Approximation Algorithms

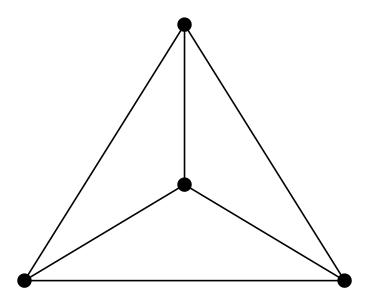
Lecture 3:

STEINER TREE and MULTIWAY CUT

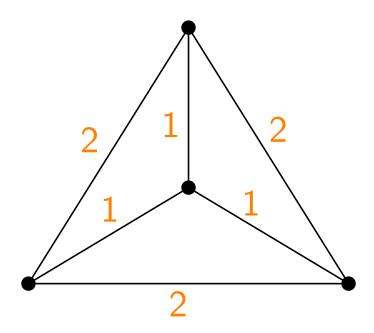
Part I:
Steiner Tree

SteinerTree

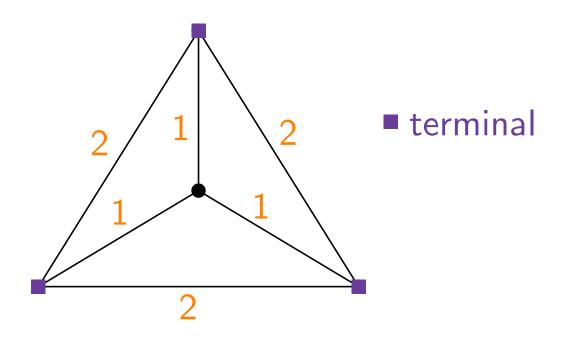
Given: A graph *G*



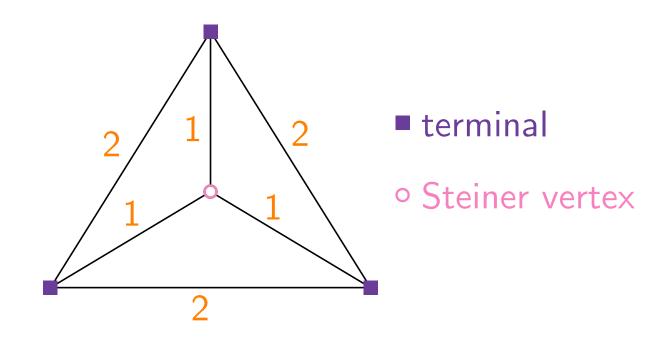
Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^+$



Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of **terminals**



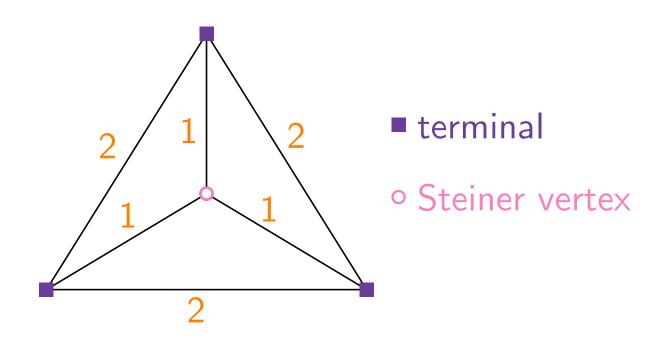
Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of **terminals** and a set S of **Steiner vertices**.



Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of **terminals** and a set S of **Steiner vertices**.

Find: A subtree B of G that

lacksquare contains all terminals (i.e., $T \subseteq V(B)$) and



Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of **terminals** and a set S of **Steiner vertices**.

Find: A subtree B of G that

lacktriangle contains all terminals (i.e., $T \subseteq V(B)$) and

valid solution with cost 4

2

1

2

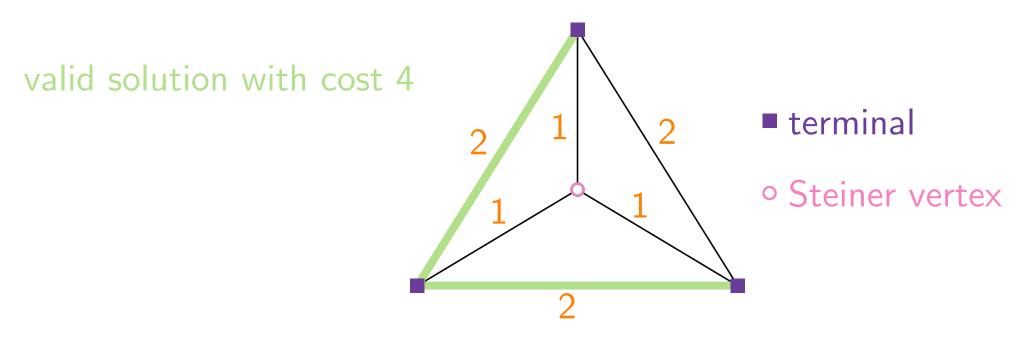
terminal

Steiner vertex

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of **terminals** and a set S of **Steiner vertices**.

Find: A subtree B of G that

- lacksquare contains all terminals (i.e., $T \subseteq V(B)$) and
- has minimum cost $c(B) := \sum_{e \in E(B)} c(e)$ among all subtrees with this property.

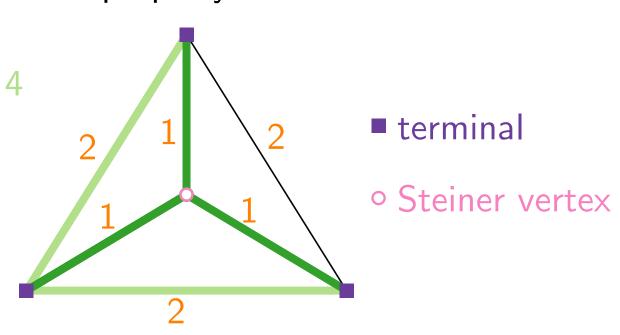


Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of **terminals** and a set S of **Steiner vertices**.

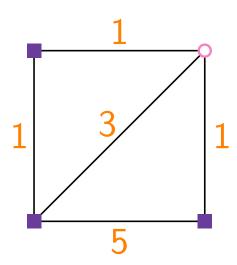
Find: A subtree B of G that

- lacktriangle contains all terminals (i.e., $T \subseteq V(B)$) and
- has minimum cost $c(B) := \sum_{e \in E(B)} c(e)$ among all subtrees with this property.

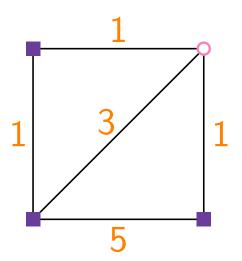
valid solution with cost 4 optimum solution with cost 3



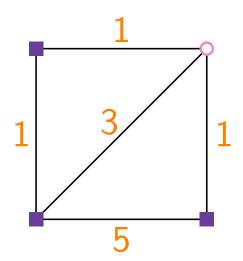
Restriction of SteinerTree where the graph G is complete and the cost function is **metric**



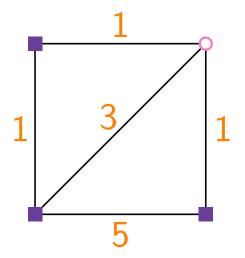
Restriction of STEINERTREE where the graph G is complete and the cost function is **metric**, i.e., for every triple u, v, w of vertices, we have $c(u, w) \le c(u, v) + c(v, w)$.



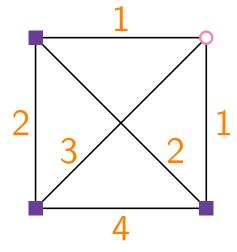
not complete

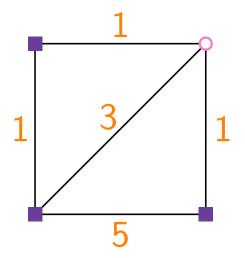


- not complete
- not metric

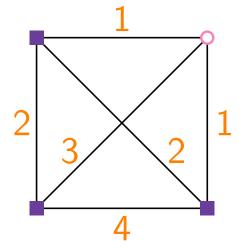


- not complete
- not metric





- not complete
- not metric



- complete
- metric

Approximation Algorithms

Lecture 3:

STEINER TREE and MULTIWAY CUT

Part II:

Approximation-Preserving Reduction

Let Π_1 , Π_2 be minimization problems.

Let Π_1 , Π_2 be minimization problems.

problems Π_1 Π_2

Let Π_1 , Π_2 be minimization problems. An **approximation**-**preserving reduction** from Π_1 to Π_2 ist a tuple (f, g) of poly-time computable functions with the following properties.

■ For each instance I_1 of Π_1 ,

problems Π_1 Π_2

Let Π_1 , Π_2 be minimization problems. An **approximation**-**preserving reduction** from Π_1 to Π_2 ist a tuple (f, g) of poly-time computable functions with the following properties.

For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$.

problems Π_1 Π_2

Let Π_1 , Π_2 be minimization problems. An **approximation**-**preserving reduction** from Π_1 to Π_2 ist a tuple (f, g) of poly-time computable functions with the following properties.

For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$.

problems Π_1 Π_2

instances I_1

Let Π_1 , Π_2 be minimization problems. An **approximation**-**preserving reduction** from Π_1 to Π_2 ist a tuple (f, g) of poly-time computable functions with the following properties.

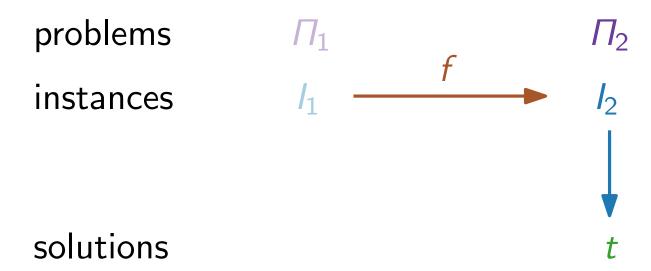
For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$.

problems
$$\Pi_1$$
 Π_2 instances I_1

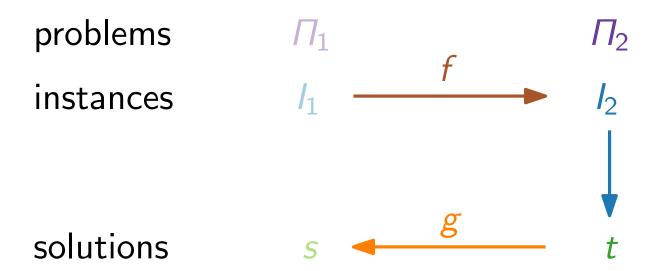
- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$.
- For each feasible solution t of l_2 , $s = g(l_1, t)$ is a feasible sol. of l_1 with $\operatorname{obj}_{\Pi_1}(l_1, s) \leq \operatorname{obj}_{\Pi_2}(l_2, t)$.

problems
$$\Pi_1$$
 Π_2 instances I_1

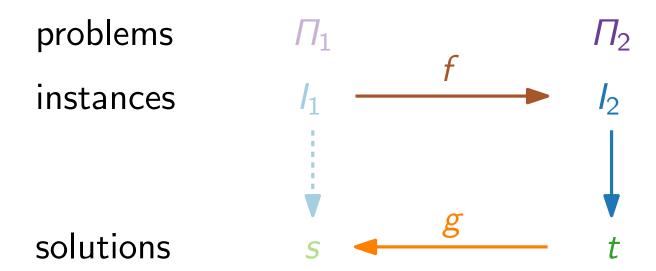
- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$.
- For each feasible solution t of l_2 , $s = g(l_1, t)$ is a feasible sol. of l_1 with $obj_{I_1}(l_1, s) \le obj_{I_2}(l_2, t)$.



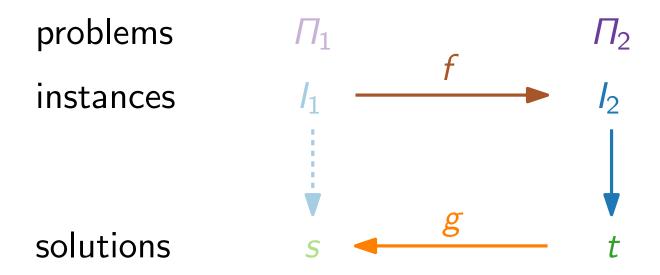
- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$.
- For each feasible solution t of l_2 , $s = g(l_1, t)$ is a feasible sol. of l_1 with $\operatorname{obj}_{\Pi_1}(l_1, s) \leq \operatorname{obj}_{\Pi_2}(l_2, t)$.



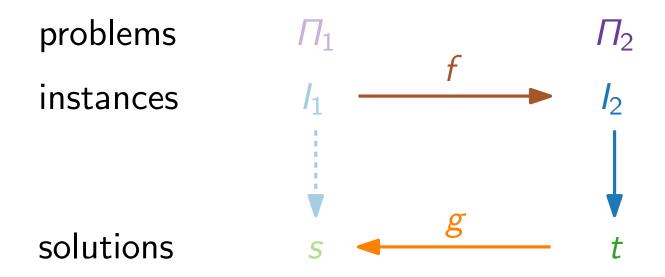
- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$.
- For each feasible solution t of l_2 , $s = g(l_1, t)$ is a feasible sol. of l_1 with $\operatorname{obj}_{\Pi_1}(l_1, s) \leq \operatorname{obj}_{\Pi_2}(l_2, t)$.



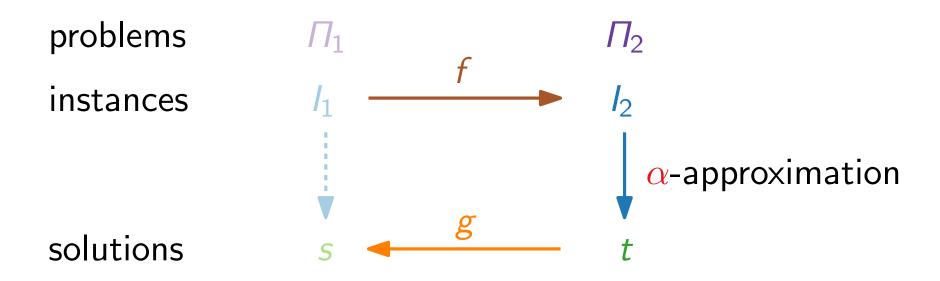
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f, g) from Π_1 to Π_2 .



