
1

Algorithmen und Datenstrukturen

Vorlesung 22:
Dynamisches Programmieren

Alexander Wolff Wintersemester 2025

2 - 1

Entwurfstechniken

2 - 2

Entwurfstechniken

■ Inkrementell

2 - 3

Entwurfstechniken

■ Inkrementell

■ Rekursiv

2 - 4

Entwurfstechniken

■ Teile und Herrsche

■ Inkrementell

■ Rekursiv

2 - 5

Entwurfstechniken

■ Teile und Herrsche

■ Inkrementell

■ Randomisiert

■ Rekursiv

2 - 6

Entwurfstechniken

■ Teile und Herrsche

■ Inkrementell

Heute:

■ Randomisiert

■ Rekursiv

2 - 7

Entwurfstechniken

■ Teile und Herrsche

■ Inkrementell

Heute:

■ Dynamisches Programmieren

■ Randomisiert

■ Rekursiv

2 - 8

Entwurfstechniken

■ Teile und Herrsche

■ Inkrementell

Heute:

■ Dynamisches Programmieren

■ Randomisiert

■ Rekursiv

meint hier das Arbeiten mit einer Tabelle,
nicht das Schreiben eines Computerprogramms.

3 - 1

Vergleich

Teile und Herrsche Dynamisches Programmieren

3 - 2

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

3 - 3

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

3 - 4

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

3 - 5

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

3 - 6

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

3 - 7

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

3 - 8

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

3 - 9

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

3 - 10

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

3 - 11

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

3 - 12

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

3 - 13

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

3 - 14

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

,

3 - 15

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

Lösungen von Teilinstanzen werden
zwischengespeichert, nicht neu berechnet.

,

3 - 16

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

■ top-down

Lösungen von Teilinstanzen werden
zwischengespeichert, nicht neu berechnet.

,

3 - 17

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

■ top-down ■ meist bottom-up

Lösungen von Teilinstanzen werden
zwischengespeichert, nicht neu berechnet.

,

3 - 18

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

■ top-down ■ meist bottom-up

Lösungen von Teilinstanzen werden
zwischengespeichert, nicht neu berechnet.

,

■ eher für Entscheidungs-
oder Berechnungsprobleme

3 - 19

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
überlappende Teilinstanzen

d.h. Teilinstanzen haben oft
dieselben Teilteilinstanzen.

■ top-down ■ meist bottom-up

Lösungen von Teilinstanzen werden
zwischengespeichert, nicht neu berechnet.

,

■ meist für Optimierungsprobleme■ eher für Entscheidungs-
oder Berechnungsprobleme

4 - 1

Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

4 - 2

Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

4 - 3

Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

4 - 4

Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

4. Optimale Lösung aus berechneter Information konstruieren

4 - 5

Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

4. Optimale Lösung aus berechneter Information konstruieren

5 - 1

Das Zerlegungsproblem

5 - 2

Das Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 3

Das Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 4

Das Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 5

Das Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 6

Das Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 7

Das Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 8

Das Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 9

Das Zerlegungsproblem

2
5

1
1
1
1

3
8

4
9

Länge i

Preis pi [in e]

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 10

Das Zerlegungsproblem

2
5

1
1
1
1

3
8

4
9

Länge i

Preis pi [in e]
. . .

.

. . .

.

¤9 ¤7

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

5 - 11

Das Zerlegungsproblem

2
5

1
1
1
1

3
8

4
9

Länge i

Preis pi [in e]¤10

¤9

¤7

¤7

¤4

¤9

¤9 ¤7

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

6 - 1

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

n

6 - 2

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

n

6 - 3

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antwort.

6 - 4

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antwort.
⇒ 2n−1 verschiedene Zerlegungen

6 - 5

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antwort.
⇒ 2n−1 verschiedene Zerlegungen

6 - 6

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antwort.
⇒ 2n−1 verschiedene Zerlegungen

Oh, mein Gott!
Das ist ja exponentiell!

6 - 7

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antwort.

Also können wir es uns nicht leisten
alle Zerlegungen durchzugehen und für
jede ihren Ertrag zu berechnen.

⇒ 2n−1 verschiedene Zerlegungen
Oh, mein Gott!
Das ist ja exponentiell!

