Approximation Algorithms

Lecture 6:

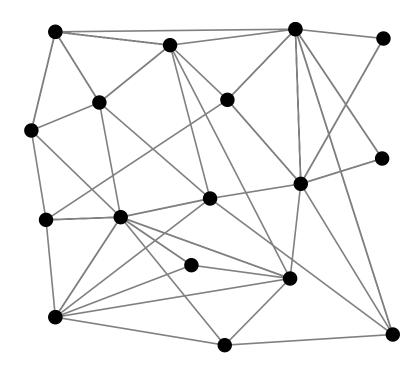
k-Center via Parametric Pruning

Part I:

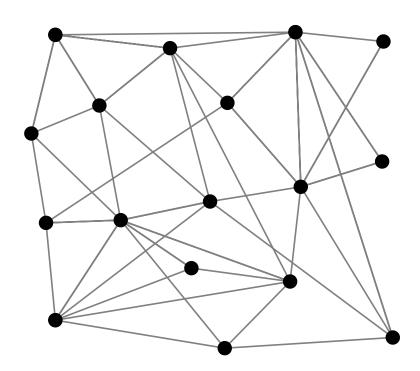
Metric k-Center

Given: A graph G

Given: A graph G

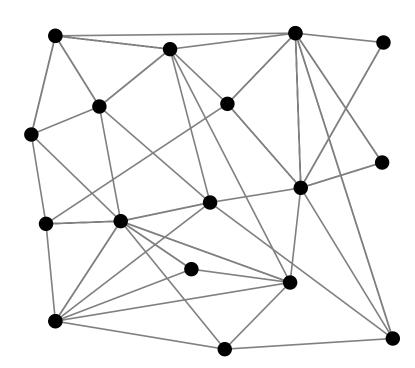


Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



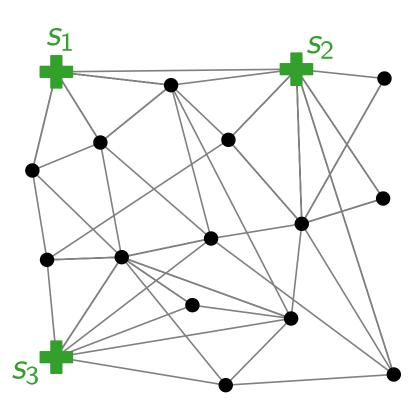
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

a set
$$S \subseteq V(G)$$

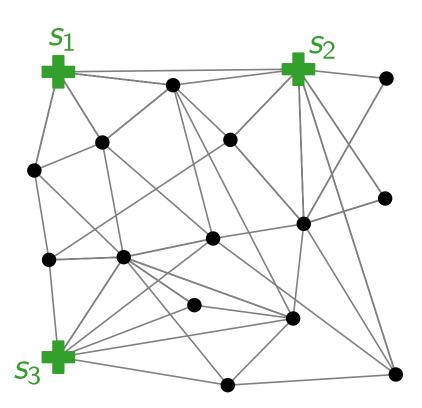


Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

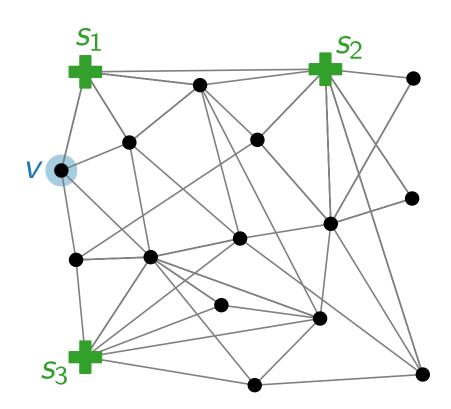
a set
$$S \subseteq V(G)$$



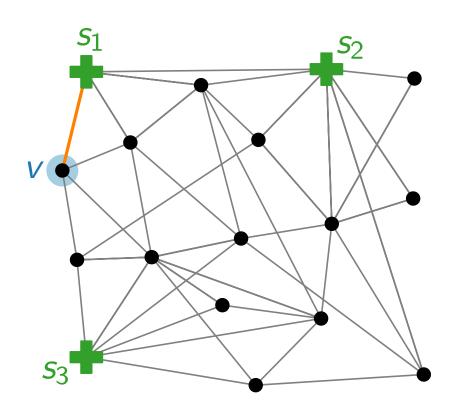
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



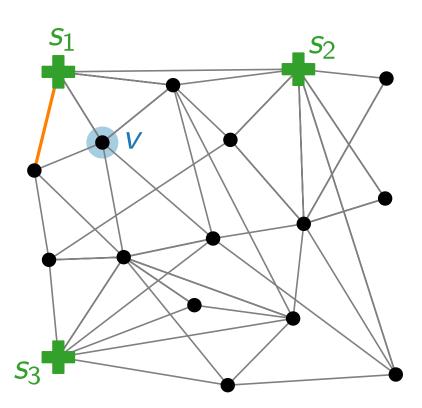
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



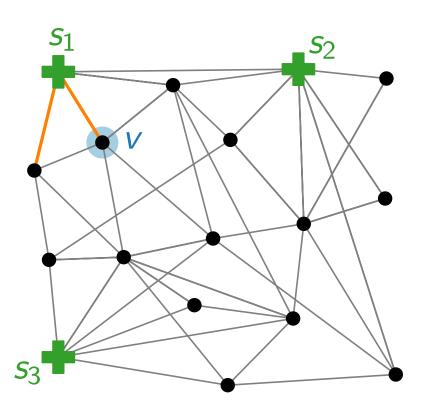
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



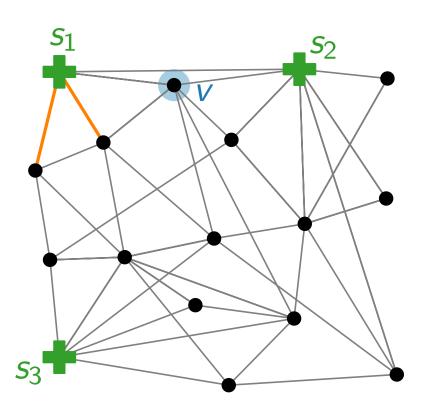
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



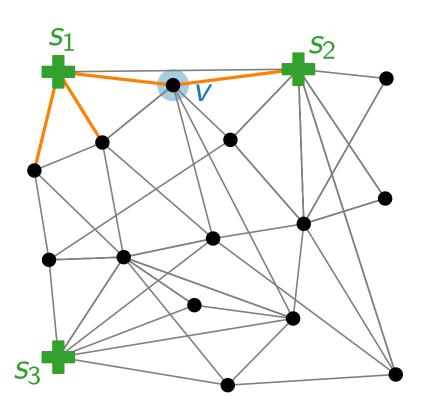
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



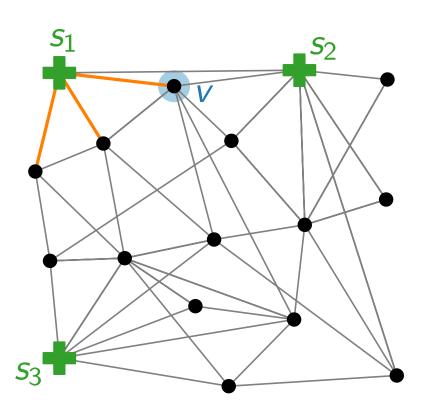
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



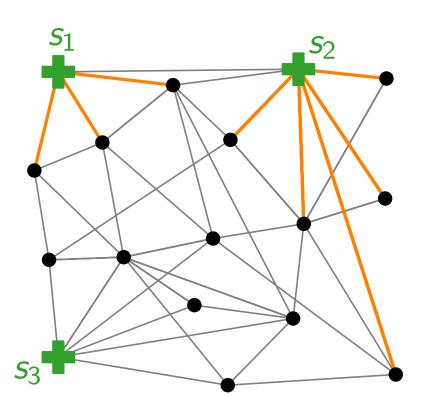
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



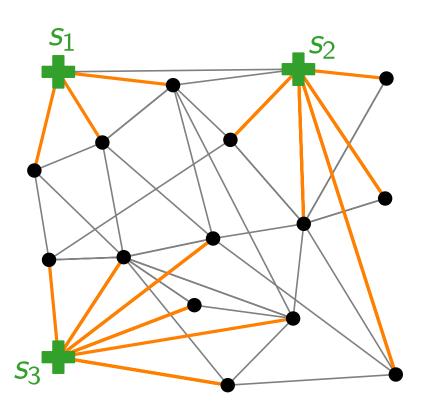
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



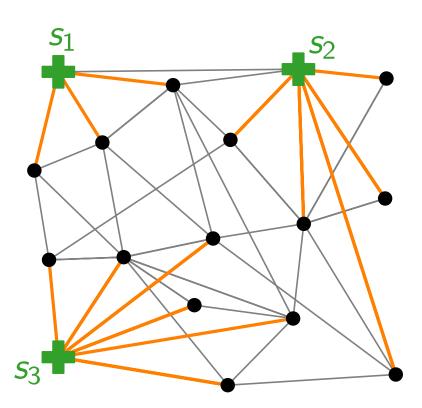
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

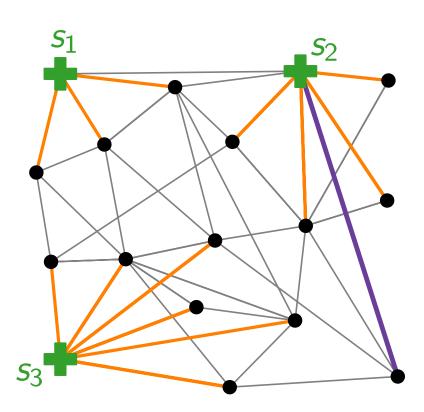


Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality



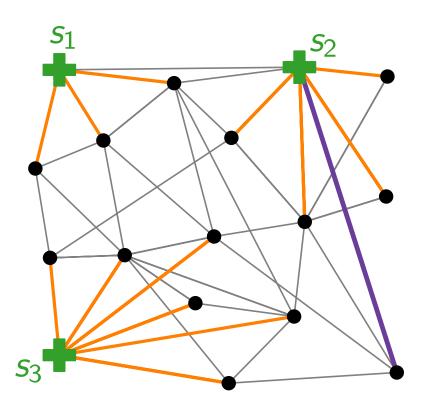
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

$$\max_{v \in V} c(v, S)$$
.