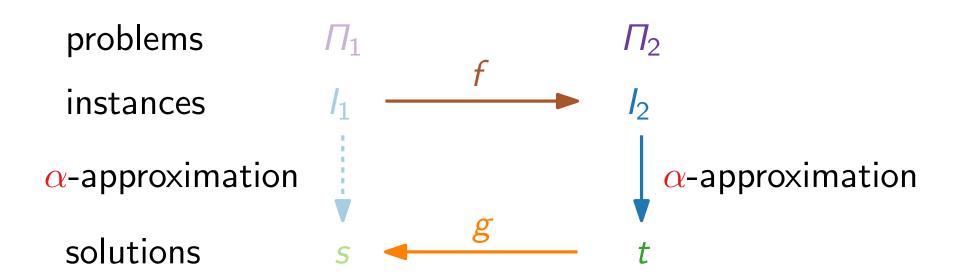
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor-? approximation algorithm for Π_1 .



Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor-? approximation algorithm for Π_1 .



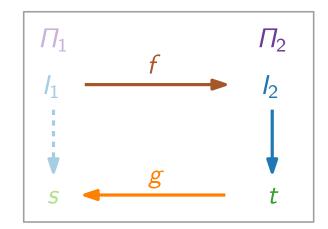
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .



Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

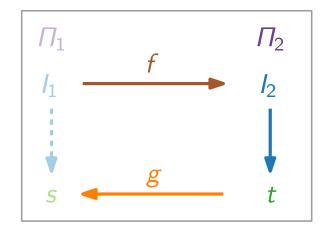


Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .



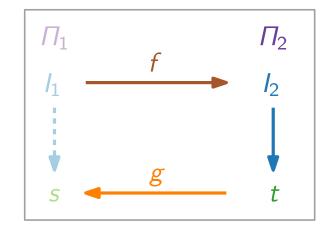
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $l_2 := t := and s :=$



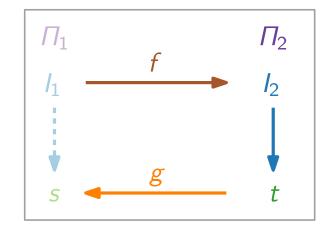
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$l_2 := f(l_1)$$
, $t := and s :=$



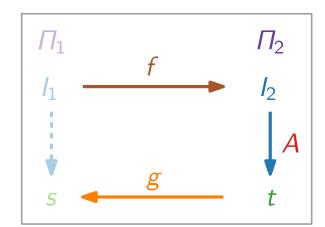
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $l_2 := f(l_1)$, $t := A(l_2)$ and s :=



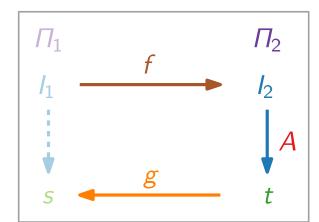
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $l_2 := f(l_1)$, $t := A(l_2)$ and $s := g(l_1, t)$.



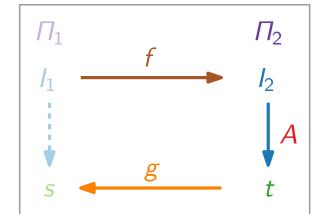
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$l_2 := f(l_1)$$
, $t := A(l_2)$ and $s := g(l_1, t)$.



$$\operatorname{obj}_{\Pi_1}(I_1,s) \leq$$

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

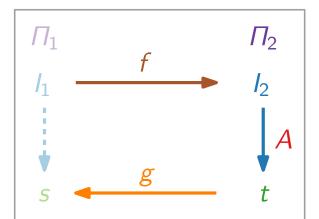
Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$l_2 := f(l_1)$$
, $t := A(l_2)$ and $s := g(l_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t) \leq$$



Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

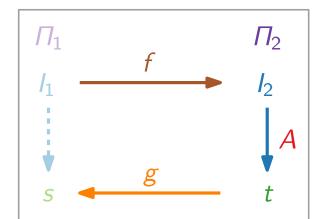
Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$l_2 := f(l_1)$$
, $t := A(l_2)$ and $s := g(l_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq$$



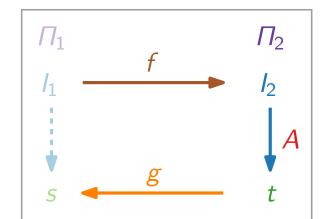
Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$l_2 := f(l_1)$$
, $t := A(l_2)$ and $s := g(l_1, t)$.



$$\mathsf{obj}_{\Pi_1}(I_1,s) \leq \mathsf{obj}_{\Pi_2}(I_2,t) \leq \alpha \cdot \mathsf{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \mathsf{OPT}_{\Pi_1}(I_1).$$

Approximation Algorithms

Lecture 3:

STEINER TREE and MULTIWAY CUT

Part III:

Reduction to MetricSteinerTree

Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f l_1 f_2$

$$l_1 \xrightarrow{f} l_2$$

Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

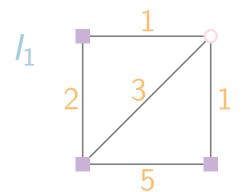
Proof. (1) Mapping f $I_1 \longrightarrow I_2$ Instance I_1 of STEINERTREE: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (1) Mapping $f l_1 f_2$

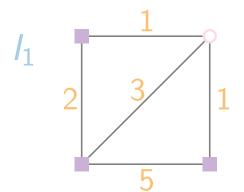
Instance I of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$



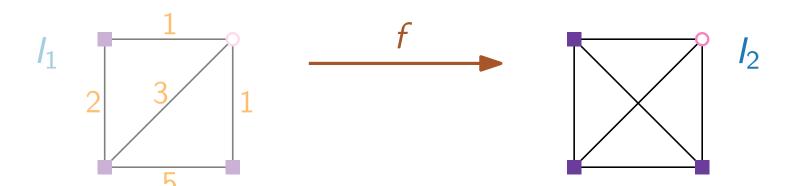
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (1) Mapping f $I_1 I_2$ Instance I_1 of STEINERTREE: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$ Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

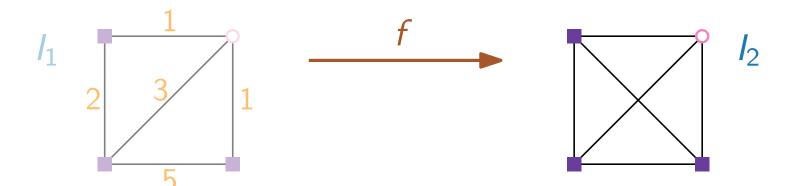


Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

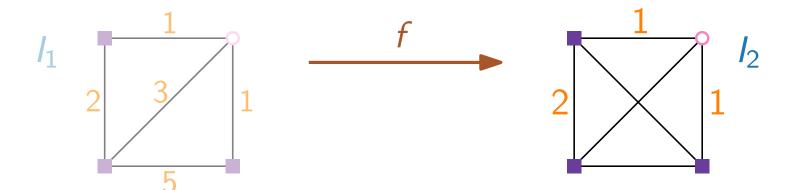
Proof. (1) Mapping f $I_1 I_2$ Instance I_1 of STEINERTREE: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$ Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1



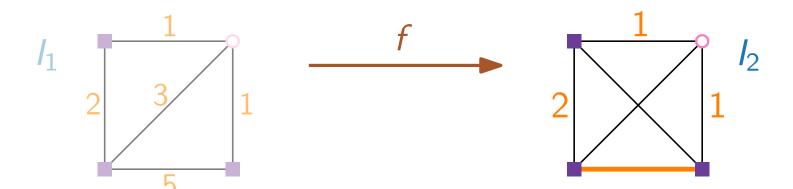
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



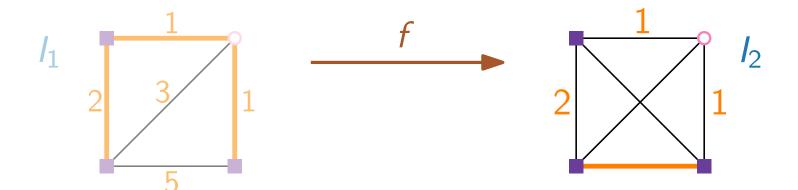
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



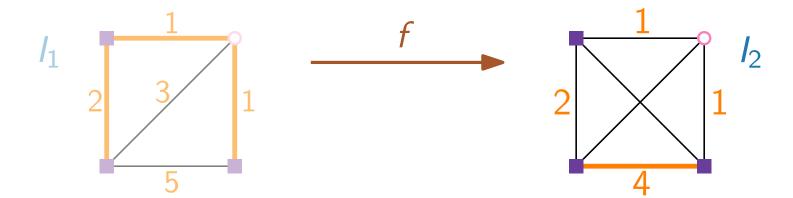
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



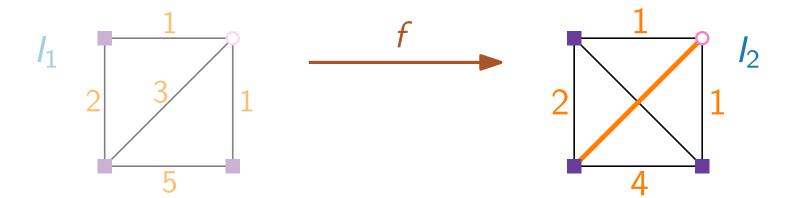
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



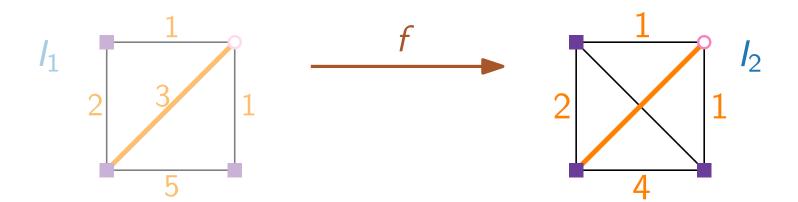
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



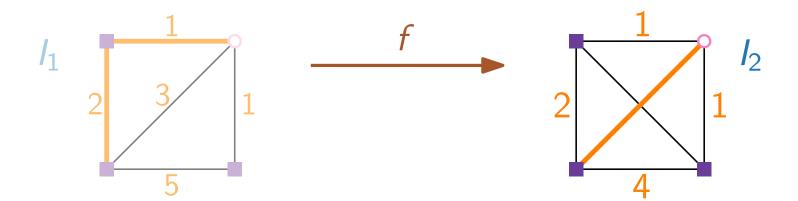
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



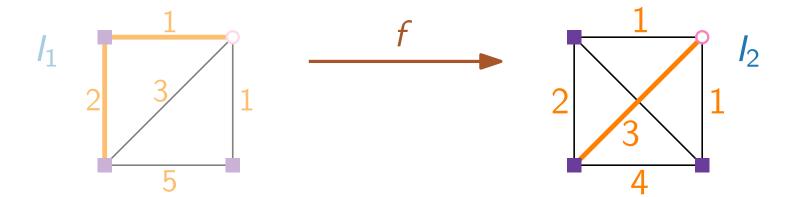
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



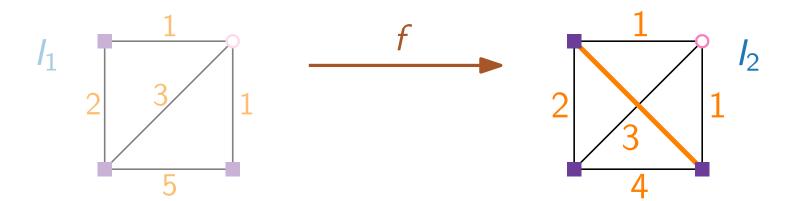
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



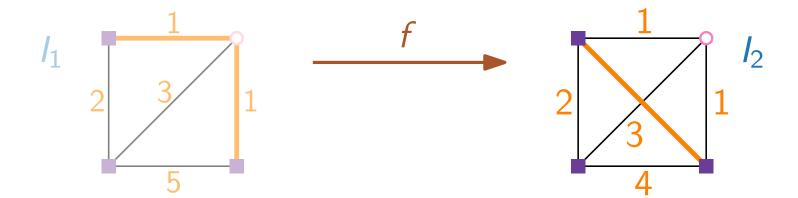
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



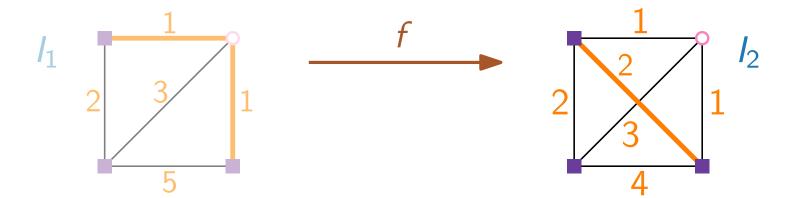
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



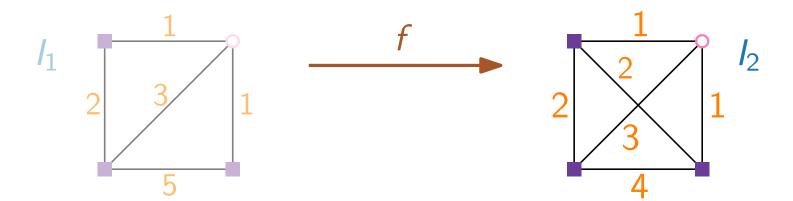
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (1) Mapping $f l_1 f_2$

Instance \(\begin{aligned} \) of SteinerTree:

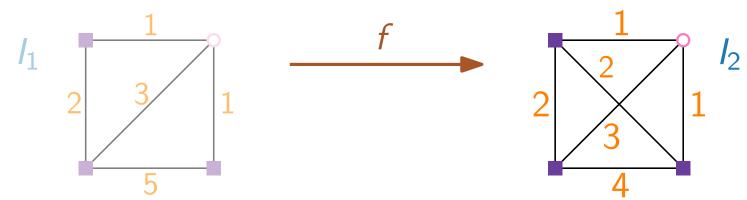
Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $l_2 := f(l_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{length of a shortest } u - v \text{ path in } G_1.$

Note: For every edge $(u, v) \in E_1$,



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (1) Mapping $f l_1 f_2$

Instance \(\begin{aligned} \) of SteinerTree:

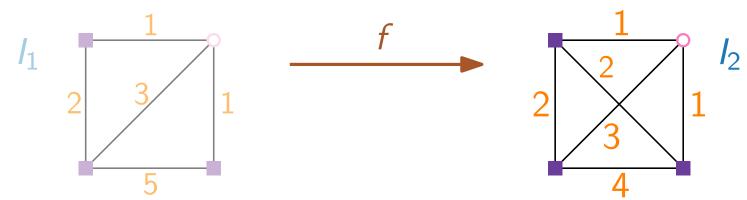
Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $l_2 := f(l_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

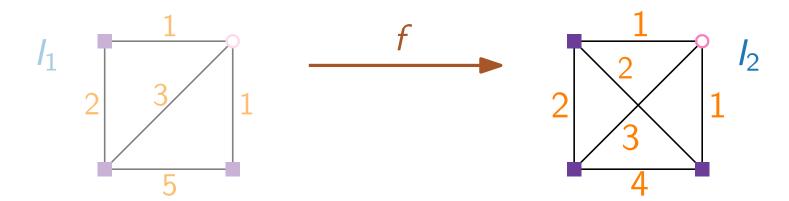
 $c_2(u, v) := \text{length of a shortest } u - v \text{ path in } G_1.$

Note: For every edge $(u, v) \in E_1$, $c_2(u, v) \le c_1(u, v)$.



