i.ksi-?é/

N 1! "\‘&?‘Eﬁ

=~y
Algorithmen und Datenstrukturen

Vorlesung 24
Problem des Handlungsreisenden (TSP) —
Approximation & exakte Berechnung

Alexander Wolff Wintersemester 2025

Letzte Chance!
Anmeldung zur Klausur nur bis 31. Januar.

(Aber die Nachklausur ist auch nicht schlecht — evtl. mit Repetitorium :-)

Der Handlungsreisende

SPECIAL COLLECTORS EDITION
DUSTIN JOHN
HOFFMAN MALKOVICH

Arthur Miller's

GOLDEN GLOBE WINNER
BEST ACTOR
DUSTIN HOFFMAN

Der Handlungsreisende

SPECIAL COLLECTORS EDITION

DUSTIN JOHN MAINFRANKEN
HOFFMAN MALKOVICH THEATER
WURZBURG

Arthur Miller’s

GOLDEN GLOBE WINNER
BEST ACTOR
DUSTIN HOFFMAN

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Beispiel.

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Beispiel.

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Gesucht: Hamiltonkreis K in G mit minimalen Kosten ¢(K)

Beispiel.

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Gesucht: Hamiltonkreis K in G mit minimalen Kosten c(K):=), c(e).

Beispiel.

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Gesucht: Hamiltonkreis K in G mit minimalen Kosten c(K):=), c(e).

Beispiel.

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Gesucht: Hamiltonkreis K in G mit minimalen Kosten c(K):=), c(e).

Beispiel.

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Gesucht: Hamiltonkreis K in G mit minimalen Kosten c(K):=), c(e).

Beispiel.
Problem.

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Gesucht: Hamiltonkreis K in G mit minimalen Kosten c(K):=), c(e).

Beispiel.
Problem.

B TSP ist NP-schwer

Das Problem

Definition. Traveling Salesperson Problem (TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>g

Gesucht: Hamiltonkreis K in G mit minimalen Kosten c(K):=), c(e).

Beispiel.
Problem.

m TSP ist NP-schwer o0
B und schwer zu approximieren. O

Etwas Geschichte

Etwas Geschichte

Der Handlungsreisende — wie er sein soll und was er zu
thun hat, um Auftrage zu erhalten und eines gliicklichen
Erfolgs in seinen Geschaften gewiss zu sein.

Von einem alten Commis-Voyageur [1832]

Etwas Geschichte

Der Handlungsreisende — wie er sein soll und was er zu
thun hat, um Auftrage zu erhalten und eines gliicklichen
Erfolgs in seinen Geschaften gewiss zu sein.

Von einem alten Commis-Voyageur [1832]

Rekord I: optimale 120-Stadte-Tour [Groetschel, 1977]

Etwas Geschichte

Der Handlungsreisende — wie er sein soll und was er zu
thun hat, um Auftrage zu erhalten und eines gliicklichen
Erfolgs in seinen Geschaften gewiss zu sein.

Von einem alten Commis-Voyageur [1832]

Rekord I: optimale 120-Stadte-Tour [Groetschel, 1977]

Rekord II: optimale 15.112-Stadte- Tour
|[Applegate, Bixby, Chvatal, Cook 2001}

15,112-city Tour

WEae.. Groetschel's 120-city Tour
j -

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — Rxg

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Was tun? — Mach das Problem leichter!

Problem: Traveling Salesperson Problem

Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — Rxg

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Was tun? — Mach das Problem leichter!

Problem: Traveling Salesperson Problem
u v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>,
'q die die Dreiecksungleichung erfiillen,
w

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
u v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>,

'q die die Dreiecksungleichung erfiillen,

W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
u v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>,

'q die die Dreiecksungleichung erfiillen,

W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
u !v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,

die die Dreiecksungleichung ertiillen,
W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

_ °
Bewels. b

Geg. gewichteter
vollst. Graph G.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>,

u
'q die die Dreiecksungleichung erfiillen,

W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.
°
Bewels. g Algorithmus:
o X Berechne minimalen Spannbaum MSB.
®

Geg. gewichteter
vollst. Graph G.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>,

u
'ﬂ die die Dreiecksungleichung erfiillen,

W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Bewels. Algorithmus:

Berechne minimalen Spannbaum MSB.

