CRCHIRGoso))
AR) ’ﬁr‘

Algorithmen und Datenstrukturen

Vorlesung 22:
Dynamisches Programmieren

2
ﬁhétﬁtéh

Alexander Wolff Wintersemester 2025

Entwurfstechniken

Entwurfstechniken

B Inkrementell

Entwurfstechniken

B Inkrementell

B Rekursiv

Entwurfstechniken

B Inkrementell
B Rekursiv

B Teile und Herrsche

Entwurfstechniken

B Inkrementell
B Rekursiv
B Teile und Herrsche

B Randomisiert

Entwurfstechniken

B Inkrementell
B Rekursiv
B Teile und Herrsche

B Randomisiert

Heute:

Entwurfstechniken

B Inkrementell
B Rekursiv
B Teile und Herrsche

B Randomisiert

Heute:

B Dynamisches Programmieren

Entwurfstechniken

B Inkrementell
B Rekursiv
B Teile und Herrsche

B Randomisiert

meint hier das Arbeiten mit einer Tabelle,
Heute:

nicht das Schreiben eines Computerprogrammes.

B Dynamisches Programmieren

Vergleich

Teile und Herrsche Dynamisches Programmieren

Vergleich

Teile und Herrsche Dynamisches Programmieren

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

Vergleich

Teile und Herrsche Dynamisches Programmieren

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

Vergleich - <

Teile und Herrsche Dynamisches Programmieren

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

Vergleich - <

[P_I [b

Teile und Herrsche Dynamisches Programmieren

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

Vergleich

r'4 ™Y
[[
éhlﬁbhéhdbh

Teile und Herrsche Dynamisches Programmieren

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

Vergleich

SR

Teile und Herrsche Dynamisches Programmieren

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

Vergleich

r4 "
b6k = i
Teile und Herrsche Dynamisches Programmieren
B zerlegt Instanz rekursiv in B zerlegt Instanz in

disjunkte Teilinstanzen uberlappende Teilinstanzen

Vergleich

r4 "
b6k = i
Teile und Herrsche Dynamisches Programmieren
B zerlegt Instanz rekursiv in B zerlegt Instanz in

disjunkte Teilinstanzen uberlappende Teilinstanzen

Vergleich

r4 "
b6k = i
Teile und Herrsche Dynamisches Programmieren
B zerlegt Instanz rekursiv in B zerlegt Instanz in

disjunkte Teilinstanzen uberlappende Teilinstanzen

Vergleich

r4 N
b6k = i
Teile und Herrsche Dynamisches Programmieren
B zerlegt Instanz rekursiv in B zerlegt Instanz in

disjunkte Teilinstanzen uberlappende Teilinstanzen

Vergleich

r4 N
b6k = i
Teile und Herrsche Dynamisches Programmieren
B zerlegt Instanz rekursiv in B zerlegt Instanz in

disjunkte Teilinstanzen uberlappende Teilinstanzen

Vergleich - <
% 5% ok &3
Teile und Herrsche Dynamisches Programmieren
B zerlegt Instanz rekursiv in B zerlegt Instanz in

disjunkte Teilinstanzen uberlappende Teilinstanzen

Vergleich - -
%0 1 5
Teile und Herrsche Dynamisches Programmieren
B zerlegt Instanz rekursiv in B zerlegt Instanz in
disjunkte Teilinstanzen uberlappende Teilinstanzen,

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

- 14

Vergleich

R}

s

Teile und Herrsche

B zerlegt Instanz rekursiv in

4

disjunkte Teilinstanzen

Dynamisches Programmieren

B zerlegt Instanz in
uberlappende Teilinstanzen,

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

Losungen von Teilinstanzen werden

zwischengespeichert, nicht neu berechnet.

- 15

Vergleich

R}

s

Teile und Herrsche

4

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

B top-down

Dynamisches Programmieren

B zerlegt Instanz in
uberlappende Teilinstanzen,

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

Losungen von Teilinstanzen werden

zwischengespeichert, nicht neu berechnet.

- 16

Vergleich

Ry

Teile und Herrsche

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

B top-down

Dynamisches Programmieren

B zerlegt Instanz in
uberlappende Teilinstanzen,

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

Losungen von Teilinstanzen werden

zwischengespeichert, nicht neu berechnet.

B meist bottom-up

- 17

Vergleich

Ry

Teile und Herrsche

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

B top-down

B cher fiir Entscheidungs-
oder Berechnungsprobleme

Dynamisches Programmieren

B zerlegt Instanz in
uberlappende Teilinstanzen,

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

Losungen von Teilinstanzen werden

zwischengespeichert, nicht neu berechnet.

B meist bottom-up

- 18

Vergleich <

Ry

Teile und Herrsche

B zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

B top-down

B cher fiir Entscheidungs-
oder Berechnungsprobleme

Dynamisches Programmieren

B zerlegt Instanz in
uberlappende Teilinstanzen,

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

Losungen von Teilinstanzen werden

zwischengespeichert, nicht neu berechnet.

B meist bottom-up

B meist fiir Optimierungsprobleme

- 19

Fahrplan

1. Struktur einer optimalen Losung charakterisieren

Fahrplan
1. Struktur einer optimalen Losung charakterisieren

2. Wert einer optimalen Losung rekursiv definieren

Fahrplan
1. Struktur einer optimalen Losung charakterisieren
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

Fahrplan

1.

2.

