
1

Algorithmen und Datenstrukturen

Vorlesung 23:
Greedy- und Approximationsalgorithmen

Alexander Wolff Wintersemester 2025

2 - 1

Operations Research

Optimierung für Wirtschaftsabläufe:

■ Standortplanung

■ Ablaufplanung

■ Flottenmanagement

■ . . .

■ Pack- und Zuschnittprobleme

2 - 2

Operations Research

Optimierung für Wirtschaftsabläufe:

■ Standortplanung

■ Ablaufplanung

■ Flottenmanagement

■ . . .

Statistik, Algorithmen, Wahrscheinlichkeitstheorie, Spieltheorie, Graphentheorie,
mathematische Programmierung, Simulation. . .

Werkzeuge:

■ Pack- und Zuschnittprobleme

2 - 3

Operations Research

Optimierung für Wirtschaftsabläufe:

■ Standortplanung

■ Ablaufplanung

■ Flottenmanagement

■ . . .

Statistik, Algorithmen, Wahrscheinlichkeitstheorie, Spieltheorie, Graphentheorie,
mathematische Programmierung, Simulation. . .

Werkzeuge:

■ Pack- und Zuschnittprobleme

3 - 1

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von Aktivitäten mit a1 = [s1, e1), . . . , an = [sn, en).

0 11 50 11 5 10 15

3 - 2

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von Aktivitäten mit a1 = [s1, e1), . . . , an = [sn, en).

0 11 50 11 5 10 15

Aktivitäten ai und aj sind kompatibel, wenn ai ∩ aj = ∅.

3 - 3

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von Aktivitäten mit a1 = [s1, e1), . . . , an = [sn, en).

0 11 50 11 5 10 15

Die Aktivitäten in A′ ⊂ A sind paarweise kompatibel, wenn für jedes Paar
ai , aj ∈ A′ gilt, dass ai und aj kompatibel sind.

Aktivitäten ai und aj sind kompatibel, wenn ai ∩ aj = ∅.

3 - 4

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von Aktivitäten mit a1 = [s1, e1), . . . , an = [sn, en).

0 11 50 11 5 10 15

Die Aktivitäten in A′ ⊂ A sind paarweise kompatibel, wenn für jedes Paar
ai , aj ∈ A′ gilt, dass ai und aj kompatibel sind.

Aktivitäten ai und aj sind kompatibel, wenn ai ∩ aj = ∅.

Gesucht: eine größtmögliche Menge paarweise kompatibler Aktivitäten.

3 - 5

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von Aktivitäten mit a1 = [s1, e1), . . . , an = [sn, en).

0 11 50 11 5 10 15

Die Aktivitäten in A′ ⊂ A sind paarweise kompatibel, wenn für jedes Paar
ai , aj ∈ A′ gilt, dass ai und aj kompatibel sind.

Aktivitäten ai und aj sind kompatibel, wenn ai ∩ aj = ∅.

Gesucht: eine größtmögliche Menge paarweise kompatibler Aktivitäten.

3 - 6

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von Aktivitäten mit a1 = [s1, e1), . . . , an = [sn, en).

0 11 50 11 5 10 15

Die Aktivitäten in A′ ⊂ A sind paarweise kompatibel, wenn für jedes Paar
ai , aj ∈ A′ gilt, dass ai und aj kompatibel sind.

Aktivitäten ai und aj sind kompatibel, wenn ai ∩ aj = ∅.

Gesucht: eine größtmögliche Menge paarweise kompatibler Aktivitäten.

Grund:

3 - 7

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von Aktivitäten mit a1 = [s1, e1), . . . , an = [sn, en).

0 11 50 11 5 10 15

Die Aktivitäten in A′ ⊂ A sind paarweise kompatibel, wenn für jedes Paar
ai , aj ∈ A′ gilt, dass ai und aj kompatibel sind.

Aktivitäten ai und aj sind kompatibel, wenn ai ∩ aj = ∅.

Gesucht: eine größtmögliche Menge paarweise kompatibler Aktivitäten.