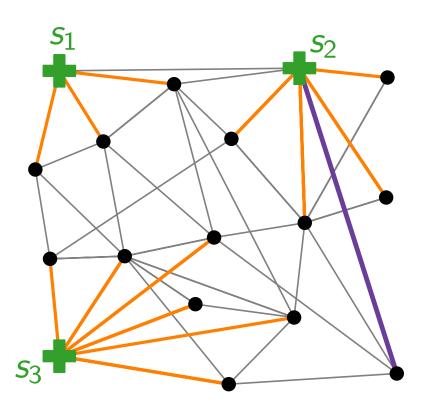
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given a set $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.



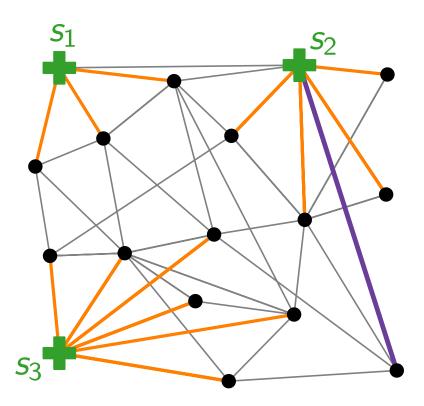
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V(G)|$.

Given a set $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.



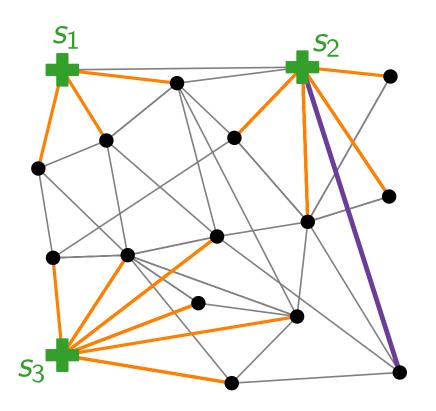
Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V(G)|$.

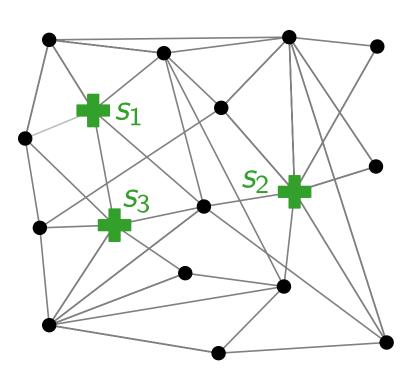
Given a set $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.



Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V(G)|$.

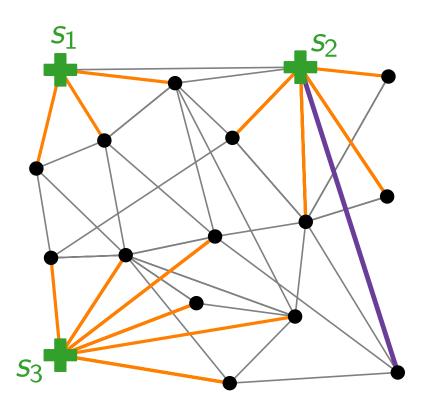
Given a set $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

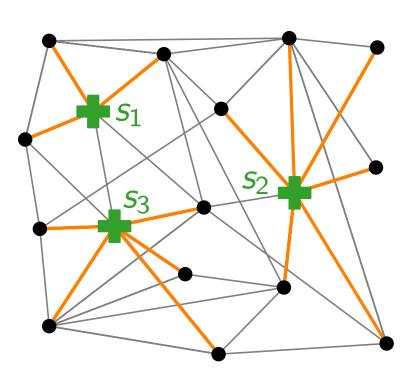




Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V(G)|$.

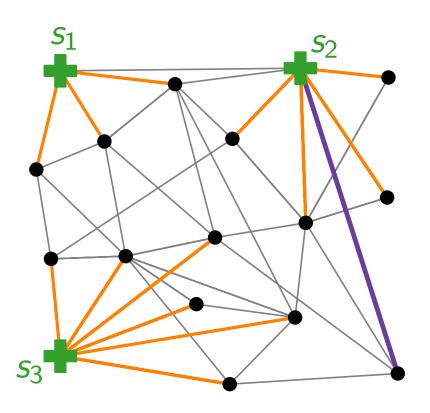
Given a set $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

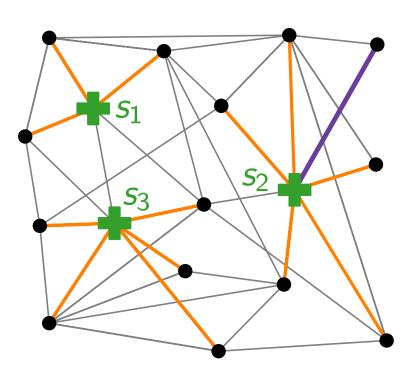




Given: A complete graph G with edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V(G)|$.

Given a set $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.



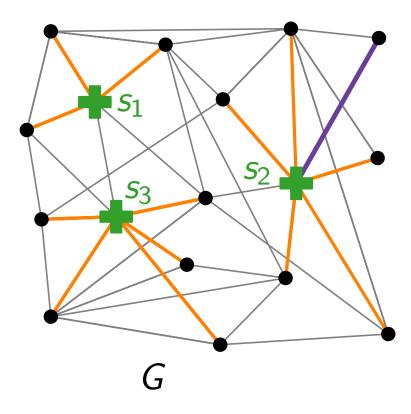


Approximation Algorithms

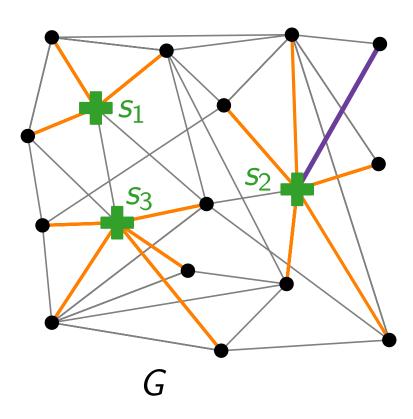
Lecture 6:

k-Center via Parametric Pruning

Part II:
Parametric Pruning



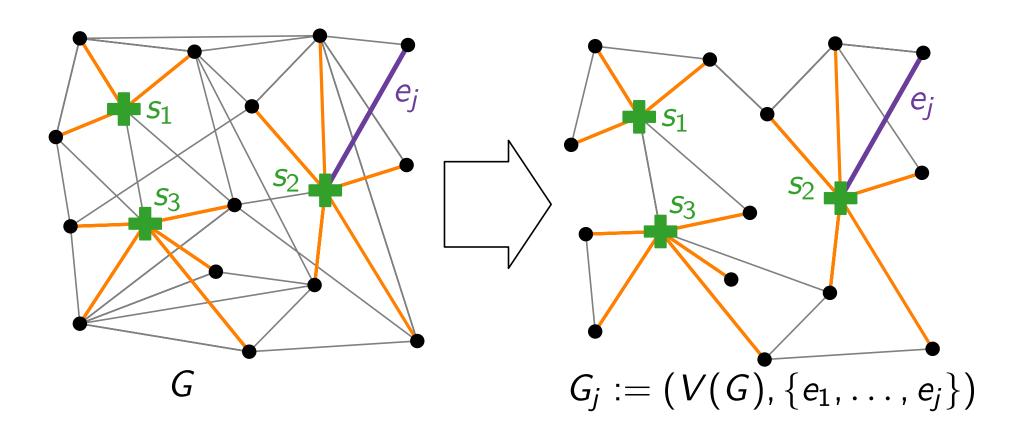
Let $E(G) = \{e_1, \ldots, e_m\}$ with $c(e_1) \leq \cdots \leq c(e_m)$.



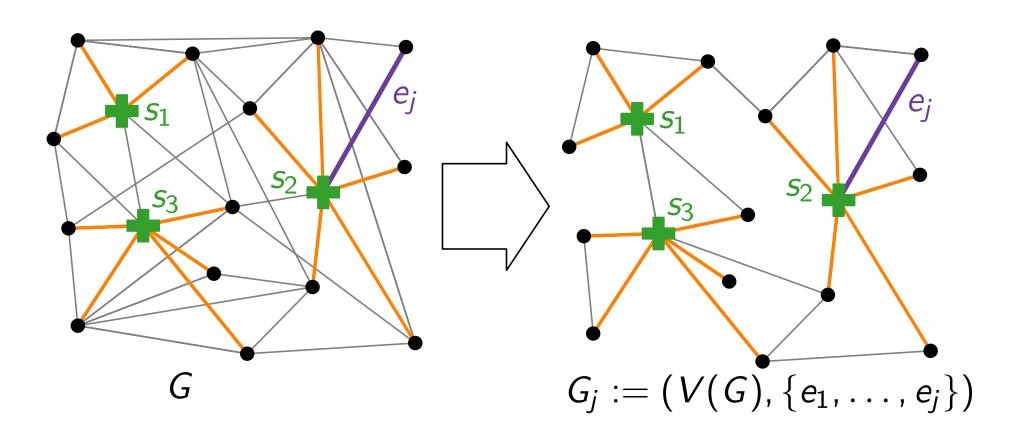
Let $E(G) = \{e_1, \dots, e_m\}$ with $c(e_1) \le \dots \le c(e_m)$. Suppose that we know that $OPT = c(e_j)$.



Let $E(G) = \{e_1, \dots, e_m\}$ with $c(e_1) \le \dots \le c(e_m)$. Suppose that we know that $OPT = c(e_j)$.

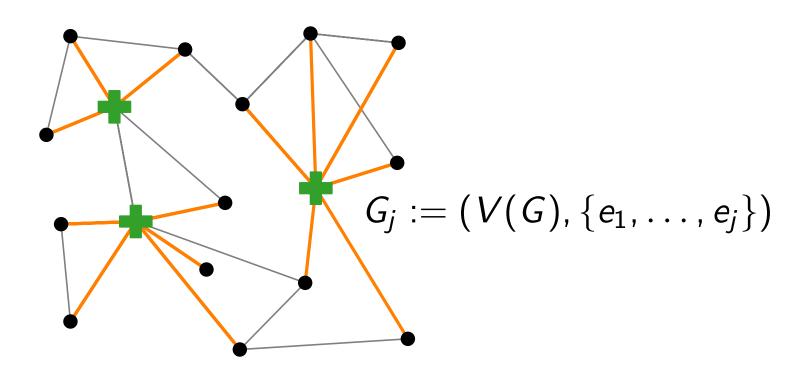


Let $E(G) = \{e_1, \dots, e_m\}$ with $c(e_1) \le \dots \le c(e_m)$. Suppose that we know that $OPT = c(e_j)$.