Struktur einer optimalen Losung charakterisieren
Wert einer optimalen Losung rekursiv definieren
Wert einer optimalen Lésung berechnen (meist bottom-up)

Optimale Losung aus berechneter Information konstruieren

Fahrplan

1. Struktur einer optimalen Losung charakterisieren

2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

Optimale Losung aus berechneter Information konstruieren

Das Zerlegungsproblem

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., P
fir Stabe der Langen 1, 2, ..., n.

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., P
fir Stabe der Langen 1, 2, ..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

Lange / 1]2]3|4

Preis p; [In€] |1[5]8]9

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

€9 | €7

Lange |

Preis p; [in €]

Das Zerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., ps
fir Stabe der Langen 1,2,..., n.

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

€9 | €7
L Lange / 1]2]3|4
c10 | e Preis p; [In€] |1[5]8]9
€9 | €4

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.
= 2"~1 verschiedene Zerlegungen

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.
= 2"=1 verschiedene Zerlegungen

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.
= (27=1 verschiedene Zerlegungenr\

Oh, mein Gott!
Das ist ja exponentiell!

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.
= (27=1 verschiedene Zerlegungenr\
O

h, mein Gott!

Also kdonnen wir es uns nicht leisten Das ist ja exponentiell!

alle Zerlegungen durchzugehen und fiir
jede ihren Ertrag zu berechnen.

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.
= 271 verschiedene Zerlegungen

Oh, mein Gott!
Also kdonnen wir es uns nicht leisten Das ist ja exponentiell!
alle Zerlegungen durchzugehen und fiir
jede ihren Ertrag zu berechnen.

*) Genauer: die gesuchte Zahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natiirlichen Zahlen schreiben kann.

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.
= 271 verschiedene Zerlegungen

Oh, mein Gott!
Also kdonnen wir es uns nicht leisten Das ist ja exponentiell!
alle Zerlegungen durchzugehen und fiir
jede ihren Ertrag zu berechnen.

*) Genauer: die gesuchte Zahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natiirlichen Zahlen schreiben kann.

Es gilt p(n) ~ ™V 2n/3/(4n\/§)

Rohe Gewalt

Frage. Wie viele Moglichkeiten gibt es,
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antwort. Konnen n — 1 mal entscheiden: schneiden oder nicht.
= 271 verschiedene Zerlegungen

Oh, mein Gott!
Also kdonnen wir es uns nicht leisten Das ist ja exponentiell!
alle Zerlegungen durchzugehen und fiir
jede ihren Ertrag zu berechnen.

*) Genauer: die gesuchte Zahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natiirlichen Zahlen schreiben kann.

Es gilt p(n) &~ e™V21/3 [(4n\/3) € @*((13,00195...)ﬁ) |

Ein erster Versuch

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., P
fir Stabe der Langen 1, 2, ..., n.

Welche Stabzerlegung maximiert den Ertrag?

Beispiel: n = 4
Linge i[inm] |1 |2]3]4
Preis p; [in€] |1|5|8]9

Ein erster Versuch

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., P
fir Stabe der Langen 1, 2, ..., n.

Welche Stabzerlegung maximiert den Ertrag?

Greedy:

Beispiel: n = 4
Linge i[inm] |1 |2]3]4
Preis p; [in€] |1|5|8]9

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel:

kennen die Preise py, p>
fir Stabe der Langen 1, 2, ..., n.

, Pn Lange / [in m]

— 4

Preis p; [in €]

Welche Stabzerlegung maximiert den Ertrag?

Greedy:

B Berechne furi =1

n den Preis pro Meter q; = p;/i.

Ein erster Versuch

Wir haben einen Stab der Lange n und
kennen die Preise p1, po, ..., P
fir Stabe der Langen 1, 2, ..., n.

Welche Stabzerlegung maximiert den Ertrag?

Greedy:

Beispiel: n = 4
Lange i [in m] 1121314
Preis p; [in €] 11518109
Quotient g; [€/m] | 1 2% 2% 2%

B Berechne furi=1,..., n den Preis pro Meter q; = p;/i.

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n =4

kennen die Preise p1, po, ..., Dn Lange i [in m] 12|34

fir Stabe der Langen 1,2,...,n. Preis p; [in €] 115|819
Quotient ¢; [€/m] | 1 |25 |25 |23

Welche Stabzerlegung maximiert den Ertrag?

Greedy:
B Berechne furi=1,..., n den Preis pro Meter q; = p;/i.

B Zerlege Stab in moglichst viele Stiicke der Lange / mit g; max.

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n =4

kennen die Preise p1, po, ..., Dn Lange i [in m] 12|34

fir Stabe der Langen 1,2,...,n. Preis p; [in €] 115|819
Quotient ¢; [€/m] | 1 |25 |25 |23

Welche Stabzerlegung maximiert den Ertrag?

Greedy:
B Berechne furi=1,..., n den Preis pro Meter q; = p;/i.

B Zerlege Stab in moglichst viele Stiicke der Lange / mit g; max.

B Streiche alle Stablangen > / aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n =4

kennen die Preise p1, po, ..., Dn Lange i [in m] 12|34

fir Stabe der Langen 1,2,...,n. Preis p; [in €] 115|819
Quotient ¢; [€/m] | 1 |25 |25 |23

Welche Stabzerlegung maximiert den Ertrag?

Greedy:

B Berechne furi=1,..., n den Preis pro Meter q; = p;/i.

B Zerlege Stab in moglichst viele Stiicke der Lange / mit g; max.

B Streiche alle Stablangen > / aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n =4

kennen die Preise p1, po, ..., Dn Lange i [in m] 12|34

fir Stabe der Langen 1,2,...,n. Preis p; [in €] 115|819
Quotient ¢; [€/m] | 1 |25 |25 |23

Welche Stabzerlegung maximiert den Ertrag?