Grund: Aktivitäten (à 1e), die gleiche Ressource benutzen

4 - 1

Ein kleiner technischer Trick

0 50 5 10 15

Wir nummerieren (für den Rest der Vorlesung) die Aktivitäten so,
dass für die Endtermine gilt e1 ≤ e2 ≤ · · · ≤ en.

1

4 - 2

Ein kleiner technischer Trick

0 50 5 10 15

Wir nummerieren (für den Rest der Vorlesung) die Aktivitäten so,
dass für die Endtermine gilt e1 ≤ e2 ≤ · · · ≤ en.

a1
a2

a3

an−1
an

1

5 - 1

Charakterisierung optimaler Lösungen

5 - 2

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

5 - 3

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit

5 - 4

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

5 - 5

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der Aktivitäten, die nach Ablauf von ak
beginnen.

ak

Ak

5 - 6

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der Aktivitäten, die nach Ablauf von ak
beginnen.

Sei Lk eine optimale Lösung von Ak .

ak

Ak

5 - 7

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der Aktivitäten, die nach Ablauf von ak
beginnen.

Sei Lk eine optimale Lösung von Ak .

Falls Intuition korrekt, dann ist {a1} ∪ L1 optimal.

ak

Ak

5 - 8

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der Aktivitäten, die nach Ablauf von ak
beginnen.

Sei Lk eine optimale Lösung von Ak .

Falls Intuition korrekt, dann ist {a1} ∪ L1 optimal.

Satz. Sei Ak ̸= ∅. Sei am Aktivität mit frühester Endzeit in Ak .

ak

Ak

5 - 9

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der Aktivitäten, die nach Ablauf von ak
beginnen.

Sei Lk eine optimale Lösung von Ak .

Falls Intuition korrekt, dann ist {a1} ∪ L1 optimal.

Satz. Sei Ak ̸= ∅. Sei am Aktivität mit frühester Endzeit in Ak .

⇒ es gibt eine opt. Lösung von Ak , die am enthält.

ak

Ak

5 - 10

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der Aktivitäten, die nach Ablauf von ak
beginnen.

Sei Lk eine optimale Lösung von Ak .

Falls Intuition korrekt, dann ist {a1} ∪ L1 optimal.

Satz. Sei Ak ̸= ∅. Sei am Aktivität mit frühester Endzeit in Ak .

⇒ es gibt eine opt. Lösung von Ak , die am enthält.

Beweis.

ak

Ak

5 - 11

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der Aktivitäten, die nach Ablauf von ak
beginnen.

Sei Lk eine optimale Lösung von Ak .

Falls Intuition korrekt, dann ist {a1} ∪ L1 optimal.

Satz. Sei Ak ̸= ∅. Sei am Aktivität mit frühester Endzeit in Ak .

⇒ es gibt eine opt. Lösung von Ak , die am enthält.

Beweis. Austauschargument!

ak

Ak

5 - 12

Charakterisierung optimaler Lösungen

Idee: Sei L optimale Lösung für A.
Welche Aktivität hat gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit –
weil a1 die gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der Aktivitäten, die nach Ablauf von ak
beginnen.

Sei Lk eine optimale Lösung von Ak .

Falls Intuition korrekt, dann ist {a1} ∪ L1 optimal.

Satz. Sei Ak ̸= ∅. Sei am Aktivität mit frühester Endzeit in Ak .

⇒ es gibt eine opt. Lösung von Ak , die am enthält.

Beweis. Austauschargument!

optimale
Teilstruktur!

ak

Ak

6 - 1

Greedy – rekursiv

Satz. Sei Ak ̸= ∅. Sei am Aktivität mit frühester Endzeit in Ak .

⇒ es gibt eine opt. Lösung von Ak , die am enthält.

optimale
Teilstruktur!

6 - 2

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

Satz. Sei Ak ̸= ∅. Sei am Aktivität mit frühester Endzeit in Ak .

⇒ es gibt eine opt. Lösung von Ak , die am enthält.

optimale
Teilstruktur!

