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Aktivitäten ai und aj sind kompatibel, wenn ai ∩ aj = ∅.
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beginnen.

Sei Lk eine optimale Lösung von Ak .

ak

Ak



5 - 7

Charakterisierung optimaler Lösungen
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Schreiben Sie
GreedyIterative(int[ ]s, int[ ]e)!
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Greedy – iterativ

GreedyIterative(int[ ] s, int[ ] e)
n = s.length
if n = 0 then return ∅
L = {a1}
k = 1 // höchster Index in L
for m = 2 to n do

if s[m] ≥ e[k] then
L = L ∪ {am}
k = m

return L

Bemerkung: GreedyIterative berechnet dieselbe optimale Lösung wie GreedyRecursive

– die
”
linkeste“.

Laufzeit? GreedyIterative läuft ebenfalls in Θ(n) Zeit.



8 - 1

Die Greedy-Strategie



8 - 2

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.



8 - 3

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.



8 - 4

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.



8 - 5

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

4. Beweise, dass die Greedy-Wahl
”
sicher“ ist (vgl. Kruskal!).



8 - 6

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

4. Beweise, dass die Greedy-Wahl
”
sicher“ ist (vgl. Kruskal!).

5. Entwickle einen rekursiven Greedy-Algorithmus.



8 - 7

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung.

3. Zeige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.

4. Beweise, dass die Greedy-Wahl
”
sicher“ ist (vgl. Kruskal!).

5. Entwickle einen rekursiven Greedy-Algorithmus.

6. Konvertiere den rekursiven in einen iterativen Algorithmus.
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9 - 2

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.
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Finde eine größte Teilmenge U
der Knoten, so dass keine zwei
Knoten in U benachbart sind.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.



9 - 9

Food for Thought

Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht lösen?1.

2. Problem größte unabhängige Menge (guM) in Graphen:

– Was hat guM mit unserem Ablaufplanungsproblem zu tun?

– Welche Graphen kommen bei der Ablaufplanung nicht vor?

Finde eine größte Teilmenge U
der Knoten, so dass keine zwei
Knoten in U benachbart sind.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

– Kann man guM mittels dynamischer Programmierung oder Greedy-Alg. lösen?
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streiche dazu inkompatible Aktivitäten und iteriere.
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Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

2. Versuch:

Gegenbsp.:

Nimm längste Aktivität,
streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:
1 1

1 + ε

1

Aufgabe: Können Sie den 2. GA in O(n log n) Zeit implementieren?

Tipp: Gehen Sie so ähnlich wie Kruskal vor!
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(b) jedes a ∈ Li schneidet gi

OPT = = 3ℓ(G )



13 - 12

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt ℓ(Li ) < 3ℓ(gi ).

Beweis.

⇒ ℓ(L) =

⇒ 2. GA liefert immer mind. 1/3 der maximalen Gesamtlänge.

⇒ ℓ(G ) > OPT/3

∑k
i=1 ℓ(Li ) < 3

∑k
i=1 ℓ(gi )

1 1

1 + ε

1

gi
Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi
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”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

Bertrand Russell
(1872–1970)



14 - 7

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0. ζ = ℓ

γ = 1/3

Bertrand Russell
(1872–1970)



14 - 8

Approxi. . . hä?
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Also genügt es c1, . . . , cn+1 zu berechnen.



16 - 4

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + ℓ(ak)

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.
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