“‘ O —t/
el

Algorithmen und Datenstrukturen

Vorlesung 23:
Greedy- und Approximationsalgorithmen

Alexander Wolff Wintersemester 2025

Operations Research

Optimierung fiir Wirtschaftsablaufe:

B Standortplanung
m Ablaufplanung
B Flottenmanagement

B Pack- und Zuschnittprobleme

Werkzeuge:

Statistik, Algorithmen, Wahrscheinlichkeitstheorie, Spieltheorie, Graphentheorie,
mathematische Programmierung, Simulation. ..

Ein einfaches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {ay, ..., an} von Aktivititen mit a; = [s1, €1), ..., an = [sn, €n).

@ O
M
® O

Aktivitadten a; und a; sind kompatibel, wenn a; N a; = .

Die Aktivitaten in A" C A sind paarweise kompatibel, wenn fiir jedes Paar
aj, aj € A’ gilt, dass a; und a; kompatibel sind.

eine groBtmogliche Menge paarweise kompatibler Aktivitaten.

Aktivitaten (a 1€), die gleiche Ressource benutzen

Ein kleiner technischer Trick

Wir nummerieren die Aktivitaten so,
dass fiir die Endtermine gilt e < e < --- < ¢g,.

o)

®
®® | OO
@)

Charakterisierung optimaler Losungen

ldee:

Intuition:

ak—)

[@]
Ak—g

Satz.

Bewelis.

Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit friihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay
beginnen.

Sei L, eine optimale Lésung von Ay.

Falls Intuition korrekt, dann ist {a; } U Ly optimal.

Sei Ai # (0. Sei an,, Aktivitit mit frithester Endzeit in Ay. optimale
= es gibt eine opt. Losung von Ay, die a,, enthalt. Teilstruktur!

Austauschargument!

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m inkrementiert?
Insgesamt, iiber alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive lduft (ohne Sortieren) in ©(n) Zeit.

Greedy — iterativ

Greedylteratlve(lnt[] s, int[] e)
n = s.length
if n =0 then return
L = {31}
k=1
for m=2to ndo

if s|m] > e[k| then
L=LU{an}
i k=m
return L
Laufzeit? Greedylterative |duft ebenfalls in ©(n) Zeit.

Bemerkung: Greedylterative berechnet dieselbe optimale Losung wie GreedyRecursive
— die , linkeste"”.

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Losung.

3. Leige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.
4. Beweise, dass die Greedy-Wahl , sicher” ist (vgl. Kruskal!).

5. Entwickle einen rekursiven Greedy-Algorithmus.

6. Konvertiere den rekursiven in einen iterativen Algorithmus.

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

— Was hat guM mit unserem Ablaufplanungsproblem zu tun?

— Welche Graphen kommen bei der Ablaufplanung nicht vor?

— Kann man guM mittels dynamischer Programmierung oder Greedy-Alg. [6sen?

Ein ahnliches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {a;,...,a,} von halboffenen Intervallen,
mit a; = [s;,) firi=1,..., n.

Fiir die Endpunkte gelte 1 < e, < -+ < g,,.

o——O a2
® O a3

eine Menge A" C A paarweise disjunkter Intervalle,
deren Gesamtlange ¢(A") maximal ist.

Intervalle = Prozesse, die die gleiche Ressource nutzen;

der Gesamtertrag ist proportional zur Auslastung.

10 -

Greedy?

1. Versuch:
Gegenbsp.:
2. Versuch:

Gegenbsp.:

Aufgabe:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—O
® O

Nimm langste Aktivitat,
streiche dazu inkompatible Aktivitaten und iteriere.
1 1 1

® ON _ Oe O

1+ ¢

Konnen Sie den 2. GA in O(nlog n) Zeit implementieren?
Tipp: Gehen Sie so dhnlich wie Kruskal vor!

11-10

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fuari=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

<] und
3
@—0
@ O
o o Ly
® O
® O
@ O
@ O |
o————) 2

DanngiItA:GlUGgU---UGk und L:L1UL2UULk

12 - 14

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1 1
o oe oe ol;
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

= OPT = /(L) = S5, (L) < 335, tg) = 3¢(G)
= ¢(G) > OPT/3
= 2. GA liefert immer mind. 1/3 der maximalen Gesamtldnge.

Also ist der 2. GA ein Faktor-(1/3)-Approximationsalgorithmus.

13-13

14 - 16

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

.

i

sl Tohg
Sei 1 ein Maximierungsproblem. Ablaufplanung E
Sei ¢ die Zielfunktion von [1: Losung — Q>o. (=4 !
:=. :f'."-“"
Sei v eine Zahl < 1. v=1/3
Ein Algorithmus A heiBt y-Approximation, wenn 1/3-Approximation

liefert Menge von
Aktivitaten, deren

m A fir jede Instanz | von [] eine Losung A(/) Gesamtiange
berechnet, so dass mindestens 1/3 der

maximal moglichen

Lange ist. Bertrand Russell
C(A(I)) > - (1872-1970)
((optimale Lésung) OPT(/) —

GroBe der Instanz |/

B die Laufzeit von A polynomiell in [/] ist. O(nlog n)

15- 14

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

@rm——()
———oO
® O
Ak e——O
® O
® O
Orm—)
'S 4 o
® o 9

optimale

— einem letzten Intervall a5 und ,
Teilstruktur!

Eine optimale Losung fiir A; besteht aus: }
— einer optimalen Losung fur Ag.

Also gilt fiir den Wert ¢; einer optimalen Losung fiir A;:

Ci = MaXg, cA, ck+€(ak)

16 - 16

...eln Dynamisches Programm!

o ~[mtnen & 1] SESECINANG ENES) 01
Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE
Also geniigt es|cq, ..., Cni1|zu berechnen, wobel ¢c; = 0.
n
Laufzeit? O(n?) Schreiben Sie den Pseudocode!

Resultate:

B Der 2. Greedy-Alg. findet in O(nlog n) Zeit eine Losung, die mindestens 1/3 des maximalen
Ertrags garantiert.

m Unser DP findet in O(n?) Zeit eine Lésung mit maximalem Ertrag.
Trade-Off zwischen Zeit und Qualitat!

	Titel
	Operations Research
	Ein einfaches Problem der Ablaufplanung
	Charakterisierung optimaler Lösungen
	Greedy -- rekursiv
	Greedy -- iterativ
	Die Greedy-Strategie
	Food for Thought
	Ein ähnliches Problem der Ablaufplanung
	Greedy?
	Wie gut/schlecht ist der 2. GA?
	Approxi... hä?
	Ein exakter Algorithmus\dots
	\dots ein Dynamisches Programm!

