
1

Algorithmen und Datenstrukturen

Vorlesung 21:
Minimale Spannbäume

xy

Alexander Wolff Wintersemester 2025

5 - 11

Motivation

E ′ ⊆ E (G)

Gegeben. Zusammenhängendes Straßennetz (G ,w),
das eine Menge V von n Städten verbindet

Teilnetz T = (V (G),E ′) mit E ′ ⊆ E (G), so dassGesucht.

(G ,w)

■ alle Städte in T erreichbar sind

■ die
”
Schneeräumkosten“ w(E ′) minimal sind unter allen Teilnetzen,

die G aufspannen.

z.B. mit w ≡ euklid. Abstände

(T spannt G auf)

©CoolClips.com

ungerichteter, gewichteter Graph

w(E ′) :=
∑

e∈E ′ w(e)

w : E(G) → R>0 Kantengewichte

6 - 13

Minimaler Spannbaum

|E ′| =Beob. |V (G)| − 1

E ′ ⊆ E (G)

Wegen der Minimalität von w(E ′) gilt:

T hat keine Kreise

T
”
erbt“ Zusammenhang von G

⇒ T ist ein Wald

T spannt G auf

T hat minimales Gewicht unter allen Spannbäumen von G .

Wir nennen T kurz minimalen Spannbaum (MSB) von G .

⇒ T ist ein Baum

⇒ T ist Spannbaum von G O
ta
ka
r
B
or̊
u
vk
a

*
1
8
9
9
O
st
ro
h
,
M
ä
h
re
n

†
1
9
9
5
B
rü
n
n

(G ,w)

7 - 3

Schnitte

S
V (G) \ S

Def. Ein Schnitt (S ,V (G) \ S) eines Graphen G
ist eine Zerlegung von V (G) in zwei Teilmengen.

7 - 6

Schnitte

Eine Kante uv kreuzt (S ,V (G) \ S),
wenn u ∈ S und v ∈ V (G) \ S (oder andersherum).

V (G) \ S
S

Def. Ein Schnitt (S ,V (G) \ S) eines Graphen G
ist eine Zerlegung von V (G) in zwei Teilmengen.

7 - 9

Schnitte

Eine Kante uv kreuzt (S ,V (G) \ S),
wenn u ∈ S und v ∈ V (G) \ S (oder andersherum).

Eine Kante uv , die einen Schnitt kreuzt, ist leicht,
wenn alle Kanten, die den Schnitt kreuzen, mindestens w(uv) wiegen.

3

5

5

7

2 4

3
2

34 3

6
3V (G) \ S

S

Def. Ein Schnitt (S ,V (G) \ S) eines Graphen G
ist eine Zerlegung von V (G) in zwei Teilmengen.

8 - 10

Allgemeiner Greedy-Algorithmus

Färbe alle Kanten des Graphen:

■ blau:
■ rot:
■ ungefärbt: Noch nicht entschieden

Kante nicht für den MSB
Kante für den MSB

Verwende zwei Regeln:

Blaue Regel:
Wähle Schnitt, den keine blaue Kante kreuzt
Färbe leichte Kante blau

3

5

5

7

2 4

3
2

33 3

6
3

8 - 19

Allgemeiner Greedy-Algorithmus

Färbe alle Kanten des Graphen:

■ blau:
■ rot:
■ ungefärbt: Noch nicht entschieden

Kante nicht für den MSB
Kante für den MSB

Verwende zwei Regeln:

Blaue Regel:
Wähle Schnitt, den keine blaue Kante kreuzt
Färbe leichte Kante blau

Rote Regel:
Wähle Kreis ohne rote Kante
Färbe größte ungefärbte Kante auf Kreis rot

3

5

5

7

2 4

3
2

33 3

6
3

GreedySpannbaum(G , w)

Wende blaue Regel oder rote Regel an,
bis alle Kanten gefärbt sind.
Gib E ′ = {blaue Kanten} zurück

Satz. GreedySpannbaum findet einen minimalen Spannbaum.