6 - 3

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k) // best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 4

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

a1

an

a0

// best. Lsg. für Ak

ak
Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 5

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

a1

an

a0

// best. Lsg. für Ak

ak
Ak

am

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 6

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

a1

an

a0

// best. Lsg. für Ak

ak
Ak

am

Am

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 7

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

ak
Ak

am

Am

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 8

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

ak
Ak

am

Am

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 9

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

ak
Ak

am

Am

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 10

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 11

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 12

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 13

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 14

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 15

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 16

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 17

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 18

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 19

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 20

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 21

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 22

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 23

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 24

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 25

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 26

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 27

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

Laufzeit?

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 28

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

Laufzeit? Wie oft wird m inkrementiert?

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 29

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

Laufzeit? Wie oft wird m inkrementiert?

Insgesamt, über alle rekursiven Aufrufe, n Mal.

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 30

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

Laufzeit? Wie oft wird m inkrementiert?

Insgesamt, über alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive läuft (ohne Sortieren) in Θ(n) Zeit.

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 31

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

Laufzeit? Wie oft wird m inkrementiert?

Insgesamt, über alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive läuft (ohne Sortieren) in Θ(n) Zeit.

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 32

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

Laufzeit? Wie oft wird m inkrementiert?

Insgesamt, über alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive läuft (ohne Sortieren) in Θ(n) Zeit.

iterativ!

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

6 - 33

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e[0] = −∞ // technischer Kniff ⇒ A0 = A
// Hier: falls nötig,sortiere Aktivitäten nach Endzeiten.
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e,m)

Laufzeit? Wie oft wird m inkrementiert?

Insgesamt, über alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive läuft (ohne Sortieren) in Θ(n) Zeit.

iterativ!

Schreiben Sie
GreedyIterative(int[]s, int[]e)!

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e,m)

7 - 1

Greedy – iterativ

GreedyIterative(int[] s, int[] e)
n = s.length
if n = 0 then return ∅
L = {a1}
k = 1 // höchster Index in L
for m = 2 to n do

if s[m] ≥ e[k] then
L = L ∪ {am}
k = m

return L

a1

an

a0

ak
am

7 - 2

Greedy – iterativ

GreedyIterative(int[] s, int[] e)
n = s.length
if n = 0 then return ∅
L = {a1}
k = 1 // höchster Index in L
for m = 2 to n do

if s[m] ≥ e[k] then
L = L ∪ {am}
k = m

return L

a1

an

a0

ak
am

7 - 3

Greedy – iterativ

GreedyIterative(int[] s, int[] e)
n = s.length
if n = 0 then return ∅
L = {a1}
k = 1 // höchster Index in L
for m = 2 to n do

if s[m] ≥ e[k] then
L = L ∪ {am}
k = m

return L

Laufzeit?

7 - 4

Greedy – iterativ

GreedyIterative(int[] s, int[] e)
n = s.length
if n = 0 then return ∅
L = {a1}
k = 1 // höchster Index in L
for m = 2 to n do

if s[m] ≥ e[k] then
L = L ∪ {am}
k = m

return L

Laufzeit? GreedyIterative läuft ebenfalls in Θ(n) Zeit.

7 - 5

Greedy – iterativ

GreedyIterative(int[] s, int[] e)
n = s.length
if n = 0 then return ∅
L = {a1}
k = 1 // höchster Index in L
for m = 2 to n do

if s[m] ≥ e[k] then
L = L ∪ {am}
k = m

return L

Bemerkung: GreedyIterative berechnet dieselbe optimale Lösung wie GreedyRecursive

Laufzeit? GreedyIterative läuft ebenfalls in Θ(n) Zeit.

7 - 6

Greedy – iterativ

GreedyIterative(int[] s, int[] e)
n = s.length
if n = 0 then return ∅
L = {a1}
k = 1 // höchster Index in L
for m = 2 to n do

if s[m] ≥ e[k] then
L = L ∪ {am}
k = m

return L

Bemerkung: GreedyIterative berechnet dieselbe optimale Lösung wie GreedyRecursive

– die
”
linkeste“.

Laufzeit? GreedyIterative läuft ebenfalls in Θ(n) Zeit.

