢eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S5’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={o4,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
= K.Y, > OPT - ¢K > OPT - nK = OPT - £P.
Obs. 2. > K- > K-, > OPT - ¢
>0PT-c0PT=(1-¢)-0PT O

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with
running time O(n>/¢)

12/15

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)

K=eP/n // scaling factor
for i=1to ndo = | /K|
Compute optimal solution S’ for /| w.r.t.
return S’
Lemma. >(1l-¢)-OPT.
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /: - K < K- <
- K.Y, > OPT - ¢K » OPT — nK = OPT - &P,
Obs. 2. > K- > K-, > OPT - ¢
>0PT-c0PT=(1-¢)-0PT O

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with
running time O(n’/s) = O (n2 : elf/n).

13/15

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part VI:
Connections Between the Concepts

14/15

FPTAS and Pseudo-Polynomial Algorithms

14/15

FPTAS and Pseudo-Polynomial Algorithms

14/15

FPTAS and Pseudo-Polynomial Algorithms

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard

minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS,

FPTAS and Pseudo-Polynomial Algorithms

Theorem.

Let © be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

14/15

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.

Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.

Assume that there is an FPTAS for 7 (in g(|/],1/2) time).
Set ¢ =

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.

Assume that there is an FPTAS for 7 (in g(|/],1/2) time).
Set ¢ =1/p(|/],).

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set e =1/p(|/],).
= ALG < (1+¢)OPT <

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(|/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a
pseudo-polynoyrial algorithm for /7.

Proof.
Assume that there islan FPTAS for /7 (in g(|/],1/2) time).

Set e =1/p(|/],).
= ALG < (1+¢)OPT <

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set€:1/ (‘l|u)
= ALG < (1+¢)OPT < OPT + ep(|/],) =

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set€:1/ (‘l|u)
= ALG < (1+¢)OPT < OPT + ep(|/],) =

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.

Assume that there is an FPTAS for 7 (in g(|/],1/2) time).
Set ¢ =1/p(|/],).

= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.

Assume that there is an FPTAS for 7 (in g(|/],1/2) time).
Set ¢ =1/p(|/],).

= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG = OPT.

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard

minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG =0OPT.
Running time:

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard

minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG = OPT.
Running time: g(|/|, p(|/].))

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard

minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG =0OPT.
Running time: g(|/|, p(|/].)), so

14/15

FPTAS and Pseudo-Polynomial Algorithms

Theorem. Let » be a polynomial and let /] be an NP-hard

minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG =0OPT.
Running time: g(|/|, p(|/[.)), so poly(|/].).

14/15

15/15

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

FPTAS and Strong NP-Hardness

Theorem.

Theorem.

A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

Let © be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < »(]/|,) for all instances /
of []. If [l has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

15/15

FPTAS and Strong NP-Hardness

Theorem.

Theorem.

Corollary.

A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

Let © be a polynomial and let /] be an NP-hard
minimization problem with integral objective
function and OPT (/) < »(]/|,) for all instances /
of 1. If [] has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Let /] be an NP-hard optimization problem that
fulfills the restrictions above.

If /'] is strongly NP-hard, then there is no FPTAS
for /1 (unless P = NP).

	Knapsack
	Pseudo-Polynomial Algorithms and Strong NP-Hardness
	Pseudo-Polynomial Algorithms
	Strong NP-Hardness

	Pseudo-Polynomial Algorithm for Knapsack
	Definitions
	Algorithm

	Approximation Schemes
	FPTAS for Knapsack
	An FPTAS for \textsc{Knapsack} via Scaling
	Connections
	FPTAS and Pseudo-Polynomial Algorithms
	FPTAS and Pseudo-Polynomial Algorithms
	FPTAS and Strong NP-Hardness