9 - 11

Beweis Greedy Algorithmus

Satz. GreedySpannbaum findet einen minimalen Spannbaum.

Lemma. GreedySpannbaum färbt alle Kanten.

Lemma. Die blaue Regel hält die Farbinvariante aufrecht.

Lemma. Die rote Regel hält die Farbinvariante aufrecht.

Farbinvariante (FI): Es gibt einen MSB T :

Beweis. ■ Jede Kante ist entweder blau oder rot.

■ Es gibt einen MSB T , der alle blauen Kanten und keine rote Kante enthält.

⇒ Blaue Kanten bilden MSB □

FI ist am Anfang offensichtlich erfüllt.

■ T enthält alle blauen Kanten.
■ T enthält keine rote Kante.

GreedySpannbaum(G , w)

Wende blaue Regel oder rote Regel an,
bis alle Kanten gefärbt sind.
Gib E ′ = {blaue Kanten} zurück

10 - 11

Beweis der blauen Regel

Beweis.
Sei T minimaler Spannbaum, der FI bezeugt.
Sei uv ∈ E von blauer Regel ausgewählte Kante.

1. Fall: uv ∈ E (T)

Alle Kanten ungefärbt ⇒ jeder MSB bezeugt FI.

⇒ FI bleibt erhalten.

3

5

3

7

2 4

3
2

33 3
3

u

v

Lemma. Die blaue Regel hält die Farbinvariante aufrecht.

Farbinvariante (FI): Es gibt einen MSB T : Blaue Regel:

Wähle Schnitt, den keine blaue Kante kreuzt.
Färbe leichte Kante blau.

■ T enthält alle blauen Kanten.
■ T enthält keine rote Kante.

6

10 - 17

Beweis der blauen Regel

Beweis.
Sei T minimaler Spannbaum, der FI bezeugt.
Sei uv ∈ E von blauer Regel ausgewählte Kante.

1. Fall: uv ∈ E (T)

Alle Kanten ungefärbt ⇒ jeder MSB bezeugt FI.

⇒ FI bleibt erhalten.

2. Fall: uv /∈ E (T)
3

5

3

7

2 4

3
2

33 3
3

u

v

⇒ Es gibt Pfad p von u nach v in T .
⇒ p enthält Kante xy , die Schnitt kreuzt

x

y

Lemma. Die blaue Regel hält die Farbinvariante aufrecht.

Farbinvariante (FI): Es gibt einen MSB T : Blaue Regel:

Wähle Schnitt, den keine blaue Kante kreuzt.
Färbe leichte Kante blau.

■ T enthält alle blauen Kanten.
■ T enthält keine rote Kante.

6

10 - 25

Beweis der blauen Regel

Beweis.
Sei T minimaler Spannbaum, der FI bezeugt.
Sei uv ∈ E von blauer Regel ausgewählte Kante.

1. Fall: uv ∈ E (T)

Alle Kanten ungefärbt ⇒ jeder MSB bezeugt FI.

⇒ FI bleibt erhalten.

2. Fall: uv /∈ E (T)
3

5

3

7

2 4

3
2

33 3
3

u

v

⇒ Es gibt Pfad p von u nach v in T .
⇒ p enthält Kante xy , die Schnitt kreuzt

x

y

⇒ w(xy) ≥ w(uv)

Wähle E ′ = E (T) ∪ {uv} \ {xy}.
⇒ T ′ = (V (T),E ′) ist MSB, der FI bezeugt.

⇒ Kante xy ist ungefärbt.

Lemma. Die blaue Regel hält die Farbinvariante aufrecht.

Farbinvariante (FI): Es gibt einen MSB T : Blaue Regel:

Wähle Schnitt, den keine blaue Kante kreuzt.
Färbe leichte Kante blau.

□

■ T enthält alle blauen Kanten.
■ T enthält keine rote Kante.

6

keine blaue Kante kreuzt

leichte Kante

11 - 8

Beweis der roten Regel

Lemma. Die rote Regel hält die Farbinvariante aufrecht.