8 - 1

Die Greedy-Strategie

8 - 2

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

8 - 3

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

8 - 4

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

8 - 5

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

4. Beweise, dass die Greedy-Wahl
”
sicher“ ist (vgl. Kruskal!).

8 - 6

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

4. Beweise, dass die Greedy-Wahl
”
sicher“ ist (vgl. Kruskal!).

5. Entwickle einen rekursiven Greedy-Algorithmus.

8 - 7

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

4. Beweise, dass die Greedy-Wahl
”
sicher“ ist (vgl. Kruskal!).

5. Entwickle einen rekursiven Greedy-Algorithmus.

6. Konvertiere den rekursiven in einen iterativen Algorithmus.

9 - 1

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

9 - 2

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

9 - 3

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

9 - 4

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

2. Problem größte unabhängige Menge (guM) in Graphen:

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

9 - 5

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

2. Problem größte unabhängige Menge (guM) in Graphen:

Finde eine größte Teilmenge U
der Knoten, so dass keine zwei
Knoten in U benachbart sind.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

9 - 6

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

2. Problem größte unabhängige Menge (guM) in Graphen:

Finde eine größte Teilmenge U
der Knoten, so dass keine zwei
Knoten in U benachbart sind.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

9 - 7

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

2. Problem größte unabhängige Menge (guM) in Graphen:

– Was hat guM mit unserem Ablaufplanungsproblem zu tun?

Finde eine größte Teilmenge U
der Knoten, so dass keine zwei
Knoten in U benachbart sind.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

9 - 8

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

2. Problem größte unabhängige Menge (guM) in Graphen:

– Was hat guM mit unserem Ablaufplanungsproblem zu tun?

– Welche Graphen kommen bei der Ablaufplanung nicht vor?

Finde eine größte Teilmenge U
der Knoten, so dass keine zwei
Knoten in U benachbart sind.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

9 - 9

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

2. Problem größte unabhängige Menge (guM) in Graphen:

– Was hat guM mit unserem Ablaufplanungsproblem zu tun?

– Welche Graphen kommen bei der Ablaufplanung nicht vor?

Finde eine größte Teilmenge U
der Knoten, so dass keine zwei
Knoten in U benachbart sind.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

– Kann man guM mittels dynamischer Programmierung oder Greedy-Alg. lösen?

10 - 1

Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von halboffenen Intervallen,
mit ai = [si , ei) für i = 1, . . . , n.

a1
a2

a3

an−1
an

Für die Endpunkte gelte e1 ≤ e2 ≤ · · · ≤ en.

10 - 2

Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von halboffenen Intervallen,
mit ai = [si , ei) für i = 1, . . . , n.

Gesucht: eine Menge A′ ⊆ A paarweise disjunkter Intervalle,
deren Gesamtlänge ℓ(A′) maximal ist.

a1
a2

a3

an−1
an

Für die Endpunkte gelte e1 ≤ e2 ≤ · · · ≤ en.

10 - 3

Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von halboffenen Intervallen,
mit ai = [si , ei) für i = 1, . . . , n.

Gesucht: eine Menge A′ ⊆ A paarweise disjunkter Intervalle,
deren Gesamtlänge ℓ(A′) maximal ist.

Grund: Intervalle =̂ Prozesse, die die gleiche Ressource nutzen;
der Gesamtertrag ist proportional zur Auslastung.

a1
a2

a3

an−1
an

Für die Endpunkte gelte e1 ≤ e2 ≤ · · · ≤ en.

10 - 4

Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von halboffenen Intervallen,
mit ai = [si , ei) für i = 1, . . . , n.

Gesucht: eine Menge A′ ⊆ A paarweise disjunkter Intervalle,
deren Gesamtlänge ℓ(A′) maximal ist.

Grund: Intervalle =̂ Prozesse, die die gleiche Ressource nutzen;
der Gesamtertrag ist proportional zur Auslastung.

a1
a2

a3

an−1
an

Für die Endpunkte gelte e1 ≤ e2 ≤ · · · ≤ en.

10 - 5

Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von halboffenen Intervallen,
mit ai = [si , ei) für i = 1, . . . , n.