Geg. gewichteter
vollst. Graph G.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
u !v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,

die die Dreiecksungleichung ertiillen,
W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Bewels. Algorithmus:

Berechne minimalen Spannbaum MSB.

Was tun? — Mach das Problem leichter!

Problem:

~

Satz.

w

Bewels.

Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.
Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

- 10

Was tun? — Mach das Problem leichter!

Problem:
u.q
Satz.

Bewels.

74

w

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

- 11

Was tun? — Mach das Problem leichter!

Problem:
u.q
Satz.

Bewels.

74

w

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

- 12

Was tun? — Mach das Problem leichter!

Problem:
u.q
Satz.

Bewels.

74

w

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

- 13

Was tun? — Mach das Problem leichter!

Problem:
u.q
Satz.

Bewels.

74

w

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

- 14

Was tun? — Mach das Problem leichter!

Problem:
u.q
Satz.

Bewels.

74

w

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

- 15

Was tun? — Mach das Problem leichter!

Problem:

~

Satz.

w

Bewels.

Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

U berspringe besuchte Knoten,

- 16

Was tun? — Mach das Problem leichter!

Problem:

~

w

Satz.

Bewels.

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

- 17

Was tun? — Mach das Problem leichter!

Problem:

~

w

Satz.

Bewels.

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

- 18

Was tun? — Mach das Problem leichter!

Problem:

~

w

Satz.

Bewels.

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

- 19

Was tun? — Mach das Problem leichter!

Problem:

~

w

Satz.

Bewels.

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

- 20

Was tun? — Mach das Problem leichter!

Problem:

~

w

Satz.

Bewels.

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

- 21

Was tun? — Mach das Problem leichter!

Problem:

~

w

Satz.

Bewels.

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

- 22

Was tun? — Mach das Problem leichter!

Problem:

~

Satz.

w

Bewels.

c(ALG) <

Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,
die die Dreiecksungleichung ertiillen,

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

- 23

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

die die Dreiecksungleichung ertiillen,

u !v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,

W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Bewels. Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

c(ALG) <

Dreiecksungleichung

- 24

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

die die Dreiecksungleichung ertiillen,

u !v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,

w

Gesucht: Hamiltonkreis in G mit minimalen Kosten.
Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.
Bewels. Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

c(ALG) < c¢(Kreis) =

Dreiecksungleichung

- 25

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
u !v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,

die die Dreiecksungleichung ertiillen,

w

Gesucht: Hamiltonkreis in G mit minimalen Kosten.
Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.
Bewels. Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

c(ALG) < c¢(Kreis) = 2-¢(MSB) <

Dreiecksungleichung

- 26

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

die die Dreiecksungleichung ertiillen,

u !v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,

W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.

Bewels. Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

c(ALG) < c(Kreis) = 2-¢(MSB) < 2-0OPT

Dreiecksungleichung

- 27

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

die die Dreiecksungleichung ertiillen,

u !v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,

w

Gesucht: Hamiltonkreis in G mit minimalen Kosten.
Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.
Bewels. Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.
c(ALG) < c(Kreis) = 2-¢(MSB) < 2-0OPT

Dreiecksungleichung Optimale TSP-Tour minus eine Kante ist (i.A. nicht minimaler) Spannbaum!

- 28

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

die die Dreiecksungleichung ertiillen,

u !v Gegeben: unger. vollstandiger Graph G mit Kantenkosten c: E(G) — R>o,

w

Gesucht: Hamiltonkreis in G mit minimalen Kosten.
Satz. Es gibt einen Faktor-2-Approximationsalgorithmus fiir A-TSP.
Bewels. Algorithmus:

Berechne minimalen Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten, fiige ,, Abkiirzungen* ein.

c(ALG) < c(Kreis) = 2-¢(MSB) < 2-0OPT Die ,,Kunst" der unteren Schranke!

Dreiecksungleichung Optimale TSP-Tour minus eine Kante ist (i.A. nicht minimaler) Spannbaum!

- 29

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:

Berechne die Kosten der Tour durch die Knoten vy, ..., Vv, In dieser
Reihenfolge:

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:

Berechne die Kosten der Tour durch die Knoten v;
Reihenfolge:

..... Vv, In dieser

B Gib die kiirzeste Tour zuriick.

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:

Berechne die Kosten der Tour durch die Knoten v;
Reihenfolge:

..... v, In dieser

B Gib die kiirzeste Tour zuriick.