Greedy:
B Berechne furi=1,..., n den Preis pro Meter q; = p;/i.

B Zerlege Stab in moglichst viele Stiicke der Lange / mit g; max.

B Streiche alle Stablangen > / aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

. /
Ja? Beweisen!

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n =4

kennen die Preise p1, po, ..., Dn Lange i [in m] 12|34

fir Stabe der Langen 1,2,...,n. Preis p; [in €] 115|819
Quotient ¢; [€/m] | 1 |25 |25 |23

Welche Stabzerlegung maximiert den Ertrag?

Greedy:
B Berechne furi=1,..., n den Preis pro Meter q; = p;/i.

B Zerlege Stab in moglichst viele Stiicke der Lange / mit g; max.

B Streiche alle Stablangen > / aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n =4

kennen die Preise p1, po, ..., Dn Lange i [in m] 12|34

fir Stabe der Langen 1,2,...,n. Preis p; [in €] 115|819
Quotient ¢; [€/m] | 1 |25 |25 |23

Welche Stabzerlegung maximiert den Ertrag?

Greedy:
B Berechnefiri=1,..., n den Preis pro Meter q; = p;/i.

B Zerlege Stab in moglichst viele Stiicke der Lange / mit g; max.

B Streiche alle Stablangen > / aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n =4
kennen die Preise pq, po, ..., Dn Lange i [in m] 112 (3|4
fir Stabe der Langen 1,2,...,n. Preis p; [in €] 115|819
: : T 52 |60
QUOtlent di [€/m 1 25 2§ 21
Welche Stabzerlegung maximiert den Ertrag? €9
Greedy: €10
B Berechnefiri=1,..., n den Preis pro Meter q; = p;/i.

B Zerlege Stab in moglichst viele Stiicke der Lange / mit g; max.

B Streiche alle Stablangen > / aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

1. Struktur einer optimalen Losung charakterisieren

Def.

Fir/i=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

1. Struktur einer optimalen Losung charakterisieren

Def.

Fir/i=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

1. Struktur einer optimalen Losung charakterisieren

Def.

Fir/i=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

1. Struktur einer optimalen Losung charakterisieren

Def.

Fir/i=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

«—— |

1. Struktur einer optimalen Losung charakterisieren

Def.

Fir/i=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

Ertrag e Ertrag e,

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.

2. Wert einer optimalen Losung rekursiv definieren

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

R S R R R Phanomen der
optimalen

- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

€, =

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

e, = max{ }

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

e, = max{ p,, }

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

e, = max{ p, e+ e, 1, h

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

en= max{ ppn, e+ en-1, e +eno, }

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

en= max{ P, € +e 1, e+e o ..., }

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/=1,...,n
sei ¢; der maximale Ertrag fiir einen Stab der Lange 1.

- - i - - - - - - | - - -

' Phinomen der |
optimalen
- Teilstruktur!

Ertrag e Ertrag e,

Beob. Ein Schnitt zerlegt das Problem in unabhangige Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Loésung vorkommt.

Also probieren wir einfach alle moglichen Schnitte aus:

en= max{ p,, e +e, 1, e+er o2 ..., €r1t+e }

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, et+e,—1, e+e, 2 ..., e1t+e }

Kleine Verbesserung:

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Ertrag e Ertrag e,

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

Ertrag e Ertrag e,

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

Ertrag e Ertrag e,

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

Ertrag e Ertrag e,

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

A

Ertrag e, = p; Ertrag e, ;

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

A

Ertrag e, = p; Ertrag e, ;
Also gilt:
e, =

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte

im linken Teilstick!

A

Ertrag e, = p; Ertrag e, ;

Also gilt:
e, = max{ }

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

A

Ertrag e, = p; Ertrag e, ;

Also gilt:

e, = max{ pp,, }

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

Also gilt:
e, = max{ p, p1+ e 1, }

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

A

Ertrag e, = p; Ertrag e, ;
Also gilt:

en — maX{ pl’h p]_ —l_ en—11 p2 —l_ en—21 R }

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

A

Ertrag e, = p; Ertrag e, ;
Also gilt:

en — maX{ pl’h p]_ —l_ en—11 p2 —l_ en—21 R pn—l —I_ e]. }

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

W—/
Ertrag ¢, = p; Ertrag e, ;
Also gilt:
en — maX{ pl’h p]_ —l_ en—11 p2 —l_ en—21 R pn—l —I_ e]. }

- 122(,,{"" + enif

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

W—/
Ertrag ¢, = p; Ertrag e, ;
Also gilt:
en — maX{ pl’h p]_ —l_ en—11 p2 —l_ en—21 R pn—l —I_ e]. }

— / n—i ! b . L= .
1rgl_agxn{p +e, i}, wobei g :=0

2. Wert einer optimalen Losung rekursiv definieren

en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

W
Ertrag e, = p; Ertrag e, ;
Also gilt:

en = max{ pn, p1+er1, P2+eno,

— 12?§><n{p,- +e, i}, wobei g :=0.

«v Pn-1 + €1 }

Vorteil: Wert einer optimalen Losung ist Summe aus einer Zahl der

Eingabe und einem Wert einer optimalen Teillosung.

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIssn

10 -

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIss\n

10 -

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIss\n

10 -

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIss\n

10 -

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIssn

STANGENZERLEGUNG(int[] p, int n = p.length)
if n == 0 then return 0O
q=—00
for /=1 to ndo |
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — i)}

10 -

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIssn

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—0C

for i =1 to ndo .
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — i)}
return g :

10 -

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIssn

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—0C

for i =1 to ndo .
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — i)}

return g :

Laufzeit.

