“‘ O —t/
el

Algorithmen und Datenstrukturen

Vorlesung 23:
Greedy- und Approximationsalgorithmen

Alexander Wolff Wintersemester 2025

Operations Research

Optimierung fiir Wirtschaftsablaufe:

B Standortplanung
m Ablaufplanung
B Flottenmanagement

B Pack- und Zuschnittprobleme

Operations Research

Optimierung fiir Wirtschaftsablaufe:

B Standortplanung
m Ablaufplanung
B Flottenmanagement

B Pack- und Zuschnittprobleme

Werkzeuge:

Statistik, Algorithmen, Wahrscheinlichkeitstheorie, Spieltheorie, Graphentheorie,
mathematische Programmierung, Simulation. ..

Operations Research

Optimierung fiir Wirtschaftsablaufe:

B Standortplanung
m Ablaufplanung
B Flottenmanagement

B Pack- und Zuschnittprobleme

Werkzeuge:

Statistik, Algorithmen, Wahrscheinlichkeitstheorie, Spieltheorie, Graphentheorie,
mathematische Programmierung, Simulation. ..

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A= {ay,..., an} von Aktivititen mit a; = [s1, €1)
o O
® O
o O
o O o O
o—-O © O ® O
® O &——0O © O

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A= {ay,..., an} von Aktivititen mit a; = [s1, €1)
o O
M
o O
o O o O
() @ O ® O
® O &——0O © O

Aktivitadten a; und a; sind kompatibel, wenn a; N a; = .

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A= {ay,..., an} von Aktivititen mit a; = [s1, €1), ..., an = [sn, €n).

®
O

Aktivitadten a; und a; sind kompatibel, wenn a; N a; = .

Die Aktivitaten in A’ C A sind paarweise kompatibel, wenn fiir jedes Paar
aj, aj € A’ gilt, dass a; und a; kompatibel sind.

Ein einfaches Problem der Ablaufplanung

Gegeben:

Gesucht:

Menge A = {ay, ..., an} von Aktivititen mit a; = [s1, €1), ..., an = [sn, €n).

®
O

Aktivitadten a; und a; sind kompatibel, wenn a; N a; = .

Die Aktivitaten in A’ C A sind paarweise kompatibel, wenn fiir jedes Paar
aj, aj € A’ gilt, dass a; und a; kompatibel sind.

eine groBtmogliche Menge paarweise kompatibler Aktivitaten.

Ein einfaches Problem der Ablaufplanung

Gegeben:

Gesucht:

Menge A = {ay, ..., an} von Aktivititen mit a; = [s1, €1), ..., an = [sn, €n).

@ O
M
® O

Aktivitadten a; und a; sind kompatibel, wenn a; N a; = .

Die Aktivitaten in A" C A sind paarweise kompatibel, wenn fiir jedes Paar
aj, aj € A’ gilt, dass a; und a; kompatibel sind.

eine groBtmogliche Menge paarweise kompatibler Aktivitaten.

Ein einfaches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {ay, ..., an} von Aktivititen mit a; = [s1, €1), ..., an = [sn, €n).

@ O
M
® O

Aktivitadten a; und a; sind kompatibel, wenn a; N a; = .

Die Aktivitaten in A" C A sind paarweise kompatibel, wenn fiir jedes Paar
aj, aj € A’ gilt, dass a; und a; kompatibel sind.

eine groBtmogliche Menge paarweise kompatibler Aktivitaten.

Ein einfaches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {ay, ..., an} von Aktivititen mit a; = [s1, €1), ..., an = [sn, €n).

@ O
M
® O

Aktivitadten a; und a; sind kompatibel, wenn a; N a; = .

Die Aktivitaten in A" C A sind paarweise kompatibel, wenn fiir jedes Paar
aj, aj € A’ gilt, dass a; und a; kompatibel sind.

eine groBtmogliche Menge paarweise kompatibler Aktivitaten.

Aktivitaten (a 1€), die gleiche Ressource benutzen

Ein kleiner technischer Trick

Wir nummerieren die Aktivitaten so,
dass fiir die Endtermine gilt e < e < --- < ¢g,.

® O
® O
® O
® O ® O
o—O © O ® O
® O &——0O © O

Ein kleiner technischer Trick

Wir nummerieren die Aktivitaten so,
dass fiir die Endtermine gilt e < e < --- < ¢g,.

o)

®
®® | OO
@)

Charakterisierung optimaler Losungen

Charakterisierung optimaler Losungen

Idee: Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Charakterisierung optimaler Losungen

Idee: Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Intuition: Die Aktivitat a; mit friihester Endzeit

Charakterisierung optimaler Losungen

Idee: Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Intuition: Die Aktivitat a; mit frihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Charakterisierung optimaler Losungen

Idee: Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Intuition: Die Aktivitat a; mit frihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

ay =——a=_, Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay

@ O

Jk &= beginnen.