Laufzeit:

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:
Berechne die Kosten der Tour durch die Knoten vy, ..., v, In dieser
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Laufzeit: Anzahl Permutationen von n Objekten:

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:
Berechne die Kosten der Tour durch die Knoten vy, ..., v, In dieser
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:
Berechne die Kosten der Tour durch die Knoten vy, ..., v, In dieser
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:
Berechne die Kosten der Tour durch die Knoten vy, ..., v, In dieser
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o):

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:
Berechne die Kosten der Tour durch die Knoten vy, ..., v, In dieser
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:

Berechne die Kosten der Tour durch die Knoten v;
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.

Berechnung der nachsten Permutation:

V,, In dieser

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:

Berechne die Kosten der Tour durch die Knoten v;
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.

Berechnung der nachsten Permutation: 277

V,, In dieser

Exakte Berechnung: Brute Force

Algorithmus: B Fiir jede Permutation o von (1,2, ..., ny:

Berechne die Kosten der Tour durch die Knoten v;
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Laufzeit: Anzahl Permutationen von n Objekten: n!
Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.
Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 277

Ang. 777 = O(n), dann ist die Laufzeit

V,, In dieser

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

B Fiir jede Permutation o von (1,2,..., ny:

Berechne die Kosten der Tour durch die Knoten v;
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Anzahl Permutationen von n Objekten: n!

Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 277

Ang. 777 = O(n), dann ist die Laufzeit O(n!)

V,, In dieser

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

Speicher:

B Fiir jede Permutation o von (1,2,..., ny:

Berechne die Kosten der Tour durch die Knoten v;
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Anzahl Permutationen von n Objekten: n!

Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 277

Ang. 777 = O(n), dann ist die Laufzeit O(n!)

Vv, In dieser

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

Speicher:

B Fiir jede Permutation o von (1,2,..., ny:

Berechne die Kosten der Tour durch die Knoten v;
Reihenfolge:

B Gib die kiirzeste Tour zuriick.

Anzahl Permutationen von n Objekten: n!

Hilt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 277

Ang. 777 = O(n), dann ist die Laufzeit O(n!)

O(n) fiir: bisher beste, aktuelle & nachste Permutation.

Vv, In dieser

Wie iteriert man durch alle Permutationen?

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).

(1,3,4,6,5,2)

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).

(1,3,4,6,5,2)

/

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).

B Falls nicht existiert, fertig (o = letzte Permutation).

(1,3,4,6,5,2)

/

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).
B Falls nicht existiert, fertig (o = letzte Permutation).

B Sonst bestimme groBten Index j mit o(i) < o(j).

(1,3,4,6,5,2)

/

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).
B Falls nicht existiert, fertig (o = letzte Permutation).

B Sonst bestimme groBten Index j mit o(i) < o(j).

(1,3,4,6,5,2)
I

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).
B Falls nicht existiert, fertig (o = letzte Permutation).

B Sonst bestimme groBten Index j mit o(i) < o(j).

(1,3,4,6,5,2)
I
B Vertausche o(i) und o(j).

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).
B Falls nicht existiert, fertig (o = letzte Permutation).

B Sonst bestimme groBten Index j mit o(i) < o(j).
(1,3,4,6,5,2) —»
I
B Vertausche o(i) und o(j).

- 10

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).
B Falls nicht existiert, fertig (o = letzte Permutation).

B Sonst bestimme groBten Index j mit o(i) < o(j).

(1,3,4,6,5,2) —» (1,3,B 6,8 2)
| |
B Vertausche o(i) und o(j).

- 11

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).
B Falls nicht existiert, fertig (o = letzte Permutation).

B Sonst bestimme groBten Index j mit o(i) < o(j).

(1,3,4,6,5,2) —» (1,3,B 6,8 2)
| I Jn
B Vertausche o(i) und o(j).

B Kehre die Teilfolge (o(i +1),0(i +2),..., a(n)) um.

- 12

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).
B Falls nicht existiert, fertig (o = letzte Permutation).

B Sonst bestimme groBten Index j mit o(i) < o(j).

(1,3,4,6,5,2) —» (1,386,802 —»
I I jn
B Vertausche o(i) und o(j).

B Kehre die Teilfolge (o(i +1),0(i +2),..., a(n)) um.