10 -

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIssn

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q= —00

for i =1 to ndo .
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — i)}

return g :

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

10 -

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = [max {pi+e, i}, wobeie :=0.
NIssn

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q= —00

for i =1 to ndo .
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — i)}

return g :

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =

10 -

10 - 10

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for i = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =1

10-11

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =1
und A(n) =

10 - 12

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =1
und A(n)= 1+

10 - 13

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

10 - 14

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =1
und A(n) = 1+ZA(n—/)

10 - 15

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =1
und A(n) = 1+ZA(n—/)

10 - 16

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =1
und A(n) = 1+ZA(n—l) —1+ZA(J)

10 - 17

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =1
und A(n) = 1+ZA(n—l) —1+ZA(J)

10 - 18

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =

1
and A(n) = 1+ZA(n—l) —1+ZA(J) (&Y

10 - 19

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1r2a<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for | = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

= A(0) =1
und A(n) = 1+ZA(n—l) —1+ZA(J)

|Bewe|s7| |®

10 - 20

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = 1rga<>< {Pl + e,_ ,}, wobei ¢ := 0.
/ n

STANGENZERLEGUNG(int[] p, int n = p.length)

if n==0 then return 0

q=—
for i = 1 to n do
| g =max{q, p[i] + STANGENZERLEGUNG(p, n — :)}

return g

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von STANGENZERLEGUNG(p, -)
beim Ausfiihren von STANGENZERLEGUNG(p, n).

1t2+4+8+. 20t

|Bewe|s7| |®

= A(0) =1
und A(n) = 1+ZA(n—l) —1+ZA(J)

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[]| p, int n = p.length)
- e=new int[0...n]
e[0] =0
for i=1to ndo
| eli] = —o0
return HAUPTSTANGENZERLEGUNG(p, n, €)

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[]| p, int n = p.length)
- e=new int[0...n]
el0] =0
for i=1to ndo
| eli] = —o0
return HAUPTSTANGENZERLEGUNG(p, n, €)

HAUPTSTANGENZERLEGUNG(int[] p, int n, int[] e)
if e[n] > —oc then return e[n]

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[]| p, int n = p.length)
- e=new int[0...n]
el0] =0
for i=1to ndo
| eli] = —o0
return HAUPTSTANGENZERLEGUNG(p, n, €)

HAUPTSTANGENZERLEGUNG(int[] p, int n, int[] e)
if e[n] > —oc then return e[n]

11 -

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[] p, int n = p.length)
e = new int[0. .. n]

el0] =0
for i =1to ndo
| eli] = -

return HAUPTSTANGENZERLEGUNG(p, n, €)

HAUPTSTANGENZERLEGUNG(int[] p, int n, int[] e)

if e[n] > —oc then return e[n]

qg= —0o0

for i =1 to ndo

| g =max{q, p|i/|+HAUPTSTANGENZERLEGUNG(p, n—i,€)}

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[] p, int n = p.length)
e = new int[0. .. n]

el0] =0
for i =1to ndo
| eli] = -

return HAUPTSTANGENZERLEGUNG(p, n, €)

HAUPTSTANGENZERLEGUNG(int[] p, int n, int[] e)

if e[n] > —oc then return e[n]

qg= —0o0

for i =1 to ndo

| g =max{q, p|i/|+HAUPTSTANGENZERLEGUNG(p, n—i,€)}

e[n] = qg; return q

11-12

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[] p, int n = p.length) - Laufzeit?
- e=new int[0...n] |
e[0] =0
for i =1 to ndo
| eli] = -
return HAUPTSTANGENZERLEGUNG(p, n, €)

HAUPTSTANGENZERLEGUNG(int[] p, int n, int[] e)

if e[n] > —oc then return e[n]

g = —00

for i =1to ndo ,
| g =max{q, p[/]+HAUPTSTANGENZERLEGUNG(p, n—1i, €)}
e[n] = q; return g '

11-13

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[]| p, int n = p.length) . Laufzeit?
| e:newint[O...n] | | -
e[l0] =0 B Wie letzte Folie’

for i =1to ndo
| e[i] = —o0

return HAUPTSTANGENZERLEGUNG(p, n, €)

HAUPTSTANGENZERLEGUNG(int[] p, int n, int[] e)

if e[n] > —oc then return e[n]

g = —00

for i =1to ndo ,
| g =max{q, p[/]+HAUPTSTANGENZERLEGUNG(p, n—1i, €)}
e[n] = q; return g '

11- 14

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

MEMOSTANGENZERLEGUNG(int[] p, int n = p.length) - Laufzeit?