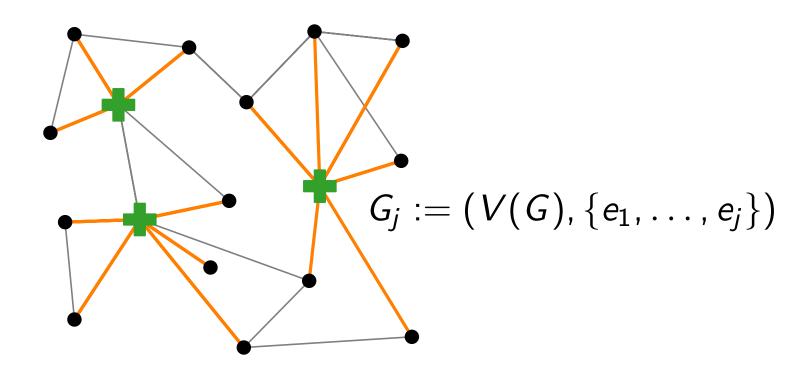


 \dots try each G_j .

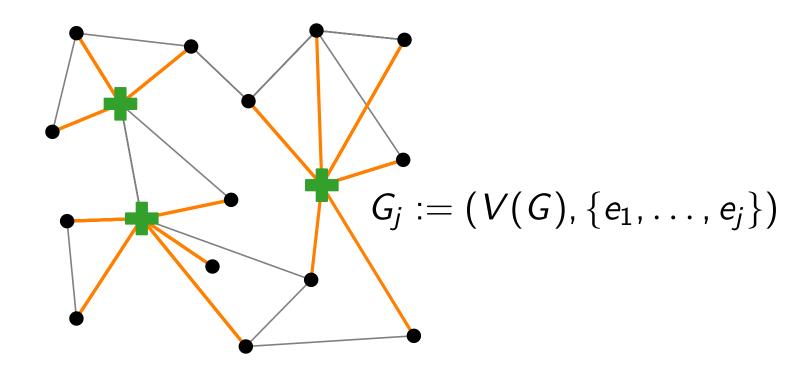
Def.



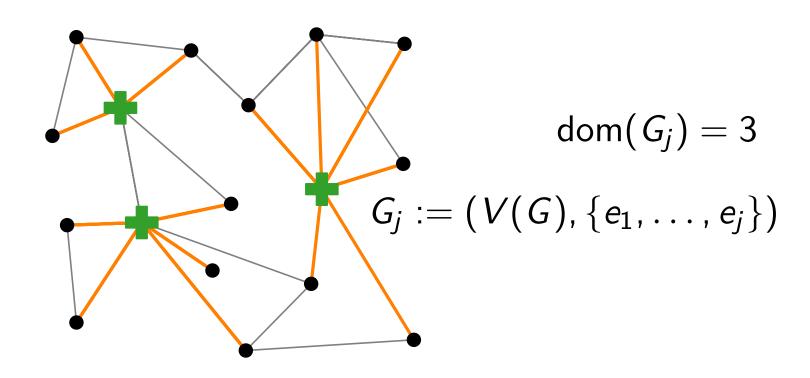
Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D.



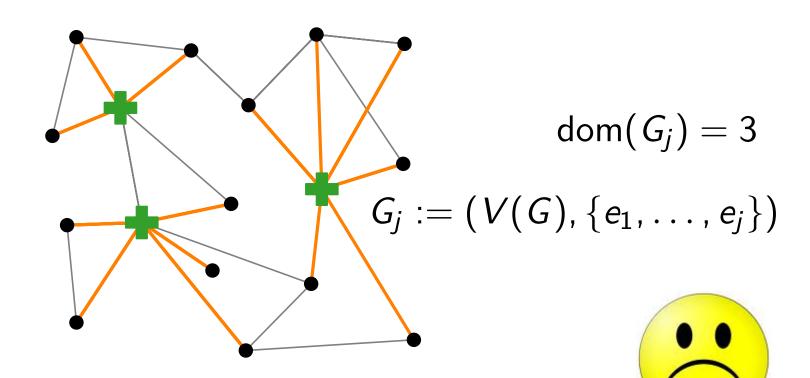
Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).



Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).



Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).



... but computing dom(H) is NP-hard.

Approximation Algorithms

Lecture 6:

k-Center via Parametric Pruning

Part III: Square of a Graph

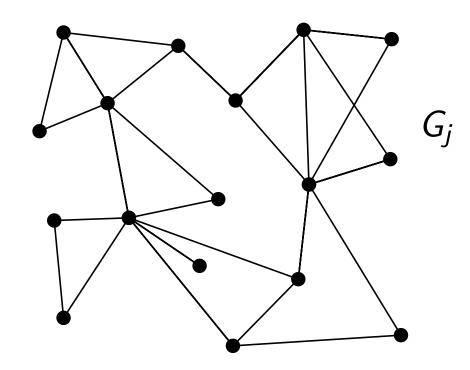
Idea: Find a small dominating set in a "coarsened" G_i .

Idea: Find a small dominating set in a "coarsened" G_j .

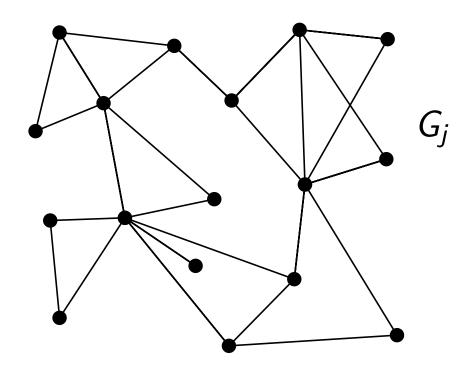
Def. The square H^2 of a graph H has the same vertex set as H.

Idea: Find a small dominating set in a "coarsened" G_j .

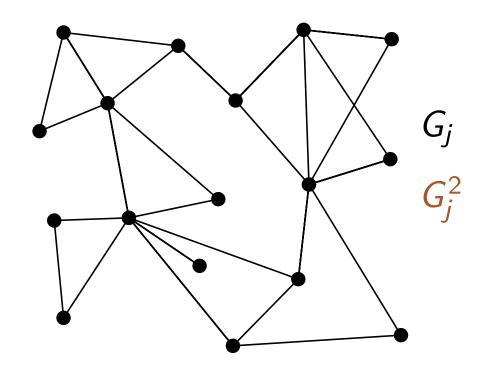
Def. The square H^2 of a graph H has the same vertex set as H.



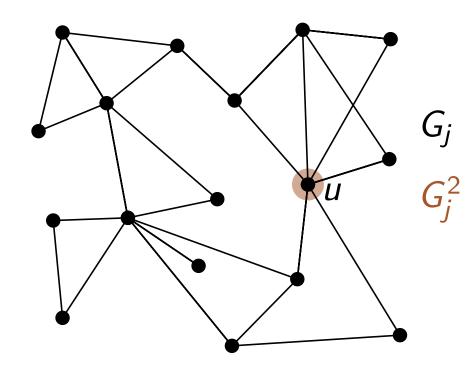
Idea: Find a small dominating set in a "coarsened" G_j .



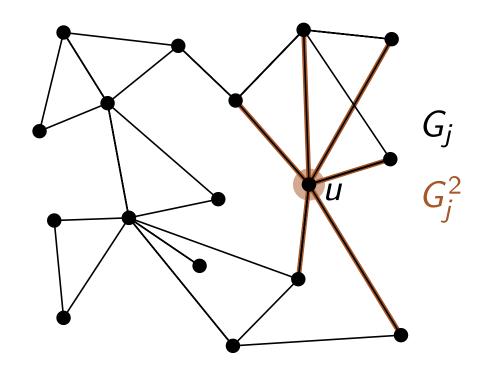
Idea: Find a small dominating set in a "coarsened" G_j .



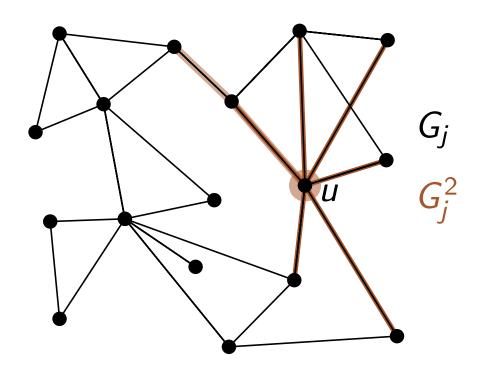
Idea: Find a small dominating set in a "coarsened" G_j .



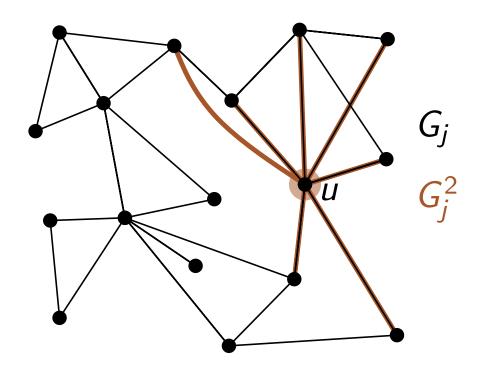
Idea: Find a small dominating set in a "coarsened" G_j .



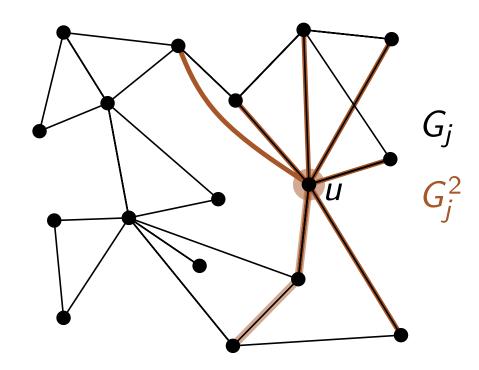
Idea: Find a small dominating set in a "coarsened" G_j .



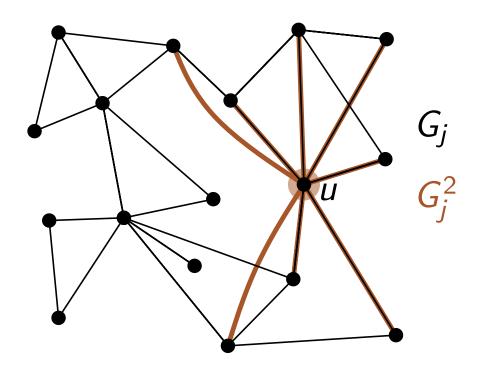
Idea: Find a small dominating set in a "coarsened" G_j .



