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Wegen (*) gilt: o(s,v) =
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Zeige: Falls u* =0, dann gilt fiir jeden Knoten v
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0<k<n—1 n— k

Beweis: Nach Def. von § gilt: d,(s,v) > d(s, v)
Wegen (*) gilt: 0(s, v) = 0k(s, V) firenkefo,...,n—1}
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Zeige: Falls u* = 0, dann gilt fiir jeden Knoten v

6[‘1 ' T '
o (s, v) — dk(s, v) - 0.
0<k<n—1 n— k

Beweis: Nach Def. von § gilt: d,(s,v) > d(s, v)
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(*)

Zeige: Falls u* = 0, dann gilt fiir jeden Knoten v
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0<k<n—1 n— k

Beweis: Nach Def. von § gilt: d,(s,v) > d(s, v)
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Zeige: Falls u* = 0, dann gilt fiir jeden Knoten v
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Beweis: Nach Def. von § gilt: d,(s,v) > d(s, v)
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(*)

Zeige: Falls u* = 0, dann gilt fiir jeden Knoten v

5[‘1 ' T '
o (s, v) — dk(s, v) - 0.
0<k<n—1 n— k

Beweis: Nach Def. von § gilt: d,(s,v) > d(s, v)
Wegen (*) gilt: 0(s, v) = 0k(s, V) firenkefo,...,n—1}

Also gilt On(s, V) > 0k(s, V) firenkefo,....n—1)

= MaXo<k<n—1 5n(5, V) — 5/((5, V) Z 0 = Beh.
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(*)
Zeige: Falls u* = 0, dann gilt fiir jeden Knoten v

6[‘1 ' T '
o (s, v) — dk(s, v) - 0.
0<k<n—1 n— k

Beweis: Nach Def. von § gilt: d,(s,v) > d(s, v)

Wegen (*) gilt: 0(s, v) = 0k(s, V) firenkefo,...,n—1}
Also gilt On(s, V) > 0k(s, V) firenkefo,....n—1)
= MaXo<k<n—1 5n(5, V) — 5/((5, V) Z 0 = Beh.

n—k>0
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u

e



Schritt Il

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u

e

X w(C)=0



Schritt Il

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u

e

—X X w(C)=0



Schritt Il

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u

e

—X X w(C)=0

Zeige: i(s,v) = + x.
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u

‘e

—X X w(C)=0

Zeige: i(s,v) = + x.
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u
S.
—X X w(C) =20
Y
Zeige: i(s,v) = + x.

Klar:  d(s,v) < + x.
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u
S.
—X X w(C) =20
v
Zeige: i(s,v) = + x.
Klar:  d(s,v) < + x.

Aber warum kann es keinen kiirzeren Weg von s nach v geben?
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u
S.
—X X w(C) =0
v
Zeige: (s, v) = + x.
Klar:  d(s,v) < + x.

Aber warum kann es keinen kiirzeren Weg von s nach v geben?

Angenommen, es gilte i(s, v) < + x.
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u
S.
—X X w(C) =20
v
Zeige: i(s,v) = + x.
Klar:  d(s,v) < + x.

Aber warum kann es keinen kiirzeren Weg von s nach v geben?
Angenommen, es gilte J(s, v) < + x.

= d(s,v) —x <
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u
S
.\ —X X w(C) =0
5(5, V) V
Zeige: i(s,v) = + x.
Klar:  d(s,v) < + x.

Aber warum kann es keinen kiirzeren Weg von s nach v geben?
Angenommen, es gilte J(s, v) < + x.

= d(s,v) —x <
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u
s
.\ —X X w(C) =0
5(5, V) V
Zeige: i(s,v) = + x.
Klar:  4(s,v) < + x.

Aber warum kann es keinen kiirzeren Weg von s nach v geben?

Angenommen, es gilte i(s, v) < + x.
= d(s,v) —x < %
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Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C.
Sei x das Gewicht des Wegs von u nach v auf C.

u
s
.\ —X X w(C) =0
5(5, V) V
Zeige: i(s,v) = + x.
Klar:  4(s,v) < + x.

Aber warum kann es keinen kiirzeren Weg von s nach v geben?

Angenommen, es gilte i(s, v) < + x.

= i(s,v) —x < Q zur Def. von §.




Schritt IV

Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,
so dass
. on(s, v) — 0k(s, v) _0
0<k<n—1 n— k
S
o

w(C*)=0
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Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,
so dass
. on(s, v) — 0k(s, v) _0
0<k<n—1 n— k

Bestimme
< v e C™:
¢ w(C*)=0 Gehe von s

aus n Kanten.