- e=new int[0...n] | .
e[0] = 0 : B Wie letzte Folie:
for i =1 to ndo B Asymptotisch

| eli] = - | schneller?

return HAUPTSTANGENZERLEGUNG(p, n, €)

HAUPTSTANGENZERLEGUNG(int[] p, int n, int[] e)

if e[n] > —oc then return e[n]

g = —00

for i =1to ndo ,
| g =max{q, p[/]+HAUPTSTANGENZERLEGUNG(p, n—1i, €)}
e[n] = q; return g '

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

3. Wert einer optimalen Losung berechnen: bottom-up

12 -

12-10

3. Wert einer optimalen Losung berechnen: bottom-up

""

e = new int[0. .. n]

e[0] =0 'Neu: kein
for j=1to ndo rekursiver
qg—= —0o0 Aufruf!

for i =1 to do
| g=max{q, pli] +e[j —i]}
- elj]l=q

return g

3. Wert einer optimalen Losung berechnen: bottom-up

""

e = new int[0. .. n]
e[0] =0

for j=1to ndo
qg= —o

for i =1 to do

elil=gqg

return g

Neu: kein

rekursiver

LAufruf!

| g=max{q, pli] +e[j —i]}

ONCHMONONO

Graph der Teilinstanzen

12-11

12 - 12

3. Wert einer optimalen Losung berechnen: bottom-up

""

BOoTTOMUPSTANGENZERLEGUNG(int[] p, int n): @

e = new int[0. .. n]

e[O] =0 'Neu: kein | @
| @

for j=1to ndo rekursiver
qg—= —0o0 Aufruf!

for i = 1 to j do | Kante (j, i) bedeutet:

L q= max{q, p[i] + eU _ i] } Teilinstanz j benutzt
| @

1 Wert einer opt. LOsun
- ell=q einer opt. Lésung
return g von leilinstanz 1.

Graph der Teilinstanzen

3. Wert einer optimalen Losung berechnen: bottom-up

""

e = new int[0. .. n]
e[0] =0

for j=1to ndo
qg= —o

for i =1 to do

elil=gqg

return g

rekursiver

LAufruf!

Neu: kein

| g=max{q, pli] +e[j —i]}

@

®
2

(L)
O

12-13

Kante (j, i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Losung
von Teilinstanz .

Graph der Teilinstanzen

12 - 14

3. Wert einer optimalen Losung berechnen: bottom-up

BoTTOMUPSTANGENZERLEGUNG(int[] p, int n): @
e = new int[0. .. n]
e[0] =0 Neu: kein | @
for j =1 to ndo rekursiver
g= —00 Aufrufl 9
for i =1to, do Kante (j, /) bedeutet:
| g=max{q, pli]+elj—1]} i) Teilinstanz j benutzt
e[j] = q 5 Wert einer opt. Losung
return q @ von Tellinstanz 1.

Graph der Teilinstanzen

12-15

3. Wert einer optimalen Losung berechnen: bottom-up

BoTrTOMUPSTANGENZERLEGUNG(int[] p, int n): @
e = new int[0. .. n]
el0] =0 'Neu: kein ©
for j=1to ndo rekursiver
g= —00 Aufruf! | 9
for i =1to, do Kante (j, /) bedeutet:
| g=max{q, pli|+elj—1]} © Teilinstanz j benutzt
e[jl = q 5 Wert einer opt. Losung
iy E von Teilinstanz 1.
return g | @

Graph der Teilinstanzen

12-16

3. Wert einer optimalen Losung berechnen: bottom-up

BoTrTOMUPSTANGENZERLEGUNG(int[] p, int n): @
e = new int[0. .. n]

el0] =0 Neu: kein | ©
for j=1to ndo rekursiver |

g = —00 Aufruf! | 9

for i=1to do Kante (J, /) bedeutet:
0 Teilinstanz j benutzt

| g=max{q, pli| +e[j—i]}

eU] — g | Wert einer opt. Losung
= I Teilinstanz i.
return g 5 @ von

Graph der Teilinstanzen

12 - 17

3. Wert einer optimalen Losung berechnen: bottom-up

BoTrTOMUPSTANGENZERLEGUNG(int[] p, int n): @
e = new int[0. .. n]

el0] =0 Neu: kein | ©
for j=1to ndo rekursiver |

g = —00 Aufruf! | 9

for i=1to do Kante (J, /) bedeutet:
0 Teilinstanz j benutzt

| g=max{q, pli| +e[j—i]}

eU] — g | Wert einer opt. Losung
= I Teilinstanz i.
return g 5 @ von

Graph der Teilinstanzen

12 - 18

3. Wert einer optimalen Losung berechnen: bottom-up

for i=1to do Kante (J, /) bedeutet:
Teilinstanz j benutzt

| g=max{q, pli| +e[j—i]}

eU] — g | Wert einer opt. Losung
= I Teilinstanz i.
return g 5 @ von

BoOTTOMUPSTANGENZERLEGUNG(int[] p, int n): 0
e = new int[0. .. n] |
e[0] =0 Neu: kein @
for j=1to ndo rekursiver
qg= —00 Aufruf! 9

Graph der Teilinstanzen

12-19

3. Wert einer optimalen Losung berechnen: bottom-up

for i=1to do Kante (J, /) bedeutet:
Teilinstanz j benutzt

| g=max{q, pli| +e[j—i]}

eU] — g | Wert einer opt. Losung
= I Teilinstanz i.
return g 5 @ von

BoOTTOMUPSTANGENZERLEGUNG(int[] p, int n): 0
e = new int[0. .. n] |
e[0] =0 Neu: kein @
for j=1to ndo rekursiver
qg= —00 Aufruf! 9

Graph der Teilinstanzen

12- 20

3. Wert einer optimalen Losung berechnen: bottom-up

BoTTOMUPSTANGENZERLEGUNG(int[] p, int n): 0

e = new int[0. .. n] '

el0] =0 Neu: kein | ©

for j=1to ndo rekursiver |
g= —00 Aufrufl 9
fori=1to do g ‘ Kante (j, i) bedeutet:

| g=max{q, pli|+elj—1]} E 0 Teilinstanz j benutzt

elj] =g Wert einer opt. Losung

re_turn q E @ von Teilinstanz 1.