Farbinvariante (FI): Es gibt einen MSB T :

■ T enthält alle blauen Kanten
■ T enthält keine rote Kante

Rote Regel:

Wähle Kreis ohne rote Kante.
Färbe größte ungefärbte Kante auf Kreis rot.

Beweis. Sei T min. Spannbaum, der FI bezeugt.

Sei uv ∈ E von roter Regel gefärbte Kante.

3

5

3

7

2 4

3
2

33 3

6

3

1. Fall: uv /∈ E (T) ⇒ FI bleibt erhalten.

Sei K von roter Regel ausgewählter Kreis.

uv

11 - 12

Beweis der roten Regel

Lemma. Die rote Regel hält die Farbinvariante aufrecht.

Farbinvariante (FI): Es gibt einen MSB T :

■ T enthält alle blauen Kanten
■ T enthält keine rote Kante

Rote Regel:

Wähle Kreis ohne rote Kante.
Färbe größte ungefärbte Kante auf Kreis rot.

Beweis. Sei T min. Spannbaum, der FI bezeugt.

Sei uv ∈ E von roter Regel gefärbte Kante.

3

5

3

7

2 4

3
2

33 3

6

3

1. Fall: uv /∈ E (T) ⇒ FI bleibt erhalten.

Sei K von roter Regel ausgewählter Kreis.

2. Fall: uv ∈ E (T)
v

u

11 - 19

Beweis der roten Regel

Lemma. Die rote Regel hält die Farbinvariante aufrecht.

Farbinvariante (FI): Es gibt einen MSB T :

■ T enthält alle blauen Kanten
■ T enthält keine rote Kante

Rote Regel:

Wähle Kreis ohne rote Kante.
Färbe größte ungefärbte Kante auf Kreis rot.

Beweis. Sei T min. Spannbaum, der FI bezeugt.

Sei uv ∈ E von roter Regel gefärbte Kante.

3

5

3

7

2 4

3
2

33 3

6

3

1. Fall: uv /∈ E (T) ⇒ FI bleibt erhalten.

Sei K von roter Regel ausgewählter Kreis.

2. Fall: uv ∈ E (T)
v

u

⇒ E (T) \ {uv} bildet aufspannenden
Wald mit zwei Bäumen T1, T2.
Sei u ∈ T1, v ∈ T2.

⇒ Es gibt Kante xy ̸= uv in K mit x ∈ T1, y ∈ T2.
=x

y

xy /∈ E(T)

11 - 25

Beweis der roten Regel

Lemma. Die rote Regel hält die Farbinvariante aufrecht.

Farbinvariante (FI): Es gibt einen MSB T :

■ T enthält alle blauen Kanten
■ T enthält keine rote Kante

Rote Regel:

Wähle Kreis ohne rote Kante.
Färbe größte ungefärbte Kante auf Kreis rot.

Beweis. Sei T min. Spannbaum, der FI bezeugt.

Sei uv ∈ E von roter Regel gefärbte Kante.

3

5

3

7

2 4

3
2

33 3

6

3

1. Fall: uv /∈ E (T) ⇒ FI bleibt erhalten.

Sei K von roter Regel ausgewählter Kreis.

2. Fall: uv ∈ E (T)
v

u

⇒ E (T) \ {uv} bildet aufspannenden
Wald mit zwei Bäumen T1, T2.
Sei u ∈ T1, v ∈ T2.

⇒ Es gibt Kante xy ̸= uv in K mit x ∈ T1, y ∈ T2.
=x

yWähle E ′ = T (E) ∪ {xy} \ {uv}.
⇒ w(xy) ≤ w(uv) ⇒ xy nicht rot.

⇒ T ′ = (V (T),E ′) ist MSB, der FI bezeugt. □

größte ungefärbte Kante ohne rote Kante

xy /∈ E(T)

12 - 11

Alle Kanten werden gefärbt

Beweis.

Rote Regel:

Wähle Kreis ohne rote Kante.
Färbe größte ungefärbte Kante auf Kreis rot.

GreedySpannbaum färbt alle Kanten.Lemma.

