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en= max{ p,, e +e,—1, e+e, o2 ..., e1+e }

Kleine Verbesserung:

Verbiete weitere Schnitte
im linken Teilstuck!

W
Ertrag e, = p; Ertrag e, ;
Also gilt:

en = max{ pn, p1+er1, P2+eno,

— 12?§><n{p,- +e, i}, wobei g :=0.

«v Pn-1 + €1 }

Vorteil: Wert einer optimalen Losung ist Summe aus einer Zahl der

Eingabe und einem Wert einer optimalen Teillosung.
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e = new int[0. .. n]
e[0] =0

for j=1to ndo
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Und jetzt?
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