Graph der Teilinstanzen

12-21

3. Wert einer optimalen Losung berechnen: bottom-up

BoTrTOMUPSTANGENZERLEGUNG(int[] p, int n):
e = new int[0. .. n] |
e[0] =0 Neu: kein
for j=1to ndo rekursiver

qg—= —0o0 Aufruf!

Kante (j, /) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Losung
von Teilinstanz /.

for i =1 to do

| g=max{q, pli]+e[j—i]}
- elj]l=q
return g

Graph der Teilinstanzen

12 - 22

3. Wert einer optimalen Losung berechnen: bottom-up

BoTrTOMUPSTANGENZERLEGUNG(int[] p, int n):
e = new int[0. .. n] |
e[0] =0 Neu: kein
for j=1to ndo rekursiver

qg—= —0o0 Aufruf!

Kante (j, /) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Losung
von Teilinstanz .

for i =1 to do

| g=max{q, pli]+e[j—i]}
- elj]l=q
return g

Graph der Teilinstanzen

Beob. Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

12- 23

3. Wert einer optimalen Losung berechnen: bottom-up

BoTrTOMUPSTANGENZERLEGUNG(int[] p, int n):
e = new int[0. .. n] |
e[0] =0 Neu: kein
for j=1to ndo rekursiver

qg—= —0o0 Aufruf!

Kante (j, /) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Losung
von Teilinstanz /.

for i =1 to do

| g=max{q, pli]+e[j—i]}
- elj]l=q
return g

Graph der Teilinstanzen

Beob. Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

[Satz. BoTTUPSZERL() und MEMOSZERL() laufen in O() Zeit.]

12 - 24

3. Wert einer optimalen Losung berechnen: bottom-up

BoTrTOMUPSTANGENZERLEGUNG(int[] p, int n):
e = new int[0. .. n] |
e[0] =0 Neu: kein
for j=1to ndo rekursiver

qg—= —0o0 Aufruf!

Kante (j, /) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Losung
von Teilinstanz /.

for i =1 to do

| g=max{q, pli]+e[j—i]}
- elj]l=q
return g

Graph der Teilinstanzen

Beob. Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

[Satz. BoTTUPSZERL() und MuMOSZERL() laufen in O(n?) Zeit.]

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

4. Optimale Losung aus berechneten Informationen konstruieren

13 -

13-10

4. Optimale Losung aus berechneten Informationen konstruieren

13-11

4. Optimale Losung aus berechneten Informationen konstruieren

13-12

4. Optimale Losung aus berechneten Informationen konstruieren

13-13

4. Optimale Losung aus berechneten Informationen konstruieren

4. Optimale Losung aus berechneten Informationen konstruieren

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)

el0] =0
for j=1to ndo
g = —00
forizltOJ_'do -
" qq<ng%i]-l-+e[ej[j—_l]i]then } q = max{q, p[/| + e[j—i]}
I L 0=
e[lil=q

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)
el0] =0
for j=1to ndo

?or:i—zoi tOJ_' do -
" qq<ng%i]-l-+e[ej[j—_l]i]then } q = max{q, p[/| + e[j—i]}
] R
e[ljl=g

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)
el0] =0
for j=1to ndo

?or:i—zoi tOJ_' do -
" qq<ng%i]-l-+e[ej[j—_l]i]then } q = max{q, p[/| + e[j—i]}
] R
e[ljl=g

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)
while n > 0 do

L

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)
el0] =0
for j=1to ndo

?or:i—zoi tOJ_' do -
" qq<ng%i]-l-+e[ej[j—_l]i]then } q = max{q, p[/| + e[j—i]}
] R
e[ljl=g

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

while n > 0 do
| print £[n]; n=n—¢[n]

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)
el0] =0
for j=1to ndo

?or:i—zoi tOJ_' do -
" qq<ng%i]-l-+e[ej[j—_l]i]then } q = max{q, p[/| + e[j—i]}
] R
e[ljl=g

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

while n > 0 do
| print £[n]; n=n—¢[n]

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)
el0] =0
for j=1to ndo

?or:i—zoi tOJ_' do -
o pilay = fammasi i
i L il=1i
e[jl=gq

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

while n > 0 do
| print £[n]; n=n—¢[n]

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)
el0] =0
for j=1to ndo

?or:i—zoi tOJ_' do -
o pilay = fammasi i
i L il=1i
e[jl=gq

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

while n > 0 do
| print £[n]; n=n—¢[n]

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)

el0] =0
for j=1to ndo
q = —00
for i =1toj do
if g < plil+ e[j —i] then B . ..
L q = plil+ e[j — i] q = maxiq. pli] +elj=i]}
ljl=i —
e[jl=g¢ (7)=3

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

while n > 0 do
| print £[n]; n=n—¢[n]

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)

el0] =0
for j=1to ndo
q = —00
for i =1toj do
if g < plil+ e[j —i] then B . ..
L q = plil+ e[j — i] q = maxiq. pli] +elj=i]}
(=i R
e[ljl=g (q7]=3 ([4]=2

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

while n > 0 do
| print £[n]; n=n—¢[n]

4. Optimale Losung aus berechneten Informationen konstruieren

ERWEITERTEBOTTOMUPZERLEGUNG(int[]| p, int[] e, int[] £, int n)

el0] =0
for j=1to ndo
q = —00
for i =1toj do
if g < plil+ e[j —i] then B . ..
L q = plil+ e[j — i] q = maxiq. pli] +elj=i]}
il =i SEER B
- elj]=g¢q (71=3 ([4]=2 ¢[2]=2

GIBZERLEGUNGAUS(int[] p, int n)
¢ = new int[0...n|; e = new int[0... n]
ERWEITERTEBOTTOMUPZERLEGUNG(p, €, £, n)

while n > 0 do
| print £[n]; n=n—¢[n]

Langste Wege

Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s £ t, aber t von s erreichbar.