6 - 8

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antwort.

Also können wir es uns nicht leisten
alle Zerlegungen durchzugehen und für
jede ihren Ertrag zu berechnen.

⇒ 2n−1 verschiedene Zerlegungen

⋆) Genauer: die gesuchte Zahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natürlichen Zahlen schreiben kann.

⋆

Oh, mein Gott!
Das ist ja exponentiell!

6 - 9

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antwort.

Also können wir es uns nicht leisten
alle Zerlegungen durchzugehen und für
jede ihren Ertrag zu berechnen.

⇒ 2n−1 verschiedene Zerlegungen

⋆) Genauer: die gesuchte Zahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natürlichen Zahlen schreiben kann.

⋆

Oh, mein Gott!
Das ist ja exponentiell!

Es gilt p(n) ≈ eπ
√

2n/3
/
(4n

√
3)

6 - 10

Rohe Gewalt

Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antwort.

Also können wir es uns nicht leisten
alle Zerlegungen durchzugehen und für
jede ihren Ertrag zu berechnen.

⇒ 2n−1 verschiedene Zerlegungen

⋆) Genauer: die gesuchte Zahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n als Summe von natürlichen Zahlen schreiben kann.

∈ Θ∗
(
(13,00195...)

√
n
)
.

⋆

Oh, mein Gott!
Das ist ja exponentiell!

Es gilt p(n) ≈ eπ
√

2n/3
/
(4n

√
3)

7 - 1

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

4
9

1 2 3Länge i [in m]
Preis pi [in e]

Beispiel: n = 4

81 5

7 - 2

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

Greedy:

4
9

1 2 3Länge i [in m]
Preis pi [in e]

Beispiel: n = 4

81 5

7 - 3

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

4
9

1 2 3Länge i [in m]
Preis pi [in e]

Beispiel: n = 4

81 5

7 - 4

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4

7 - 5

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4

7 - 6

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4

7 - 7

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

Liefert dieser Greedy-Algorithmus immer das Optimum?

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4

7 - 8

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen!

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4

7 - 9

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4

7 - 10

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4

7 - 11

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

■ Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

■ Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4

¤9

¤10

8 - 1

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

1. Struktur einer optimalen Lösung charakterisieren

8 - 2

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

1. Struktur einer optimalen Lösung charakterisieren

8 - 3

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

1. Struktur einer optimalen Lösung charakterisieren

8 - 4

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

1. Struktur einer optimalen Lösung charakterisieren

i n − i

8 - 5

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

8 - 6

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

8 - 7

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i
Phänomen der
optimalen

Teilstruktur!

8 - 8

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

2. Wert einer optimalen Lösung rekursiv definieren

Phänomen der
optimalen

Teilstruktur!

8 - 9

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Phänomen der
optimalen

Teilstruktur!

8 - 10

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

Phänomen der
optimalen

Teilstruktur!

8 - 11

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en =

Phänomen der
optimalen

Teilstruktur!

8 - 12

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en = max{ }

Phänomen der
optimalen

Teilstruktur!

8 - 13

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en = max{ }pn,

Phänomen der
optimalen

Teilstruktur!

8 - 14

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en = max{ }e1 + en−1,pn,

Phänomen der
optimalen

Teilstruktur!

8 - 15

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en = max{ }e1 + en−1, e2 + en−2,pn,

Phänomen der
optimalen

Teilstruktur!

8 - 16

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en = max{ }e1 + en−1, e2 + en−2, . . . ,pn,

Phänomen der
optimalen

Teilstruktur!

8 - 17

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Phänomen der
optimalen

Teilstruktur!