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

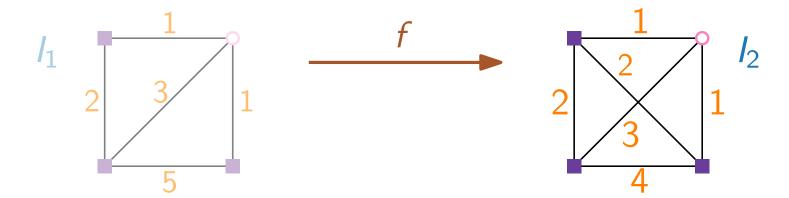
Proof. (2) $OPT(I_2) \leq OPT(I_1)$



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

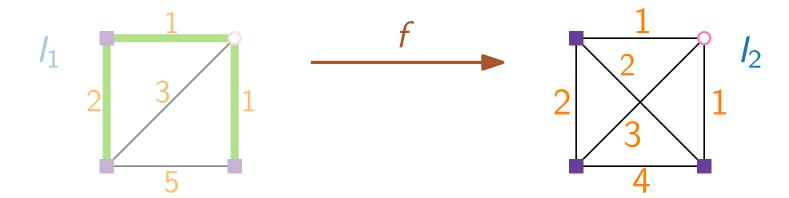
Let B^* be an optimal Steiner tree for I_1 .



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (2) $OPT(I_2) \leq OPT(I_1)$

Let B^* be an optimal Steiner tree for I_1 .

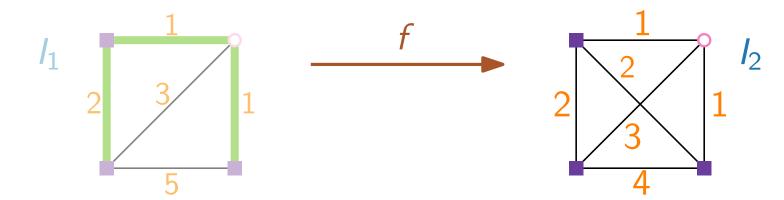


Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (2)
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

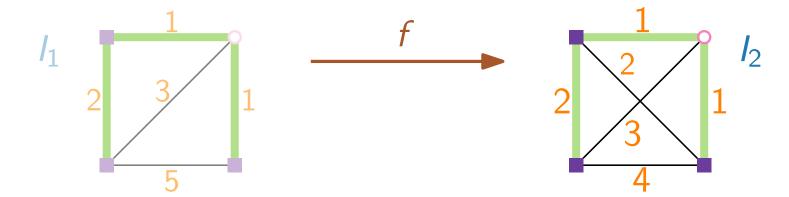


Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (2)
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

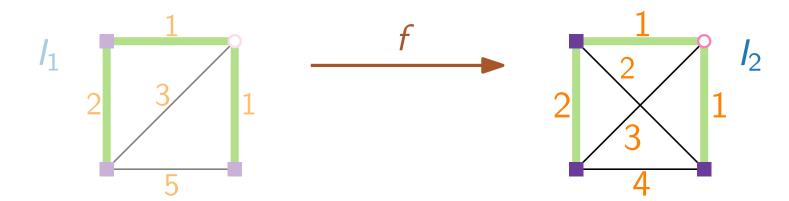
Proof. (2)
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

 $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same.

 $OPT(I_2)$



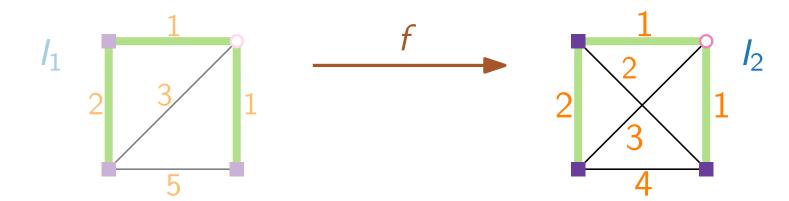
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (2)
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

$$\mathsf{OPT}(I_2) \leq c_2(B^*)$$



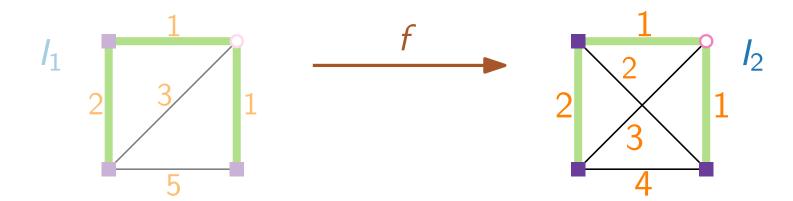
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (2)
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

$$OPT(I_2) \le c_2(B^*) \le c_1(B^*)$$



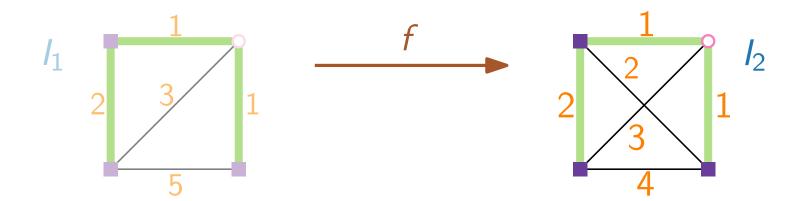
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (2)
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

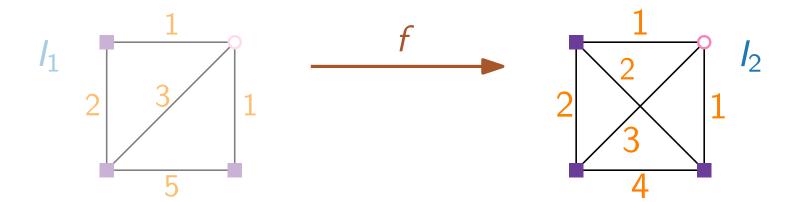
Note that B^* is also a feasible solution for I_2 :

$$OPT(I_2) \le c_2(B^*) \le c_1(B^*) = OPT(I_1)$$



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

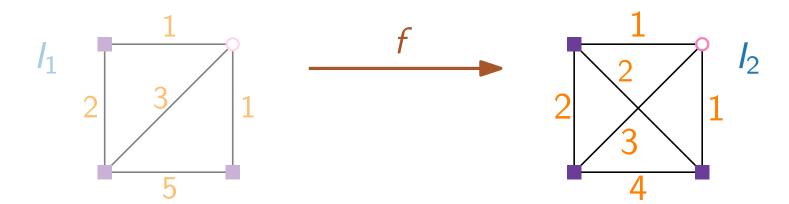
Proof. (3) Mapping g $s \leftarrow g$ t



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

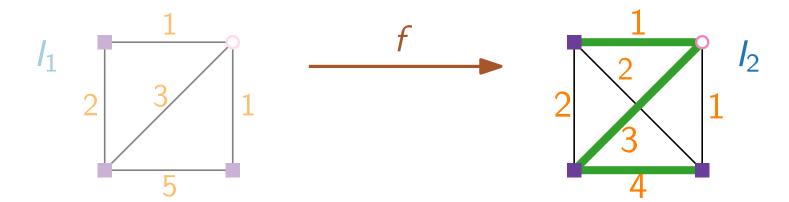
Let B_2 be a Steiner tree of G_2 .



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

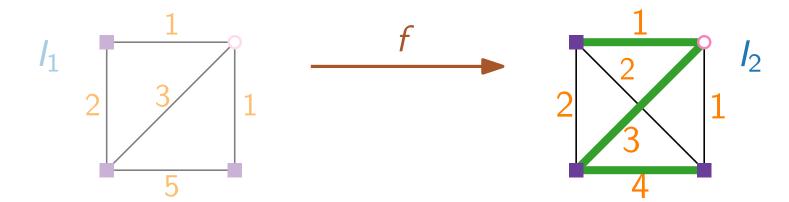
Let B_2 be a Steiner tree of G_2 .



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g t$

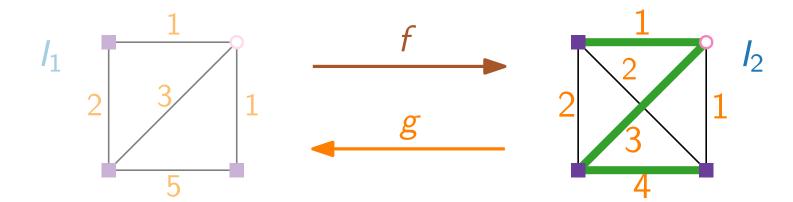
Let B_2 be a Steiner tree of G_2 .



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

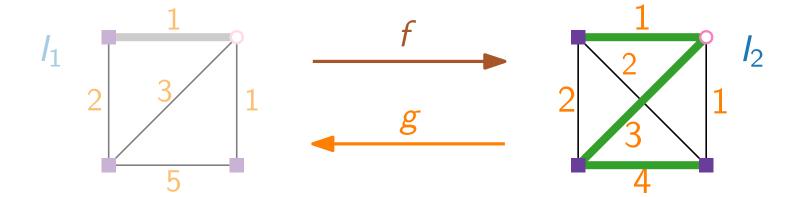
Let B_2 be a Steiner tree of G_2 .



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

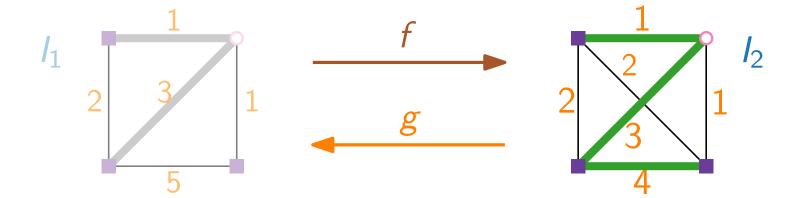
Let B_2 be a Steiner tree of G_2 .



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

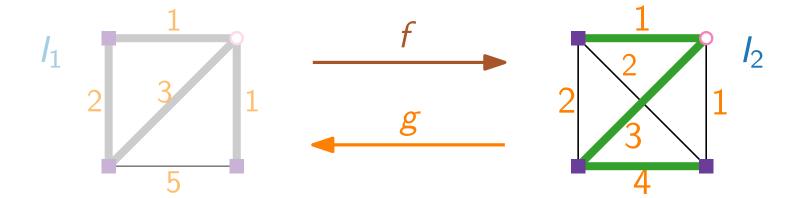
Let B_2 be a Steiner tree of G_2 .



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

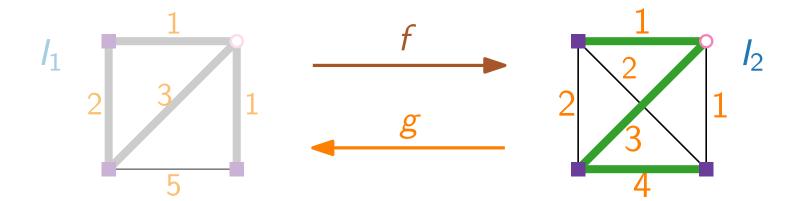


Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g t$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.



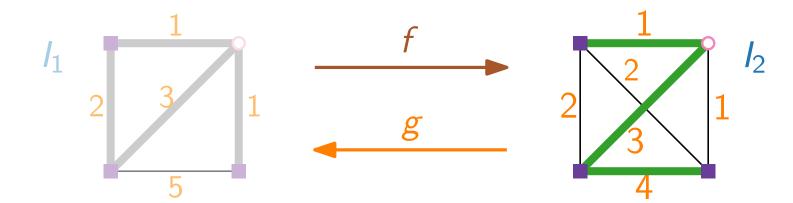
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.

$$c_1(G_1')\leq c_2(B_2)$$



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals



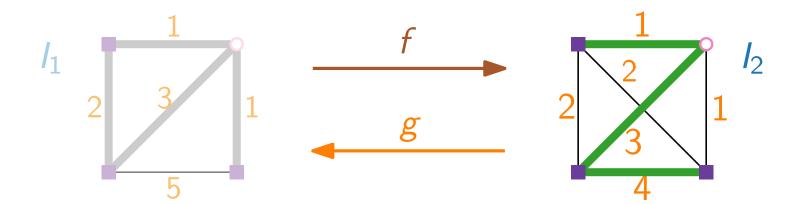
Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g t$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

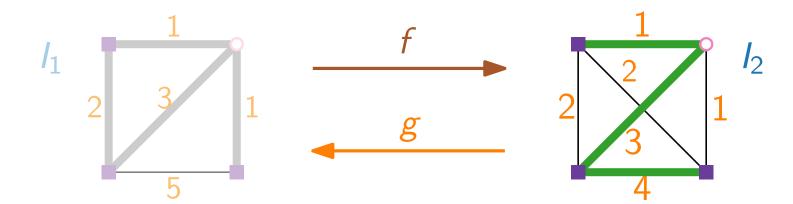
Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of G_1'



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

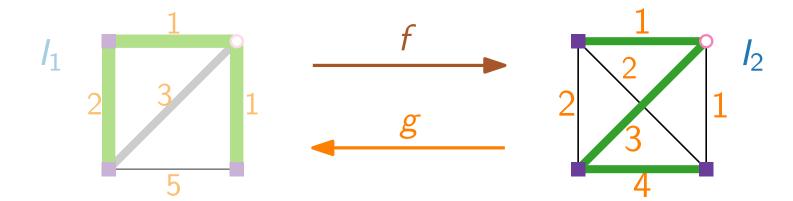
Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of G_1'



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

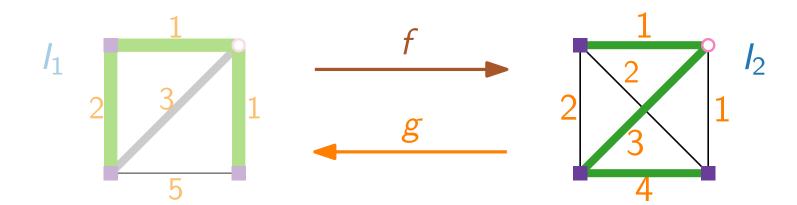
Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of $G_1' \longrightarrow Steiner$ tree B_1 of G_1



Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

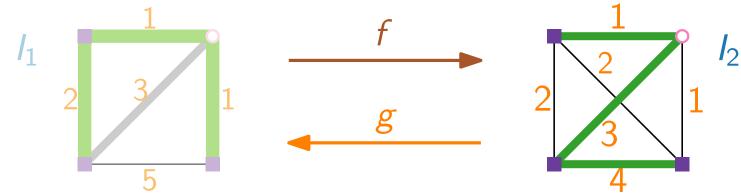
Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of $G_1' \longrightarrow Steiner$ tree B_1 of G_1

Note that $c_1(B_1) \leq c_1(G_1') \leq c_2(B_2)$.