- 13

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6),(1,2,3,4,6,5), (1,2,3,5,4,6),...,(6,5,4, 3,2, 1),

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
B Bestimme groBten Index i mit o(i/)<o(i 4+ 1).
B Falls nicht existiert, fertig (o = letzte Permutation).

B Sonst bestimme groBten Index j mit o(i) < o(j).

/
(1,3,4,6,5,2) —» (1,3,5,6,4,2) —» (1,3,5,2,4,6)
I I/ n] n

B Vertausche o(i) und o(j).

B Kehre die Teilfolge (o(i +1),0(i +2),..., a(n)) um.

_14

Wie groB3 ist nl 7

nl=1-2-...-n

Wie groB3 ist nl 7

< nl=1-2-...-n <

Wie groB3 ist nl 7

< nl=1-2-...-n < n-n-...-

Wie groB3 ist nl 7

< nl=1-2-...-n

<

Wie groB3 ist nl 7

n/2-n/2-...-nf2 < nl=1-2-...-n

<

Wie groB3 ist nl 7

n/2-n/2-...-n/2 < nl=1-2-...-n

-~

n/2 mal

<

Wie groB3 ist nl 7

n/2-n/2-...-n/2 < nl=1-2-...-n

n/2 mal

<

Wie groB3 ist nl 7

n/2-n/2-...-n/2 < nl=1-2-...-n

n/2 mal

<

Wie groB3 ist nl 7

n/2-n/2-...-n/2 < nl=1-2-...-n

n/2 mal

VAN

Wie groB3 ist nl 7

n/2-n/2-...-n/2 < nl=1-2-...-n

n/2 mal

VAN

- 10

Wie groB3 ist nl 7

n/2-n/2-...-n/2 < nl=1-2-...-n

n/2 mal

VAN

- 11

Wie groB3 ist nl 7

n/2-n/2-...-n/2

n/2 mal

<

nl=1-2-...-n

nl < n =

<

(zlog2 n) f

n .

— 2n|og2 n

n-...:

- 12

Wie groB3 ist nl 7

n/2-n/2-...-n/2

n/2 mal

<

<

nl=1-2-...-n

nl < n =

<

(zlog2 n) f

n .

— on log, n

n-...:

- 13

Wie groB3 ist nl 7

n/2-n/2-...-n/2 < nl=1-2-...-n
n/;rmal
— on/2log, n/2 ~ pl < pn —

<

(zlog2 n) f

n .

— on log, n

n-...:

_14

Wie groB3 ist nl 7

nf2-n/2-...-n/2 < nl=1-2-...-n <
n/;rmal
— n/2log, n/2 < nl<np"= (2Iog2 n)n

nl €

n-n-...:

— on log, n

- 15

Wie groB3 ist nl 7

nf2-n/2-...-n/2 < nl=1-2-...-n <
n/;rmal
— n/2log, n/2 < nl<np"= (2Iog2 n)n

nl 2@(n log n)

n-n-...:

— on log, n

- 16

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <
n/;rmal
— 2n/2|og2n/2 <

Genauer: Stirlingformel

nl=1-2-....-n <

nl < p" = (zlog2 n) i

nl 2@(n log n)

n-n-...:

— on log, n

- 17

Wie groB3 ist n! 7?

nf2-n/2-...-n/2 < nl=1-2-...-n < n-n-...-n =n
n/;rmal

— 2n/2|og2n/2 < pl<np"= (2|og2n)n — onlogy n

- ol € 26(nlogn)

Genauer: Stirlingformel

Fiir n — oo gilt

nl ~ \2mwn (ﬁ) .
e

- 18

Wie groB3 ist n! 7?

nf2-n/2-...-n/2 < n=1-2-...-n < n-n-...-
n/;rmal

— 2n/2|og2n/2 < pl<np"= (2|og2n)n — onlogy n

- ol € 20(nlog)

Genauer: Stirlingformel

Fiir n — oo gilt

Noch genauer:

Exakter TSP-Algorithmus: Schneller per DP!

DYNAMIC

“T"s IMPOSSIBLE. TO USE THE WORD
'DYNAMIC’ IN THE PEJORATIVE
SENSE ... THUS, I THOUGHT ‘DYNAMIC
PROGRAMMING' LJAS A GOOD NAME."