Charakterisierung optimaler Losungen

ldee:

Intuition:

ak—)

[@]
Ak—g

Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit friihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay
beginnen.

Sei L, eine optimale Lésung von Ay.

Charakterisierung optimaler Losungen

ldee:

Intuition:

ak—)

[@]
Ak—g

Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit friihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay
beginnen.

Sei L, eine optimale Lésung von Ay.

Falls Intuition korrekt, dann ist {a; } U Ly optimal.

Charakterisierung optimaler Losungen

ldee:

Intuition:

ak—)

[@]
Ak—g

Satz.

Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit friihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay
beginnen.

Sei L, eine optimale Lésung von Ay.

Falls Intuition korrekt, dann ist {a; } U Ly optimal.

Sei Ai # (0. Sei an,, Aktivitit mit frithester Endzeit in Ay.

Charakterisierung optimaler Losungen

ldee:

Intuition:

ak—)

[@]
Ak—g

Satz.

Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit friihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay
beginnen.

Sei L, eine optimale Lésung von Ay.

Falls Intuition korrekt, dann ist {a; } U Ly optimal.

Sei Ai # (0. Sei an,, Aktivitit mit frithester Endzeit in Ay.
= es gibt eine opt. Losung von Ay, die a,, enthalt.

Charakterisierung optimaler Losungen

ldee:

Intuition:

ak—)

[@]
Ak—g

Satz.

Bewelis.

Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit friihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay
beginnen.

Sei L, eine optimale Lésung von Ay.

Falls Intuition korrekt, dann ist {a; } U Ly optimal.

Sei Ai # (0. Sei an,, Aktivitit mit frithester Endzeit in Ay.
= es gibt eine opt. Losung von Ay, die a,, enthalt.

Charakterisierung optimaler Losungen

ldee:

Intuition:

ak—)

[@]
Ak—g

Satz.

Bewelis.

Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit friihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay
beginnen.

Sei L, eine optimale Lésung von Ay.

Falls Intuition korrekt, dann ist {a; } U Ly optimal.

Sei Ai # (0. Sei an,, Aktivitit mit frithester Endzeit in Ay.
= es gibt eine opt. Losung von Ay, die a,, enthalt.

Austauschargument!

Charakterisierung optimaler Losungen

ldee:

Intuition:

ak—)

[@]
Ak—g

Satz.

Bewelis.

Sei L optimale Losung fiir A.
Welche Aktivitat hat gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit friihester Endzeit —
well a; die gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der Aktivitaten, die nach Ablauf von ay
beginnen.

Sei L, eine optimale Lésung von Ay.

Falls Intuition korrekt, dann ist {a; } U Ly optimal.

Sei Ai # (0. Sei an,, Aktivitit mit frithester Endzeit in Ay. optimale
= es gibt eine opt. Losung von Ay, die a,, enthalt. Teilstruktur!

Austauschargument!

Greedy — rekursiv

Satz. Sei Ai # (0. Sei an,, Aktivitit mit frithester Endzeit in Ay. optimale
= es gibt eine opt. Losung von Ay, die a,, enthalt. Teilstruktur!

Greedy — rekursiv

Greedy — rekursiv

Greedy — rekursiv

Greedy — rekursiv

Greedy — rekursiv

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while

L

return {a,,} U GreedyRecursiveMain(s, e, m)

do . -
1 Ak Am
dk o o
@ O a
® o m
° o 2 o

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1

return {a,,} U GreedyRecursiveMain(s, e, m)

do ——
1 Ak Am
dk o o
@ O a
® o m
° o 2 o

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1

if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

a
0 a1 e A A
k m
dk o o
@ O a
@ O m
@ s 0 O

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1

if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

d0

[1) [o]e}
o)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1

if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

d0

[1) [o]e}
o)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

[1) [o]e}
o)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

[1) [o]e}
o)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

[1) [o]e}
o)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

[1) [o]e}
o)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

[1) [o]e}
o)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

[1) [o]e}
o)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = —oc

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

(1)
(@)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Greedy — rekursiv

Laufzeit?

- 27

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)
GreedyRecursiveMain(int[] s, int[] e, int k)

m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1

if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m inkrementiert?

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1

if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m inkrementiert?
Insgesamt, iiber alle rekursiven Aufrufe, n Mal.

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m inkrementiert?
Insgesamt, iiber alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive lduft (ohne Sortieren) in ©(n) Zeit.

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m inkrementiert?
Insgesamt, iiber alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive lduft (ohne Sortieren) in ©(n) Zeit.

Greedy — rekursiv

iterativ!
GreedyRecursive(int[] s, int[] e)
e[0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m= k+ 1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m inkrementiert?
Insgesamt, iiber alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive lduft (ohne Sortieren) in ©(n) Zeit.