Schritt IV

Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,
so dass
. on(s, v) — 0k(s, v) _0
0<k<n—1 n— k

Bestimme
< o vel™
¢ w(C*)=0 Gehe von s

aus n Kanten.
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Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,
so dass
5[7 ’ T '
. (s, v) — dk(s, v) _0
0<k<n—1 n— k
Bestimme

< v e C™:
®

w(C*)=0 Gehe von s
aus n Kanten.
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Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,
so dass
5[7 ' T ’
. (s, v) — dk(s, v) _0
0<k<n—1 n— k
Bestimme

< v € C*:
¢ Gehe von s

aus n Kanten.

% n — | Kanten
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Falls ©* = 0, dann gilt fiir jeden Knoten v
on(s, v) — dk(s, v)

max > 0.
0<k<n—1 n—k
Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,
so dass
5” ’ T 5 '
max (s, v) (s, v) — 0.
0<k<n—1 n— k
Bestimme Schritt Il fir dieses v:
S 5(5' C*) v € C*: :>5n(5, V) :5(5, V).
Gehe von s

aus n Kanten.

% n — | Kanten
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Falls ©* = 0, dann gilt fiir jeden Knoten v
on(s, v) — dk(s, v)

max > 0.
0<k<n—1 n—k
Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,
so dass
5” ’ T '
max (5.v) = 0ls,v) = 0.
0<k<n—1 n— k

Bestimme Schritt I fiir dieses v:
veCC™: = 0,(s,v) = (s, v).

Gehevon's | = 0n(s,v) < dk(s, v) !l
aus n Kanten.

% n — | Kanten
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Falls ©* = 0, dann gilt fiir jeden Knoten v
on(s, v) — dk(s, v)

max > (.
0<k<n—1 n—k

Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,

so dass
max On(s, v) = 0k(s,v) _ 0.
0<k<n-—1 n—k
* Bestimme Schritt |l flir dieses v:
o C) veC™: = 0n(s, v) = d(s, v).

Gehevon's | = 0n(s,v) < dk(s, v) !l
aus n Kanten. Aber fir welches k gilt
5n(5, V) — 5k(5, V)?

4 n — | Kanten
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Falls ©* = 0, dann gilt fiir jeden Knoten v
on(s, v) — dk(s, v)

max > 0.
0<k<n—1 n—k
Leige:
Falls 4 = 0, dann gibt es einen Knoten v auf dem Kreis C™,
so dass
5” ’ T 5 '
max (5. v) (s, v) — 0.
0<k<n—1 n— k
Bestimme Schritt Il fir dieses v:
5(5’ C*) v € C*: = n(s, v) = d(s, v).

Gehe von's | = 0n(s,v) < dk(s,v) !l
aus n Kanten. Aber fir welches k gilt
on(s,v) = dk(s, v)?
z.B. k =n—|C*|, denn
w(C*) =0 und |C*| < n.

% n — | Kanten




Schritt V

Falls ©* = 0, dann gilt fiir jeden Knoten v
on(s, v) — dk(s, v)

max > 0.
0<k<n—1 n— k

Falls ©* = 0, dann gibt es einen Knoten v auf dem Kreis C*,

so dass
. on(s, v) — dk(s, v) N

0<k<n—1 n—k

0.

Leige:
Falls ©* = 0, dann

min max On(S, V) — Okls, v) —

?
veV(G) 0<k<n-—1 n—k ]
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Falls ©* = 0, dann gilt fiir jeden Knoten v
on(s, v) — dk(s, v)

max > 0.
0<k<n—1 n— k

Falls ©* = 0, dann gibt es einen Knoten v auf dem Kreis C*,

so dass
. on(s, v) — dk(s, v) N

0<k<n—1 n—k

0.

Leige:
Falls ©* = 0, dann

_ on(s, v) — dk(s, v)
min max =
veV(G) 0<k<n-—1 n—k

0.
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Schritt V

Falls ©* = 0, dann gilt fiir jeden Knoten v
on(s, v) — dk(s, v)

max > 0.
0<k<n—1 n— k

Falls ©* = 0, dann gibt es einen Knoten v auf dem Kreis C*,

so dass
. on(s, v) — dk(s, v) N

0<k<n—1 n—k

0.

Leige:
Falls ©* = 0, dann

_ on(s, v) — dk(s, v)
min max =
veV(G) 0<k<n-—1 n—k

0.
Klar. ..

10



Schritt VI

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t.
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Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t.

Zeige damit, dass

? 5” ! T 5 '
©* = min  max (5.v) = k(s V).
veV 0<k<n-—1 n— k
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Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t.