10 -

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

10 -

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:

T[W, v;] := optimale (kiirzeste) Lange eines v;-v;-Wegs

10 -

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

10 -

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

41

10 -

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W ={v;}, i > 1.
T[W, V,'] —

41

10 -

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W ={v;}, i > 1.
TIW,vi] = c(w, V)

41

10 -

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W = {v;}, i > 1: AWy T
TIW,vi] = c(w, V)

Und fiir W mit |[W| > 2, v; € W: U S

T[W, V,'] —

10 -

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W = {v;}, i > 1: AWy T
TIW,vi] = c(w, V)

Und fiir W mit |[W| > 2, v; € W: U S

TW, vi] = min\/jEW\{Vi}

10 -

10 - 10

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W = {v;}, i > 1: AWy T
TIW,vi] = c(w, V)

Und fiir W mit |[W| > 2, v; € W: U S

TIW,vi]= min,cungy TIW \ {vi}, v

10-11

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W = {v;}, i > 1: AWy T
TIW,vi] = c(w, V)

Und fiir W mit |[W| > 2, v; € W: U S

T[W, V,'] — minvjew\{vi} T[W \ {V,'}, V_,] -+

10 - 12

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W = {v;}, i > 1: AWy T
TIW,vi] = c(w, V)

Und fiir W mit |[W| > 2, v; € W: U S

TIW,vi]= min,cungpy TIWNA{vi} vl + c(v;, vi)

10 - 13

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W ={v;}, i > 1.
TIW,vi] = c(w, V)

Und fiir W mit |W| > 2, v; € W: P

TIW,vi]= min,cungpy TIWNA{vi} vl + c(v;, vi)
— OPT =

10 - 14

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W ={v;}, i > 1.
TIW,vi] = c(w, V)

Und fiir W mit |W| > 2, v; € W: P

TIW,vi]= min,cungpy TIWNA{vi} vl + c(v;, vi)

= OPT = miny

10 - 15

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W ={v;}, i > 1.
TIW,vi] = c(w, V)

Und fiir W mit |W| > 2, v; € W: P

TIW,vi]= min,cungpy TIWNA{vi} vl + c(v;, vi)

= OPT = mink?gl T[{VQ, V3, ..., Vn}, Vk:

10 - 16

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W ={v;}, i > 1.
TIW,vi] = c(w, V)

Und fiir W mit |W| > 2, v; € W: P

TIW,vi]= min,cungpy TIWNA{vi} vl + c(v;, vi)

— OPT = mingsy T[H{va, vs,. .., Vnt, Vi] +

10 - 17

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v1} mit v; € W definiere:
T[W, v;] := optimale (kiirzeste) Lange eines vi-v;-Wegs durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Losung rekursiv!

Dann gilt fir W ={v;}, i > 1.
TIW,vi] = c(w, V)

Und fiir W mit |W| > 2, v; € W: P

TIW,vi]= min,cungpy TIWNA{vi} vl + c(v;, vi)

— OPT = mingz1 T[{w,vs,..., Vo by Vil + c(vk, v1)

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

11 -

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

11 -

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

11 -

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
| THvit vil = e(vi, vi)
for j=2ton—1do
foreach W C {v,, ..., Vo mit |W| = do

L

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo

| THvi} vil = ¢(v1, vi)

for j=2ton—1do

foreach W C {v,, ..., Vo mit |W| = do
L foreach v; € W do

i

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Laufzeit: Berechnung von T[W, v{]:

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt’s?

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt’'s? <2"1.p

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt’'s? <2"1.p
= Gesamtlaufzeit € O)

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt’'s? <2"1.p
= Gesamtlaufzeit € O(n* - 2")

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt’'s? <2"1.p
= Gesamtlaufzeit € O(n2 : 2”) Speicher:

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer optimalen Lésung (hier: bottom-up)!

float BeIImanHeIdKarp(Knotenmenge V', Abstande c: V2—>Q20)

for i =2 to ndo
L THvit vi] = e(w, vi)
for j=2ton—1do
foreach W C {v,,..., Vo } mit |W| =, do
foreach v; € W do
L | T[Wwvi] = mingewn gy TIW\{vi} vi]+c(v),vi)

return mingz; T[{v2, v, ..., Vo br Vie] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt’'s? <2"1.p
= Gesamtlaufzeit € O(n2 : 2”) Speicher: O(n : 2”)