3

5

3

7

2 4

3
2

33 3

6

3

Blaue Kanten bilden Wald B (ggfs. isolierte Knoten)
Sei uv ungefärbte Kante.

1. Fall: uv verbindet Knoten eines Baumes aus B.

u

v

Wähle Kreis C : Pfad in B von v zu u + Kante uv
⇒ Kanten auf C alle blau bis auf uv .
⇒ Rote Regel anwendbar auf uv .

Zu zeigen: uv (oder eine andere Kante!) wird gefärbt.

Blaue Regel:

Wähle Schnitt, den keine blaue Kante kreuzt.
Färbe leichte Kante blau.

12 - 15

Alle Kanten werden gefärbt

Beweis.

Rote Regel:

Wähle Kreis ohne rote Kante.
Färbe größte ungefärbte Kante auf Kreis rot.

GreedySpannbaum färbt alle Kanten.Lemma.

3

5

3

7

2 4

3
2

33 3

6

3

Blaue Kanten bilden Wald B (ggfs. isolierte Knoten)
Sei uv ungefärbte Kante.

1. Fall: uv verbindet Knoten eines Baumes aus B.
Wähle Kreis C : Pfad in B von v zu u + Kante uv
⇒ Kanten auf C alle blau bis auf uv .
⇒ Rote Regel anwendbar auf uv .

2. Fall: uv verbindet unterschiedliche Bäume aus B.

u

v

⇒ Es gibt Schnitt ohne blaue Kanten

⇒ Blaue Regel anwendbar auf eine Kante,
die den Schnitt kreuzt.

Zu zeigen: uv (oder eine andere Kante!) wird gefärbt.

Blaue Regel:

Wähle Schnitt, den keine blaue Kante kreuzt.
Färbe leichte Kante blau.

13 - 15

Der Algorithmus von Jarńık-Prim (1930/1957)

Jarńık-Prim(Graph G , Weights w : E (G) → R≥0), Vertex s)

Blaue Regel

Rote Regel

S = {s}
E ′ = ∅
while not S == V (G) do

Wähle Schnitt (S ,V (G) \ S).
Färbe leichte Kante uv blau (u ∈ S , v ∈ V (G) \ S).
S = S ∪ {v}
E ′ = E ′ ∪ {uv}

Färbe alle anderen Kanten rot.
return E ′

3

5

5

7

2 4
2

33 3

6
3

s
3

V
o
jt
ěc
h
Ja
rń
ık

*
1
8
9
7
P
ra
g

†
1
9
7
0
P
ra
g

R
o
b
er
t
C
.
P
ri
m

*
1
9
2
1
S
w
ee
tw

a
te
r,

T
X

†
2
0
2
1
S
a
n
C
le
m
en

te
,
C
A

13 - 29

Der Algorithmus von Jarńık-Prim (1930/1957)

Jarńık-Prim(Graph G , Weights w : E (G) → R≥0), Vertex s)

Blaue Regel

Rote Regel

S = {s}
E ′ = ∅
while not S == V (G) do

Wähle Schnitt (S ,V (G) \ S).
Färbe leichte Kante uv blau (u ∈ S , v ∈ V (G) \ S).
S = S ∪ {v}
E ′ = E ′ ∪ {uv}

Färbe alle anderen Kanten rot.
return E ′

3

5

5

7

2 4
2

33 3

6
3

sLaufzeit?
Wie Dijkstra!

⇒ O((E + V) logV)

⇒ O(E + V logV)

3

V
o
jt
ěc
h
Ja
rń
ık

*
1
8
9
7
P
ra
g

†
1
9
7
0
P
ra
g

R
o
b
er
t
C
.
P
ri
m

*
1
9
2
1
S
w
ee
tw

a
te
r,

T
X

†
2
0
2
1
S
a
n
C
le
m
en

te
,
C
A

Heap/RS-Baum

FibonacciHeap

14 - 10

Der Algorithmus von Kruskal (1956)

Kruskal(Graph G , Weights w : E (G) → R≥0))

Blaue Regel

Rote Regel

E ′ = ∅
Sortiere E (G) nicht-absteigend nach Gewicht w .
foreach uv ∈ E (G) do

if E ′ ∪ {uv} enthält keinen Kreis then
Färbe uv blau.
E ′ = E ′ ∪ {uv}

else
Färbe uv rot.

return E ′

3

5

5

7

2 4
2

33 3

6
3

s
3

(in sortierter Reihenfolge)

Jo
se
p
h
B
er
n
ar
d
K
ru
sk
a
l,
Jr
.