Schreiben Sie
Greedy —}L'rl:l'r_tlﬁ Ll Greedylterative(int[]s, int[]e)!
Iterativ:

;GreedyRecursive(int[] s, int[] e)
e|l0] = —o0

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m=k+1; n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m inkrementiert?
Insgesamt, iiber alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive lduft (ohne Sortieren) in ©(n) Zeit.

- 33

Greedy — iterativ

Greedy — iterativ

Greedylterative(int[] s, int[] e)
. n=s.length

if n =0 then return ()

[= {31}

k=1

for m=2to ndo

if s|m] > e[k| then
L=LU{an}
i k=m
return L

. o S
@ O am
G
@

Greedy — iterativ

Laufzeit?

Greedy — iterativ

Greedylteratlve(lnt[] s, int[] e)

n = s.length

if n =0 then return
[= {31}

k=1

for m=2to ndo

if s|m] > e[k| then
L=LU{an}
i k=m
return L

Laufzeit? Greedylterative |duft ebenfalls in ©(n) Zeit.

Greedy — iterativ

Greedylteratlve(lnt[] s, int[] e)
n = s.length
if n =0 then return
L = {31}
k=1
for m=2to ndo

if s|m] > e[k| then
L=LU{an}
i k=m
return L
Laufzeit? Greedylterative |duft ebenfalls in ©(n) Zeit.

Bemerkung: Greedylterative berechnet dieselbe optimale Losung wie GreedyRecursive

Greedy — iterativ

Greedylteratlve(lnt[] s, int[] e)
n = s.length
if n =0 then return
L = {31}
k=1
for m=2to ndo

if s|m] > e[k| then
L=LU{an}
i k=m
return L
Laufzeit? Greedylterative |duft ebenfalls in ©(n) Zeit.

Bemerkung: Greedylterative berechnet dieselbe optimale Losung wie GreedyRecursive
— die , linkeste"”.

Die Greedy-Strategie

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Losung.

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Losung.

3. Leige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.
2. Entwickle eine rekursive Losung.

3. Leige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

4. Beweise, dass die Greedy-Wahl , sicher” ist (vgl. Kruskal!).

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Losung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.
4. Beweise, dass die Greedy-Wahl , sicher” ist (vgl. Kruskal!).

5. Entwickle einen rekursiven Greedy-Algorithmus.

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Losung.

3. Leige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.
4. Beweise, dass die Greedy-Wahl , sicher” ist (vgl. Kruskal!).

5. Entwickle einen rekursiven Greedy-Algorithmus.

6. Konvertiere den rekursiven in einen iterativen Algorithmus.

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

— Was hat guM mit unserem Ablaufplanungsproblem zu tun?

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

— Was hat guM mit unserem Ablaufplanungsproblem zu tun?

— Welche Graphen kommen bei der Ablaufplanung nicht vor?

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

— Was hat guM mit unserem Ablaufplanungsproblem zu tun?

— Welche Graphen kommen bei der Ablaufplanung nicht vor?

— Kann man guM mittels dynamischer Programmierung oder Greedy-Alg. [6sen?

Ein ahnliches Problem der Ablaufplanung

Gegeben: Menge A= {ay,..., an} von halboffenen Intervallen,

mit a; = [s;,) fir i =1,..., n.
Fiir die Endpunkte gelte 1 < e, < -+ < g,,.

® O dl

e———O a2
® O a3
e——O
® o)
® o)
e—oO
e—oO
® o)
@ O dn—1
® O an

10 -

Ein ahnliches Problem der Ablaufplanung

Gegeben:

Gesucht:

Menge A = {ay, ..., an} von halboffenen Intervallen,

mit a; = [s;,) fir i =1,..., n.
Fiir die Endpunkte gelte 1 < e, < -+ < g,,.

® O dl

e———O a2
® O a3
e——O
® o)
® o)
e—oO
e—oO
® o)
@ O dn—1
® O an

eine Menge A" C A paarweise disjunkter Intervalle,
deren Gesamtlange ¢(A") maximal ist.

10 -

Ein ahnliches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {a;,...,a,} von halboffenen Intervallen,
mit a; = [s;,) firi=1,..., n.

Fiir die Endpunkte gelte 1 < e, < -+ < g,,.

® O di
e———O a2
® O a3
e——O
® o)
® o)
e—oO
e—oO
® o)
@ O dn—1
® O an

eine Menge A" C A paarweise disjunkter Intervalle,
deren Gesamtlange ¢(A") maximal ist.

Intervalle = Prozesse, die die gleiche Ressource nutzen;

der Gesamtertrag ist proportional zur Auslastung.

10 -

Ein ahnliches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {a;,...,a,} von halboffenen Intervallen,
mit a; = [s;,) firi=1,..., n.

Fiir die Endpunkte gelte 1 < e, < -+ < g,,.