Approximation Algorithms

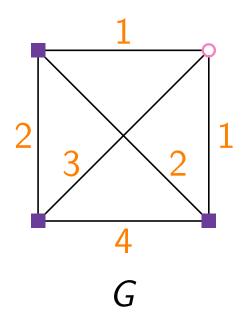
Lecture 3:

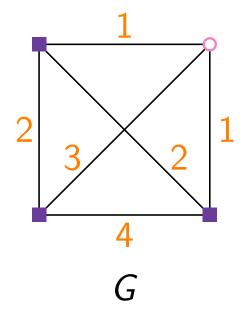
STEINER TREE and MULTIWAY CUT

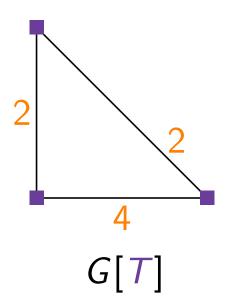
Part IV:

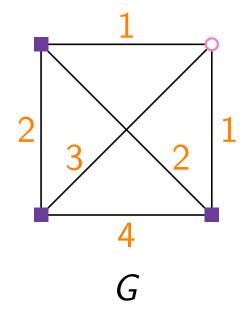
2-Approximation for MetricSteinerTree

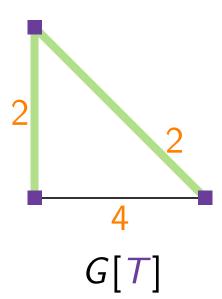
$\hbox{2-Approximation for $\operatorname{MetricSteinerTree}$}$

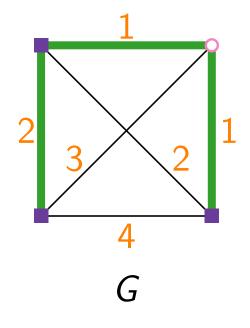


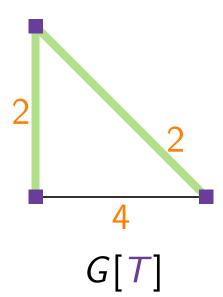






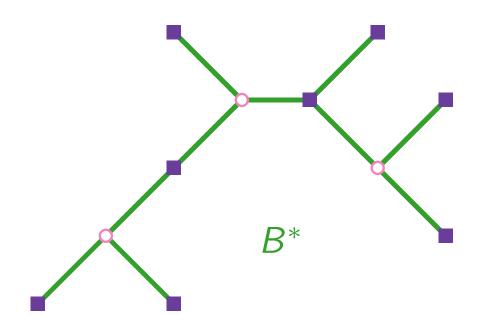






Consider an optimal Steiner tree B^* .

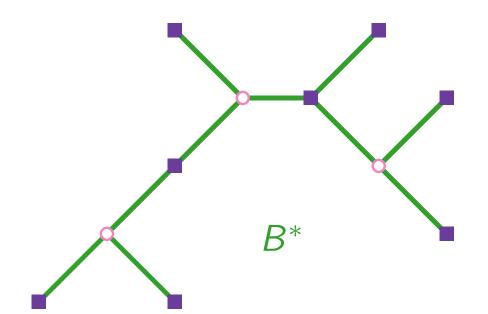
Consider an optimal Steiner tree B^* .



Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

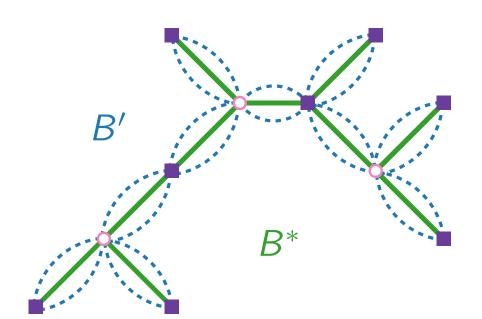
 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.



Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

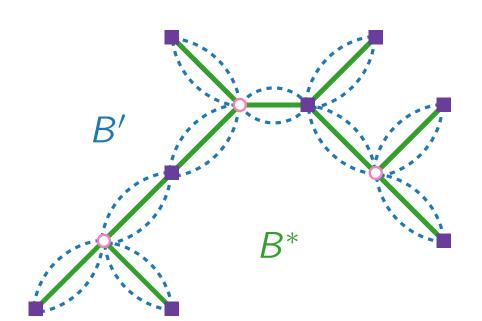


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in B'

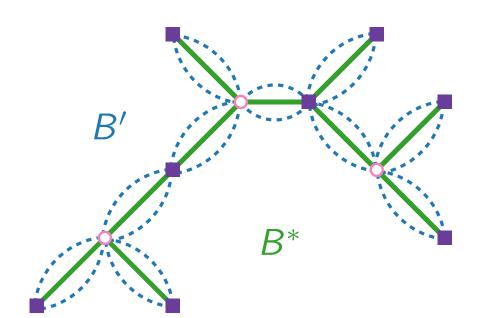


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

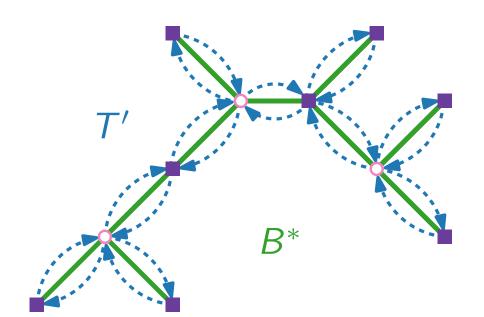


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

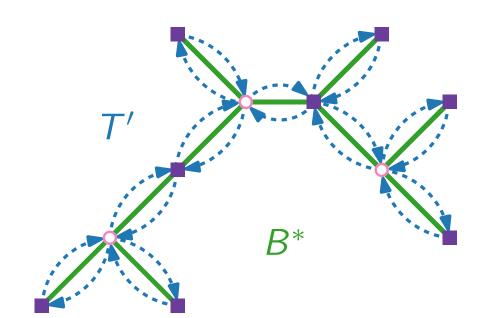


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

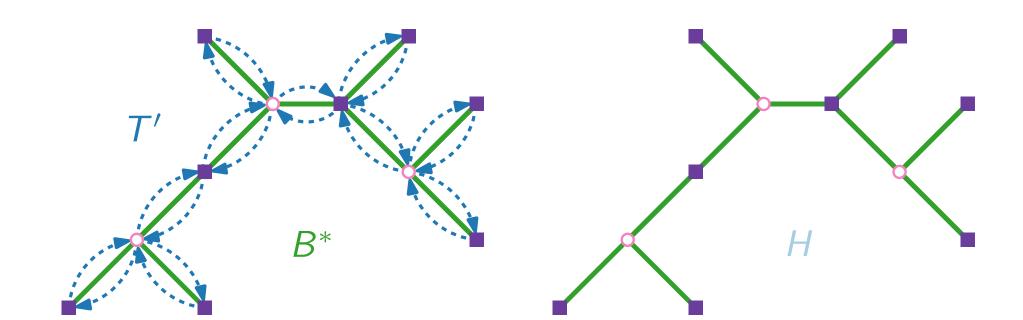


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

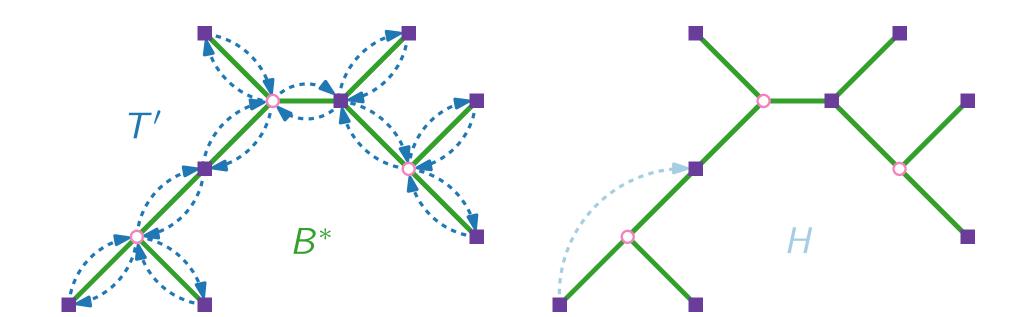


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

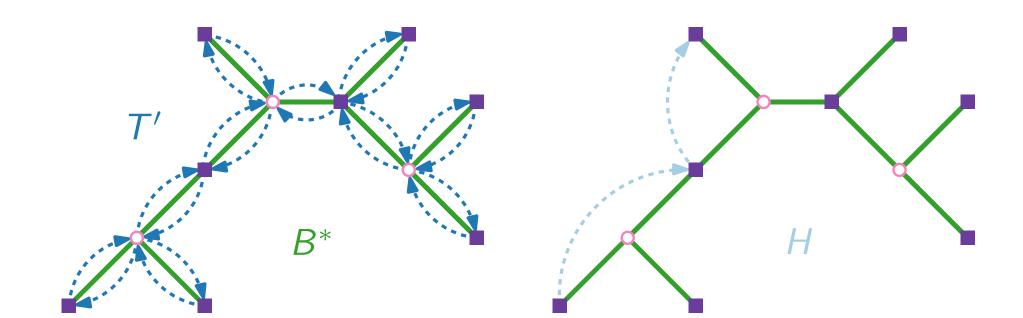


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

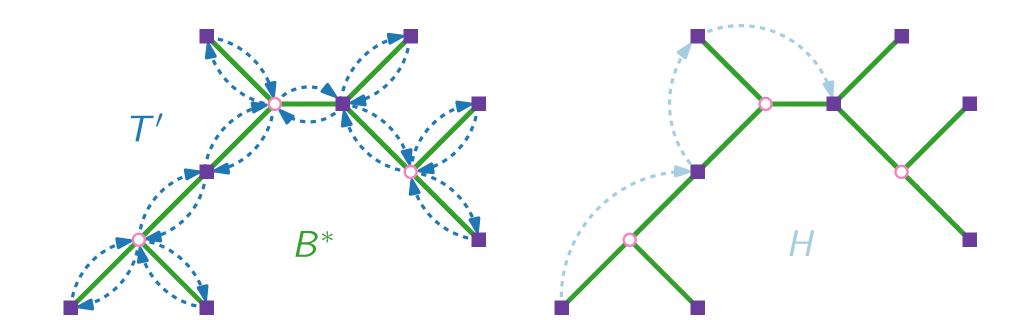


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

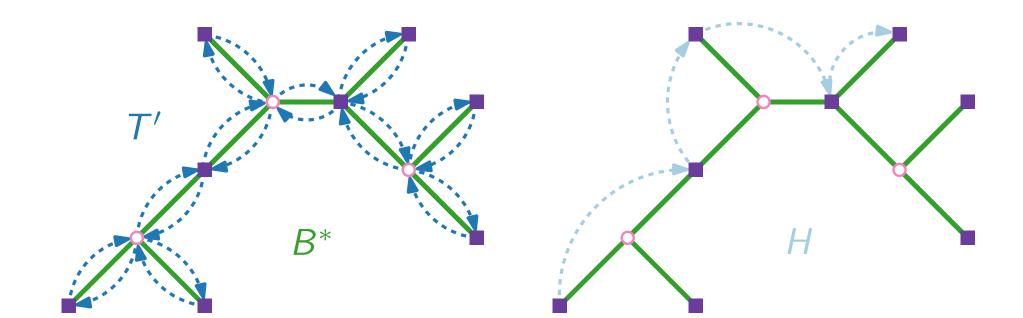


Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$



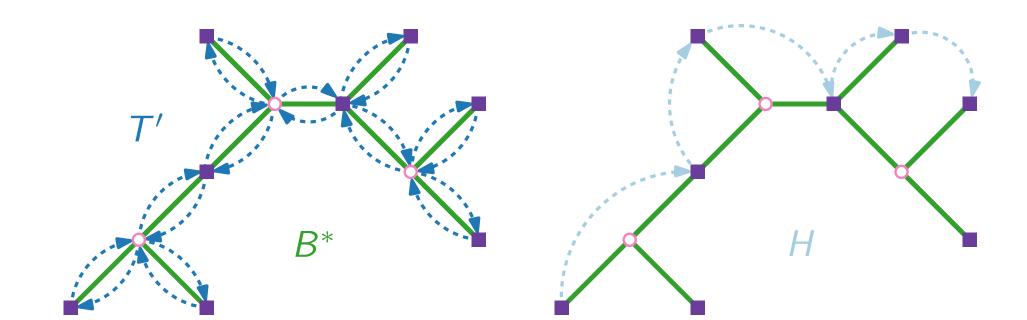
Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals.



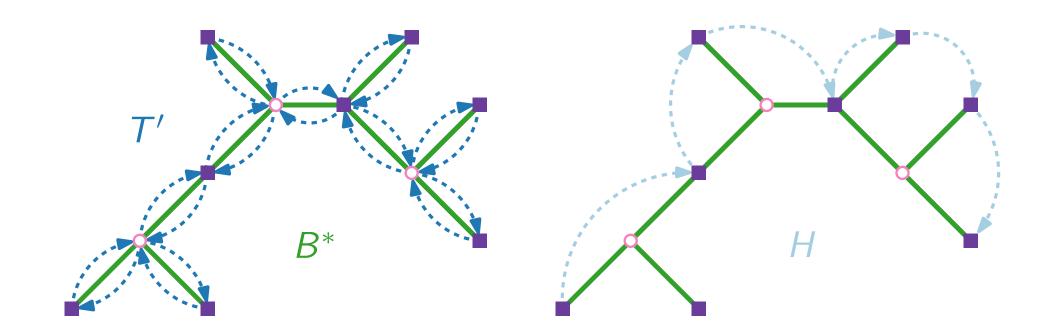
Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals.



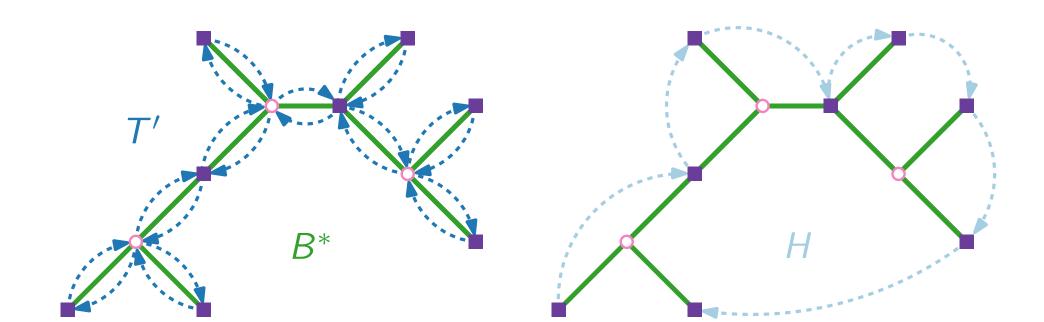
Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals.