Gesucht: eine Menge A′ ⊆ A paarweise disjunkter Intervalle,
deren Gesamtlänge ℓ(A′) maximal ist.

Grund: Intervalle =̂ Prozesse, die die gleiche Ressource nutzen;
der Gesamtertrag ist proportional zur Auslastung.

a1
a2

a3

an−1
an

Für die Endpunkte gelte e1 ≤ e2 ≤ · · · ≤ en.

10 - 6

Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von halboffenen Intervallen,
mit ai = [si , ei) für i = 1, . . . , n.

Gesucht: eine Menge A′ ⊆ A paarweise disjunkter Intervalle,
deren Gesamtlänge ℓ(A′) maximal ist.

Grund: Intervalle =̂ Prozesse, die die gleiche Ressource nutzen;
der Gesamtertrag ist proportional zur Auslastung.

a1
a2

a3

an−1
an

Für die Endpunkte gelte e1 ≤ e2 ≤ · · · ≤ en.

10 - 7

Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von halboffenen Intervallen,
mit ai = [si , ei) für i = 1, . . . , n.

Gesucht: eine Menge A′ ⊆ A paarweise disjunkter Intervalle,
deren Gesamtlänge ℓ(A′) maximal ist.

Grund: Intervalle =̂ Prozesse, die die gleiche Ressource nutzen;
der Gesamtertrag ist proportional zur Auslastung.

a1
a2

a3

an−1
an

Für die Endpunkte gelte e1 ≤ e2 ≤ · · · ≤ en.

11 - 1

Greedy?

11 - 2

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

11 - 3

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:

11 - 4

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:

11 - 5

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

2. Versuch:

Gegenbsp.:

11 - 6

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

2. Versuch:

Gegenbsp.:

Nimm längste Aktivität,
streiche dazu inkompatible Aktivitäten und iteriere.

11 - 7

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

2. Versuch:

Gegenbsp.:

Nimm längste Aktivität,
streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:

11 - 8

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

2. Versuch:

Gegenbsp.:

Nimm längste Aktivität,
streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:
1 1

1 + ε

1

11 - 9

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

2. Versuch:

Gegenbsp.:

Nimm längste Aktivität,
streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:
1 1

1 + ε

1

Aufgabe: Können Sie den 2. GA in O(n log n) Zeit implementieren?

11 - 10

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

2. Versuch:

Gegenbsp.:

Nimm längste Aktivität,
streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:
1 1

1 + ε

1

Aufgabe: Können Sie den 2. GA in O(n log n) Zeit implementieren?

Tipp: Gehen Sie so ähnlich wie Kruskal vor!

12 - 1

Wie gut/schlecht ist der 2. GA?

12 - 2

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

12 - 3

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

g1
g2

g3

12 - 4

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

g1
g2

g3

G3

G1
G2

12 - 5

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

g1
g2

g3

G3

G1
G2

12 - 6

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

g1
g2

g3

G3

G1
G2

12 - 7

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1
g2

g3

G3

G1
G2

L3

L1

L2

12 - 8

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Dann gilt A = G1 ∪̇G2 ∪̇ · · · ∪̇Gk

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1
g2

g3

G3

G1
G2

L3

L1

L2

12 - 9

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Dann gilt A = G1 ∪̇G2 ∪̇ · · · ∪̇Gk

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1
g2

g3

G3

G1
G2

”
⊆“:

L3

L1

L2

12 - 10

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Dann gilt A = G1 ∪̇G2 ∪̇ · · · ∪̇Gk

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1
g2

g3

G3

G1
G2

”
⊆“: GA wählt so lange Intervalle aus, bis es keine mehr gibt.

L3

L1

L2

12 - 11

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Dann gilt A = G1 ∪̇G2 ∪̇ · · · ∪̇Gk

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1
g2

g3

G3

G1
G2

”
⊆“: GA wählt so lange Intervalle aus, bis es keine mehr gibt.

L3

L1

L2

”
⊇“:

12 - 12

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Dann gilt A = G1 ∪̇G2 ∪̇ · · · ∪̇Gk

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1
g2

g3

G3

G1
G2

”
⊆“: GA wählt so lange Intervalle aus, bis es keine mehr gibt.