9 - 1

2. Wert einer optimalen Lösung rekursiv definieren

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

9 - 2

Kleine Verbesserung:

2. Wert einer optimalen Lösung rekursiv definieren

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

9 - 3

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

2. Wert einer optimalen Lösung rekursiv definieren

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

9 - 4

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

2. Wert einer optimalen Lösung rekursiv definieren

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 5

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

2. Wert einer optimalen Lösung rekursiv definieren

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 6

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

2. Wert einer optimalen Lösung rekursiv definieren

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 7

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

2. Wert einer optimalen Lösung rekursiv definieren

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 8

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

Also gilt:

2. Wert einer optimalen Lösung rekursiv definieren

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 9

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

Also gilt:

2. Wert einer optimalen Lösung rekursiv definieren

max{ }

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 10

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

Also gilt:

2. Wert einer optimalen Lösung rekursiv definieren

max{ }pn,

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 11

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

Also gilt:

2. Wert einer optimalen Lösung rekursiv definieren

max{ }p1 + en−1,pn,

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 12

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

Also gilt:

2. Wert einer optimalen Lösung rekursiv definieren

max{ }p1 + en−1, p2 + en−2, . . . ,pn,

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 13

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

Also gilt:

2. Wert einer optimalen Lösung rekursiv definieren

max{ }p1 + en−1, p2 + en−2, . . . , pn−1 + e1pn,

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 14

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

Also gilt:

2. Wert einer optimalen Lösung rekursiv definieren

= max
1≤i≤n

{pi + en−i}
max{ }p1 + en−1, p2 + en−2, . . . , pn−1 + e1pn,

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 15

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

, wobei e0 := 0.

Also gilt:

2. Wert einer optimalen Lösung rekursiv definieren

= max
1≤i≤n

{pi + en−i}
max{ }p1 + en−1, p2 + en−2, . . . , pn−1 + e1pn,

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

9 - 16

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

= pi

en =

, wobei e0 := 0.

Also gilt:

Wert einer optimalen Lösung ist Summe aus einer Zahl der
Eingabe und einem Wert einer optimalen Teillösung.

Vorteil:

2. Wert einer optimalen Lösung rekursiv definieren

= max
1≤i≤n

{pi + en−i}
max{ }p1 + en−1, p2 + en−2, . . . , pn−1 + e1pn,

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Verbiete weitere Schnitte
im linken Teilstück!

10 - 1

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

10 - 2

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

10 - 3

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

10 - 4

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

10 - 5

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

10 - 6

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

10 - 7

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit.

10 - 8

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

10 - 9

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) =

10 - 10

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

10 - 11

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =

10 - 12

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) = 1+

10 - 13

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

1+

10 - 14

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

1+ A(n − i)

10 - 15

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

1+ A(n − i)

10 - 16

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

= 1 +
n−1∑
j=0

A(j)1+ A(n − i)

10 - 17

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

= 1 +
n−1∑
j=0

A(j) = 2n1+ A(n − i)

10 - 18

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

= 1 +
n−1∑
j=0

A(j) = 2n1+ A(n − i)

10 - 19

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

= 1 +
n−1∑
j=0

A(j) = 2n
Beweis?!

1+ A(n − i)

10 - 20

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

= 1 +
n−1∑
j=0

A(j) = 2n
Beweis?!

1 + 2 + 4 + 8 + . . .+ 2n−1︸ ︷︷ ︸
1+ A(n − i)

11 - 1

3. Wert einer optimalen Lösung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

11 - 2

3. Wert einer optimalen Lösung berechnen: mit Tabelle

MemoStangenZerlegung(int[] p, int n = p.length)

Zeit-Speicher-Tausch (engl. time-memory trade-off)

11 - 3

3. Wert einer optimalen Lösung berechnen: mit Tabelle

MemoStangenZerlegung(int[] p, int n = p.length)

Zeit-Speicher-Tausch (engl. time-memory trade-off)

e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 4

3. Wert einer optimalen Lösung berechnen: mit Tabelle

MemoStangenZerlegung(int[] p, int n = p.length)

Zeit-Speicher-Tausch (engl. time-memory trade-off)

e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 5

3. Wert einer optimalen Lösung berechnen: mit Tabelle

MemoStangenZerlegung(int[] p, int n = p.length)

Zeit-Speicher-Tausch (engl. time-memory trade-off)

e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 6

3. Wert einer optimalen Lösung berechnen: mit Tabelle

MemoStangenZerlegung(int[] p, int n = p.length)

Zeit-Speicher-Tausch (engl. time-memory trade-off)

e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 7

3. Wert einer optimalen Lösung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 8

3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i]+HauptStangenZerlegung(p, n− i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 9

3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i]+HauptStangenZerlegung(p, n− i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 10

3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i]+HauptStangenZerlegung(p, n− i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 11

3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i]+HauptStangenZerlegung(p, n− i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

11 - 12

3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i]+HauptStangenZerlegung(p, n− i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

Laufzeit?