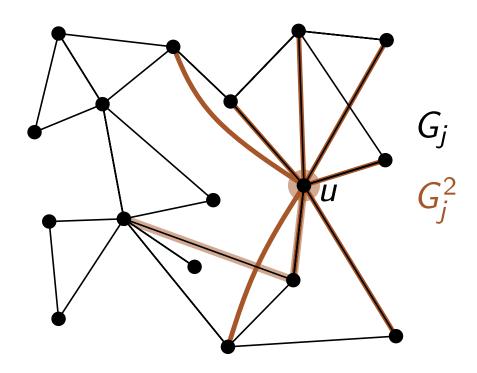
Idea: Find a small dominating set in a "coarsened" G_j .



Idea: Find a small dominating set in a "coarsened" G_j .



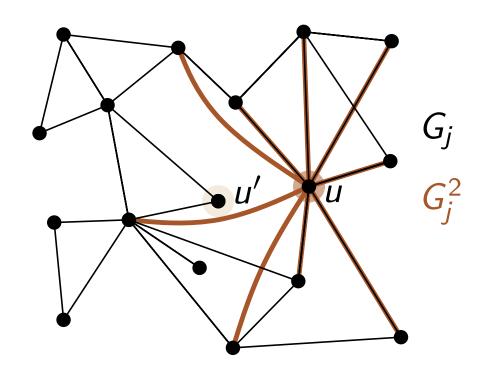
Idea: Find a small dominating set in a "coarsened" G_j .



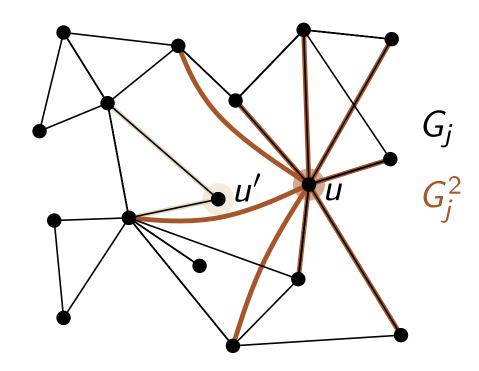
Idea: Find a small dominating set in a "coarsened" G_j .



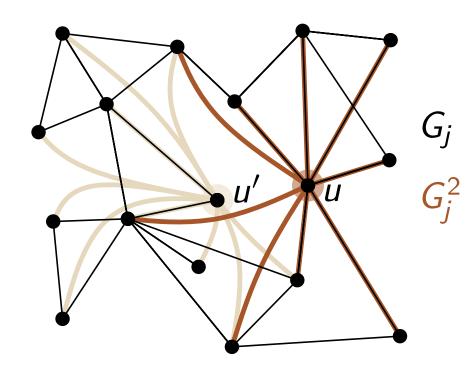
Idea: Find a small dominating set in a "coarsened" G_j .



Idea: Find a small dominating set in a "coarsened" G_j .



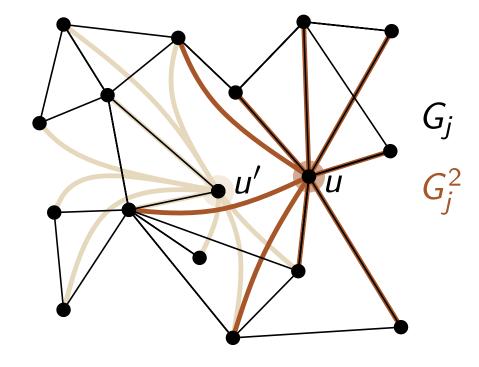
Idea: Find a small dominating set in a "coarsened" G_j .



Idea: Find a small dominating set in a "coarsened" G_j .

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

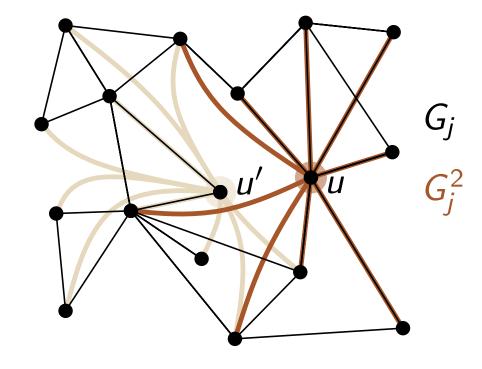
Obs. A dominating set of size at most k in G_j^2 is a -approximation for the metric k-CENTER of G.



Idea: Find a small dominating set in a "coarsened" G_j .

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

Obs. A dominating set of size at most k in G_j^2 is a 2-approximation for the metric k-CENTER of G.



Idea: Find a small dominating set in a "coarsened" G_j .

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

Obs. A dominating set of size at most k in G_j^2 is a 2-approximation for the metric k-CENTER of G.

 G_j U' G_j

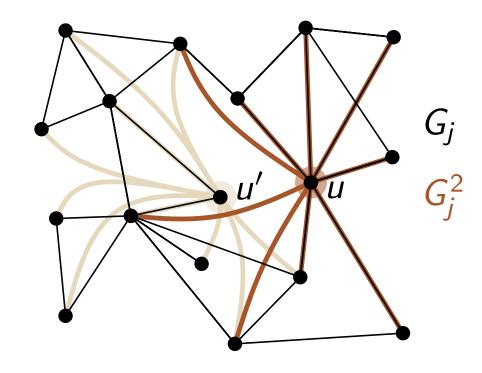
Why?

Idea: Find a small dominating set in a "coarsened" G_j .

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

Obs. A dominating set of size at most k in G_j^2 is a 2-approximation for the metric k-CENTER of G.

Why? $\max_{e \in E(G_j)} c(e) = \mathsf{OPT}$

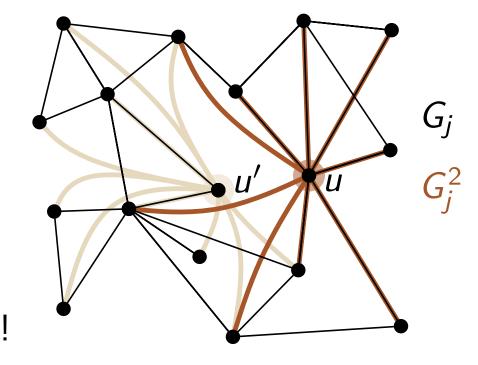


Idea: Find a small dominating set in a "coarsened" G_j .

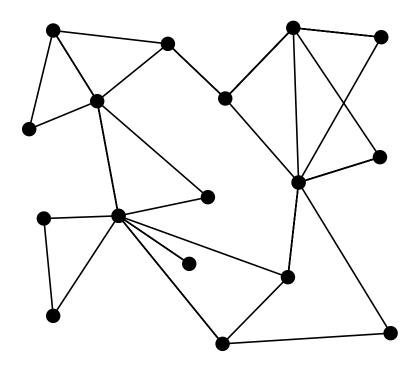
Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

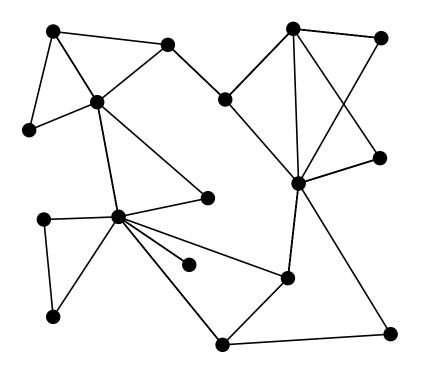
Obs. A dominating set of size at most k in G_j^2 is a 2-approximation for the metric k-CENTER of G.

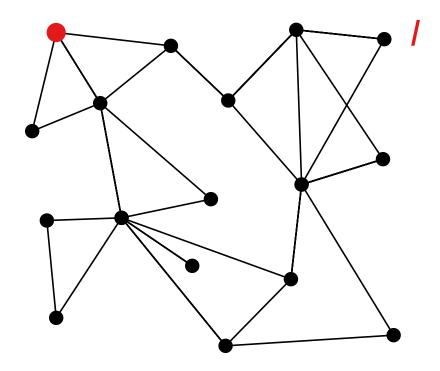
Why? $\max_{e \in E(G_j)} c(e) = \mathsf{OPT}$ and edge costs are metric!

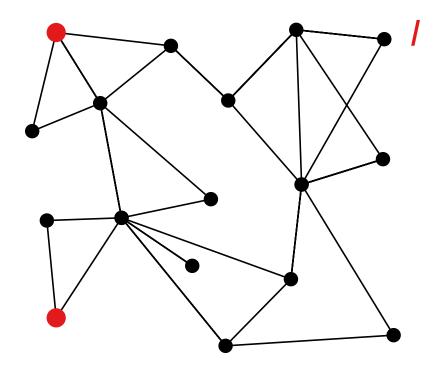


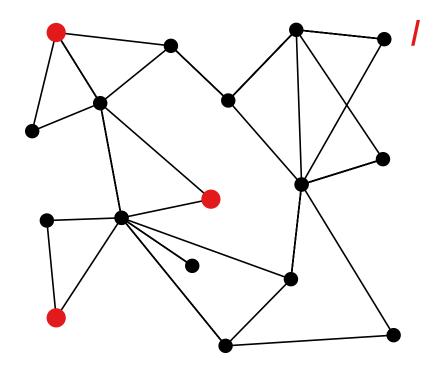
Def. A vertex set / in a graph is called **independent** (or **stable**) if no pair of vertices in / forms an edge.