Zeige damit, dass

? 5” ! T 5 '
©* = min  max (5.v) = k(s V).
veV 0<k<n-—1 n— k

Zeige: Rechte Seite steigt dann auch um t.
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Schritt VI

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t.

Zeige damit, dass

=
? On(s, — 04 (s,
©* = min  max (s V) = 0k{s V).
veV 0<k<n—1 n—k

Zeige: Rechte Seite steigt dann auch um t.
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Schritt VI

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t.

Zeige damit, dass L nt
—
7 5” ! T 5 '
©* = min  max (5.v) = k(s V).
veV 0<k<n—1 n— k

Zeige: Rechte Seite steigt dann auch um t.
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Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t.

Zeige damit, dass L nt
—l—
7 5” ! T 5 '
©* = min  max (5.v) = k(s V).
veV 0<k<n—1 n— k

Zeige: Rechte Seite steigt dann auch um t.
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Zeige:

Falls wir eine Konstante t zum Gewicht jeder Kante von G

addieren, dann steigt 4~ um t.

Zeige damit, dass +nt 4kt
—l—

! dn(s, v) — dk(s, v).

* " n
— min max
H veV 0<k<n—1 n—k

Zeige: Rechte Seite steigt dann auch um t.
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Schritt VI

Zeige:

Falls wir eine Konstante t zum Gewicht jeder Kante von G

addieren, dann steigt 4~ um t.

A

Zeige damit, dass T +kt
/_/\ﬁ /—/\ﬁ

! dn(s, v) — dk(s, v).

* " n
— min max
H veV 0<k<n—1 n—k

Zeige: Rechte Seite steigt dann auch um t.
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Schritt VI

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t. Ct(n—k)
' n—k
Zeige damit, dass " Lnt = T
—l—
. 0,.(s,v) — 0i(s, v
©* = min  max (5.v) = Ol )
veV 0<k<n—1 n—k

Zeige: Rechte Seite steigt dann auch um t.
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Zeige:

Falls wir eine Konstante t zum Gewicht jeder Kante von G

addieren, dann steigt 4~ um t. Ct(n—k)
" n—k T +t

Zeige damit, dass T +kt
/_/\ﬁ /—/\ﬁ

! dn(s, v) — dk(s, v).

* " n
— min max
H veV 0<k<n—1 n—k

Zeige: Rechte Seite steigt dann auch um t.

11
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Schritt VI

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t. Ct(n—k)
S T oon—k T Tt \/
Zeige damit, dass " Lnt T
T
? on(s,v) — dk(s, v)
. x| . ! ! .

&(t) — [P ITIVEY o<k n—k S 6(1-)

Zeige: Rechte Seite steigt dann auch um t. v
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Schritt VI

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt 4~ um t. Ct(n—k)
S T oon—k T Tt \/
Zeige damit, dass " Lnt T
T
? on(s,v) — dk(s, v)
. x| . ! ! .
at) i= |w|=|min | max SRS = 5(1)
Zeige: Rechte Seite steigt dann auch um t. v

Also:
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Schritt VI

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt ©* um t. Ctn—k)
S T oon—k T Tt \/
Zeige damit, dass " Lnt T
T
? on(s, v) — dk(s, v)
. Ly . ! ! .
at) i= |w|=|min | max SRS = 5(1)
Zeige: Rechte Seite steigt dann auch um t. v

Also: o und [ sind lineare Fkt. in t
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Schritt VI

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G

addieren, dann steigt u* um t. Ctn—k)
2 HIE =+t v
Zeige damit, dass C int e
! On(S, v) — 0k(s, v)
o «| L i n\S, V) —0k\S,V -
Oé(t) = [P TV OSTSa?I(—]. n—k - 5(1-)

Zeige: Rechte Seite steigt dann auch um t.
Also: o und [ sind lineare Fkt. in t mit o  )=73( )
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Schritt VI

(**)

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G

addieren, dann steigt u* um t. Ctn—k)
2 HIE =+t v
Zeige damit, dass C int e
! On(S, v) — 0k(s, v)
o «| L i n\S, V) —0k\S,V -
Oé(t) = [P TV ongff_l n—k - ﬁ(t)

Zeige: Rechte Seite steigt dann auch um t.
Also: o und [ sind lineare Fkt. in t mit o  )=73( )
(**)
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Schritt VI

(**)

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G

addieren, dann steigt u* um t. Ctn—k)
2 HIE =+t v
Zeige damit, dass C int e
! On(S, v) — 0k(s, v)
o «| L i n\S, V) —0k\S,V -
Oé(t) = [P TV ongff_l n—k - ﬁ(t)

Zeige: Rechte Seite steigt dann auch um t.
Also: o und [ sind lineare Fkt. in t mit o(—p*) = B(—p*)
(**
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Schritt VI

(**)

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
. . N
addieren, dann steigt 4~ um t. ! t(: :) _ ¢ v
Zeige damit, dass " Lnt T

T

. 0,.(s,v) — 0,(s, v
@(t) — | p*|=|min  max (5, v) (s.v) —: ﬁ(t)

veV 0<k<n—1 n—k

Zeige: Rechte Seite steigt dann auch um t.