11 - 13

3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i]+HauptStangenZerlegung(p, n− i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

Laufzeit?

■ Wie letzte Folie?

11 - 14

3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i]+HauptStangenZerlegung(p, n− i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0 . . . n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

Laufzeit?

■ Wie letzte Folie?

■ Asymptotisch
schneller?

12 - 1

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

12 - 2

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

12 - 3

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

12 - 4

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

12 - 5

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

12 - 6

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

12 - 7

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

12 - 8

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

12 - 9

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

12 - 10

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Neu: kein
rekursiver
Aufruf!

12 - 11

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 12

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 13

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 14

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 15

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 16

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 17

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 18

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 19

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 20

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 21

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 22

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

Beob.

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 23

BottUpSZerl() und MemoSZerl() laufen in O
()

Zeit.Satz.

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

Beob.

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

12 - 24

BottUpSZerl() und MemoSZerl() laufen in O
()

Zeit.Satz.

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n)

Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

Beob.

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

n2

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen

13 - 1

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}

13 - 2

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}

13 - 3

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}

13 - 4

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}

13 - 5

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}

13 - 6

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}

13 - 7

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

13 - 8

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

13 - 9

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

13 - 10

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

13 - 11

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

13 - 12

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

13 - 13

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

13 - 14

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]

13 - 15

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]

13 - 16

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]

13 - 17

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]

13 - 18

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]

13 - 19

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]
// gib wiederholt Länge des linkesten
// Teilstücks des Reststabs aus

13 - 20

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]
// gib wiederholt Länge des linkesten
// Teilstücks des Reststabs aus

13 - 21

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]
// gib wiederholt Länge des linkesten
// Teilstücks des Reststabs aus

13 - 22

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]
// gib wiederholt Länge des linkesten
// Teilstücks des Reststabs aus

ℓ[7]=3

13 - 23

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]
// gib wiederholt Länge des linkesten
// Teilstücks des Reststabs aus

ℓ[7]=3 ℓ[4]=2

13 - 24

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
ℓ[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] ℓ, int n)

q = max{q, p[i] + e[j−i]}
}

// merke Länge des linkesten Teilstücks

GibZerlegungAus(int[] p, int n)

ℓ = new int[0 . . . n]; e = new int[0 . . . n]
ErweiterteBottomUpZerlegung(p, e, ℓ, n)
while n > 0 do

print ℓ[n]; n = n − ℓ[n]
// gib wiederholt Länge des linkesten
// Teilstücks des Reststabs aus

ℓ[7]=3 ℓ[4]=2 ℓ[2]=2

14 - 1

Längste Wege

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

14 - 2

Längste Wege

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

14 - 3

Längste Wege

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

14 - 4

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

14 - 5

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

14 - 6

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs

14 - 7

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

⟨s, u, t⟩ ist ein längster einfacher s-t-Weg.

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs

14 - 8

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

⟨s, u, t⟩ ist ein längster einfacher s-t-Weg.

Aber:

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs

14 - 9

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

⟨s, u, t⟩ ist ein längster einfacher s-t-Weg.

⟨s, u⟩ ist kein längster einfacher s-u-Weg;

Aber:

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs

14 - 10

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

⟨s, u, t⟩ ist ein längster einfacher s-t-Weg.

⟨s, u⟩ ist kein längster einfacher s-u-Weg;

Aber:

⟨s, v , t, u⟩ ist ein längster einfacher s-u-Weg!

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs

14 - 11

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

⟨s, u, t⟩ ist ein längster einfacher s-t-Weg.

⟨s, u⟩ ist kein längster einfacher s-u-Weg;

Aber:

⟨s, v , t, u⟩ ist ein längster einfacher s-u-Weg!

E

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs

14 - 12

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan

⟨s, u, t⟩ ist ein längster einfacher s-t-Weg.

⟨s, u⟩ ist kein längster einfacher s-u-Weg;

Aber:

⟨s, v , t, u⟩ ist ein längster einfacher s-u-Weg!