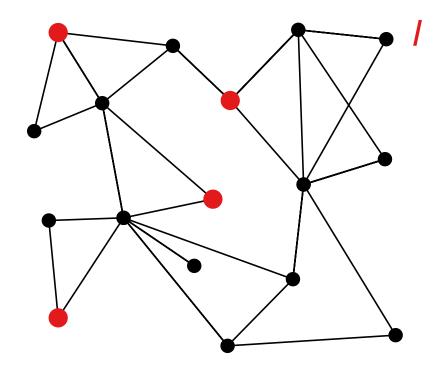


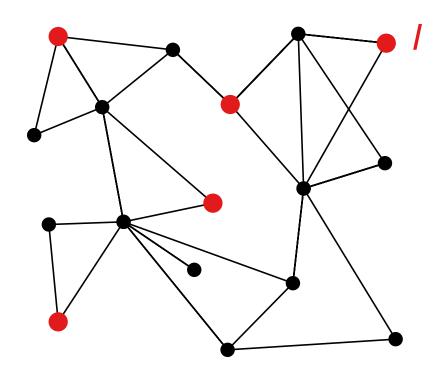


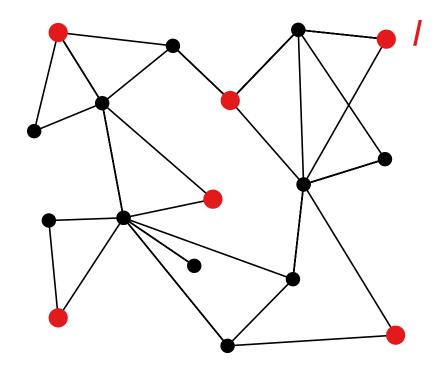


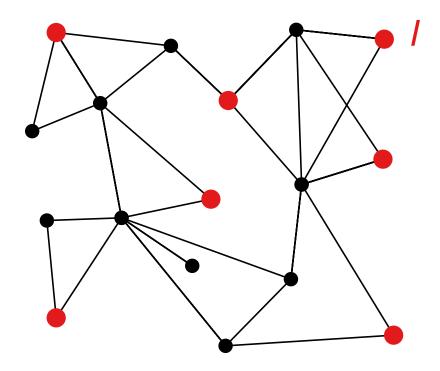


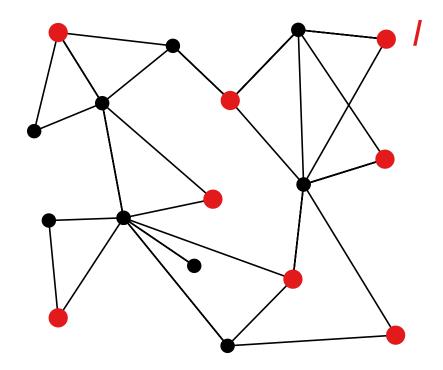


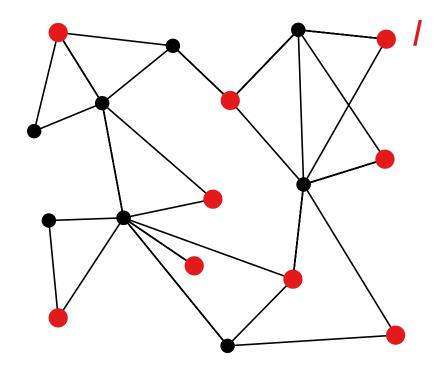






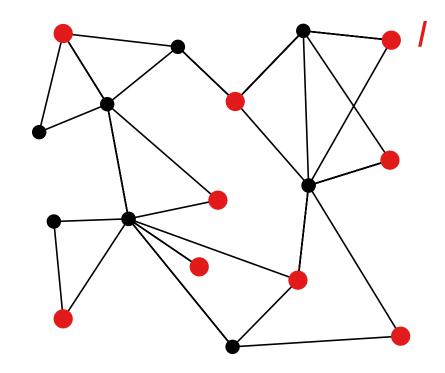






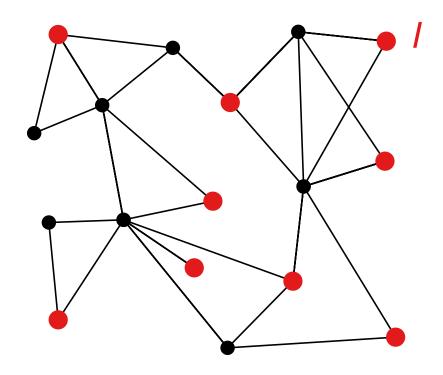
Def. A vertex set / in a graph is called independent (or stable) if no pair of vertices in / forms an edge. An independent set is called maximal if it does not have an independent superset.

Obs. Maximal independent sets are



Def. A vertex set / in a graph is called independent (or stable) if no pair of vertices in / forms an edge. An independent set is called maximal if it does not have an independent superset.

Obs. Maximal independent sets are dominating. :-)



Independent Sets in H^2

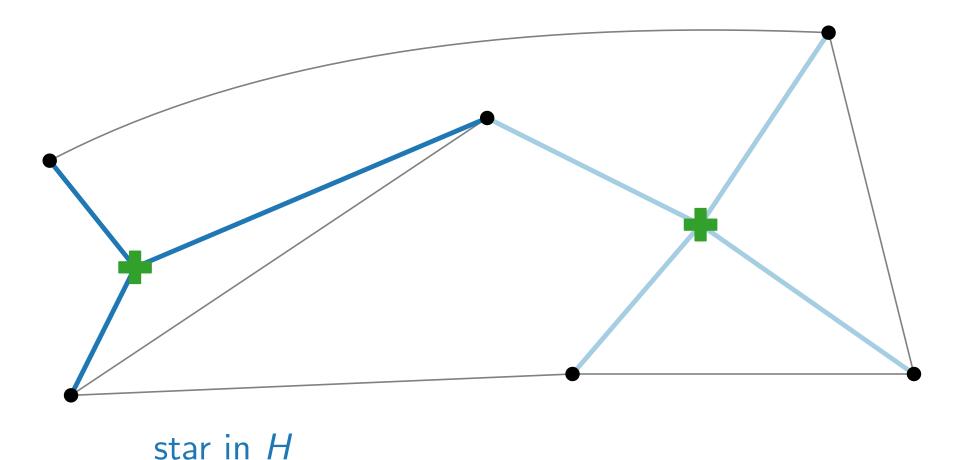
Lemma. For a graph H and an independent set I in H^2 , $|I| \le$

Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

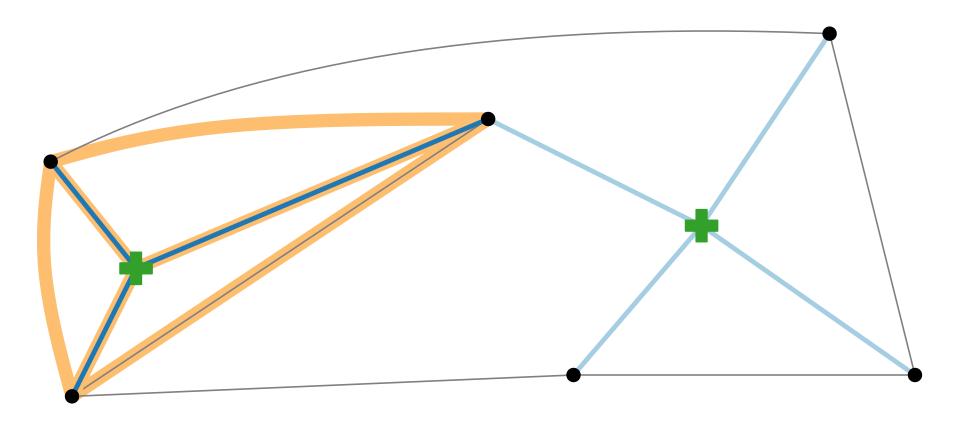
Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

Proof. What does a dominating set of H look like in H^2 ?



Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

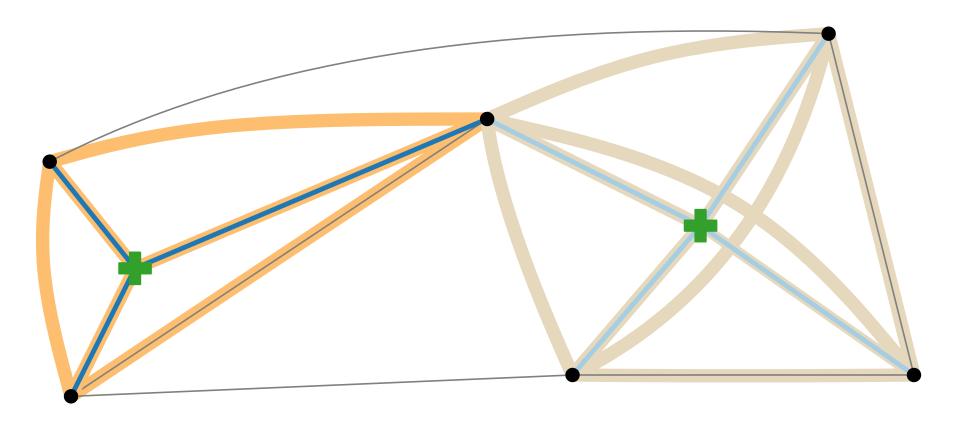
Proof. What does a dominating set of H look like in H^2 ?



star in H

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

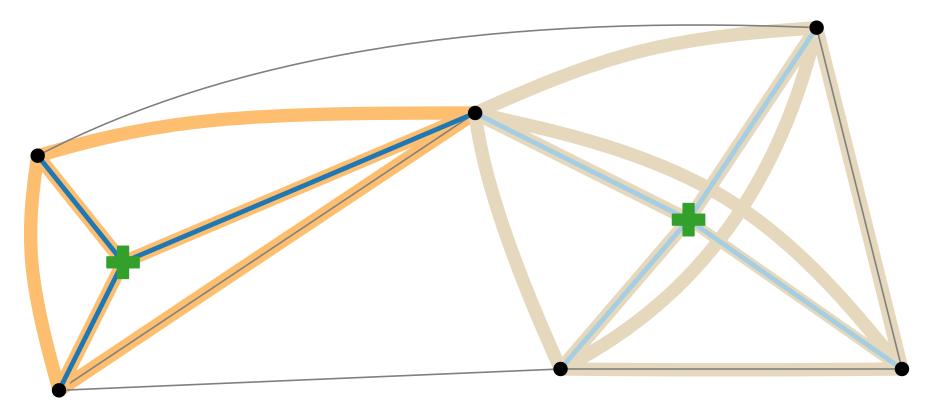
Proof. What does a dominating set of H look like in H^2 ?



star in H

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

Proof. What does a dominating set of H look like in H^2 ?