Vergleich

Brute Force

Bellman-Held-Karp

Laufzeit

Speicher

Richard M. Karp

Richard E. Bellman

12 -

Vergleich

Brute Force

Bellman-Held-Karp

Laufzeit

Speicher

2@(n log n)

Richard M. Karp

Richard E. Bellman

12 -

Vergleich

Brute Force

Bellman-Held-Karp

Laufzeit

Speicher

2@(n log n)

0, (n2 : 2”)

Richard M. Karp

Richard E. Bellman

12 -

Vergleich

Brute Force

Bellman-Held-Karp

Laufzeit

Speicher

2@(n log n)

O(n2 : 2”)
O(n : 2”)

Richard M. Karp

Richard E. Bellman

12 -

Vergleich

Brute Force

Bellman-Held-Karp

Laufzeit

Speicher

2@(n log n)

O(n)

O(n2 : 2”)
O(n : 2”)

Richard M. Karp

Richard E. Bellman

12 -

Vergleich

Brute Force

Bellman-Held-Karp

Laufzeit

Speicher

O(n)

0, (n2 : 2”)

12 -

Richard M. Karp

Richard E. Bellman

12 -

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit H ez) O(n2 : 2”)
Speicher O(n) O(n-2")

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs.

Richard M. Karp Richard E. Bellman

12 -

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit H ez) O(n2 : 2”)
Speicher O(n) O(n-2")

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs. Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

12 -

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit H ez) O(n2 : 2”)
Speicher O(n) O(n-2") *

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs. Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

*) Wie war's, wenn wir im DP nicht ganz T[-, ‘]

speichern wiirden?

Richard M. Karp Richard E. Bellman

12-10

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit H ez) O(n2 : 2”)
Speicher O(n) O(n-2") *

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs. Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

*) Wie war's, wenn wir im DP nicht ganz T[-, ‘]

speichern wiirden?

Zur Berechnung von T[W,] brauchen wir nur die
Eintrage T[W',] mit |[W'| = |W| - 1.

Richard M. Karp Richard E. Bellman

12-11

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit H ez) O(n2 : 2”)
Speicher O(n) O(n-2") *

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs. Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

*) Wie war's, wenn wir im DP nicht ganz T[-, ‘]
speichern wiirden?

Zur Berechnung von T[W,] brauchen wir nur die
Eintrage T[W',] mit |[W'| = |W| - 1.

Welches j maximiert (7)7

Richard M. Karp Richard E. Bellman

12 - 12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit H ez) O(n2 : 2”)
Speicher O(n) O(n-2") *

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs. Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

*) Wie war's, wenn wir im DP nicht ganz T[-, ‘]
speichern wiirden?

Zur Berechnung von T[W,] brauchen wir nur die
Eintrage T[W',] mit |[W'| = |W| - 1.

Welches j maximiert (7)7 Jj=3.

Richard M. Karp Richard E. Bellman

12 - 13

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit H ez) O(n2 : 2”)
Speicher O(n) O(n-2") *

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs. Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

*) Wie war's, wenn wir im DP nicht ganz T[-, ‘]
speichern wiirden?

Zur Berechnung von T[W,] brauchen wir nur die
Eintrage T[W',] mit |[W'| = |W| - 1.

Welches j maximiert (7)7 Jj=3.

Wie grol3 ist (n'}2)? Richard M. Karp Richard E. Bellman

12-14

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit H ez) O(n2 : 2”)
Speicher O(n) O(n-2") *

Der Bellman-Held-Karp-Algorithmus verringert also die Laufzeit zu Lasten des
Speicherplatzverbrauchs. Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

*) Wie war's, wenn wir im DP nicht ganz T[-, ‘]
speichern wiirden?

Zur Berechnung von T[W,] brauchen wir nur die
Eintrage T[W',] mit |[W'| = |W| - 1.

Welches j maximiert (7)7 Jj=3.
Wie groB ist (n'}z)? In ©(2"/+/n). -(Richard M. Karp Richard E. Bellman

	Titel
	Der Handlungsreisende
	Das Problem
	Etwas Geschichte
	Was tun?
	Exakte Berechnung: Brute Force
	Wie iteriert man durch alle Permutationen?
	Wie groß ist $\color{mid red} n!$?
	Exakter TSP-Algorithmus: Schneller per DP!
	Der Algorithmus von Bellman, Held \& Karp
	Vergleich