⋆) Es ist NP-schwer für (G , s, t, k) zu entscheiden, ob G einen einfachen s-t-Weg der Länge k enthält. (Vgl. Hamilton-Weg!)

⋆E

ungewichteter gerichteter Graph G
mit s, t ∈ V (G), s ̸= t, aber t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs

15 - 1

Längste Wege in azyklischen Graphen

gerichteter kreisfreier Graph G mit Kantengewichten w : G (E) → R≥0

und s, t ∈ V (G), s ̸= t, aber t von s erreichbar.
Gegeben:

15 - 2

Längste Wege in azyklischen Graphen

gerichteter kreisfreier Graph G mit Kantengewichten w : G (E) → R≥0

und s, t ∈ V (G), s ̸= t, aber t von s erreichbar.
Gegeben:

ein längster s-t-Weg.Gesucht:

15 - 3

Längste Wege in azyklischen Graphen

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

gerichteter kreisfreier Graph G mit Kantengewichten w : G (E) → R≥0

und s, t ∈ V (G), s ̸= t, aber t von s erreichbar.
Gegeben:

ein längster s-t-Weg.Gesucht:

15 - 4

Längste Wege in azyklischen Graphen

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

gerichteter kreisfreier Graph G mit Kantengewichten w : G (E) → R≥0

und s, t ∈ V (G), s ̸= t, aber t von s erreichbar.
Gegeben:

ein längster s-t-Weg.Gesucht:

15 - 5

Längste Wege in azyklischen Graphen

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein längster s-t-Weg π geht durch u, d.h.
π = s −→ u −→ t.πsu πut

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

gerichteter kreisfreier Graph G mit Kantengewichten w : G (E) → R≥0

und s, t ∈ V (G), s ̸= t, aber t von s erreichbar.
Gegeben:

ein längster s-t-Weg.Gesucht:

15 - 6

Längste Wege in azyklischen Graphen

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein längster s-t-Weg π geht durch u, d.h.
π = s −→ u −→ t.

Dann gilt:
πsu ist längster s-u-Weg; πut ist längster u-t-Weg –

πsu πut

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

gerichteter kreisfreier Graph G mit Kantengewichten w : G (E) → R≥0

und s, t ∈ V (G), s ̸= t, aber t von s erreichbar.
Gegeben:

ein längster s-t-Weg.Gesucht:

15 - 7

Längste Wege in azyklischen Graphen

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein längster s-t-Weg π geht durch u, d.h.
π = s −→ u −→ t.

Dann gilt:
πsu ist längster s-u-Weg; πut ist längster u-t-Weg –

sonst wäre π kein längster s-t-Weg.

πsu πut

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

gerichteter kreisfreier Graph G mit Kantengewichten w : G (E) → R≥0

und s, t ∈ V (G), s ̸= t, aber t von s erreichbar.
Gegeben:

ein längster s-t-Weg.Gesucht:

15 - 8

Längste Wege in azyklischen Graphen

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:

Angenommen, ein längster s-t-Weg π geht durch u, d.h.
π = s −→ u −→ t.

Dann gilt:
πsu ist längster s-u-Weg; πut ist längster u-t-Weg –

sonst wäre π kein längster s-t-Weg.

πsu πut

Beobachtung 1. In kreisfreien Graphen sind alle Wege einfach.

Außerdem gilt V (πsu) ∩ V (πut) = {u};
sonst gäbe es einen Kreis!

gerichteter kreisfreier Graph G mit Kantengewichten w : G (E) → R≥0

und s, t ∈ V (G), s ̸= t, aber t von s erreichbar.
Gegeben:

ein längster s-t-Weg.Gesucht:

16 - 1

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren✓

16 - 2

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

✓

16 - 3

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

✓

// Länge eines längsten s-v -Wegsds =

16 - 4

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

✓

// Länge eines längsten s-v -Wegsds = 0

16 - 5

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

✓

dv =

// Länge eines längsten s-v -Wegsds = 0

16 - 6

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

✓

dv = max
u : uv∈E(G)

du + w(u, v)

// Länge eines längsten s-v -Wegsds = 0

16 - 7

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

dv = max
u : uv∈E(G)

du + w(u, v)