14 -

Langste Wege

Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s £ t, aber t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg

14 -

Langste Wege

Gegeben:

Gesucht:

ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.
ein langster einfacher s-t-Weg,

d.h. eine Folge (s = w, w1, ..., vk = t) mit
VoVvL, ..., Vk—1Vvk € E, vi # v; (fiir i # j) und k maximal.

14 -

Langste Wege
Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg

d.h. eine Folge (s = v, w1, ..., vk = t) mit

VoVvL, ..., Vk—1Vvk € E, vi # v; (fiir i # j) und k maximal.

Fahrplan
1. Struktur einer optimalen Losung charakterisieren
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

14 -

Langste Wege
Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg

d.h. eine Folge (s = v, w1, ..., vk = t) mit

VoVvL, ..., Vk—1Vvk € E, vi # v; (fiir i # j) und k maximal.

Fahrplan
1. Struktur einer optimalen Losung charakterisieren
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

14 -

Langste Wege
Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg

d.h. eine Folge (s = v, w1, ..., vk = t) mit

VoVvL, ..., Vk—1Vvk € E, vi # v; (fiir i # j) und k maximal.

Fahrplan
1. Struktur einer optimalen Losung charakterisieren
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

14 -

Langste Wege

Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.
Gesucht: ein langster einfacher s-t-Weg |

d.h. eine Folge (s = v, w1, ..., vk = t) mit
VoVvL, ..., Vk—1Vvk € E, vi # v; (fiir i # j) und k maximal.

(s, u, t) ist ein langster einfacher s-t-Weg.

Fahrplan
1. Struktur einer optimalen Losung charakterisieren
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

14 -

Langste Wege

Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.
Gesucht: ein langster einfacher s-t-Weg |

d.h. eine Folge (s = v, w1, ..., vk = t) mit
VoVvL, ..., Vk—1Vvk € E, vi # v; (fiir i # j) und k maximal.

(s, u, t) ist ein langster einfacher s-t-Weg.

Aber:

Fahrplan
1. Struktur einer optimalen Losung charakterisieren
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

14 -

Langste Wege

Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.
Gesucht: ein langster einfacher s-t-Weg |

d.h. eine Folge (s = v, v1,..., vk = t) mit
VOV1, - .., Vk—1Vk € E, vi # v; (fiir i # j) und k maximal.

(s, u, t) ist ein langster einfacher s-t-Weg.

Aber:

(s, u) ist kein langster einfacher s-u-Weg;

Fahrplan
1. Struktur einer optimalen Losung charakterisieren
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

14 -

14 - 10

Langste Wege

Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg |

d.h. eine Folge (s = v, v1,..., vk = t) mit
VOV1, - .., Vk—1Vk € E, vi # v; (fiir i # j) und k maximal.

(s, u, t) ist ein langster einfacher s-t-Weg. e-a

Aber:
(s, u) ist kein langster einfacher s-u-Weg;

Fahrplan (s, v, t, u) ist ein langster einfacher s-u-Weg! a-e

1. Struktur einer optimalen Losung charakterisieren
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

14 - 11

Langste Wege

Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg |

d.h. eine Folge (s = v, v1,..., vk = t) mit
VOV1, - .., Vk—1Vk € E, vi # v; (fiir i # j) und k maximal.

(s, u, t) ist ein langster einfacher s-t-Weg. e-a

Aber:
(s, u) ist kein langster einfacher s-u-Weg;

Fahrplan (s, v, t, u) ist ein langster einfacher s-u-Weg! a-e

1. Struktur einer optimalen Losung charakterisieren f
2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)

Langste Wege
Gegeben: ungewichteter gerichteter Graph G
mit s,t € V(G), s #£ t, aber t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg |

d.h. eine Folge (s = v, v1,..., vk = t) mit
VOV1, - .., Vk—1Vk € E, vi # v; (fiir i # j) und k maximal.

(s, u, t) ist ein langster einfacher s-t-Weg.

Aber:

(s, u) ist kein langster einfacher s-u-Weg;
Fahrplan (s, v, t, u) ist ein langster einfacher s-u-Weg!
1. Struktur einer optimalen Losung charakterisieren f*

2. Wert einer optimalen Losung rekursiv definieren

3. Wert einer optimalen Lésung berechnen (meist bottom-up)
*) Es ist NP-schwer fiir (G, s, t, k) zu entscheiden, ob G einen einfachen s-t-Weg der Linge k enthilt. (Vgl. Hamilton-Weg!)

14 - 12

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

15 -

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

Gesucht: ein langster s-t-Weg.

15 -

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

Gesucht: ein langster s-t-Weg.

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

15 -

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

Gesucht: ein langster s-t-Weg.

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

15 -

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

Gesucht: ein langster s-t-Weg.

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein langster s-t-Weg 7 geht durch v, d.h.

i i
m™T=5—%u—%t.

15 -

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

Gesucht: ein langster s-t-Weg.

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein langster s-t-Weg 7 geht durch v, d.h.
— Tsu TTug
™=Ss > u > L.

Dann gilt:
sy, ISt langster s-u-Weg; m,: ist langster u-t-Weg —

15 -

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

Gesucht: ein langster s-t-Weg.

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein langster s-t-Weg 7 geht durch v, d.h.
— Tsu TTug
™=Ss > u > L.