L3

L1

L2

”
⊇“: klar, da G1 ⊆ A, G2 ⊆ A, . . . , Gk ⊆ A

12 - 13

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Dann gilt A = G1 ∪̇G2 ∪̇ · · · ∪̇Gk

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1
g2

g3

G3

G1
G2

”
⊆“: GA wählt so lange Intervalle aus, bis es keine mehr gibt.

und L = L1 ∪̇ L2 ∪̇ . . . ∪̇ Lk .

L3

L1

L2

”
⊇“: klar, da G1 ⊆ A, G2 ⊆ A, . . . , Gk ⊆ A

12 - 14

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Dann gilt A = G1 ∪̇G2 ∪̇ · · · ∪̇Gk

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi ̸= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1
g2

g3

G3

G1
G2

”
⊆“: GA wählt so lange Intervalle aus, bis es keine mehr gibt.

und L = L1 ∪̇ L2 ∪̇ . . . ∪̇ Lk .

L3

L1

L2

”
⊇“: klar, da G1 ⊆ A, G2 ⊆ A, . . . , Gk ⊆ A

13 - 1

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

1 1

1 + ε

1

gi
Li

13 - 2

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

1 1

1 + ε

1

gi
Li

13 - 3

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

1 1

1 + ε

1

gi
Li

(a) gi ist nach Wahl ein längstes Intervall in Gi

13 - 4

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

1 1

1 + ε

1

gi
Li

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

13 - 5

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

13 - 6

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

⇒

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

13 - 7

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

⇒
∑k

i=1 ℓ(Li) < 3
∑k

i=1 ℓ(gi)

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

13 - 8

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

⇒
∑k

i=1 ℓ(Li) < 3
∑k

i=1 ℓ(gi)

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

= 3ℓ(G)

13 - 9

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

⇒ ℓ(L) =
∑k

i=1 ℓ(Li) < 3
∑k

i=1 ℓ(gi)

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

= 3ℓ(G)

13 - 10

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

⇒ ℓ(L) =
∑k

i=1 ℓ(Li) < 3
∑k

i=1 ℓ(gi)

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

OPT = = 3ℓ(G)

13 - 11

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

⇒ ℓ(L) =

⇒ ℓ(G) > OPT/3

∑k
i=1 ℓ(Li) < 3

∑k
i=1 ℓ(gi)

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

OPT = = 3ℓ(G)

13 - 12

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

⇒ ℓ(L) =

⇒ 2. GA liefert immer mind. 1/3 der maximalen Gesamtlänge.

⇒ ℓ(G) > OPT/3

∑k
i=1 ℓ(Li) < 3

∑k
i=1 ℓ(gi)

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

OPT = = 3ℓ(G)

13 - 13

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li) < 3ℓ(gi).

Beweis.

⇒ ℓ(L) =

⇒ 2. GA liefert immer mind. 1/3 der maximalen Gesamtlänge.

⇒ ℓ(G) > OPT/3

∑k
i=1 ℓ(Li) < 3

∑k
i=1 ℓ(gi)

Also ist der 2. GA ein Faktor-(1/3)-Approximationsalgorithmus.

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

OPT = = 3ℓ(G)

14 - 1

Approxi. . . hä?

14 - 2

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Bertrand Russell
(1872–1970)

14 - 3

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem.

Bertrand Russell
(1872–1970)

14 - 4

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Bertrand Russell
(1872–1970)

14 - 5

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0.

Bertrand Russell
(1872–1970)

14 - 6

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

Bertrand Russell
(1872–1970)

14 - 7

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 8

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 9

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

■ A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 10

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

■ A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

1/3-Approximation
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3 der
maximal möglichen
Länge ist.

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 11

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

■ A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

1/3-Approximation
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3 der
maximal möglichen
Länge ist.

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 12

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

■ A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

ζ(optimale Lösung)

1/3-Approximation
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3 der
maximal möglichen
Länge ist.

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 13

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

■ A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0.

■ die Laufzeit von A polynomiell in |I | ist.