// Länge eines längsten s-v -Wegsds = 0

16 - 8

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

■ G topologisch sortieren

dv = max
u : uv∈E(G)

du + w(u, v)

// Länge eines längsten s-v -Wegsds = 0

16 - 9

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

■ G topologisch sortieren

■ d-Werte initialisieren: ds = 0 und dv = −∞ für alle v ̸= s

dv = max
u : uv∈E(G)

du + w(u, v)

// Länge eines längsten s-v -Wegsds = 0

16 - 10

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

■ G topologisch sortieren

■ d-Werte initialisieren: ds = 0 und dv = −∞ für alle v ̸= s

■ for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

dv = max
u : uv∈E(G)

du + w(u, v)

// Länge eines längsten s-v -Wegsds = 0

16 - 11

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

■ G topologisch sortieren

■ d-Werte initialisieren: ds = 0 und dv = −∞ für alle v ̸= s

■ for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

so!
dv = max

u : uv∈E(G)
du + w(u, v)

// Länge eines längsten s-v -Wegsds = 0

16 - 12

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

■ G topologisch sortieren

■ d-Werte initialisieren: ds = 0 und dv = −∞ für alle v ̸= s

■ for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Übrigens: Kürzeste Wege in kreisfreien Graphen kann man genauso
berechnen (mit min statt max und +∞ statt −∞).

so!
dv = max

u : uv∈E(G)
du + w(u, v)

// Länge eines längsten s-v -Wegsds = 0

16 - 13

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

■ G topologisch sortieren

■ d-Werte initialisieren: ds = 0 und dv = −∞ für alle v ̸= s

■ for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Übrigens: Kürzeste Wege in kreisfreien Graphen kann man genauso
berechnen (mit min statt max und +∞ statt −∞).

so!
dv = max

u : uv∈E(G)
du + w(u, v)

// Länge eines längsten s-v -Wegsds = 0

16 - 14

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

■ G topologisch sortieren

■ d-Werte initialisieren: ds = 0 und dv = −∞ für alle v ̸= s

■ for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Übrigens: Kürzeste Wege in kreisfreien Graphen kann man genauso
berechnen (mit min statt max und +∞ statt −∞).

so!
dv = max

u : uv∈E(G)
du + w(u, v)

// Länge eines längsten s-v -Wegs

Genauso kann man auch das
”
T9-Problem“ lösen (mit · statt +).

ds = 0

16 - 15

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

✓

■ G topologisch sortieren

■ d-Werte initialisieren: ds = 0 und dv = −∞ für alle v ̸= s

■ for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Übrigens: Kürzeste Wege in kreisfreien Graphen kann man genauso
berechnen (mit min statt max und +∞ statt −∞).

so!
dv = max

u : uv∈E(G)
du + w(u, v)

// Länge eines längsten s-v -Wegs

Genauso kann man auch das
”
T9-Problem“ lösen (mit · statt +).

ds = 0

W

X

Y

Z

P

Q

R

S

T

U

V

J

K

L

0,
02

0,03

0,03 0,15

0,00001

0,00001

0,02
0,0

10

0,001

0,001

0,
02
00,03

0,
00
00
1

0,00005

0,0
000

1

17 - 1

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelöst:

17 - 2

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelöst:

■ Ketten von Matrixmultiplikationen

17 - 3

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelöst:

■ Ketten von Matrixmultiplikationen

■ Längste gemeinsame Teilfolge (in Zeichenketten)

17 - 4

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelöst:

■ Ketten von Matrixmultiplikationen

■ Längste gemeinsame Teilfolge (in Zeichenketten)

■ Optimale binäre Suchbäume

	Dynamisches Programmieren
	Entwurfstechniken
	Übersicht
	Vergleich

	Fahrplan
	Das Zerlegungsproblem
	Definition
	Rohe Gewalt
	Ein erster Versuch
	1. Struktur charakterisieren
	2. Wert rekursiv definieren
	3. Wert berechnen: top-down
	3. Wert berechnen: mit Tabelle
	3. Wert berechnen: bottom-up
	4. Optimale Loesung konstruieren

	Längste Wege
	Problemstellung
	Längste Wege in azyklischen Graphen
	Algorithmus nach Fahrplan

	Und jetzt?