Consider an optimal Steiner tree B^* .

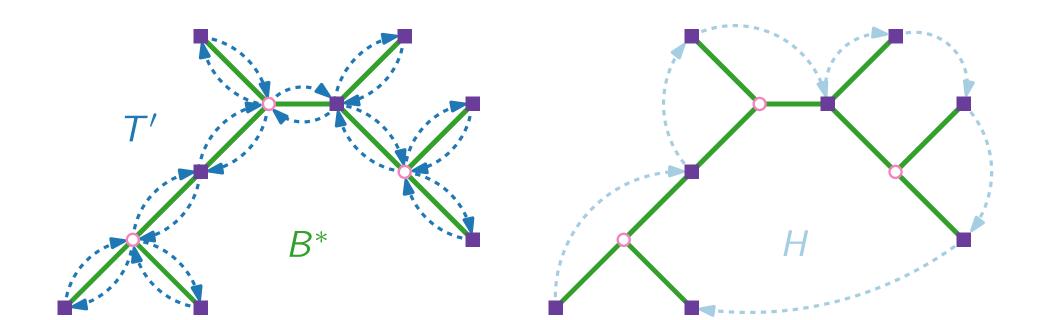
Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals.

 $\Rightarrow c(H) \leq c(T') = 2 \cdot \mathsf{OPT}$ since G is metric.



Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

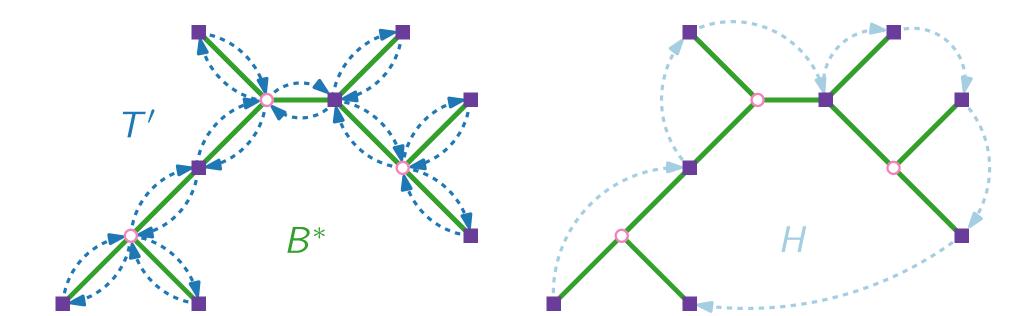
 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals.

 $\Rightarrow c(H) \leq c(T') = 2 \cdot \text{OPT since } G \text{ is metric.}$

MST B of G[T] costs $c(B) \le c(H) \le 2 \cdot \mathsf{OPT}$



Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

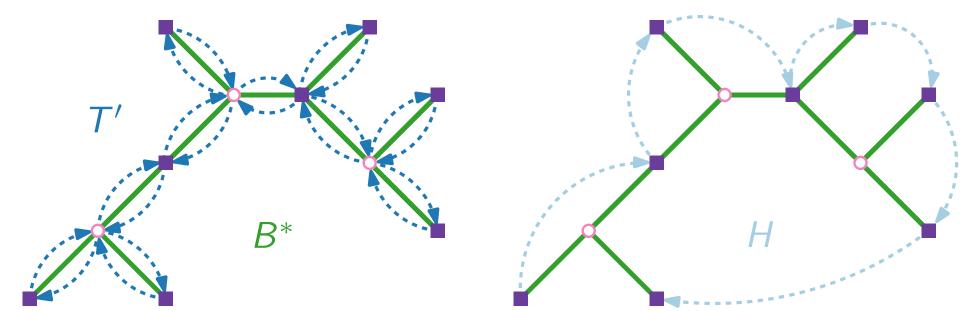
 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

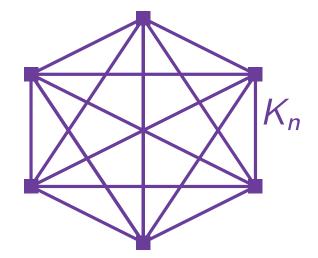
Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals.

 $\Rightarrow c(H) \leq c(T') = 2 \cdot \text{OPT since } G \text{ is metric.}$

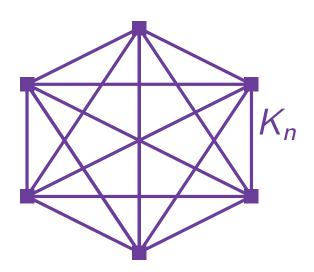
MST B of G[T] costs $c(B) \le c(H) \le 2 \cdot \mathsf{OPT}$ since H is a spanning tree of G[T].



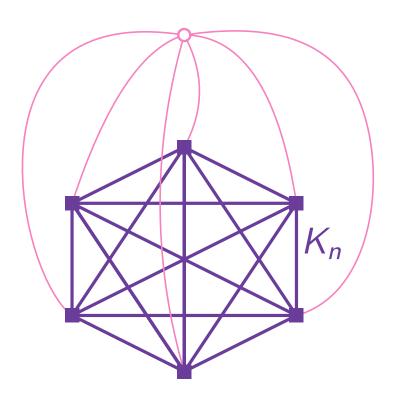
terminal



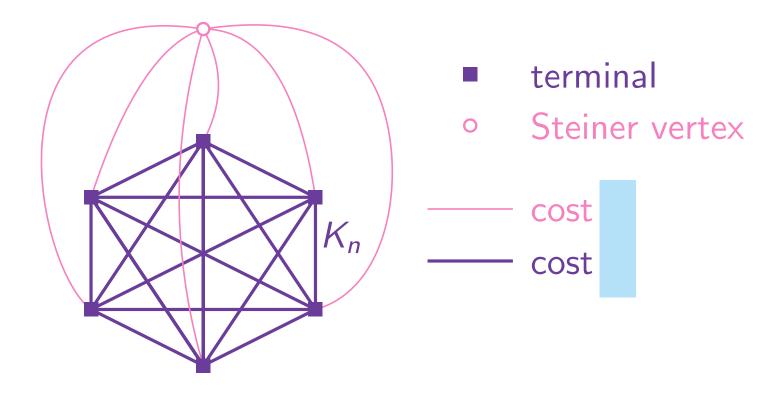
0

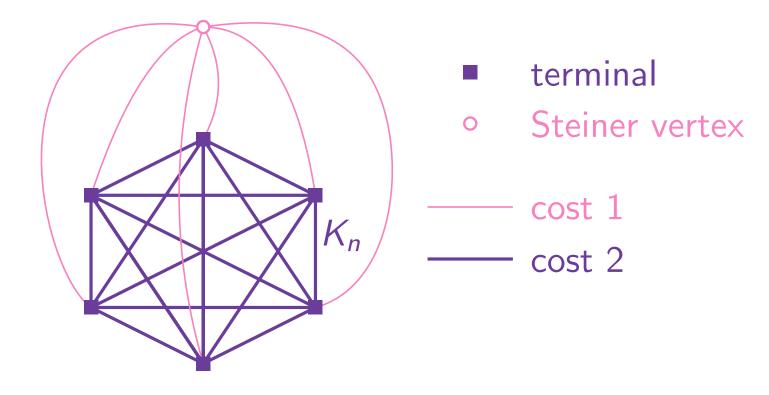


- terminal
- Steiner vertex

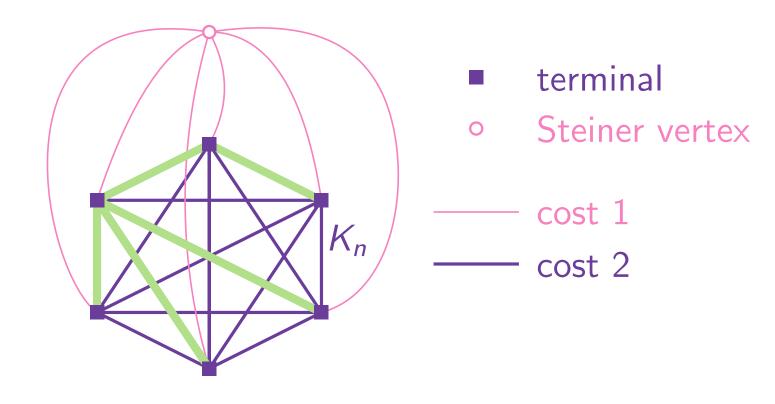


- terminal
- Steiner vertex

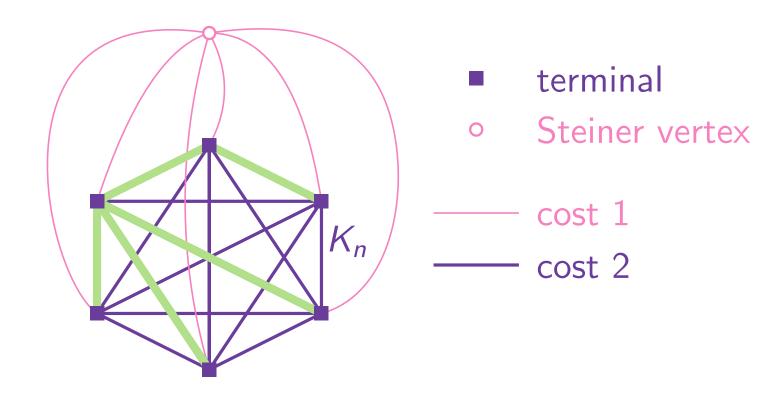




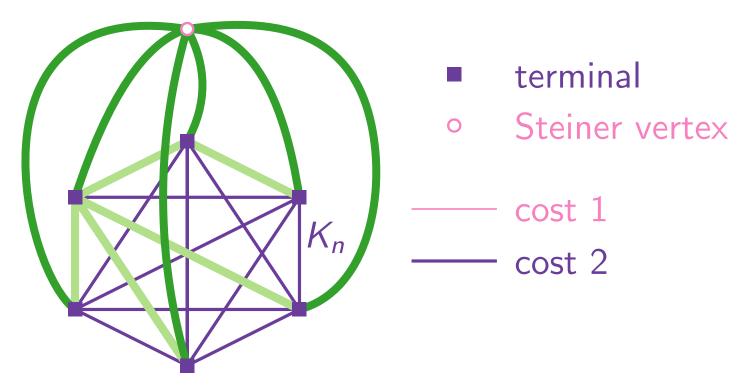
An MST of G[T] has cost



An MST of G[T] has cost 2(n-1).

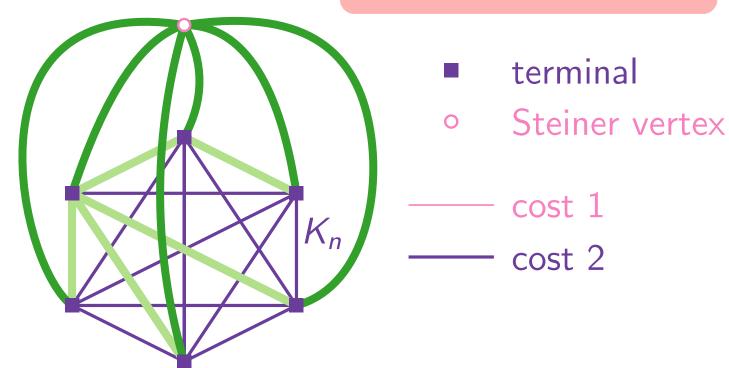


An MST of G[T] has cost 2(n-1). The optimal solution has cost n.



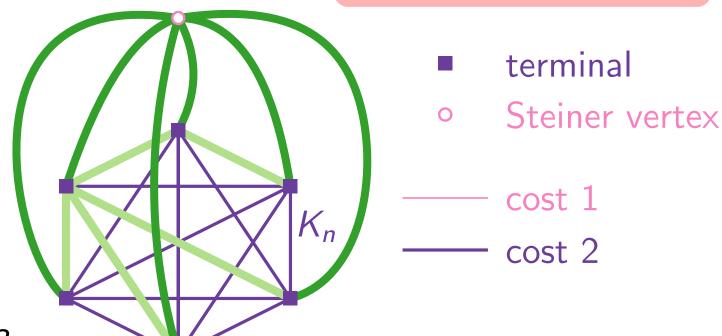
An MST of G[T] has cost 2(n-1). The optimal solution has cost n.

$$\frac{\mathsf{ALG}}{\mathsf{OPT}} = \frac{2(n-1)}{n} \to 2$$



An MST of G[T] has cost 2(n-1). The optimal solution has cost n.

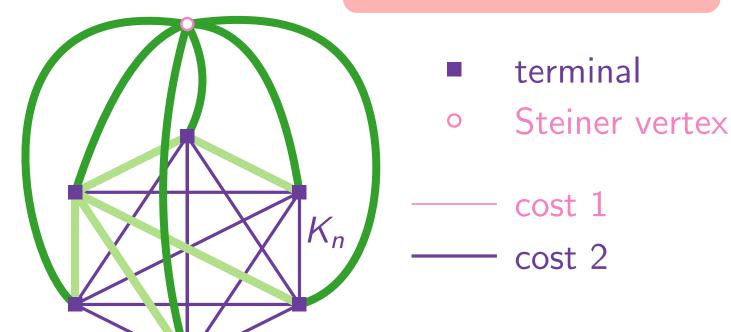
$$\frac{\mathsf{ALG}}{\mathsf{OPT}} = \frac{2(n-1)}{n} \to 2$$



Can we do better?

An MST of G[T] has cost 2(n-1). The optimal solution has cost n.

$$\frac{\mathsf{ALG}}{\mathsf{OPT}} = \frac{2(n-1)}{n} \to 2$$



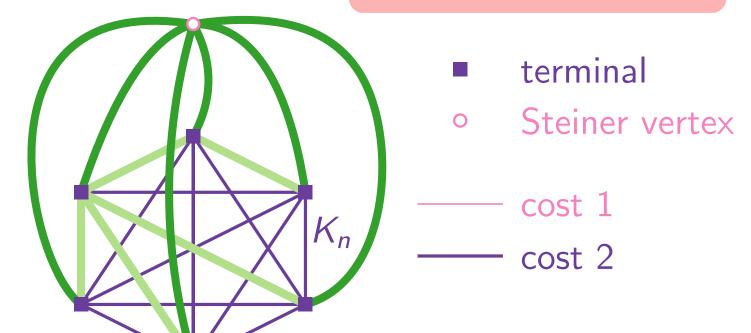
Can we do better?