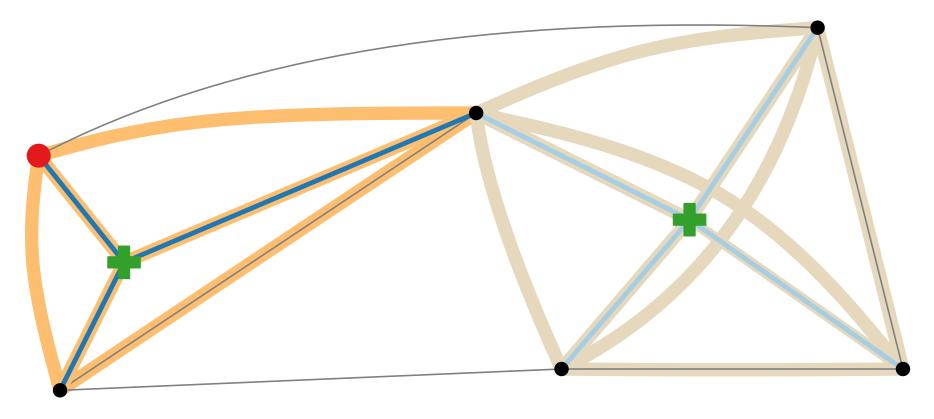


star in H

clique in H^2

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

Proof. What does a dominating set of H look like in H^2 ?

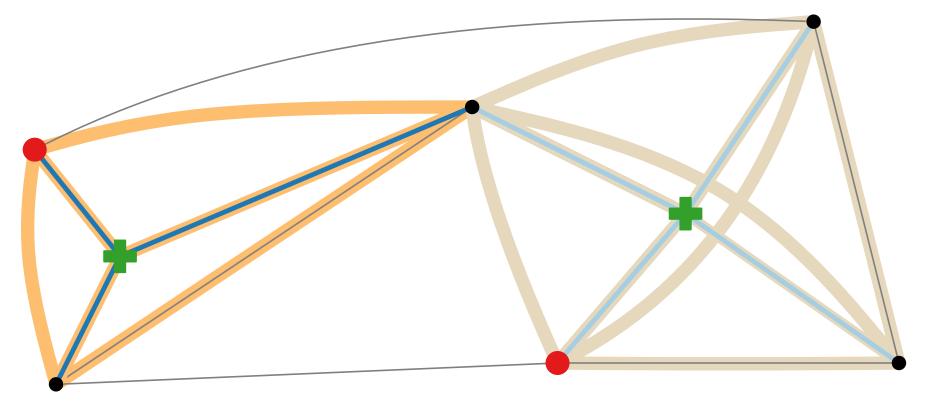


star in H

clique in H^2

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

Proof. What does a dominating set of H look like in H^2 ?



star in H

clique in H^2

Approximation Algorithms

Lecture 6:

k-Center via Parametric Pruning

Part IV:

Factor-2 Approximation for Metric-k-Center

Metric-k-CENTER-Approx(G, c, k)

Sort the edges of G by cost: $c(e_1) \leq \cdots \leq c(e_m)$.

```
Metric-k-Center-Approx(G, c, k)
Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m).

for j = 1 to m do
```

```
Metric-k-CENTER-Approx(G, c, k)
Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m).

for j=1 to m do

Construct G_j^2.
```

```
Metric-k-CENTER-Approx(G, c, k)
Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m).

for j=1 to m do

Construct G_j^2.

Find a maximal independent set I_j in G_j^2.
```

```
Metric-k-CENTER-Approx(G, c, k)

Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m).

for j = 1 to m do

Construct G_j^2.

Find a maximal independent set I_j in G_j^2.

if |I_j| \leq k then

return I_j
```

Factor-2 Approx. for Metric k-Center

```
Metric-k-CENTER-Approx(G, c, k)

Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m).

for j = 1 to m do

Construct G_j^2.

Find a maximal independent set I_j in G_j^2.

if |I_j| \leq k then

return I_j
```

Lemma. For j provided by the algorithm, it holds that $c(e_i) \leq \mathsf{OPT}$.

```
Metric-k-CENTER-Approx(G, c, k)
Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m).

for j = 1 to m do

Construct G_j^2.

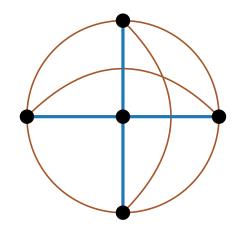
Find a maximal independent set I_j in G_j^2.

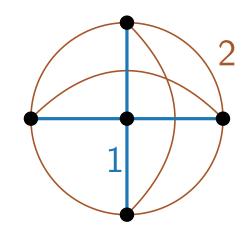
if |I_j| \leq k then

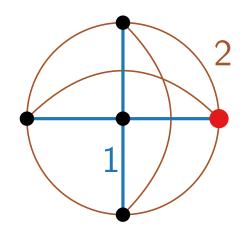
return I_j
```

Lemma. For j provided by the algorithm, it holds that $c(e_i) \leq \mathsf{OPT}$.

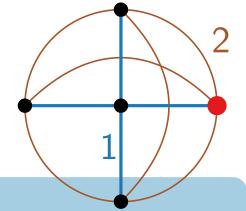
Theorem. The above algorithm is a factor-2 approximation algorithm for the metric k-CENTER problem.





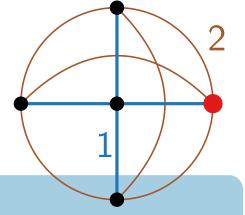


What about a tight example?



Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

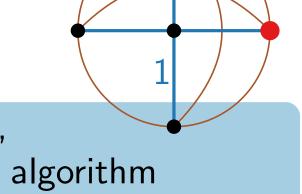
What about a tight example?



Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

Proof. Reduce from Dominating Set to metric *k*-Center.

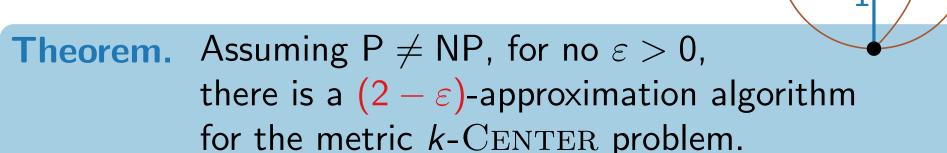
What about a tight example?



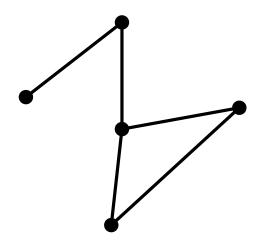
Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k,

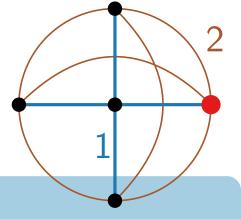
What about a tight example?



Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k,

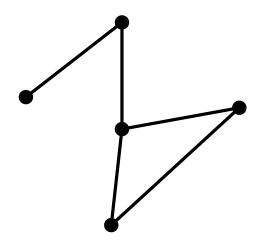


What about a tight example?

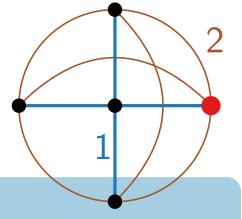


Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

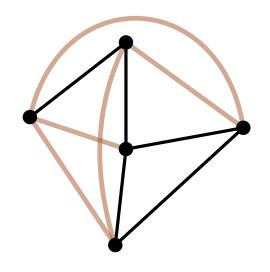


What about a tight example?

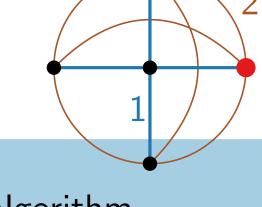


Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.



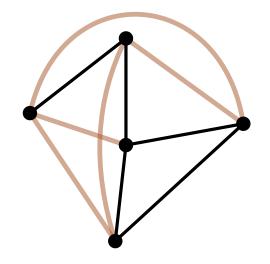
What about a tight example?



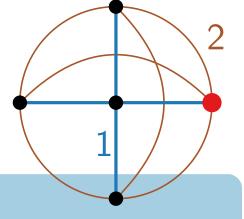
Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$



What about a tight example?

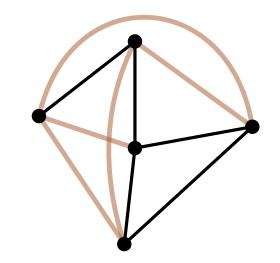


Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

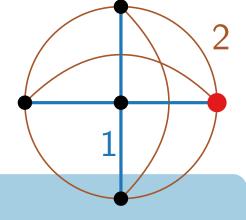
Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'.



What about a tight example?

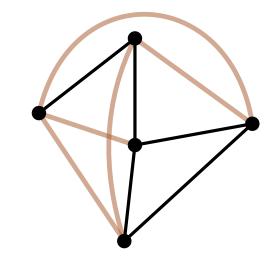


Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

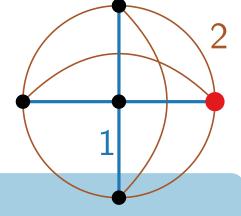
Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'. If $dom(G) \le k$, then cost(S) = 1.



What about a tight example?

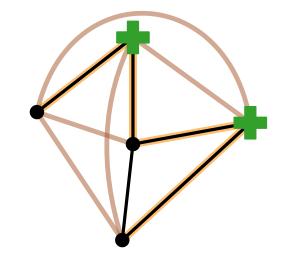


Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

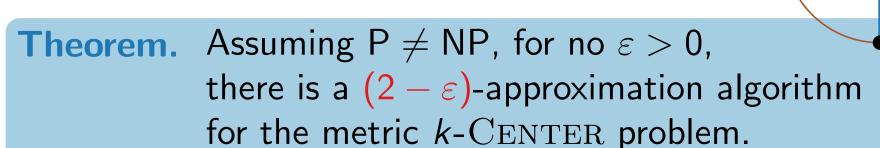
Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'. If $dom(G) \le k$, then cost(S) = 1.

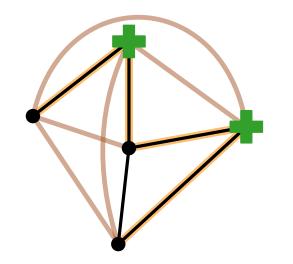


What about a tight example?

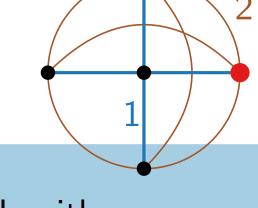


Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$



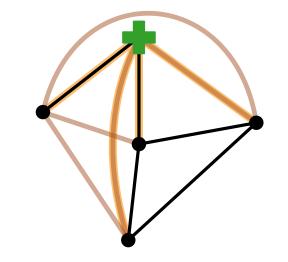
What about a tight example?



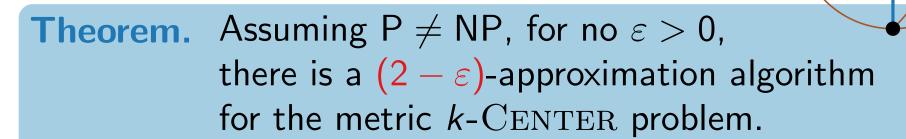
Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

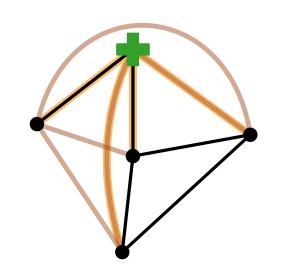


What about a tight example?