Dann gilt:
sy, ISt langster s-u-Weg; m,: ist langster u-t-Weg —

sonst ware 7 kein langster s-t-Weg.

15 -

Langste Wege in azyklischen Graphen

Gegeben: gerichteter kreisfreier Graph G mit Kantengewichten w: G(E) — R>g
und s,t € V(G), s # t, aber t von s erreichbar.

Gesucht: ein langster s-t-Weg.

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein langster s-t-Weg 7 geht durch v, d.h.
_ Tsu TTut
™=Ss > u > L.

Dann gilt:
sy, ISt langster s-u-Weg; m,: ist langster u-t-Weg —

sonst ware 7 kein langster s-t-Weg.

AuBerdem gilt V/(ms,) N V(7ye) = {u};
sonst gabe es einen Kreis!

15 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren
d. = // Lange eines langsten s-v-Wegs

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren
d. = 0 // Lange eines langsten s-v-Wegs

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren
d. = 0 // Lange eines langsten s-v-Wegs

d, =

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren
d. = 0 // Lange eines langsten s-v-Wegs

d, = max d, + w(u,v)
u: uveE(G)

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren
d. = 0 // Lange eines langsten s-v-Wegs

d, = max d, + w(u,v)
u: uveE(G)

3. Wert einer optimalen Lésung berechnen (hier bottom-up)

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren
d. = 0

d, = max d, + w(u,v)
u: uveE(G)

// Lange eines langsten s-v-Wegs

3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren
d. = 0

d, = max d, + w(u,v)
u: uveE(G)

// Lange eines langsten s-v-Wegs

3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren

B d-Werte initialisieren: d. =0 und d, = —oo fiir alle v # s

16 -

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren
d. = 0 // Lange eines langsten s-v-Wegs

d, = max d, + w(u,v)
u: uveE(G)

3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren
B d-Werte initialisieren: d. =0 und d, = —oo fiir alle v # s

B for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

16 - 10

Algorithmus nach Fahrplan |

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren

d. = 0 // Lange eines langsten s-v-Wegs

d, = max d, + w(u,v) =
u: uveE(G)

so!
3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren

B d-Werte initialisieren: d. =0 und d, = —oo fiir alle v # s

B for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Algorithmus nach Fahrplan

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren

d. = 0 // Lange eines langsten s-v-Wegs

d, = max d, + w(u,v) =
u: uveE(G)

so!
3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren

B d-Werte initialisieren: d. =0 und d, = —oo fiir alle v # s

B for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Ubrigens: Kiirzeste Wege in kreisfreien Graphen

16 - 12

Algorithmus nach Fahrplan |

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren

d. = 0 // Lange eines langsten s-v-Wegs

d, = max d, + w(u,v) =
u: uveE(G)

so!
3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren

B d-Werte initialisieren: d. =0 und d, = —oo fiir alle v # s

B for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Ubrigens: Kiirzeste Wege in kreisfreien Graphen kann man genauso

berechnen (mit min statt max und 400 statt —oo).

Algorithmus nach Fahrplan |

1. Struktur einer optimalen Losung charakterisieren \/

2. Wert einer optimalen Losung rekursiv definieren

d. = 0 // Lange eines langsten s-v-Wegs

d, = max d, + w(u,v) =
u: uveE(G)

so!
3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren

B d-Werte initialisieren: d. =0 und d, = —oo fiir alle v # s

B for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Ubrigens: Kiirzeste Wege in kreisfreien Graphen kann man genauso

berechnen (mit min statt max und 400 statt —oo).

Genauso kann man auch das ,, T9-Problem* 16sen (mit - statt +).

Algorithmus nach Fahrplan

v
Q
'

1. Struktur einer optimalen Losung charakterisieren \/

0,03
L

xR)

o
%

2. Wert einer optimalen Losung rekursiv definieren
d. = 0 // Lange eines langsten s-v-Wegs

d, = max d,+ w(u,v) =
u: uveE(G) so!

3. Wert einer optimalen Lésung berechnen (hier bottom-up)

B G topologisch sortieren

B d-Werte initialisieren: d. =0 und d, = —oo fiir alle v # s

B for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Ubrigens: Kiirzeste Wege in kreisfreien Graphen kann man genauso
berechnen (mit min statt max und 400 statt —oo).

L

0,00001

Genauso kann man auch das ,, T9-Problem* 16sen (mit - statt +).

(o

16 - 15

%
o> O J
R 0,000 Y
~\2, &
A
S y4

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelost:

17 -

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelost:

m Ketten von Matrixmultiplikationen

17 -

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelost:

m Ketten von Matrixmultiplikationen

B Lingste gemeinsame Teilfolge (in Zeichenketten)

17 -

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelost:

m Ketten von Matrixmultiplikationen
B Lingste gemeinsame Teilfolge (in Zeichenketten)

B Optimale bindre Suchbaume

17 -

	Dynamisches Programmieren
	Entwurfstechniken
	Übersicht
	Vergleich

	Fahrplan
	Das Zerlegungsproblem
	Definition
	Rohe Gewalt
	Ein erster Versuch
	1. Struktur charakterisieren
	2. Wert rekursiv definieren
	3. Wert berechnen: top-down
	3. Wert berechnen: mit Tabelle
	3. Wert berechnen: bottom-up
	4. Optimale Loesung konstruieren

	Längste Wege
	Problemstellung
	Längste Wege in azyklischen Graphen
	Algorithmus nach Fahrplan

	Und jetzt?