*
1
9
2
8
N
ew

Y
or
k
,
N
Y

†
2
0
1
0
M
a
p
le
w
o
o
d
,
N
J

14 - 17

Der Algorithmus von Kruskal (1956)

Kruskal(Graph G , Weights w : E (G) → R≥0))

Blaue Regel

Rote Regel

E ′ = ∅
Sortiere E (G) nicht-absteigend nach Gewicht w .
foreach uv ∈ E (G) do

if E ′ ∪ {uv} enthält keinen Kreis then
Färbe uv blau.
E ′ = E ′ ∪ {uv}

else
Färbe uv rot.

return E ′

3

5

5

7

2 4
2

33 3

6
3

s
3

(in sortierter Reihenfolge)

Jo
se
p
h
B
er
n
ar
d
K
ru
sk
a
l,
Jr
.

*
1
9
2
8
N
ew

Y
or
k
,
N
Y

†
2
0
1
0
M
a
p
le
w
o
o
d
,
N
J

14 - 27

Der Algorithmus von Kruskal (1956)

Kruskal(Graph G , Weights w : E (G) → R≥0))

Blaue Regel

Rote Regel

Laufzeit?
O(E logV)

O(E · α(V)) falls vorsortiert

E ′ = ∅
Sortiere E (G) nicht-absteigend nach Gewicht w .
foreach uv ∈ E (G) do

if E ′ ∪ {uv} enthält keinen Kreis then
Färbe uv blau.
E ′ = E ′ ∪ {uv}

else
Färbe uv rot.

return E ′

3

5

5

7

2 4
2

33 3

6
3

s
3

(in sortierter Reihenfolge)

Jo
se
p
h
B
er
n
ar
d
K
ru
sk
a
l,
Jr
.

*
1
9
2
8
N
ew

Y
or
k
,
N
Y

†
2
0
1
0
M
a
p
le
w
o
o
d
,
N
J

15 - 22

UnionFind-Datenstruktur

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X .

Drei Operationen:

Make(Element x) legt die Menge {x} an.

Union(Elem. x , Elem. y) vereinigt die Mengen, die
momentan x und y enthalten.

Find(Element x) liefert (Zeiger auf) die Menge
zurück, die momentan x enthält.

x

x

xy

Datenstruktur für halbdynamische Mengen (wachsen nur, schrumpfen nicht)

■ Union(1, 2)

■ Union(2, 3)

■ Find(1) = Find(3)?
➡ true

■ Find(2) = Find(4)?

Beispiel.

➡ false

1 2 3 4

1 2 3 4

1 2 3 4

(bei Kruskal: X = V)

16 - 4

Anpassung Kruskal

Kruskal(Graph G , Weights w : E (G) → R≥0))

Blaue Regel

Rote Regel

Laufzeit?
O(E logV)

O(E · α(V)) falls vorsortiert

E ′ = ∅
Sortiere E nicht-absteigend nach Gewicht w
foreach uv ∈ E do

if E ′ ∪ {uv} enthält keinen Kreis then
Färbe uv blau
E ′ = E ′ ∪ {uv}

else
Färbe uv rot

return E ′

3

5

5

7

2 4
2

33 3

6
3

s
3

Jo
se
p
h
B
er
n
ar
d
K
ru
sk
a
l,
Jr
.