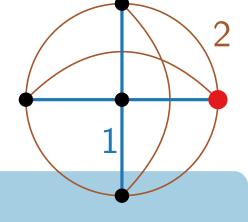


Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$



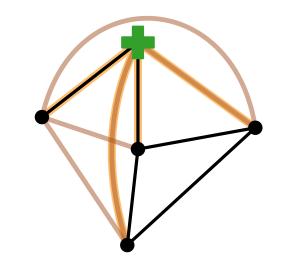
What about a tight example?



Theorem. Assuming $P \neq NP$, for no $\varepsilon > 0$, there is a $(2 - \varepsilon)$ -approximation algorithm for the metric k-CENTER problem.

Proof. Reduce from DOMINATING SET to metric k-CENTER. Given graph G and integer k, construct complete graph G' with V(G') = V(G), $E(G') = E(G) \cup E'$.

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \\ \triangle \text{-inequality holds} \end{cases}$$



Approximation Algorithms

Lecture 6:

k-Center via Parametric Pruning

Part V:

METRIC-WEIGHTED-CENTER

Metric-k-Center

Given: A complete graph G with metric edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ and an integer $k \leq |V|$.

For $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V(G)} c(v, S)$ is minimized.

Metric-k-Center Weighted

Given: A complete graph G with metric edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ and an integer $k \leq |V|$.

For $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V(G)} c(v, S)$ is minimized.

Metric-k-Center Weighted

Given: A complete graph G with metric edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ and an integer $k \leq |V|$, vertex weights $w: V \to \mathbb{Q}_{\geq 0}$, and a budget $W \in \mathbb{Q}_+$

For $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V(G)} c(v, S)$ is minimized.

Metric-k-Center Weighted

Given: A complete graph G with metric edge costs $c: E(G) \to \mathbb{Q}_{\geq 0}$ and an integer $k \leq |V|$, vertex weights $w: V \to \mathbb{Q}_{\geq 0}$, and a budget $W \in \mathbb{Q}_+$

For $S \subseteq V(G)$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

vertex set S of weight at most W

Find: A *k*-element vertex set *S* such that $cost(S) := max_{v \in V(G)} c(v, S)$ is minimized.

```
Algorithm Metric-k CENTER-Approx(G, c, k)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
     Construct G_i^2
     Find a maximal independent set I_i in G_i^2
     if |I_i| \leq k then
       return /;
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      if |I_i| \leq k then
        return /;
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
                                      what about the weights?
     if |I_j| \leq k then
        return /;
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
                                      what about the weights?
     if |I_j| \leq k then
        return /;
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
                                      what about the weights?
     if |I_j| \leq k then
        return /i
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
                                      what about the weights?
     if |I_j| \leq k then
        return /;
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_j \}
      if |I_i| \leq k then
        return /;
```

$$s_j(u) := \text{lightest node in } N_{G_i}(u) \cup \{u\}$$

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W return I_j
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
       Construct G_i^2
       Find a maximal independent set I_i in G_i^2
       Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then |V_j| \le W return |V_j| \le K then |V_j| \le W |V_j| \le W |V_j| \le W
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W return I_j S_j
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W return I_j S_j
```