Also: o und [ sind lineare Fkt. in t mit o(—p*) = B(—p*)
und Steigung 1 (**
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Schritt VI

(**)

Zeige:
Falls wir eine Konstante t zum Gewicht jeder Kante von G
addieren, dann steigt ©* um t. Ctn—k)
S L n— k = Tt \/

Zeige damit, dass " Lnt T

‘R T

X! . On(s, v) — 0k(s, v)

. > -\ 7 ! .

at) i= |w|F|min | max SRS = 5(1)

Zeige: Rechte Seite steigt dann auch um t.

Also: o und [ sind lineare Fkt. in t mit o(—p*) = B(—p*)
und Steigung 1 = o = 0. (**




Schritt VII e

|

[Karp, 1978]

Satz. Ein Kreis C* mit kleinstem durchschnittlichen Kantenge-
wicht (u(C*) = p*) lasst sich in O(V E) Zeit berechnen.
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Satz. Ein Kreis C* mit kleinstem durchschnittlichen Kantenge-
wicht (u(C*) = p*) lasst sich in O(V E) Zeit berechnen.

Gib einen Algorithmus an, der u* in O(V E) Zeit berechnet:
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Satz. Ein Kreis C* mit kleinstem durchschnittlichen Kantenge-
wicht (u(C*) = w*) lasst sich in O(V E) Zeit berechnen.

Gib einen Algorithmus an, der u* in O(V E) Zeit berechnet:

e Setze dg(s,s) =0 und setze dp(s, v) = 0.
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Satz. Ein Kreis C* mit kleinstem durchschnittlichen Kantenge-
wicht (u(C*) = w*) lasst sich in O(V E) Zeit berechnen.

Gib einen Algorithmus an, der u* in O(V E) Zeit berechnet:
e Setze dg(s,s) =0 und setze dp(s, v) = 0.
o Firk=1,..., n
Fiir jedes v € V(G), berechne
ok(s,v) =
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Satz. Ein Kreis C* mit kleinstem durchschnittlichen Kantenge-
wicht (u(C*) = w*) lasst sich in O(V E) Zeit berechnen.

Gib einen Algorithmus an, der u* in O(V E) Zeit berechnet:
e Setze dg(s,s) =0 und setze dp(s, v) = 0.
o Firk=1,..., n
Fiir jedes v € V(G), berechne
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Satz. Ein Kreis C* mit kleinstem durchschnittlichen Kantenge-
wicht (u(C*) = w*) lasst sich in O(V E) Zeit berechnen.

Gib einen Algorithmus an, der u* in O(V E) Zeit berechnet:
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o Firk=1,..., n
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Schritt VII

[Karp, 1978]

Satz. Ein Kreis C* mit kleinstem durchschnittlichen Kantenge-
wicht (u(C*) = p*) lasst sich in O(V E) Zeit berechnen.

Gib einen Algorithmus an, der u* in O(V E) Zeit berechnet:
e Setze dg(s,s) =0 und fiir jedes v # 5, setze dp(s, v) = oo.
o Firk=1 ... n
Fiir jedes v € V(G), berechne // in O(indeg(v)) Zeit

ok(s,v) = 5 uTéir;(G) Ok—1(s, u) + w(u, v).

Dies benétigt insgesamt O( ) Zeit.
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Schritt VII

(***)

[Karp, 1978]

Satz. Ein Kreis C* mit kleinstem durchschnittlichen Kantenge-
wicht (u(C*) = p*) lasst sich in O(V E) Zeit berechnen.

Gib einen Algorithmus an, der u* in O(V E) Zeit berechnet:
e Setze dg(s,s) =0 und fiir jedes v # 5, setze dp(s, v) = oo.
o Firk=1 ... n
Fiir jedes v € V(G), berechne // in O(indeg(v)) Zeit

ok(s,v)= min  dx_1(s,u) + w(u,v).
u: uveE(G) - _
_ _ _ _ Das ist ein kleines
Dies benotigt insgesamt O(V E) Zeit. dynamisches Programm! :-)

e Berechne p* nach (***) in O(V?) Zeit.
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