® O di
o———0 a2
® O a3
e——O
® O
® O
e—O
—oO
® o)
- O dn—1
® O an

eine Menge A" C A paarweise disjunkter Intervalle,
deren Gesamtlange ¢(A") maximal ist.

Intervalle = Prozesse, die die gleiche Ressource nutzen;

der Gesamtertrag ist proportional zur Auslastung.

10 -

Ein ahnliches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {a;,...,a,} von halboffenen Intervallen,
mit a; = [s;,) firi=1,..., n.

Fiir die Endpunkte gelte 1 < e, < -+ < g,,.

® O di
o———0 a2
® O a3
e——O
® O
® O
e—O
—oO
® o)
- O dn—1
® O an

eine Menge A" C A paarweise disjunkter Intervalle,
deren Gesamtlange ¢(A") maximal ist.

Intervalle = Prozesse, die die gleiche Ressource nutzen;

der Gesamtertrag ist proportional zur Auslastung.

10 -

Ein ahnliches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {a;,...,a,} von halboffenen Intervallen,
mit a; = [s;,) firi=1,..., n.

Fiir die Endpunkte gelte 1 < e, < -+ < g,,.

o——O a2
® O a3

eine Menge A" C A paarweise disjunkter Intervalle,
deren Gesamtlange ¢(A") maximal ist.

Intervalle = Prozesse, die die gleiche Ressource nutzen;

der Gesamtertrag ist proportional zur Auslastung.

10 -

Ein ahnliches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {a;,...,a,} von halboffenen Intervallen,
mit a; = [s;,) firi=1,..., n.

Fiir die Endpunkte gelte 1 < e, < -+ < g,,.

o——O a2
® O a3

eine Menge A" C A paarweise disjunkter Intervalle,
deren Gesamtlange ¢(A") maximal ist.

Intervalle = Prozesse, die die gleiche Ressource nutzen;

der Gesamtertrag ist proportional zur Auslastung.

10 -

Greedy?

Greedy?

1. Versuch:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

11 -

Greedy?

1. Versuch:

Gegenbsp.:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

11 -

Greedy?

1. Versuch:

Gegenbsp.:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—-oO
®

11 -

Greedy?

1. Versuch:
Gegenbsp.:

2. Versuch:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—-oO

11 -

Greedy?

1. Versuch:
Gegenbsp.:

2. Versuch:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—-oO

Nimm langste Aktivitat,
streiche dazu inkompatible Aktivitaten und iteriere.

11 -

Greedy?

1. Versuch:
Gegenbsp.:
2. Versuch:

Gegenbsp.:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—-oO

Nimm langste Aktivitat,
streiche dazu inkompatible Aktivitaten und iteriere.

11 -

Greedy?

1. Versuch:
Gegenbsp.:
2. Versuch:

Gegenbsp.:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—-oO
®

Nimm langste Aktivitat,
streiche dazu inkompatible Aktivitaten und iteriere.
1 1 1

® ON _ Oe O

1+ ¢

11 -

Greedy?

1. Versuch:
Gegenbsp.:
2. Versuch:

Gegenbsp.:

Aufgabe:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—O
® O

Nimm langste Aktivitat,
streiche dazu inkompatible Aktivitaten und iteriere.
1 1 1

® ON _ Oe O

1+ ¢

Konnen Sie den 2. GA in O(nlog n) Zeit implementieren?

11 -

Greedy?

1. Versuch:
Gegenbsp.:
2. Versuch:

Gegenbsp.:

Aufgabe:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—O
® O

Nimm langste Aktivitat,
streiche dazu inkompatible Aktivitaten und iteriere.
1 1 1

® ON _ Oe O

1+ ¢

Konnen Sie den 2. GA in O(nlog n) Zeit implementieren?
Tipp: Gehen Sie so dhnlich wie Kruskal vor!

11-10

Wie gut/schlecht ist der 2. GA?

®® | OO
@)

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.

®$® | OO
@)

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).

® O
@——0
® O
® O
® O
® O
@ O
® O

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Firi=1,..., ksei GG={acA|lang # 0}\(G

® O
@—0
® O
[_ O
® O
® O
@ O
® O

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fuari=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

® O
@—0
® O
[_ O
® O
® O
@ O
® O

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fuari=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

® O
@—0
@ O
® O
® O
® O
@ O
® O

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fuari=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

© o =L und
@—0
@ O
o o Ly
® O
® O
. ° o

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fuari=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

<] und
3
@—0
@ O
o o Ly
® O
® O
@ O
@ O |
o————) 2

Dann gilt A= GiUGU --- UGy

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fuari=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

<] und
3
@—0
@ O
o o Ly
® O
® O
@ O
@ O |
o————) 2

Dann gilt A= GiUGU --- UGy

12 -

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.

Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fur/=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

© o =L und
3
@—0
@ O
o o Ly
® O
® O
@ O
@ O |
o————) 2

Dann gilt A= GiUGU --- UGy

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.

Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fur/=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

© o =L und
3
@—0
@ O
o o Ly
® O
® O
@ O
@ O |
o————) 2

Dann gilt A= GiUGU --- UGy

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.

Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fur/=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

© o =L und
3
@—0
@ O
o o Ly
® O
® O
@ O
@ O |
o————) 2

Dann gilt A= GiUGU --- UGy

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fuari=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

<] und
3
@—0
@ O
o o Ly
® O
® O
@ O
@ O |
o————) 2

DanngiItA:GlUGgU---UGk und L:L1UL2UULk

12-13

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,&,---, gk} C A die Greedy-Losung (in dieser Rf.).
Fuari=1,..., kseiG;:{a€A|aﬂg,-;é@}\(Glu---UG,-_l)

<] und
3
@—0
@ O
o o Ly
® O
® O
@ O
@ O |
o————) 2

DanngiItA:GlUGgU---UGk und L:L1UL2UULk

12 - 14

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1
® O @ ON _

O O
14 ¢ 8i

13 -

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1
® ON ON _

O O
14 ¢ 8i

Bewels.

13 -

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1 1
® ON ON _

® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

13 -

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).
1 1 1

® ON _ ON
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;

13 -

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).
1 1 1

® ON _ ON
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

13 -

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1 1
® ON _ ON
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

13 -

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).
1 1 1

® ON _ ON
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

~ Zf'(:l (L) < 32?:1 ¢(gi)

13 -

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).
1 1 1

® ON _ ON
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

= S (L) < 335 g = 34(G)

13 -

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).
1 1 1

® ON _ ON
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

= ULy = S, L) < 35K Ug) = 3¢(G)

13 -

13-10

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).
1 1 1

o oe oe ol;
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

= OPT = £(L) = I, L) <355, le) = 3¢(G)

13-11

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1 1
o oe oe ol;
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

= OPT = £(L) = I, L) <355, le) = 3¢(G)
= {(G) > OPT/3

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1 1
o oe oe ol;
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

= OPT = £(L) = I, L) <355, le) = 3¢(G)
= {(G) > OPT/3

= 2. GA liefert immer mind. 1/3 der maximalen Gesamtldnge.

13-12

Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1 1
o oe oe ol;
® O
l1+e i
Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

= OPT = /(L) = S5, (L) < 335, tg) = 3¢(G)
= ¢(G) > OPT/3
= 2. GA liefert immer mind. 1/3 der maximalen Gesamtldnge.

Also ist der 2. GA ein Faktor-(1/3)-Approximationsalgorithmus.

13-13

Approxi. .. ha?

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

14 -

Bertrand Russell
(1872-1970)

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

Sei 1 ein Maximierungsproblem.

Bertrand Russell
(1872-1970)

14 -

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

Sei 1 ein Maximierungsproblem. Ablaufplanung

Bertrand Russell
(1872-1970)

14 -

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

Sei 1 ein Maximierungsproblem. Ablaufplanung

Sei ¢ die Zielfunktion von [1: Lésung — Q>o.

Bertrand Russell
(1872-1970)

14 -

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

Sei 1 ein Maximierungsproblem. Ablaufplanung

Sei ¢ die Zielfunktion von [I: Losung — Q>o. =/

Bertrand Russell
(1872-1970)

14 -

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

Sei 1 ein Maximierungsproblem. Ablaufplanung
Sei ¢ die Zielfunktion von [I: Losung — Q>o. =/
Sei v eine Zahl < 1. v=1/3

Bertrand Russell
(1872-1970)

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

Sei 1 ein Maximierungsproblem. Ablaufplanung
Sei ¢ die Zielfunktion von [I: Losung — Q>o. =/
Sei v eine Zahl < 1. v=1/3

Ein Algorithmus A heiBt v-Approximation, wenn

ey
R
.-.:1-

= i
e

Bertrand Russell
(1872-1970)

X
e | . Ak
o
L]

14 -

A i
B
ARREE

$) Sa
1_'|" i !"' 0)

o

4
e - -
e

14 -

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

P
Sei 1 ein Maximierungsproblem. Ablaufplanung Ko o e
N G
Sei ¢ die Zielfunktion von [1: Lésung — Q>o. (=1 ! - '
Sei v eine Zahl < 1. v=1/3

Ein Algorithmus A heiBt v-Approximation, wenn

m A fiir jede Instanz | von [1 eine Losung A(/)
berechnet, so dass

Bertrand Russell
C(A(I)) > ~y (1872-1970)
OPT(/) —

14 - 10

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

ey
,_ :'.':‘h \"..-!ﬂ- EE
f' SN
i
% FH
I

Sei [1 ein Maximierungsproblem. Ablaufplanung X N
Sei ¢ die Zielfunktion von [I: Losung — Q>o. (="