The best known approximation factor for STEINERTREE is $ln(4) + \varepsilon \approx 1.39$.

[Byrka, Grandoni, Roth-voß & Sanità, J. ACM'13]

An MST of G[T] has cost 2(n-1). The optimal solution has cost n.

$$\frac{\mathsf{ALG}}{\mathsf{OPT}} = \frac{2(n-1)}{n} \to 2$$



Can we do better?

The best known approximation factor for STEINERTREE is $ln(4) + \varepsilon \approx 1.39$.

[Byrka, Grandoni, Roth-voß & Sanità, J. ACM'13]

Steiner Tree cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless P = NP). [Chlebík & Chlebíková, TCS'08]

Approximation Algorithms

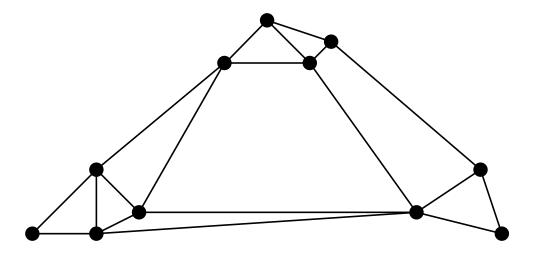
Lecture 3:

STEINER TREE and MULTIWAY CUT

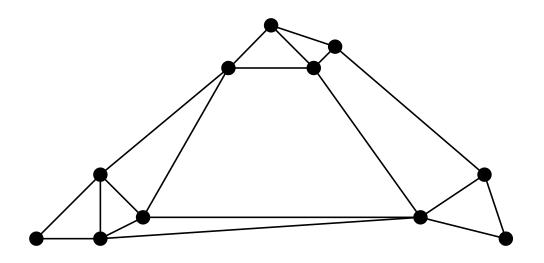
Part V:
MULTIWAYCUT

Given: A connected graph G

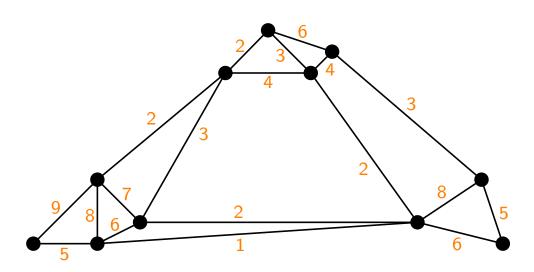
Given: A connected graph G



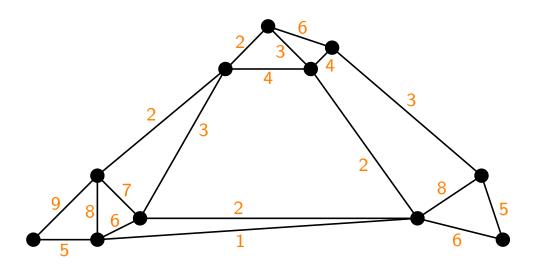
Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$



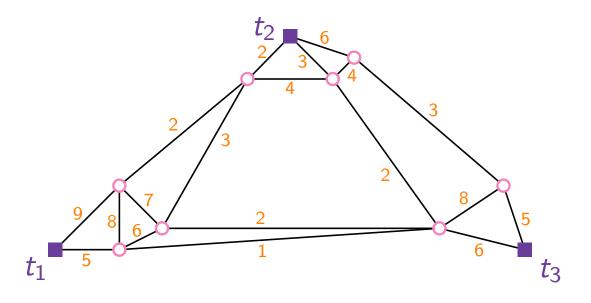
Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$



Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

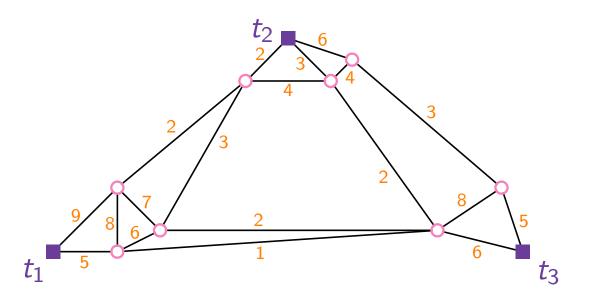


Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.



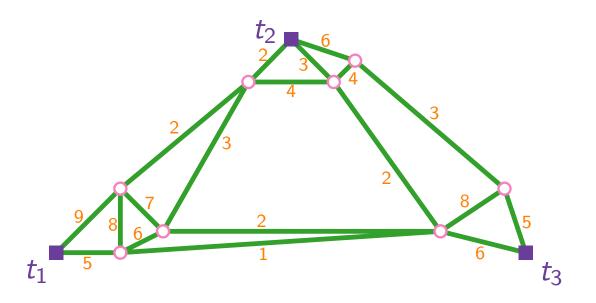
Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.



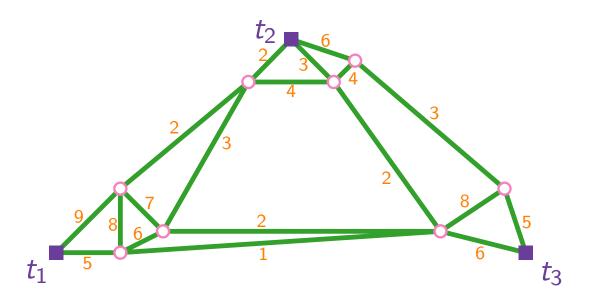
Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.



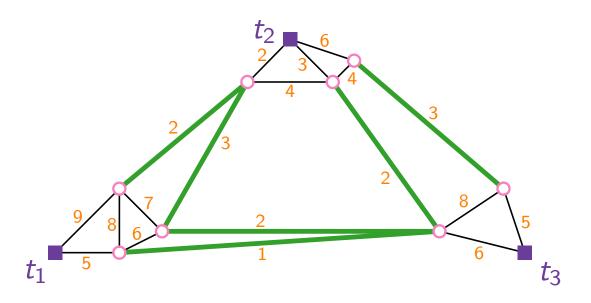
Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.



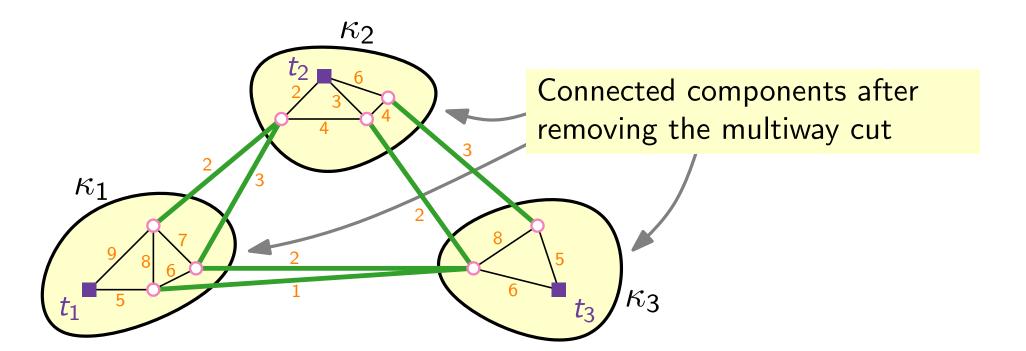
Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.



Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

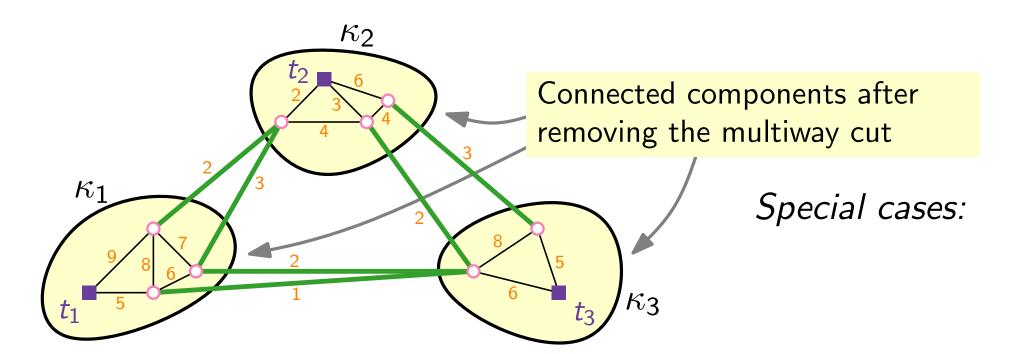
A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.



MULTIWAYCUT

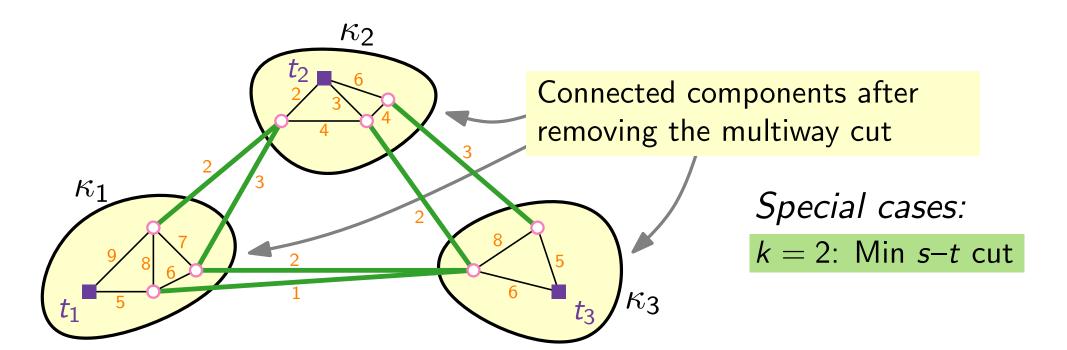
Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.



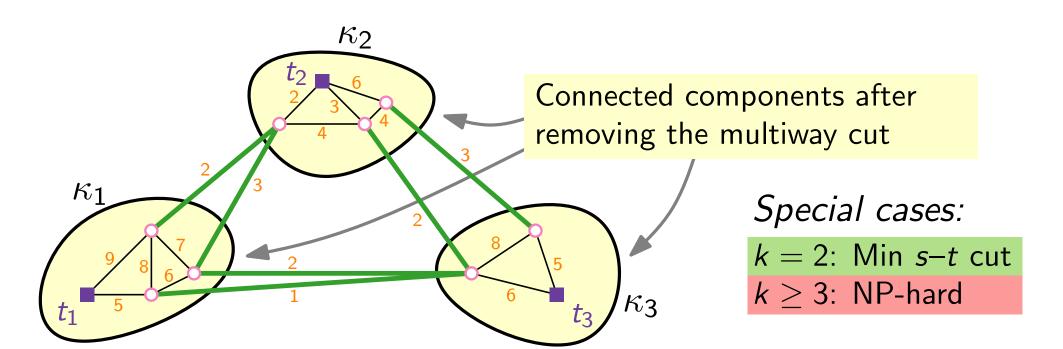
Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.



Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

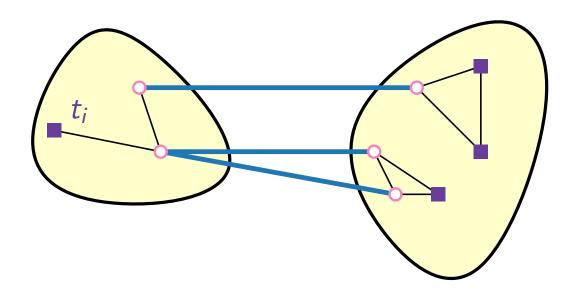


Isolating Cuts

An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

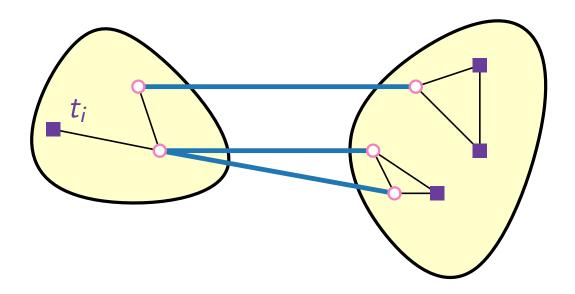
Isolating Cuts

An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.



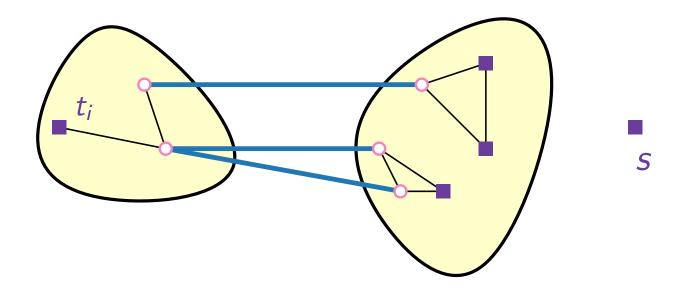
An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:



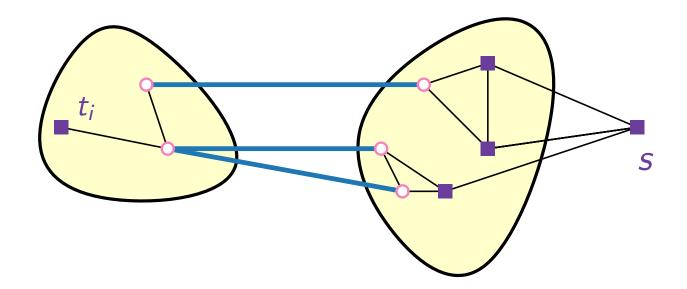
An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:



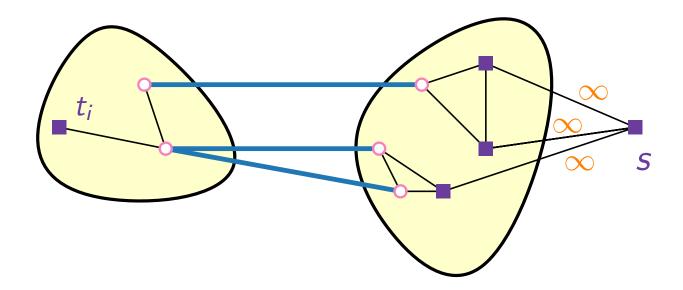
An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:



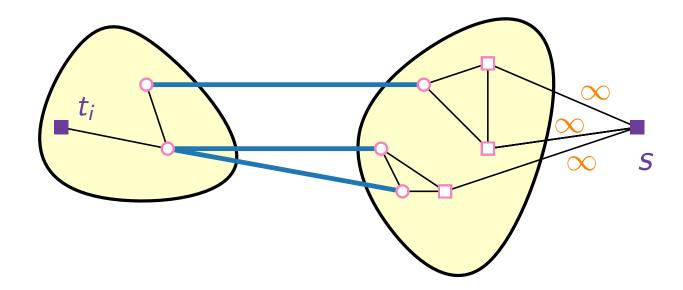
An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:



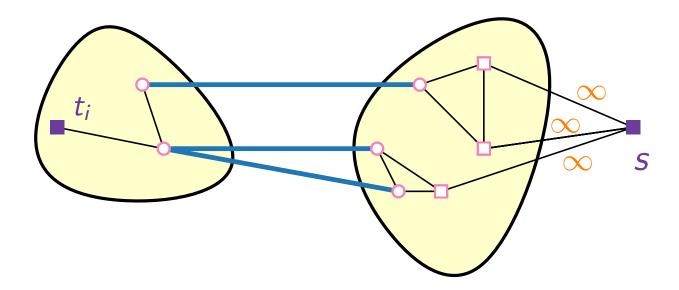
An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:



An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:



Add dummy terminal s and find a minimum-cost $s-t_i$ cut.