*
1
9
2
8
N
ew

Y
or
k
,
N
Y

†
2
0
1
0
M
a
p
le
w
o
o
d
,
N
J∀v ∈ V (G) : Make(v)

if Find(u) ̸= Find(v)

Union(u, v)

(in sortierter Reihenfolge)

17 - 20

Realisierung Union-Find-Datenstruktur

Baumstruktur für jede Menge

Union(Elem. x , Elem. y) vereinigt die Mengen, die
momentan x und y enthalten.

xy

➡ Hänge einen Baum an den anderen:

+ =

Find(Element x) liefert (Zeiger auf) die Menge
zurück, die momentan x enthält.

x

■ Union(1, 2)

■ Union(2, 3)

■ Find(1)? ➡ 3

■ Find(3)?

Beispiel.

➡ 3

1 2 3 4

1

2 3 4

1

2

3 4

➡ Laufe zur Wurzel, gib Wurzel zurück.

■ Find(1) = Find(3)?
➡ true

18 - 14

Zwei Verbesserungen

Union(Elem. x , Elem. y) vereinigt die Mengen, die
momentan x und y enthalten.

xy

Union-by-Rank: Führe die Op. so aus, dass der neue
Baum möglichst geringe Tiefe hat:

+ =

Find(Element x) liefert (Zeiger auf) die Menge
zurück, die momentan x enthält.

x

Pfadkompression: Laufe zur Wurzel r , merke alle
besuchten Knoten und mache sie
zu Kindern von r .

x

r r

→

➡ Hänge Baum mit kleinerer
Tiefe an den mit größerer.

19 - 18

Kosten für Union-Find

Kosten für m × Find und n × Union:

■ O(n +m log n) mit Union-by-Rank

■ α(n) ist die inverse Ackermannfunktion

■ α3(n) = log∗(n) =

{
0 wenn n ≤ 1

1 + log∗(log n) sonst

z.B. log∗(22
22

) = log∗(65536) = 4

■ α4(n) = log∗∗(n) =

{
0 wenn n ≤ 1

1 + log∗∗(log∗ n) sonst

α(n) ≤ 5 für n ≤ 22
. .

.2

︷︸︸︷ 2222 mal

■ α1(n) = ⌈n/2⌉
■ αk(n) = ”

wie oft muss ich αk−1(n) auf n anwenden, um auf 1 zu kommen?“

■ α2(n) = ⌈log n⌉

■ α(n) ist das kleinste k, so dass αk(n) ≤ 3

. . .

Satz.

■ O(n +m · α(n)) mit Union-by-Rank und Pfadkompression Ω(n +m · α(n)) ist untere
Schranke für Union-Find

[Tarjan ’79]

log∗(22
22

2

) = log∗(265536) = 5︷ ︸︸ ︷
≈ 2 · 1019729

︷︸︸︷ 22. . .2
mal

nicht klausurrelevant

α(n) ≤ 4 für n ≤ 22
22

22
2

≈ 1010
1019729

20 - 4

Übersicht: Algorithmen für minimale Spannbäume

Jarńık-Prim Kruskal

■ geht (wie Dijkstra / BFS)
wellenförmig von einem Startknoten aus,

■ bearbeitet Kanten nach aufsteigendem
(genauer: nicht-absteig.) Gewicht,

■ aktuelle Kantenmenge zusammenhängend, ■ nach Einfügen der i . Kante gibt es
n−i Zusammenhangskomponenten,

■ Laufzeit O(E + V logV). ■ Laufzeit O(E logV) oder
O(E · α(V)) falls vorsortiert.

s

	Minimale Spannbäume
	Motivation
	Beobachtungen
	Schnitte

	Allgemeiner Greedy-Algorithmus
	Beweis Greedy Algorithmus
	Beweis der blauen Regel
	Beweis der roten Regel
	Alle Kanten werden gefärbt

	Algorithmen
	Der Algorithmus von Jarník-Prim
	Der Algorithmus von Kruskal

	{\sc UnionFind}-Datenstruktur
	Operationen
	Anpassung Kruskal

	Realisierung Union-Find-Datenstruktur
	Realisierung Union-Find-Datenstruktur
	Zwei Verbesserungen
	Kosten für Union-Find

	Übersicht: Algorithmen für minimale Spannbäume