Sei v eine Zahl < 1. v=1/3

Ein Algorithmus A heiBt v-Approximation, wenn 1/3-Approximation

liefert Menge von
Aktivitaten, deren

m A fir jede Instanz | von [] eine Losung A(/) Gesamtiange
berechnet, so dass mindestens 1/3 der

maximal moglichen

Lange ist. Bertrand Russell
¢(A()) N (1872-1970)
=7
OPT(/)

14 - 11

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

ey
,_ :'.':‘h \"..-!ﬂ- EE
f' SN
i
% FH
I

Sei [1 ein Maximierungsproblem. Ablaufplanung X N
Sei ¢ die Zielfunktion von [I: Losung — Q>o. (="

Sei v eine Zahl < 1. v=1/3

Ein Algorithmus A heiBt v-Approximation, wenn 1/3-Approximation

liefert Menge von
Aktivitaten, deren

m A fir jede Instanz | von [] eine Losung A(/) Gesamtiange
berechnet, so dass mindestens 1/3 der

maximal moglichen

Lange ist. Bertrand Russell
¢(A()) N (1872-1970)
=7
OPT(/)

14 - 12

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

Sei 1 ein Maximierungsproblem. Ablaufplanung
Sei ¢ die Zielfunktion von [1: Lésung — Q>o. =/

Sei v eine Zahl < 1. v=1/3

Ein Algorithmus A heiBt v-Approximation, wenn 1/3-Approximation

liefert Menge von
Aktivitaten, deren

m A fir jede Instanz | von [] eine Losung A(/) Gesamtiange
berechnet, so dass mindestens 1/3 der

maximal moglichen

Lange ist. Bertrand Russell
C(A(I)) > - (1872-1970)
((optimale Lésung) OPT(/) —

14 - 13

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.

Sei 1 ein Maximierungsproblem. Ablaufplanung
Sei ¢ die Zielfunktion von [1: Lésung — Q>o. =/

Sei v eine Zahl < 1. v=1/3

Ein Algorithmus A heiBt v-Approximation, wenn 1/3-Approximation

liefert Menge von
Aktivitaten, deren

m A fir jede Instanz | von [] eine Losung A(/) Gesamtiange
berechnet, so dass mindestens 1/3 der

maximal moglichen

Lange ist. Bertrand Russell
C(A(I)) > - (1872-1970)
((optimale Lésung) OPT(/) —

m die Laufzeit von A polynomiell in |/] ist.

14 - 14

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.

Sei 1 ein Maximierungsproblem. Ablaufplanung
Sei ¢ die Zielfunktion von [1: Lésung — Q>o. =/

Sei v eine Zahl < 1. v=1/3

Ein Algorithmus A heiBt v-Approximation, wenn 1/3-Approximation

liefert Menge von
Aktivitaten, deren

m A fir jede Instanz | von [] eine Losung A(/) Gesamtiange
berechnet, so dass mindestens 1/3 der

maximal moglichen

Lange ist. Bertrand Russell
C(A(I)) > - (1872-1970)
((optimale Lésung) OPT(/) —

B die Laufzeit von A polynomiell in |/| ist.

14 - 15

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.

Sei 1 ein Maximierungsproblem. Ablaufplanung
Sei ¢ die Zielfunktion von [1: Lésung — Q>o. =/

Sei v eine Zahl < 1. v=1/3

Ein Algorithmus A heiBt v-Approximation, wenn 1/3-Approximation

liefert Menge von
Aktivitaten, deren

m A fir jede Instanz | von [] eine Losung A(/) Gesamtiange
berechnet, so dass mindestens 1/3 der

maximal moglichen

Lange ist. Bertrand Russell
C(A(I)) > - (1872-1970)
((optimale Lésung) OPT(/) —

GroBe der Instanz |/

B die Laufzeit von A polynomiell in |/| ist.

14 - 16

Approxi. .. ha?

,All exact science is dominated by the idea of approximation.”

.

i

sl Tohg
Sei 1 ein Maximierungsproblem. Ablaufplanung E
Sei ¢ die Zielfunktion von [1: Losung — Q>o. (=4 !
:=. :f'."-“"
Sei v eine Zahl < 1. v=1/3
Ein Algorithmus A heiBt y-Approximation, wenn 1/3-Approximation

liefert Menge von
Aktivitaten, deren

m A fir jede Instanz | von [] eine Losung A(/) Gesamtiange
berechnet, so dass mindestens 1/3 der

maximal moglichen

Lange ist. Bertrand Russell
C(A(I)) > - (1872-1970)
((optimale Lésung) OPT(/) —

GroBe der Instanz |/

B die Laufzeit von A polynomiell in [/] ist. O(nlog n)

Ein exakter Algorithmus. . .

Firi=1,..., nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

®® | OO
@)

Ein exakter Algorithmus. . .