Approximation Algorithms

Lecture 3:

STEINER TREE and MULTIWAY CUT

Part VI:
Algorithm for MultiwayCut

For $i = 1, \ldots, k$:

For i = 1, ..., k:

Compute a minimum-cost isolating cut C_i for t_i .

```
For i = 1, ..., k:
```

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union $\mathcal C$ of the k-1 cheapest such isolating cuts.

```
For i = 1, ..., k:
```

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C)$$
 ? $\sum_{i=1}^{k} c(C_i)$

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C) \leq \sum_{i=1}^{\kappa} c(C_i)$$

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have

$$c(C_1) \geq$$

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have

$$c(C_1) \geq \frac{1}{k} \sum_{i=1}^k c(C_i)$$

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have

$$c(C_1) \ge \frac{1}{k} \sum_{i=1}^{k} c(C_i)$$
 by the pidgeon-hole principle.

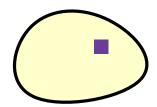
```
Theorem. This algorithm is a factor-( approximation algorithm for MultiwayCut.
```

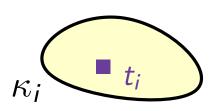
Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MULTIWAYCUT.

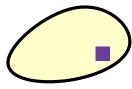
Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MULTIWAYCUT.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MULTIWAYCUT.

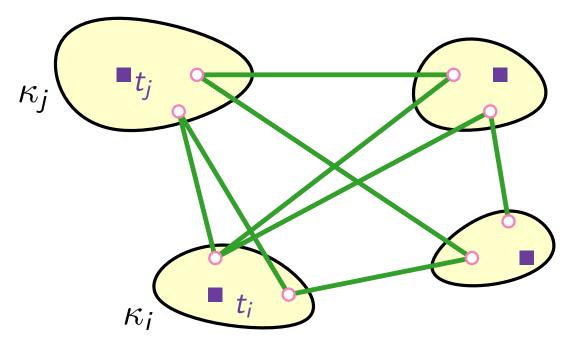




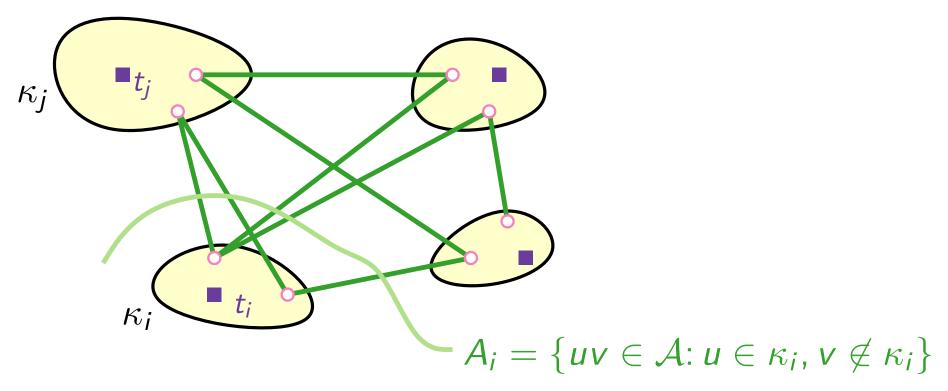




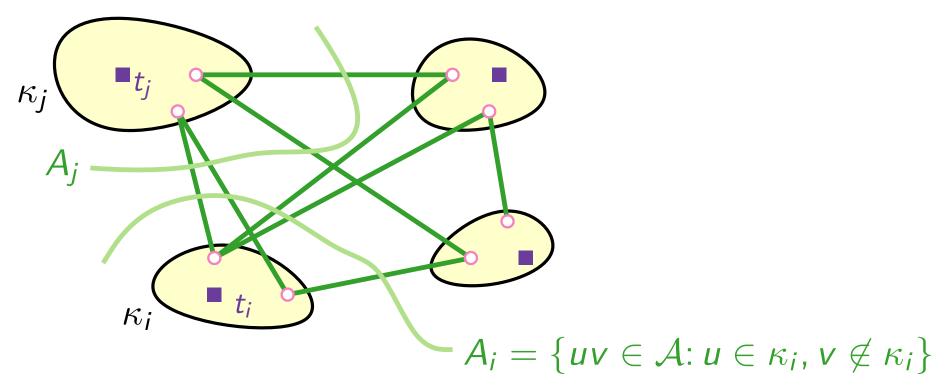
Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MULTIWAYCUT.



Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

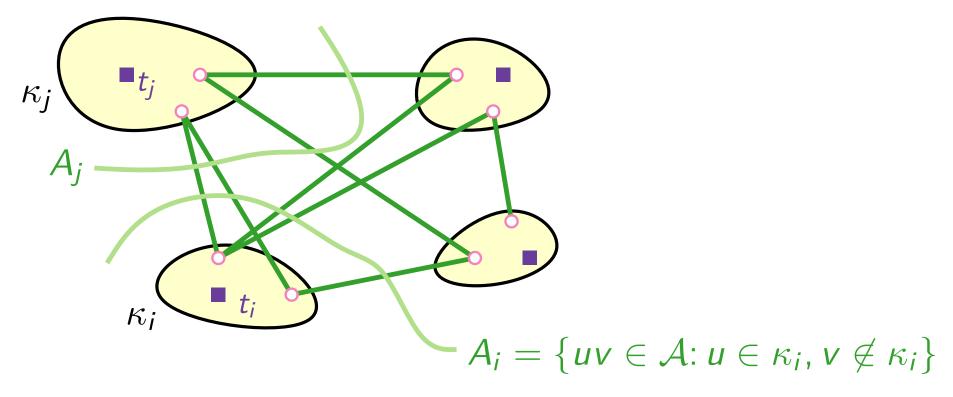


Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.



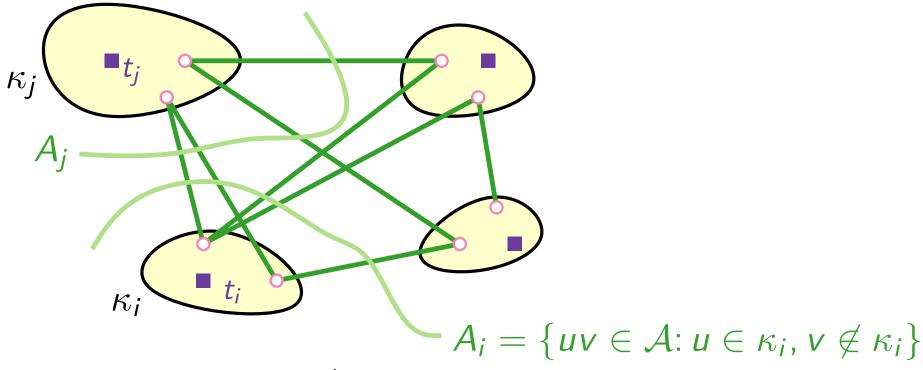
Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MULTIWAYCUT.

Proof. Consider an opt. multiway cut A:



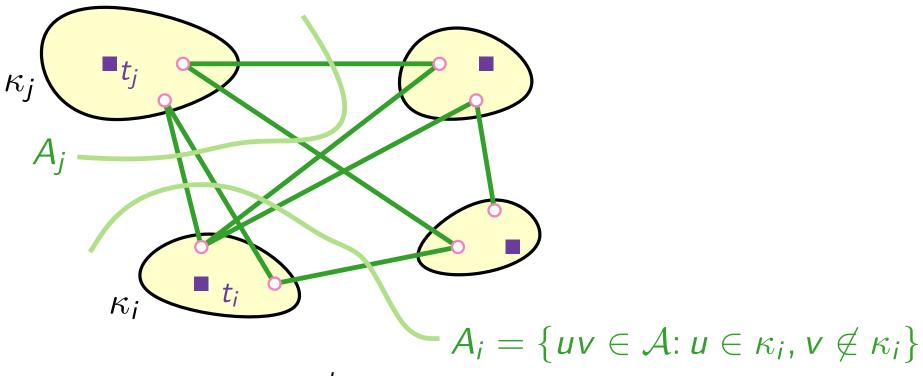
Observation. A =

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.



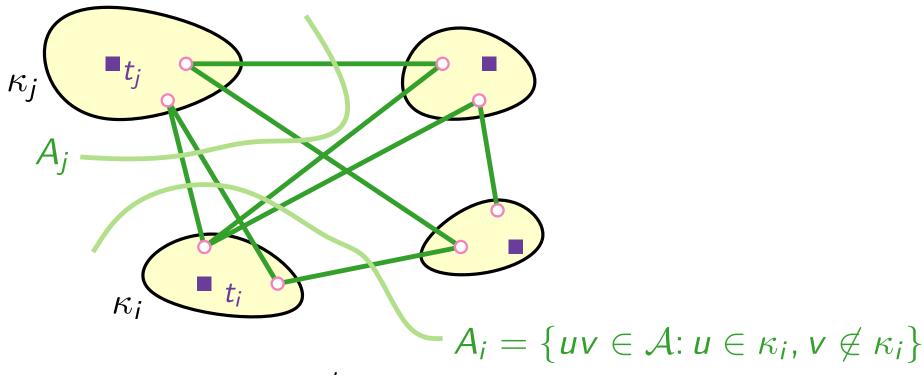
Observation.
$$A = \bigcup_{i=1}^{k} A_i$$

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MULTIWAYCUT.



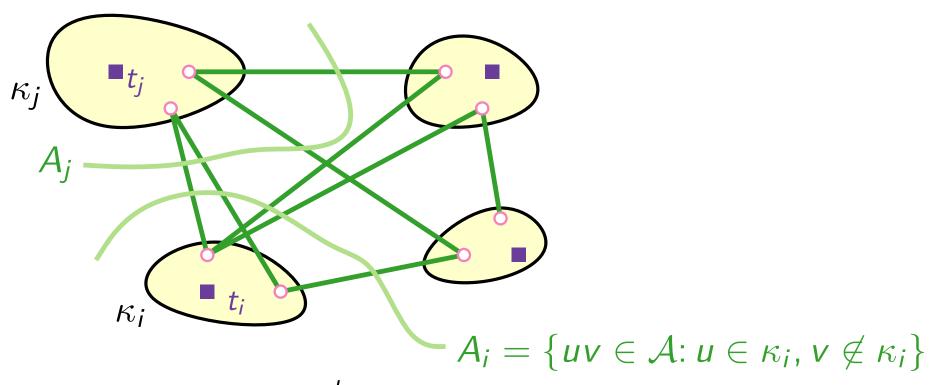
Observation.
$$A = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) =$

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.



Observation.
$$A = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(A) = 0$

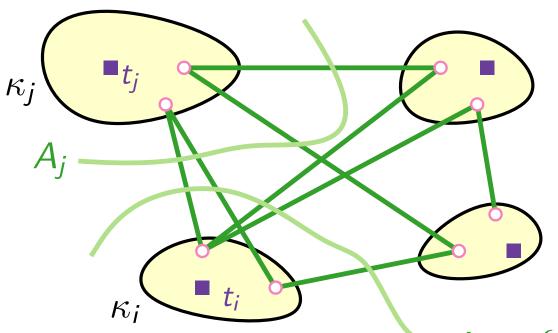
Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.



Observation.
$$A = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(A) = 2 \cdot \mathsf{OPT}$.

This algorithm is a factor-(2-2/k)approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut A: Consider the alg.'s solution C:

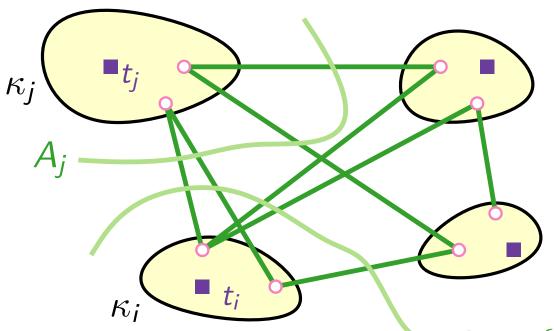


$$c(C) \leq$$

Observation.
$$A = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(A) = 2 \cdot \mathsf{OPT}$.

This algorithm is a factor-(2-2/k)approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut A: Consider the alg.'s solution C:

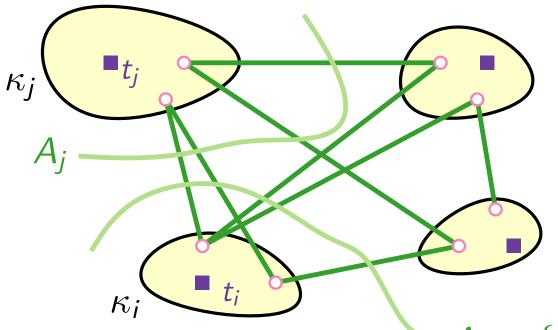


$$c(C) \leq (1 - \frac{1}{k}) \sum_{i=1}^{k} c(C_i)$$

Observation.
$$A = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(A) = 2 \cdot \mathsf{OPT}$.

This algorithm is a factor-(2-2/k)approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut A: Consider the alg.'s solution C:

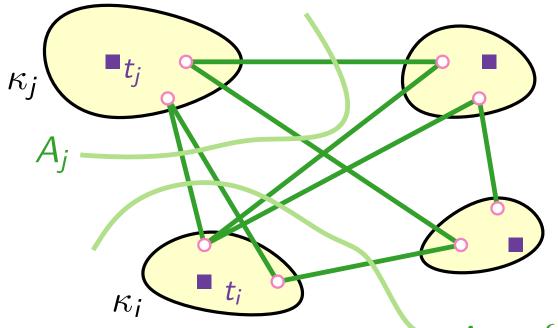


$$c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
$$\leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(A_i)$$

Observation.
$$A = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(A) = 2 \cdot \mathsf{OPT}$.

