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kürzester Kreis in G .
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1. Angenommen es gäbe einen Kreis C mit w(C ) < 0.

⇒ µ(C ) < 0 ⇒ µ⋆ < 0

Beweis.



6

Schritt I

Zeige: Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

−1
2

−4

2

C
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1. Angenommen es gäbe einen Kreis C mit w(C ) < 0.

⇒ µ(C ) < 0 ⇒ µ⋆ < 0

2. Betrachte s-v -Weg π mit k > n − 1 Kanten.

π enthält Kreis C .

Beweis.

⇒



6

Schritt I

Zeige: Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

✓

−1
2

−4

2

C

1. Angenommen es gäbe einen Kreis C mit w(C ) < 0.

⇒ µ(C ) < 0 ⇒ µ⋆ < 0

2. Betrachte s-v -Weg π mit k > n − 1 Kanten.

π enthält Kreis C . Aber w(C ) ≥ 0.

Beweis.

⇒



6

Schritt I

Zeige: Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

✓

−1
2

−4

2

C

1. Angenommen es gäbe einen Kreis C mit w(C ) < 0.

⇒ µ(C ) < 0 ⇒ µ⋆ < 0

2. Betrachte s-v -Weg π mit k > n − 1 Kanten.

π enthält Kreis C . Aber w(C ) ≥ 0. ⇒

Beweis.

⇒



6

Schritt I

Zeige: Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

✓

−1
2

−4

2

C

1. Angenommen es gäbe einen Kreis C mit w(C ) < 0.

⇒ µ(C ) < 0 ⇒ µ⋆ < 0

2. Betrachte s-v -Weg π mit k > n − 1 Kanten.

π enthält Kreis C . Aber w(C ) ≥ 0. w(π \ C )⇒

Beweis.

⇒



6

Schritt I

Zeige: Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

✓

−1
2

−4

2

C

1. Angenommen es gäbe einen Kreis C mit w(C ) < 0.

⇒ µ(C ) < 0 ⇒ µ⋆ < 0

2. Betrachte s-v -Weg π mit k > n − 1 Kanten.

π enthält Kreis C . Aber w(C ) ≥ 0. w(π \ C )⇒ ≤ w(π)

⇒

Beweis.

⇒



6

Schritt I

Zeige: Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

✓

−1
2

−4

2

C

1. Angenommen es gäbe einen Kreis C mit w(C ) < 0.

⇒ µ(C ) < 0 ⇒ µ⋆ < 0

2. Betrachte s-v -Weg π mit k > n − 1 Kanten.

π enthält Kreis C . Aber w(C ) ≥ 0. w(π \ C )⇒ ≤ w(π)

⇒ Es gibt einen kürzesten s-v -Weg mit ≤ n − 1 Kanten.

Beweis.

⇒



6

Schritt I

Zeige: Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

✓
✓

−1
2

−4

2

C

1. Angenommen es gäbe einen Kreis C mit w(C ) < 0.

⇒ µ(C ) < 0 ⇒ µ⋆ < 0

2. Betrachte s-v -Weg π mit k > n − 1 Kanten.

π enthält Kreis C . Aber w(C ) ≥ 0. w(π \ C )⇒ ≤ w(π)

⇒ Es gibt einen kürzesten s-v -Weg mit ≤ n − 1 Kanten.

Beweis.

⇒



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Zeige:



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

?
≤
≥



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

Wegen (*) gilt: δ(s, v) =

(*)



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

Wegen (*) gilt: δ(s, v) = δk(s, v) für ein k∈{0, . . . , n − 1}

(*)



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

Wegen (*) gilt: δ(s, v) = δk(s, v) für ein k∈{0, . . . , n − 1}

(*)



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

Wegen (*) gilt: δ(s, v) = δk(s, v) für ein k∈{0, . . . , n − 1}

(*)

Also gilt δn(s, v) ≥ δk(s, v) für ein k∈{0, . . . , n − 1}



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

Wegen (*) gilt: δ(s, v) = δk(s, v) für ein k∈{0, . . . , n − 1}

(*)

Also gilt δn(s, v) ≥ δk(s, v) für ein k∈{0, . . . , n − 1}

max 0≤k≤n−1 δn(s, v)− δk(s, v) ≥ 0⇒



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

Wegen (*) gilt: δ(s, v) = δk(s, v) für ein k∈{0, . . . , n − 1}

(*)

