CRCHIRGoso))
AR) ’ﬁr‘

Algorithmen und Datenstrukturen

Vorlesung 22:
Dynamisches Programmieren

2
ﬁhétﬁtéh

Alexander Wolff Wintersemester 2025

Entwurfstechniken

B Inkrementell
B Rekursiv
B Teile und Herrsche

B Randomisiert

meint hier das Arbeiten mit einer Tabelle,
Heute:

nicht das Schreiben eines Computerprogrammes.

B Dynamisches Programmieren

Vergleich <

Ry

Teile und Herrsche

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

B top-down

B cher fiir Entscheidungs-
oder Berechnungsprobleme

Dynamisches Programmieren

B zerlegt Instanz in
uberlappende Teilinstanzen,

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

Losungen von Teilinstanzen werden

zwischengespeichert, nicht neu berechnet.

B meist bottom-up

B meist fiir Optimierungsprobleme

- 19

Fahrplan

1. Struktur einer optimalen Losung charakterisieren

2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

Optimale Losung aus berechneter Information konstruieren

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

€9 | €7
L Lange / 1]2]3|4
c10 | e Preis p; [In€] |1[5]8]9
€9 | €4

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.
= 271 verschiedene Zerlegungen

Oh, mein Gott!
Also kdonnen wir es uns nicht leisten Das ist ja exponentiell!
alle Zerlegungen durchzugehen und fiir
jede ihren Ertrag zu berechnen.

*) Genauer: die gesuchte Zahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natiirlichen Zahlen schreiben kann.

Es gilt p(n) &~ e™V21/3 [(4n\/3) € @*((13,00195...)ﬁ) |

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n =4
kennen die Preise pq, po, ..., Dn Lange i [in m] 112 (3|4
fir Stabe der Langen 1,2,...,n. Preis p; [in €] 115|819
: : T 52 |60
QUOtlent di [€/m 1 25 2§ 21
Welche Stabzerlegung maximiert den Ertrag? €9
Greedy: €10
B Berechnefiri=1,..., n den Preis pro Meter q; = p;/i.

B Zerlege Stab in moglichst viele Stiicke der Lange / mit g; max.

B Streiche alle Stablangen > / aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

en= max{ p,, e +e, 1, e+er o2 ..., €r1t+e }

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

W
Ertrag e, = p; Ertrag e, ;
Also gilt:

en = max{ pn, p1+er1, P2+eno,

— 12?§><n{p,- +e, i}, wobei g :=0.

«v Pn-1 + €1 }

Vorteil: Wert einer optimalen Losung ist Summe aus einer Zahl der

Eingabe und einem Wert einer optimalen Teillosung.

10 - 20

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1rga<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for i = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

1t2+4+8+. 20t

|Bewe|s7| |®

= A(0) =1
und A(n) = 1+ZA(n—l) —1+ZA(J)

11- 14

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[] p, int n = p.length) - Laufzeit?

- e=new int[0...n] | .
e[0] = 0 : B Wie letzte Folie:
for i =1 to ndo B Asymptotisch

| eli] = - | schneller?

return HAUPTSTANGENZERLEGUNG(p, n, €)

HAUPTSTANGENZERLEGUNG(int[] p, int n, int[] e)

if e[n] > —oc then return e[n]

g = —00

for i =1to ndo ,
| g =max{q, p[/]+HAUPTSTANGENZERLEGUNG(p, n—1i, €)}
e[n] = q; return g '

12 - 24

3. Wert einer optimalen Losung berechnen: bottom-up

BoTrTOMUPSTANGENZERLEGUNG(int[] p, int n):
e = new int[0. .. n] |
e[0] =0 Neu: kein
for j=1to ndo rekursiver

qg—= —0o0 Aufruf!

Kante (j, /) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Losung
von Teilinstanz /.

for i =1 to do

| g=max{q, pli]+e[j—i]}
- elj]l=q
return g

Graph der Teilinstanzen

Beob. Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

[Satz. BoTTUPSZERL() und MuMOSZERL() laufen in O(n?) Zeit.]

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)

el0] =0
for j=1to ndo
q = —00
for i =1toj do
if g < plil+ e[j —i] then B . ..
L q = plil+ e[j — i] q = maxiq. pli] +elj=i]}
il =i SEER B
- elj]=g¢q (71=3 ([4]=2 ¢[2]=2

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

while n > 0 do
| print £[n]; n=n—¢[n]

Langste Wege
Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg |

d.h. eine Folge (s = v, v1,..., vk = t) mit
VOV1, - .., Vk—1Vk € E, vi # v; (fiir i # j) und k maximal.

(s, u, t) ist ein langster einfacher s-t-Weg.

Aber:

(s, u) ist kein langster einfacher s-u-Weg;
Fahrplan (s, v, t, u) ist ein langster einfacher s-u-Weg!
1. Struktur einer optimalen Losung charakterisieren f*

2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)
*) Es ist NP-schwer fiir (G, s, t, k) zu entscheiden, ob G einen einfachen s-t-Weg der Linge k enthilt. (Vgl. Hamilton-Weg!)

14 - 12

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

Gesucht: ein langster s-t-Weg.

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein langster s-t-Weg 7 geht durch v, d.h.
_ Tsu TTut
™=Ss > u > L.

Dann gilt:
sy, ISt langster s-u-Weg; m,: ist langster u-t-Weg —

sonst ware 7 kein langster s-t-Weg.

AuBerdem gilt V/(ms,) N V(7ye) = {u};
sonst gabe es einen Kreis!

15 -

Algorithmus nach Fahrplan

v
Q
'

1. Struktur einer optimalen Losung charakterisieren \/

0,03
L

xR)

o
%

2. Wert einer optimalen Losung rekursiv definieren
d. = 0 // Lange eines langsten s-v-Wegs

d, = max d,+ w(u,v) =
u: uveE(G) so!

3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren

B d-Werte initialisieren: d. =0 und d, = —oo fiir alle v # s

B for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Ubrigens: Kiirzeste Wege in kreisfreien Graphen kann man genauso
berechnen (mit min statt max und 400 statt —oo).

L

0,00001

Genauso kann man auch das ,, T9-Problem* 16sen (mit - statt +).

(o

16 - 15

%
o> O J
R 0,000 Y
~\2, &
A
S y4

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelost:

m Ketten von Matrixmultiplikationen
B Lingste gemeinsame Teilfolge (in Zeichenketten)

B Optimale bindre Suchbaume

17 -

	Dynamisches Programmieren
	Entwurfstechniken
	Übersicht
	Vergleich

	Fahrplan
	Das Zerlegungsproblem
	Definition
	Rohe Gewalt
	Ein erster Versuch
	1. Struktur charakterisieren
	2. Wert rekursiv definieren
	3. Wert berechnen: top-down
	3. Wert berechnen: mit Tabelle
	3. Wert berechnen: bottom-up
	4. Optimale Loesung konstruieren

	Längste Wege
	Problemstellung
	Längste Wege in azyklischen Graphen
	Algorithmus nach Fahrplan

	Und jetzt?