This algorithm is a factor-(2-2/k)approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut A: | Consider the alg.'s solution C:



$$c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$

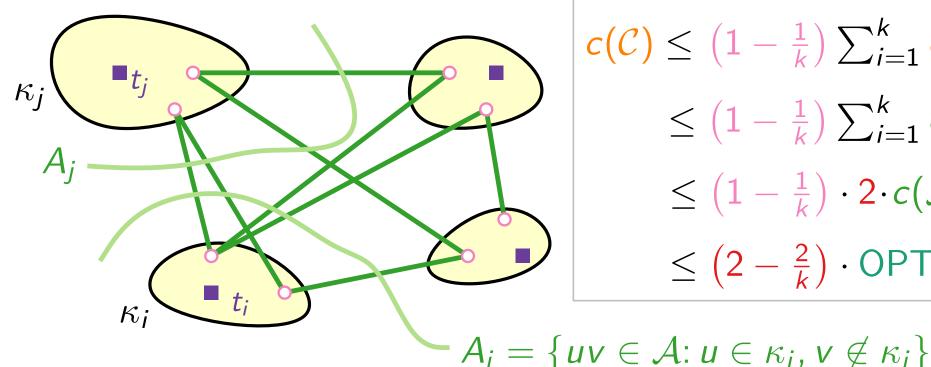
$$\leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(A_i)$$

$$\leq \left(1 - \frac{1}{k}\right) \cdot 2 \cdot c(A)$$

Observation.
$$A = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(A) = 2 \cdot \mathsf{OPT}$.

This algorithm is a factor-(2-2/k)approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut A: | Consider the alg.'s solution C:



$$c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$

$$\leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(A_i)$$

$$\leq \left(1 - \frac{1}{k}\right) \cdot 2 \cdot c(A)$$

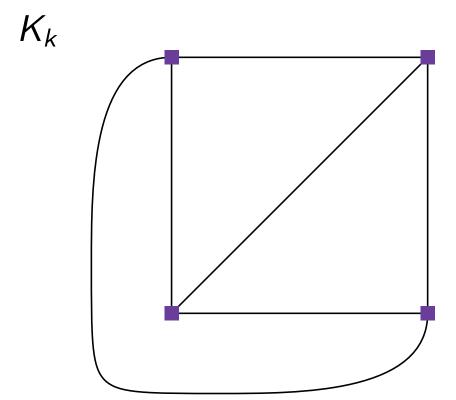
$$\leq \left(2 - \frac{2}{k}\right) \cdot \mathsf{OPT} \quad \Box$$

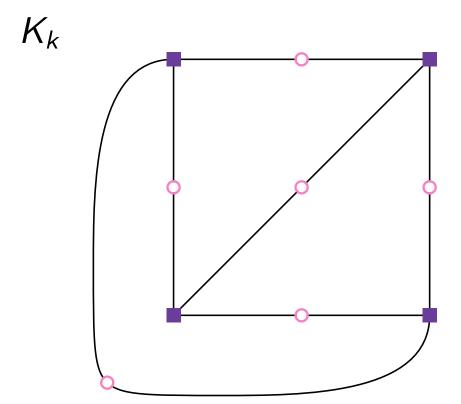
Observation.
$$A = \bigcup_{i=1}^{k} A_i$$
 and $\sum_{i=1}^{k} c(A_i) = 2 \cdot c(A) = 2 \cdot \mathsf{OPT}$.

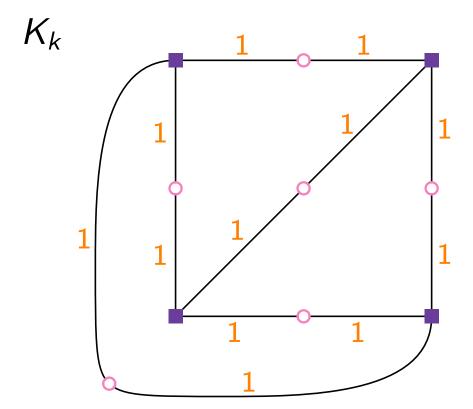
Analysis Tight?

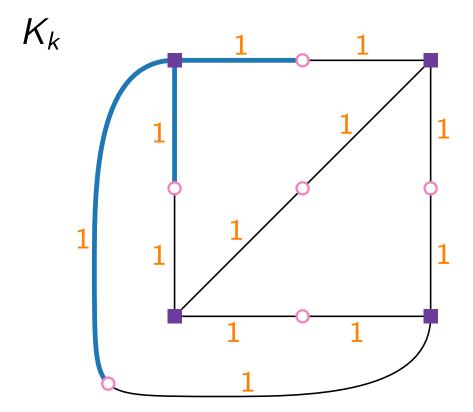
 K_k

Analysis Tight?

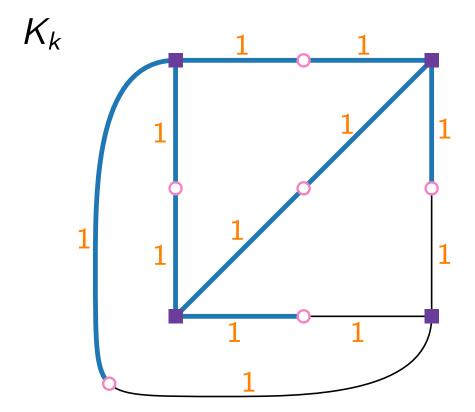


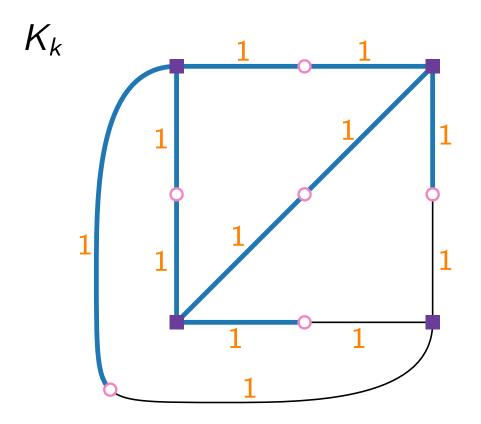




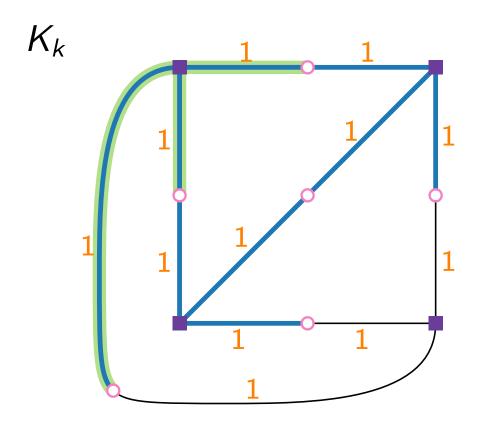




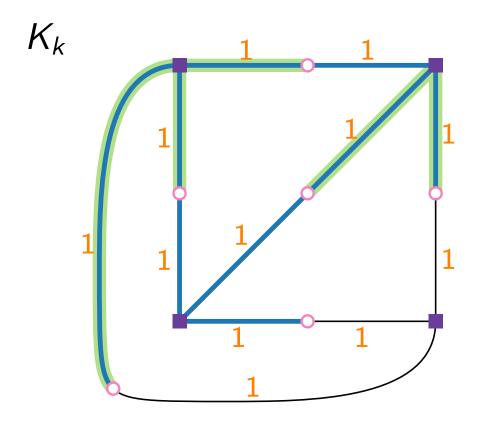




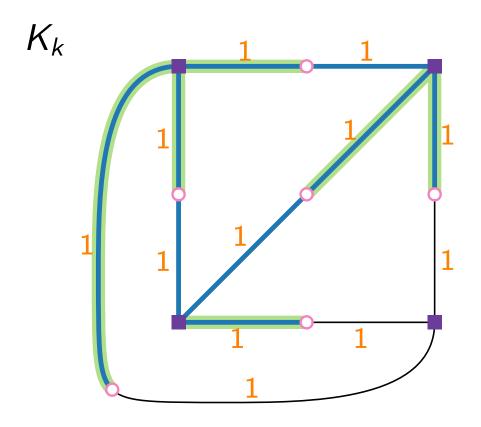
$$\mathsf{ALG} = (k-1)(k-1)$$



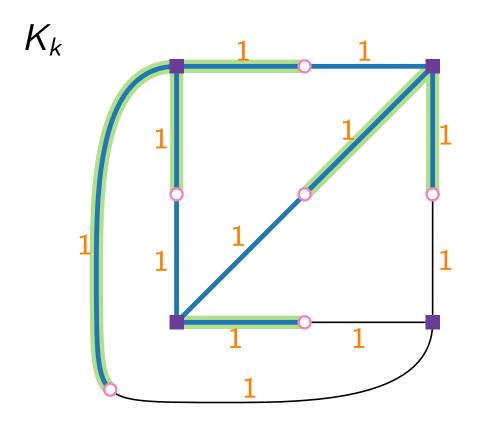
$$\mathsf{ALG} = (k-1)(k-1)$$



$$\mathsf{ALG} = (k-1)(k-1)$$

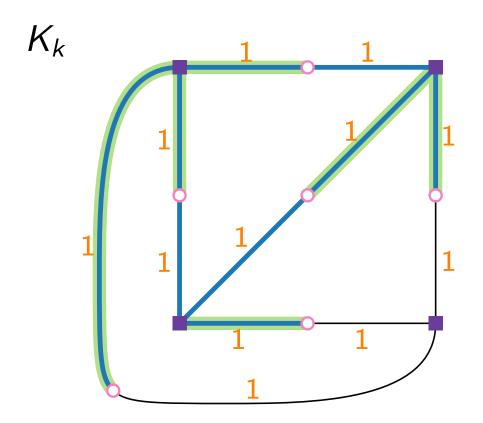


$$\mathsf{ALG} = (k-1)(k-1)$$



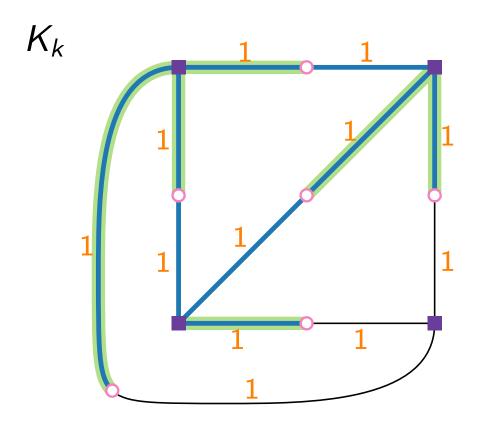
ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i$ =



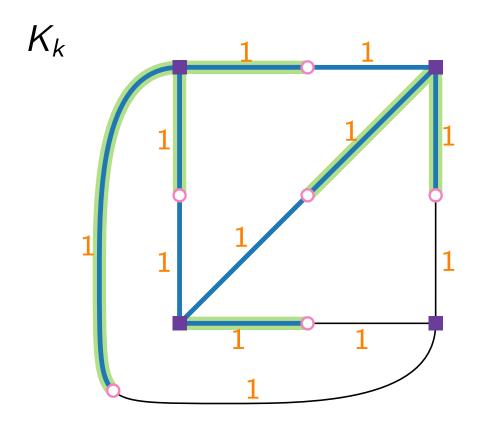
ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$



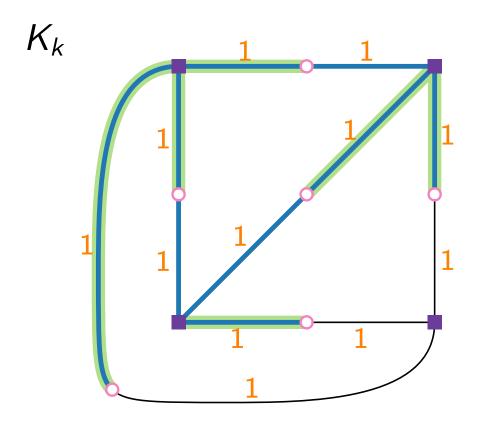
ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT =



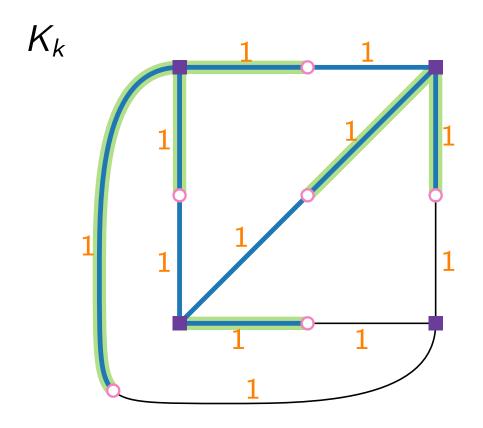
ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k}$ =



ALG =
$$(k-1)(k-1)$$

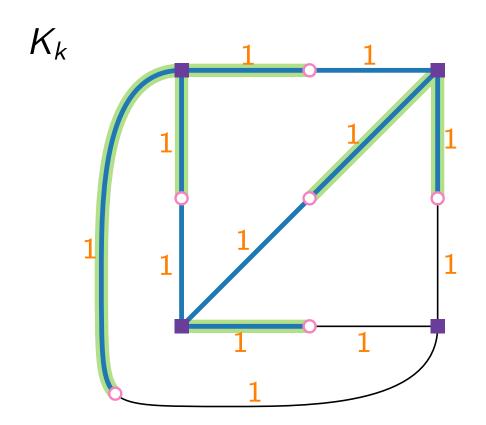
OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$



ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$

Can we do better?

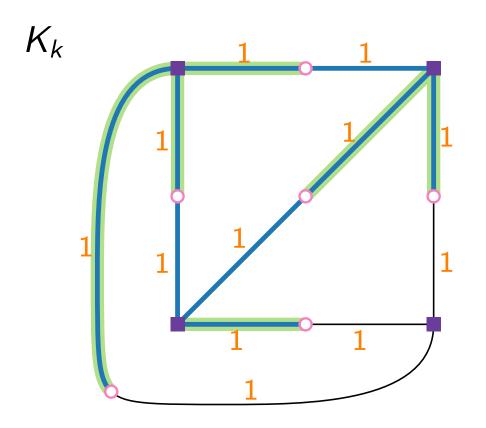


ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$

Can we do better?

The best known approximation factor for MultiwayCut is $1.2965 - \frac{1}{k}$. [Sharma & Vondrák, STOC'14]



ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$

Can we do better?

The best known approximation factor for MultiwayCut is $1.2965 - \frac{1}{k}$. [Sharma & Vondrák, STOC'14]

MULTIWAYCUT cannot be approximated within factor 1.20016 - O(1/k) (unless P = NP). [Bérczi, Chandrasekaran, Király & Madan, MP'18]