Firi=1,..., nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

®® | OO
@)

Ein exakter Algorithmus. . .

Firi=1,..., nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

° o
—oO
° o
e—O
° O
° o
° O
A; ° o)
®
° o

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

° o
o—O
° o
—O
° o
° o
° o
A; ® o
°
° o

Eine optimale Losung fiir A; besteht aus:
— einem letzten Intervall a; und
— einer optimalen Losung fiir Ag.

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

@rm—()
——O
® O

e—O
Or—()

® O

® O
A; ® o)
Prme——)
@ O
® o i

Eine optimale Losung fiir A; besteht aus:
— einem letzten Intervall a; und
— einer optimalen Losung fiir Ag.

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

e—O
® O
e—O
M
® o)
® o)
® o)
® o di

Eine optimale Losung fiir A; besteht aus:
— einem letzten Intervall a; und
— einer optimalen Losung fiir Ag.

15 -

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

e—O
® O
e—O
M
® o)
® o)
® o)
® o di

Eine optimale Losung fiir A; besteht aus:
— einem letzten Intervall a; und
— einer optimalen Losung fiir Ag.

15 -

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

@rm——()
———oO
® O
Ak e——O
® O
® O
Orm—)
® O

Eine optimale Losung fiir A; besteht aus:
— einem letzten Intervall a; und
— einer optimalen Losung fiir Ag.

15 -

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

—-O0
® O
Ak ————-oO
® O
® O
M
® O

optimale

— einem letzten Intervall a; und ,
Teilstruktur!

Eine optimale Losung fiir A; besteht aus: }
— einer optimalen Losung fiir Ag.

15 -

15-10

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,

bevor a; beginnt. (Setze A,11 = A.)

@rm——()
———oO
® O
® O
® O
Orm—)
® O

optimale

— einem letzten Intervall a; und ,
Teilstruktur!

Eine optimale Losung fiir A; besteht aus: }
— einer optimalen Losung fiir Ag.

Also gilt fiir den Wert ¢; einer optimalen Losung fiir A;:

15-11

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

@rm——()
———oO
® O
Ak e——O
® O
® O
Orm—)
® O
® o 9

optimale

— einem letzten Intervall a; und ,
Teilstruktur!

Eine optimale Losung fiir A; besteht aus: }
— einer optimalen Losung fiir Ag.

Also gilt fiir den Wert ¢; einer optimalen Losung fiir A;:

Ci = MmaXg cA Ck T

15-12

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

@rm——()
———oO
® O
Ak e——O
® O
® O
Orm—)
° 4 o
® o 9

optimale

— einem letzten Intervall a5 und ,
Teilstruktur!

Eine optimale Losung fiir A; besteht aus: }
— einer optimalen Losung fur Ag.

Also gilt fiir den Wert ¢; einer optimalen Losung fiir A;:

Ci = MaXg, cA, ck+€(ak)

15-13

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

@rm——()
———oO
® O
Ak e——O
® O
® O
Orm—)
° 4 o
® o 9

optimale

— einem letzten Intervall a5 und ,
Teilstruktur!

Eine optimale Losung fiir A; besteht aus: }
— einer optimalen Losung fur Ag.

Also gilt fiir den Wert ¢; einer optimalen Losung fiir A;:

Ci = MaXg, cA, ck+€(ak)

15- 14

Ein exakter Algorithmus. . .

Firi=1,...,nsei A ={aj € A| ¢ <s;} die Menge aller Intervalle in A, die enden,
bevor a; beginnt. (Setze A,11 = A.)

@rm——()
———oO
® O
Ak e——O
® O
® O
Orm—)
'S 4 o
® o 9

optimale

— einem letzten Intervall a5 und ,
Teilstruktur!

Eine optimale Losung fiir A; besteht aus: }
— einer optimalen Losung fur Ag.

Also gilt fiir den Wert ¢; einer optimalen Losung fiir A;:

Ci = MaXg, cA, ck+€(ak)

...eln Dynamisches Programm!

Ci = MaXa cA, ck+£(ak)

16 -

...eln Dynamisches Programm!

Ci = MaXa cA, ck+£(ak)

Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.

16 -

...eln Dynamisches Programm!

Ci = MaXa cA, ck+£(ak)

Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.

Also geniigt es ¢y, ..., Cni1 ZU berechnen.

16 -

...eln Dynamisches Programm!

Ci = MaXa cA, ck+£(ak)

Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.

Also geniigt es ¢y, .. ., Cnh+1 zU berechnen, wobel ¢; =

16 -

...eln Dynamisches Programm!

Ci = MaXa cA, ck+£(ak)

Erinnern wir uns..

Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.

Also geniigt es ¢;

Cni1 zU berechnen, wobeil ¢; = 0.

16 -

...eln Dynamisches Programm!