Also gilt δn(s, v) ≥ δk(s, v) für ein k∈{0, . . . , n − 1}

max 0≤k≤n−1 δn(s, v)− δk(s, v) ≥ 0⇒



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

Wegen (*) gilt: δ(s, v) = δk(s, v) für ein k∈{0, . . . , n − 1}

(*)

Also gilt δn(s, v) ≥ δk(s, v) für ein k∈{0, . . . , n − 1}

max 0≤k≤n−1 δn(s, v)− δk(s, v) ≥ 0⇒ ⇒ Beh.



7

Schritt II

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

Falls µ⋆ = 0, dann gilt:
1. G hat keinen Kreis mit negativem Gewicht und
2. Für jeden Knoten v gilt: δ(s, v) = min0≤k≤n−1 δk(s, v).

Nach Def. von δ gilt: δn(s, v) ≥ δ(s, v)Beweis:

Zeige:

Wegen (*) gilt: δ(s, v) = δk(s, v) für ein k∈{0, . . . , n − 1}

(*)

Also gilt δn(s, v) ≥ δk(s, v) für ein k∈{0, . . . , n − 1}

max 0≤k≤n−1 δn(s, v)− δk(s, v) ≥ 0⇒ ⇒ Beh.
n−k> 0 □



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

s
u

v

C x
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Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

s
u

v

C x w(C ) = 0



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

s
u

v

C x w(C ) = 0−x



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

Zeige:



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

δ(s, u)

Zeige:



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

δ(s, v) ≤ δ(s, u) + x .

δ(s, u)

Klar:

Zeige:



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

δ(s, v) ≤ δ(s, u) + x .

δ(s, u)

Aber warum kann es keinen kürzeren Weg von s nach v geben?

Klar:

Zeige:



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

δ(s, v) ≤ δ(s, u) + x .

δ(s, u)

Aber warum kann es keinen kürzeren Weg von s nach v geben?

Angenommen, es gälte δ(s, v) < δ(s, u) + x .

Klar:

Zeige:



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

δ(s, v) ≤ δ(s, u) + x .

δ(s, u)

Aber warum kann es keinen kürzeren Weg von s nach v geben?

Angenommen, es gälte δ(s, v) < δ(s, u) + x .

δ(s, v) −x < δ(s, u)

Klar:

Zeige:

⇒



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

δ(s, v) ≤ δ(s, u) + x .

δ(s, u)

Aber warum kann es keinen kürzeren Weg von s nach v geben?

Angenommen, es gälte δ(s, v) < δ(s, u) + x .

δ(s, v) −x

δ(s, v)

< δ(s, u)

Klar:

Zeige:

⇒



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

δ(s, v) ≤ δ(s, u) + x .

δ(s, u)

Aber warum kann es keinen kürzeren Weg von s nach v geben?

Angenommen, es gälte δ(s, v) < δ(s, u) + x .

δ(s, v) −x

δ(s, v)

< δ(s, u)

Klar:

Zeige:

⇒



8

Schritt III

Sei C ein Kreis mit Gewicht 0. Seien u, v Knoten auf C .
Sei x das Gewicht des Wegs von u nach v auf C .

δ(s, v) = δ(s, u) + x .

s
u

v

C x w(C ) = 0−x

δ(s, v) ≤ δ(s, u) + x .

δ(s, u)

Aber warum kann es keinen kürzeren Weg von s nach v geben?

Angenommen, es gälte δ(s, v) < δ(s, u) + x .

δ(s, v) −x

δ(s, v)

< δ(s, u) zur Def. von δ.

Klar:

Zeige:

□
⇒
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Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0
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Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0

Bestimme
v ∈ C⋆:
Gehe von s
aus n Kanten.
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Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0

δ(s,C⋆)

i Kanten

Bestimme
v ∈ C⋆:
Gehe von s
aus n Kanten.

u
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Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0

δ(s,C⋆)

i Kanten

n − i Kanten

Bestimme
v ∈ C⋆:
Gehe von s
aus n Kanten.

u



9

Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0

δ(s,C⋆)

i Kanten

n − i Kanten

Bestimme
v ∈ C⋆:
Gehe von s
aus n Kanten.

v

u



9

Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0

δ(s,C⋆)

i Kanten

n − i Kanten

Schritt III für dieses v :
⇒ δn(s, v) = δ(s, v).

