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meint hier das Arbeiten mit einer Tabelle,
nicht das Schreiben eines Computerprogramms.
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überlappende Teilinstanzen



3 - 10

Vergleich

Teile und Herrsche Dynamisches Programmieren

■ zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

■ zerlegt Instanz in
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für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
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für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
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Frage. Wie viele Möglichkeiten gibt es,
einen Stab der Länge n zu zerlegen?
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■ Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Greedy:

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient qi [e/m]

81 5

2 1
4



7 - 10

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn
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Phänomen der
optimalen

Teilstruktur!



8 - 11

Def. Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

Beob. Ein Schnitt zerlegt das Problem in unabhängige Teilprobleme.

1. Struktur einer optimalen Lösung charakterisieren

︸ ︷︷ ︸︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:
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return q

Laufzeit. Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n).

⇒ A(0) = 1

und A(n) =
n∑

i=1

= 1 +
n−1∑
j=0

A(j) = 2n
Beweis?!

1 + 2 + 4 + 8 + . . .+ 2n−1︸ ︷︷ ︸
1+ A(n − i)
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3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)



12 - 2

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q



12 - 3

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q



12 - 4

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q



12 - 5

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q



12 - 6

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q



12 - 7

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q



12 - 8

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q



12 - 9

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q



12 - 10

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Neu: kein
rekursiver
Aufruf!



12 - 11

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 12

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 13

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 14

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 15

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 16

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 17

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 18

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 19

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 20

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 21

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 22

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

Beob.

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 23

BottUpSZerl() und MemoSZerl() laufen in O
( )

Zeit.Satz.

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

Beob.

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



12 - 24

BottUpSZerl() und MemoSZerl() laufen in O
( )

Zeit.Satz.

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n)

Die Anzahl der Kanten im Graphen ist proportional zur Laufzeit des DP
(Anzahl Additionen).

Beob.

e = new int[0 . . . n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[j − i ] }
e[j ] = q

return q

n2

Kante (j , i) bedeutet:
Teilinstanz j benutzt
Wert einer opt. Lösung
von Teilinstanz i .

Neu: kein
rekursiver
Aufruf!

4

3

2

1

0

Graph der Teilinstanzen



13 - 1

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i ] + e[ j − i ] then
q = p[i ] + e[ j − i ]
ℓ[ j ] = i

e[ j ] = q

ErweiterteBottomUpZerlegung(int[ ] p, int[ ] e, int[ ] ℓ, int n)

q = max{q, p[i ] + e[ j−i ]}
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13 - 14

4. Optimale Lösung aus berechneten Informationen konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i ] + e[ j − i ] then
q = p[i ] + e[ j − i ]
ℓ[ j ] = i

e[ j ] = q

ErweiterteBottomUpZerlegung(int[ ] p, int[ ] e, int[ ] ℓ, int n)

q = max{q, p[i ] + e[ j−i ]}
}

// merke Länge des linkesten Teilstücks
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ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs



14 - 8

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan
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ein längster einfacher s-t-WegGesucht:

d.h. eine Folge ⟨s = v0, v1, . . . , vk = t⟩ mit
v0v1, . . . , vk−1vk ∈ E , vi ̸= vj (für i ̸= j) und k maximal.

,

u t

vs



14 - 10

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

Fahrplan
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⟨s, u, t⟩ ist ein längster einfacher s-t-Weg.
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ein längster s-t-Weg.Gesucht:



15 - 5

Längste Wege in azyklischen Graphen

Beobachtung 2. Dieses Problem hat optimale Teilstruktur, denn:
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■ Längste gemeinsame Teilfolge (in Zeichenketten)

■ Optimale binäre Suchbäume
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