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— die , linkeste"”.
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1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Losung.

3. Leige, dass bei einer Greedy-Entscheidung nur ein Teilproblem bleibt.
4. Beweise, dass die Greedy-Wahl , sicher” ist (vgl. Kruskal!).

5. Entwickle einen rekursiven Greedy-Algorithmus.

6. Konvertiere den rekursiven in einen iterativen Algorithmus.
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Food for Thought

1. Welches allgemeinere Ablaufproblem kann der Greedy-Algorithmus (GA) nicht |6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L C A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

— Was hat guM mit unserem Ablaufplanungsproblem zu tun?

— Welche Graphen kommen bei der Ablaufplanung nicht vor?

— Kann man guM mittels dynamischer Programmierung oder Greedy-Alg. [6sen?
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Greedy?

1. Versuch:
Gegenbsp.:
2. Versuch:

Gegenbsp.:

Aufgabe:

Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—O
® O

Nimm langste Aktivitat,
streiche dazu inkompatible Aktivitaten und iteriere.
1 1 1

® ON _ Oe O

1+ ¢

Konnen Sie den 2. GA in O(nlog n) Zeit implementieren?
Tipp: Gehen Sie so dhnlich wie Kruskal vor!
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Wie gut/schlecht ist der 2. GA?

Behauptung: Firi=1,..., k gilt ((L;) < 3l(gi).

1 1 1
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Beweis. (a) g; ist nach Wahl ein langstes Intervall in G;

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

= OPT = /(L) = S5, (L) < 335, tg) = 3¢(G)
= ¢(G) > OPT/3
= 2. GA liefert immer mind. 1/3 der maximalen Gesamtldnge.

Also ist der 2. GA ein Faktor-(1/3)-Approximationsalgorithmus.
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