ζ = ℓ

ζ(optimale Lösung)

1/3-Approximation
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3 der
maximal möglichen
Länge ist.

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 14

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

■ A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0.

■ die Laufzeit von A polynomiell in |I | ist.

ζ = ℓ

ζ(optimale Lösung)

1/3-Approximation
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3 der
maximal möglichen
Länge ist.

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 15

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

■ A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0.

■ die Laufzeit von A polynomiell in |I | ist.

ζ = ℓ

ζ(optimale Lösung)
Größe der Instanz I

1/3-Approximation
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3 der
maximal möglichen
Länge ist.

γ = 1/3

Bertrand Russell
(1872–1970)

14 - 16

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

■ A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0.

■ die Laufzeit von A polynomiell in |I | ist.

ζ = ℓ

ζ(optimale Lösung)
Größe der Instanz I

O(n log n)

1/3-Approximation
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3 der
maximal möglichen
Länge ist.

γ = 1/3

Bertrand Russell
(1872–1970)

15 - 1

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

ai

15 - 2

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

ai

15 - 3

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

ai

Ai

15 - 4

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai

15 - 5

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai

15 - 6

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

15 - 7

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

15 - 8

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

Ak

15 - 9

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

Ak

optimale
Teilstruktur!

}

15 - 10

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

Ak

optimale
Teilstruktur!

}

Also gilt für den Wert ci einer optimalen Lösung für Ai :

15 - 11

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

Ak

optimale
Teilstruktur!

}

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

15 - 12

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

Ak

optimale
Teilstruktur!

}

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

15 - 13

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

Ak

optimale
Teilstruktur!

}

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

15 - 14

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller Intervalle in A, die enden,
bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

Ak

optimale
Teilstruktur!

}

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

16 - 1

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

16 - 2

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

16 - 3

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

16 - 4

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen., wobei c1 =

16 - 5

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen., wobei c1 = 0.

16 - 6

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit?

, wobei c1 = 0.

16 - 7

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit?

, wobei c1 = 0.
TABELLE

16 - 8

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit?

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

16 - 9

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit?

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

16 - 10

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit?

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

}
in je O(n) Zeit

16 - 11

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit? O(n2)

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

}
in je O(n) Zeit

16 - 12

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Schreiben Sie den Pseudocode!

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit? O(n2)

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

}
in je O(n) Zeit

16 - 13

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Schreiben Sie den Pseudocode!

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit? O(n2)

Resultate:

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

}
in je O(n) Zeit

16 - 14

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Schreiben Sie den Pseudocode!

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit? O(n2)

Resultate:

■ Der 2. Greedy-Alg. findet in O(n log n) Zeit eine Lösung, diemindestens 1/3 des maximalen
Ertrags garantiert.

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

}
in je O(n) Zeit

16 - 15

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Schreiben Sie den Pseudocode!

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit? O(n2)

Resultate:

■ Der 2. Greedy-Alg. findet in O(n log n) Zeit eine Lösung, diemindestens 1/3 des maximalen
Ertrags garantiert.

■ Unser DP findet in O(n2) Zeit eine Lösung mit maximalem Ertrag.

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

}
in je O(n) Zeit

16 - 16

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Schreiben Sie den Pseudocode!

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit? O(n2)

Resultate:

■ Der 2. Greedy-Alg. findet in O(n log n) Zeit eine Lösung, diemindestens 1/3 des maximalen
Ertrags garantiert.

■ Unser DP findet in O(n2) Zeit eine Lösung mit maximalem Ertrag.

Trade-Off zwischen Zeit und Qualität!

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

}
in je O(n) Zeit

	Titel
	Operations Research
	Ein einfaches Problem der Ablaufplanung
	Charakterisierung optimaler Lösungen
	Greedy -- rekursiv
	Greedy -- iterativ
	Die Greedy-Strategie
	Food for Thought
	Ein ähnliches Problem der Ablaufplanung
	Greedy?
	Wie gut/schlecht ist der 2. GA?
	Approxi... hä?
	Ein exakter Algorithmus\dots
	\dots ein Dynamisches Programm!