```
Algorithm Metric-Weighted-CENTER-Approx(G, c, w, W)
  Sort the edges of G by cost: c(e_1) \leq \cdots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W return I_j S_j
```

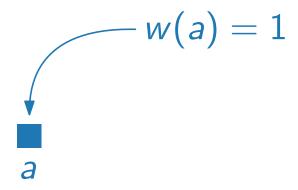
 $s_j(u) := \text{lightest node in } N_{G_i}(u) \cup \{u\}$

Theorem. The above is a factor-3 approximation algorithm for Metric-Weighted-Center.

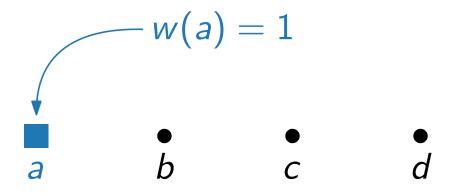
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

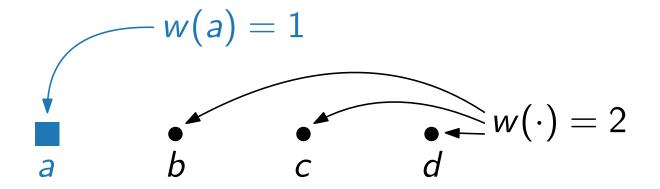
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



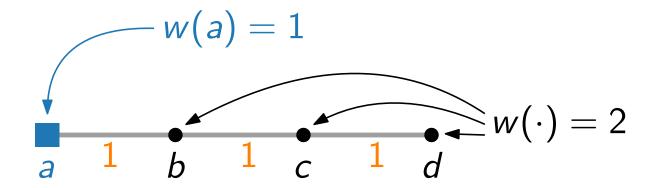
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



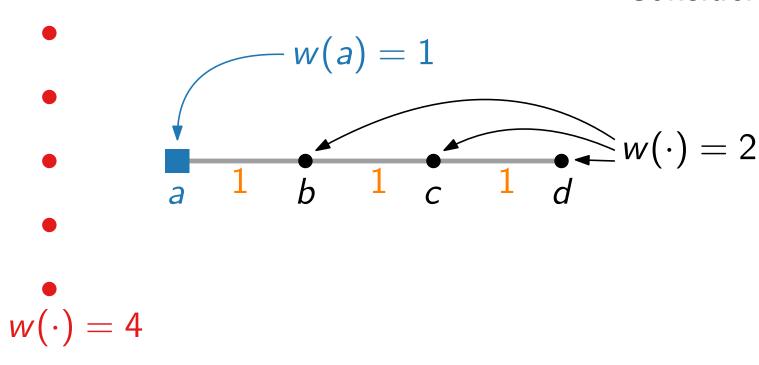
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



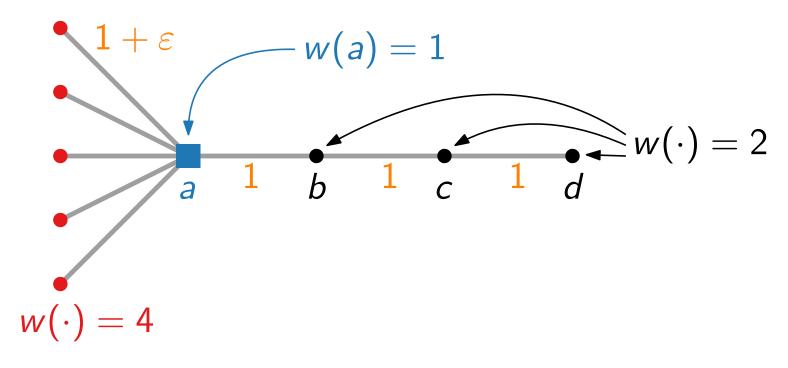
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

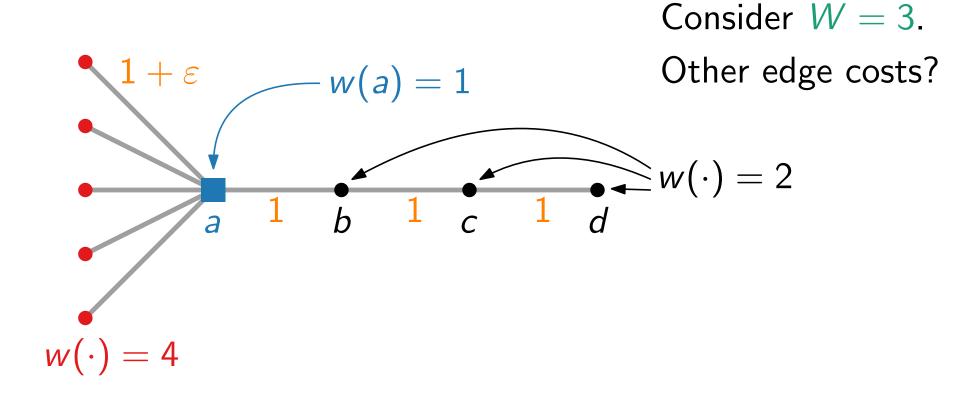


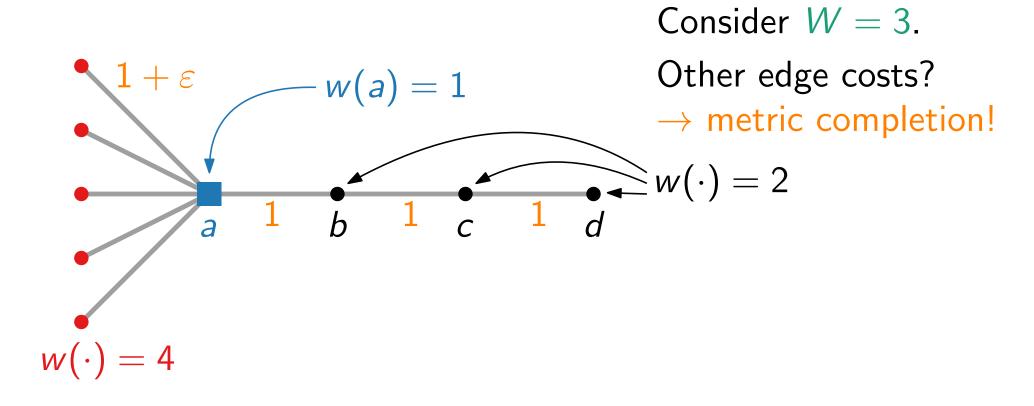
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

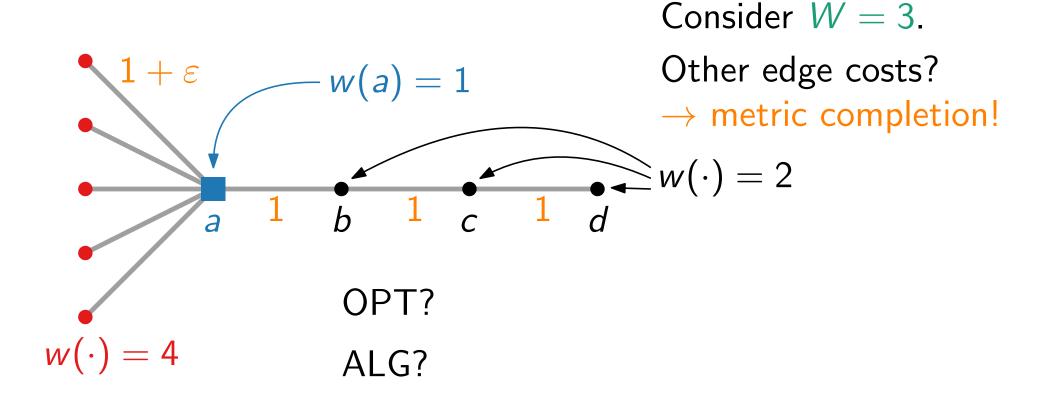


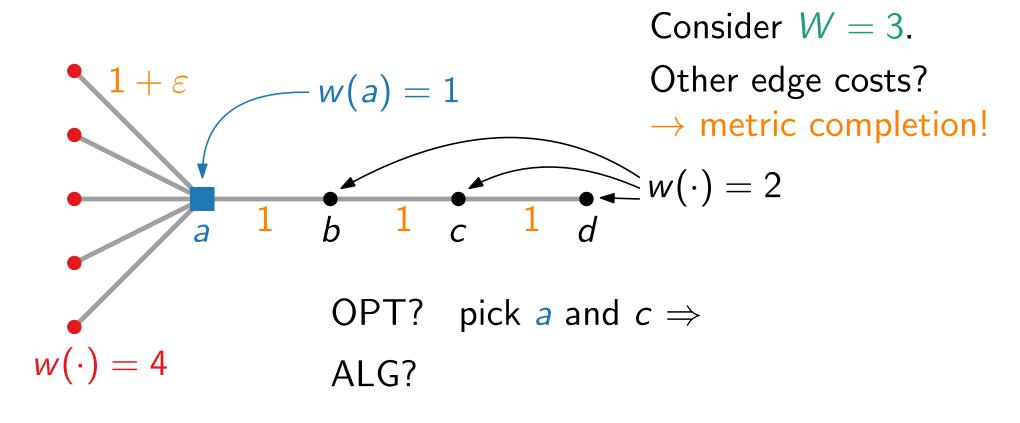
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

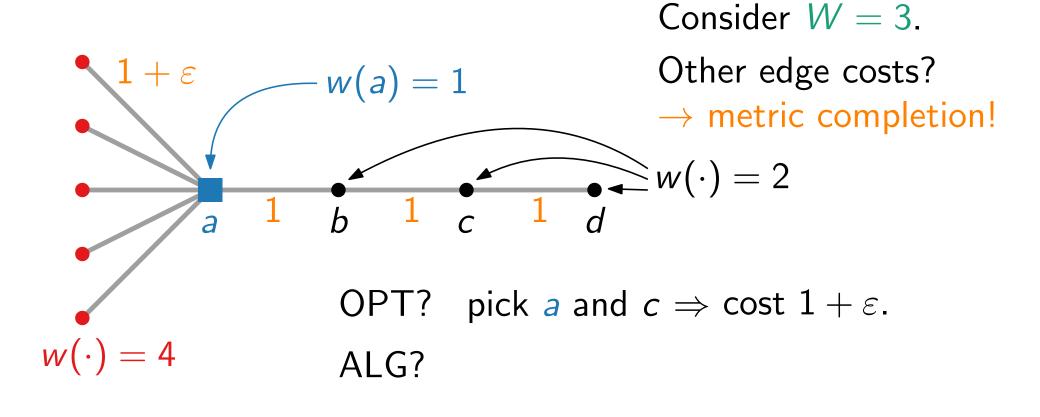


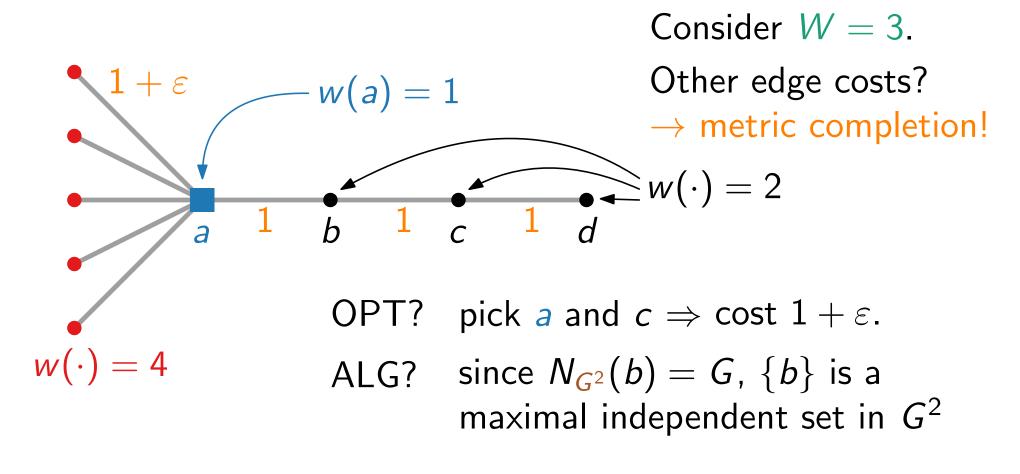


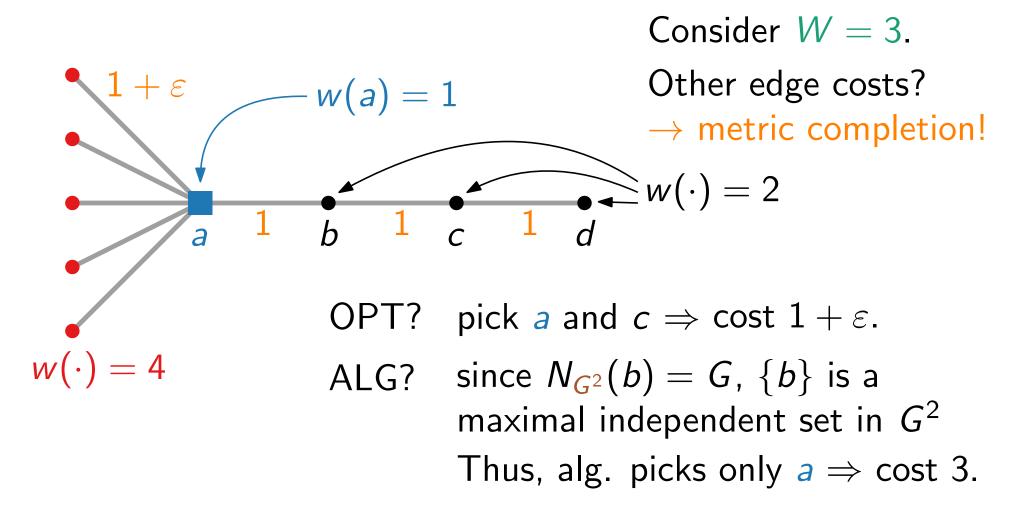




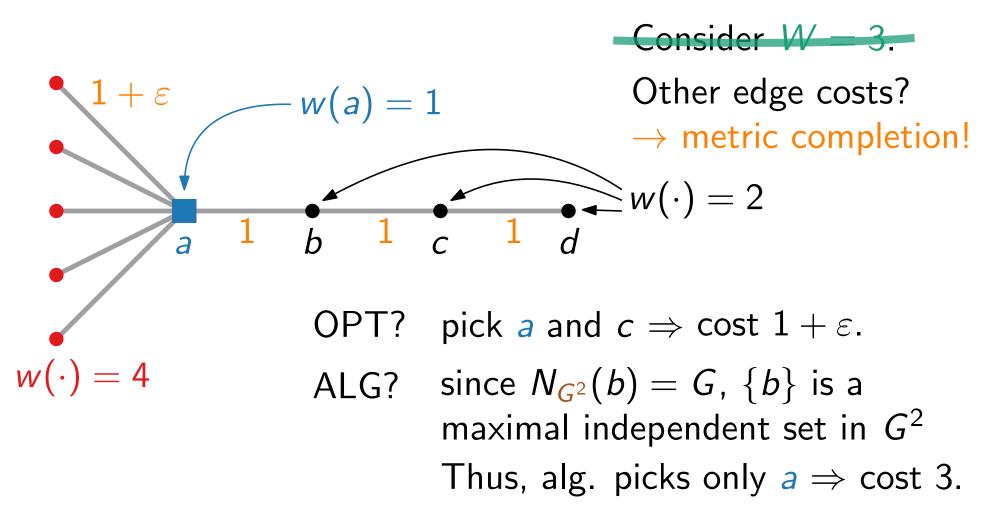






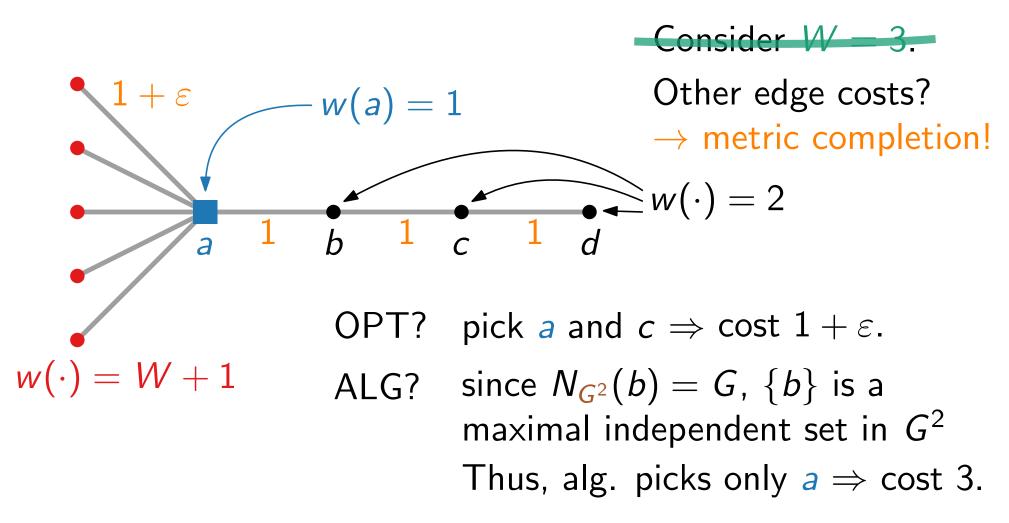


Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



How can we generalize this to larger W?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.



How can we generalize this to larger W?