Ci = MaXa cA, ck+€(ak)

Erinnern wir uns..

Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.

Also geniigt es ¢;

Laufzeit?

Cni1 zU berechnen, wobeil ¢; = 0.

16 -

16 -

...eln Dynamisches Programm!

Ci = MaXa cA, Ck—|—f(ak)

Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.

TABELLE
Also geniigt es|cq, ..., Cni1|zu berechnen, wobel ¢c; = 0.

Laufzeit?

...eln Dynamisches Programm!

Ci = |MaXz, cA, Ck—l—f(ak)

BERECHNUNG EINES
TABELLENEINTRAGS

Erinnern wir uns...

Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE

Also geniigt es

Laufzeit?

c1, ..

., Cna1|zu berechnen, wobei ¢; = 0.

16 -

...eln Dynamisches Programm!

Ci = |MaXz, cA, Ck—l—f(ak)

BERECHNUNG EINES
TABELLENEINTRAGS

Erinnern wir uns...

Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE

Also geniigt es

Laufzeit?

c1, ..

., Cna1|zu berechnen, wobei ¢; = 0.

n

16 -

...eln Dynamisches Programm!

Ci = |MaXz, cA, Ck—l—f(ak)

BERECHNUNG EINES
TABELLENEINTRAGS

Erinnern wir uns...

Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE

Also geniigt es

Laufzeit?

c1, ..

., Cna1|zu berechnen, wobei ¢; = 0.

n

16 - 10

...eln Dynamisches Programm!

Ci = |MaXz, cA, Ck—l—f(ak)

BERECHNUNG EINES
TABELLENEINTRAGS

Erinnern wir uns...

Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE

Also geniigt es

Laufzeit? O(n2)

c1, ..

., Cna1|zu berechnen, wobei ¢; = 0.

n

16 - 11

16 - 12

...eln Dynamisches Programm!

BERECHNUNG EINES
TABELLENEINTRAGS

Ci = |MaXz, cA, Ck—l—f(ak)

Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.

TABELLE
Also geniigt es|cq, ..., Cni1|zu berechnen, wobel ¢c; = 0.
n

Laufzeit? O(n?) Schreiben Sie den Pseudocode!

16 - 13

...eln Dynamisches Programm!

BERECHNUNG EINES

G =|maxXaea Ck+43k)| TABELLENEINTRAGS 7
Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE
Also geniigt es|cq, ..., Cni1|zu berechnen, wobel ¢c; = 0.
n
Laufzeit? O(n?) Schreiben Sie den Pseudocode!

Resultate:

16 - 14

...eln Dynamisches Programm!

BERECHNUNG EINES

G =|maxXaea Ck+43k)| TABELLENEINTRAGS "
Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE
Also geniigt es|cq, ..., Cni1|zu berechnen, wobel ¢c; = 0.
n
Laufzeit? O(n?) Schreiben Sie den Pseudocode!

Resultate:

B Der 2. Greedy-Alg. findet in O(nlog n) Zeit eine Losung, die mindestens 1/3 des maximalen
Ertrags garantiert.

16 - 15

...eln Dynamisches Programm!

BERECHNUNG EINES

G =|maxXaea Ck+43k)| TABELLENEINTRAGS "
Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE
Also geniigt es|cq, ..., Cni1|zu berechnen, wobel ¢c; = 0.
n
Laufzeit? O(n?) Schreiben Sie den Pseudocode!

Resultate:

B Der 2. Greedy-Alg. findet in O(nlog n) Zeit eine Losung, die mindestens 1/3 des maximalen
Ertrags garantiert.

m Unser DP findet in O(n?) Zeit eine Lésung mit maximalem Ertrag.

16 - 16

...eln Dynamisches Programm!

o ~[mtnen & 1] SESECINANG ENES) 01
Erinnern wir uns...
Cni1 ISt der Wert der optimalen Losung fiir A,.1 = A.
TABELLE
Also geniigt es|cq, ..., Cni1|zu berechnen, wobel ¢c; = 0.
n
Laufzeit? O(n?) Schreiben Sie den Pseudocode!

Resultate:

B Der 2. Greedy-Alg. findet in O(nlog n) Zeit eine Losung, die mindestens 1/3 des maximalen
Ertrags garantiert.

m Unser DP findet in O(n?) Zeit eine Lésung mit maximalem Ertrag.
Trade-Off zwischen Zeit und Qualitat!

	Titel
	Operations Research
	Ein einfaches Problem der Ablaufplanung
	Charakterisierung optimaler Lösungen
	Greedy -- rekursiv
	Greedy -- iterativ
	Die Greedy-Strategie
	Food for Thought
	Ein ähnliches Problem der Ablaufplanung
	Greedy?
	Wie gut/schlecht ist der 2. GA?
	Approxi... hä?
	Ein exakter Algorithmus\dots
	\dots ein Dynamisches Programm!

