
1

Algorithmen und Datenstrukturen

Vorlesung 24:
Problem des Handlungsreisenden (TSP) –

Approximation & exakte Berechnung

Alexander Wolff Wintersemester 2025

2

Letzte Chance!

Anmeldung zur Klausur nur bis 31. Januar.

(Aber die Nachklausur ist auch nicht schlecht – evtl. mit Repetitorium :-)

4 - 10

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G mit Kantenkosten c : E (G) → R≥0

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen Kosten c(K).

(Ein Hamiltonkreis besucht jeden Knoten genau 1×.)

Problem.

■ TSP ist NP-schwer

■ und schwer zu approximieren.

:=
∑

e∈K c(e).

5 - 4

Etwas Geschichte

Der Handlungsreisende – wie er sein soll und was er zu
thun hat, um Aufträge zu erhalten und eines glücklichen
Erfolgs in seinen Geschäften gewiss zu sein.

Von einem alten Commis-Voyageur [1832]

Rekord I: optimale 120-Städte-Tour [Groetschel, 1977]

Rekord II: optimale 15.112-Städte-Tour
[Applegate, Bixby, Chvátal, Cook 2001]

6 - 8

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G mit Kantenkosten c : E (G) → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Geg. gewichteter
vollst. Graph G .

Berechne minimalen Spannbaum MSB.

Algorithmus:

d.h. ∀u, v ,w ∈ V (G) : c(u,w) ≤ c(u, v) + c(v ,w).

u

w

v

6 - 11

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G mit Kantenkosten c : E (G) → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne minimalen Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Algorithmus:

d.h. ∀u, v ,w ∈ V (G) : c(u,w) ≤ c(u, v) + c(v ,w).

u

w

v

6 - 29

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G mit Kantenkosten c : E (G) → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne minimalen Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten, füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v ,w ∈ V (G) : c(u,w) ≤ c(u, v) + c(v ,w).

u

w

v

Optimale TSP-Tour minus eine Kante ist (i.A. nicht minimaler) Spannbaum!

c(ALG) ≤ c(Kreis) 2 · OPT= 2 · c(MSB) ≤
Dreiecksungleichung

Die
”
Kunst“ der unteren Schranke!

7 - 15

Exakte Berechnung: Brute Force

Algorithmus: ■ Für jede Permutation σ von ⟨1, 2, . . . , n⟩:

Berechne die Kosten der Tour durch die Knoten v1, . . . , vn in dieser
Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1)) + c(vσ(n)vσ(1))

■ Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ): O(n) Zeit.

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

Berechnung der nächsten Permutation: ???

Ang. ??? = O(n), dann ist die Laufzeit O(n!)

Speicher: O(n) für: bisher beste, aktuelle & nächste Permutation.

8 - 14

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
⟨1, 2, 3, 4, 5, 6⟩, ⟨1, 2, 3, 4, 6, 5⟩, ⟨1, 2, 3, 5, 4, 6⟩, . . . , ⟨6, 5, 4, 3, 2, 1⟩.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

■ Bestimme größten Index i ∈ {1, . . . , n − 1} mit σ(i)<σ(i + 1).

■ Falls nicht existiert, fertig (σ = letzte Permutation).

■ Sonst bestimme größten Index j mit σ(i) < σ(j).

⟨1, 3, 4, 6, 5, 2⟩
i j

■ Vertausche σ(i) und σ(j).

⟨1, 3, 5, 6, 4, 2⟩
i j

■ Kehre die Teilfolge ⟨σ(i + 1),σ(i + 2), . . . ,σ(n)⟩ um.

⟨1, 3, 5, 2, 4, 6⟩
i

Beispiel:

nn

9 - 19

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)

Genauer: Stirlingformel [James Stirling, 1692–1770]

n! ∼
√
2πn

(n
e

)n

.

Noch genauer: √
2π

√
n
(n
e

)n

≤ n! ≤ e
√
n
(n
e

)n

Für n → ∞ gilt

10 - 17

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈ W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈ W :

T [W , vi] =

T [W , vi] =

c(vj , vi)+T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink ̸=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)OPT =

Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1

vk

{v2, v3, . . . , vn}

11 - 16

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer optimalen Lösung (hier: bottom-up)!

float BellmanHeldKarp
(
Knotenmenge V , Abstände c :V 2→Q≥0

)

mink ̸=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]: O(n) Zeit

Wie viele Paare (W , vi) mit vi ∈ W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

()
n2 · 2n Speicher: O

(
n · 2n

)

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈ W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

12 - 14

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs.

⋆

⋆) Wie wär’s, wenn wir im DP nicht ganz T [·, ·]
speichern würden?

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.

Welches j maximiert
(
n
j

)
? j = n

2
.

Wie groß ist
(

n
n/2

)
? In Θ(2n/

√
n). :-(

Zur Berechnung von T [W , ·] brauchen wir nur die
Einträge T [W ′, ·] mit |W ′| = |W | − 1.

(*1935) (1920–1984)

Richard M. Karp

	Titel
	Das Problem
	Etwas Geschichte
	Was tun?
	Exakte Berechnung: Brute Force
	Wie iteriert man durch alle Permutationen?
	Wie groß ist $\color{mid red} n!$?
	Exakter TSP-Algorithmus: Schneller per DP!
	Der Algorithmus von Bellman, Held \& Karp
	Vergleich