Bestimme
v ∈ C⋆:
Gehe von s
aus n Kanten.

v

u
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Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0

δ(s,C⋆)

i Kanten

n − i Kanten

Schritt III für dieses v :
⇒ δn(s, v) = δ(s, v).

⇒ δn(s, v) ≤ δk(s, v) !!

Bestimme
v ∈ C⋆:
Gehe von s
aus n Kanten.

v

u



9

Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0

δ(s,C⋆)

i Kanten

n − i Kanten

Schritt III für dieses v :
⇒ δn(s, v) = δ(s, v).

Aber für welches k gilt
δn(s, v) = δk(s, v)?

⇒ δn(s, v) ≤ δk(s, v) !!

Bestimme
v ∈ C⋆:
Gehe von s
aus n Kanten.

v

u
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Schritt IV

Zeige:
Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

s
w(C⋆)=0

δ(s,C⋆)

i Kanten

n − i Kanten

Schritt III für dieses v :
⇒ δn(s, v) = δ(s, v).

Aber für welches k gilt
δn(s, v) = δk(s, v)?

⇒ δn(s, v) ≤ δk(s, v) !!

Bestimme
v ∈ C⋆:
Gehe von s
aus n Kanten.

z.B. k = n − |C⋆|, denn
w(C⋆) = 0 und |C⋆| ≤ n.

v

u
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Schritt V

Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Zeige:
Falls µ⋆ = 0, dann

min
v∈V (G)

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
=

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

?
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Schritt V

Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Zeige:
Falls µ⋆ = 0, dann

min
v∈V (G)

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
=

Falls µ⋆ = 0, dann gilt für jeden Knoten v

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
≥ 0.

0.
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Schritt V

Falls µ⋆ = 0, dann gibt es einen Knoten v auf dem Kreis C⋆,
so dass

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
= 0.

Zeige:
Falls µ⋆ = 0, dann

min
v∈V (G)

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
=

Falls µ⋆ = 0, dann gilt für jeden Knoten v
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Schritt VII

Es gilt µ⋆ = min
v∈V (G)

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n − k
.

Satz. Ein Kreis C⋆ mit kleinstem durchschnittlichen Kantenge-
wicht (µ(C⋆) = µ⋆) lässt sich in O(VE ) Zeit berechnen.

[Karp, 1978]
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wicht (µ(C⋆) = µ⋆) lässt sich in O(VE ) Zeit berechnen.

Für jedes v ∈ V (G ), berechne

Dies benötigt insgesamt O(VE ) Zeit.

• Setze δ0(s, s) = 0 und für jedes v ̸= s, setze δ0(s, v) = ∞.

• Berechne µ⋆ nach (***) in O(V 2) Zeit.

(***)

□

[Karp, 1978]

δk(s, v) = min
u : uv∈E(G)

δk−1(s, u) + w(u, v).

Das ist ein kleines
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– Übungsaufgaben im Buch (oder im Internet) lösen.
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– Durch die Folien gehen, wichtige Definitionen abschreiben.

– Bei Fragen auf den Folien anhalten und antworten.

• Erstklausur (Mi, 18.02.) oder Zweitklausur (Fr, 10.04.)?



13

Wie lerne ich auf die Klausur?

• Welcher Stoff kommt dran?

Alles außer den Details von Insert/Delete bei RS-Bäumen.
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– Durch die Folien gehen, wichtige Definitionen abschreiben.

– Bei Fragen auf den Folien anhalten und antworten.

• Erstklausur (Mi, 18.02.) oder Zweitklausur (Fr, 10.04.)?

– Sich gegenseitig abfragen.



13

Wie lerne ich auf die Klausur?

• Welcher Stoff kommt dran?

Alles außer den Details von Insert/Delete bei RS-Bäumen.
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Viel Er
folg!

– Sich gegenseitig abfragen.

– In der Woche 23.–27.3. findet ein Repetitorium statt.

(Mehr siehe WueCampus.)
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