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Farbinvariante (FIl): Es gibt einen MSB T:| | Rote Regel:
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2. Fall: uv € E(T) = E(T)\ {uv} bildet aufspannenden !
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B [ enthalt keine rote Kante Farbe groBte ungefarbte Kante auf Kreis rot.
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Bewels der roten Regel

Farbinvariante (FIl): Es gibt einen MSB T:| | Rote Regel:

B [ enthalt alle blauen Kanten | [Wahle Kreis ohne rote Kante.
B [ enthalt keine rote Kante Farbe groBte ungefarbte Kante auf Kreis rot.

ZLemma. Die rote Regel halt die Farbinvariante aufrecht. J

Beweis. Sei T min. Spannbaum, der Fl bezeugt.
Sei K von roter Regel ausgewahlter Kreis.
Sei uv € E von roter Regel gefarbte Kante.
1. Fall: uv ¢ E(T) = FI bleibt erhalten.

2. Fall: uv € E(T) = E(T)\ {uv} bildet aufspannenden !
Wald mit zwei Baumen [/, T>.
xy & E(T) Seiue [, ve .
= Es gibt Kante xy Zuvin K mitxe /[,y € T>.
groBte ungefirbte Kante —> W(xy) S W(UV) ohne rote Kante —> Xy nicht rot
Wahle £/ = T(E) U {xy} \ {uv}. ; y
= T'=(V(T), E") ist MSB, der FI bezeugt. [
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Rote Regel: Blaue Regel:
Wahle Kreis ohne rote Kante. Wahle Schnitt, den keine blaue Kante kreuzt.
Farbe groBte ungefarbte Kante auf Kreis rot. | | Farbe leichte Kante blau.

:Lemma. (GREEDYSPANNBAUM farbt alle Kanten. ]
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Alle Kanten werden gefarbt

Rote Regel: Blaue Regel:

Wahle Kreis ohne rote Kante. Wahle Schnitt, den keine blaue Kante kreuzt.
Farbe groBte ungefarbte Kante auf Kreis rot. | | Farbe leichte Kante blau.

CLemma. GREEDYSPANNBAUM firbt alle Kanten. )

Beweis. Blaue Kanten bilden Wald B (ggfs. isolierte Knoten)
Sei uv ungefarbte Kante. Zu zeigen: uv (oder eine andere Kante!) wird gefarbt.
1. Fall: uv verbindet Knoten eines Baumes aus B.
Wahle Kreis C: Pfad in B von v zu u + Kante uv
= Kanten auf C alle blau bis auf uv.
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Alle Kanten werden gefarbt

Rote Regel: Blaue Regel:

Wahle Kreis ohne rote Kante. Wahle Schnitt, den keine blaue Kante kreuzt.
Farbe groBte ungefarbte Kante auf Kreis rot. | | Farbe leichte Kante blau.
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Sei uv ungefarbte Kante. Zu zeigen: uv (oder eine andere Kante!) wird gefarbt.

1. Fall: uv verbindet Knoten eines Baumes aus B.
Wahle Kreis C: Pfad in B von v zu u + Kante uv

= Kanten auf C alle blau bis auf uv.
= Rote Regel anwendbar auf uv.
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Rote Regel: Blaue Regel:

Wahle Kreis ohne rote Kante. Wahle Schnitt, den keine blaue Kante kreuzt.
Farbe groBte ungefarbte Kante auf Kreis rot. | | Farbe leichte Kante blau.
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Beweis. Blaue Kanten bilden Wald B (ggfs. isolierte Knoten)
Sei uv ungefarbte Kante. Zu zeigen: uv (oder eine andere Kante!) wird gefarbt.

1. Fall: uv verbindet Knoten eines Baumes aus B.
Wahle Kreis C: Pfad in B von v zu u + Kante uv

= Kanten auf C alle blau bis auf uv.
= Rote Regel anwendbar auf uv.
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= Es gibt Schnitt ohne blaue Kanten

= Blaue Regel anwendbar auf eine Kante,

die den Schnitt kreuzt.
= Greedy macht Fortschritt. []
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/
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S=5U{v}
E'=E"U{uv}

Farbe alle anderen Kanten rot. Rote Regel

return £’
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/
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S =15} 588
E =1 158
while not S == V(G) do >
Wahle Schnitt (S, V(G) \ 5) Blaue Regel ><5“
Farbe leichte Kante uv blau (u e S,v e V(G)\ 95). ;%
S=5U{v} £ :‘%5
E'=E"U{uv} t%:%
Farbe alle anderen Kanten rot. Rote Regel s
return £/ ¥ -
Demo.

https://algo.uni-trier.de/demos/spanningtree.htm
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S =15} 588
E =0 58
while not S == V(G) do Sy R
Wahle Schnitt (S, V(G) \ 5). Blaue Regel )
Farbe leichte Kante uv blau (u e S,v e V(G)\ 95). ;%
S=S5uU{v} e gdg
E'=E"U{uv} t%ﬁ
Farbe alle anderen Kanten rot. Rote Regel 584
return £’ € x -

Laufzeit?
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E =0 58
while not S == V(G) do Sy R
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Laufzeit?

Wie DIJKSTRA!
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S =15} 588
E =1 158
while not S == V(G) do Sy
Wahle Schnitt (5, V(G) \ 5) Blaue Regel ><5‘
Farbe leichte Kante uv blau (u e S,v e V(G)\ 95). ;%
S=5Su{v} e gdg
E'=E"U{uv} tigf%
Farbe alle anderen Kanten rot. Rote Regel 584
return £/ -
Laufzeit?

Wie DIJKSTRA!
= O((E -+ V) log V) [HEAP/RS-BAUM]
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S =15} 588
E'= 152
while not S == V(G) do Pl
Wahle Schnitt (5, V(G) \ 5) Blaue Regel ><5“
Farbe leichte Kante uv blau (u e S,v e V(G)\ 95). ;%
S=5Su{v} e gdg
E'=E"U{uv} t%fg
Farbe alle anderen Kanten rot. Rote Regel 585
return £’ € -
Laufzeit?

Wie DIJKSTRA!
= O((E -+ V) log V) [HEAP/RS-BAUM]
= O(E + V' log V) (FiBONACCIHEAP)
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KRUSKAL(Graph G, Weights w: E(G) — Rxy))
E—¢
Sortiere E(G) nicht-absteigend nach Gewicht w.
foreach uv & E(G) do (in sortierter Reihenfolge)

Joseph Bernard Kruskal, Jr.
*1928 New York, NY
12010 Maplewood, NJ
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Farbe uv blau. Blaue Regel
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KRUSKAL(Graph G, Weights w: E(G) — Rxy))
E—¢
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KRUSKAL(Graph G, Weights w: E(G) — Rxy))
E—¢
Sortiere E(G) nicht-absteigend nach Gewicht w.
foreach uv & E(G) do (in sortierter Reihenfolge)
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Farbe uv blau. Blaue Regel
E'=E"U{uv}
else
Farbe uv rot. Rote Regel
return £’

Laufzeit?
O(E log V)
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Laufzeit?
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O(E - a(V)) falls vorsortiert
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Datenstruktur fiir halbdynamische Mengen ((wachsen nur, schrumpfen nicht))

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X. ((bei Kruskal: X = V)]

Drei Operationen:

MAKE(Element x) legt die Menge {x} an.
LOx.
FIND(Element x) liefert (Zeiger auf) die Menge
o T O zuriick, die momentan x enthilt.
B o: ‘o %% .

~
~ LS -
____________

UNION(Elem. x, Elem. y)
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L 4 ~a
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.....
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~
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Datenstruktur fiir halbdynamische Mengen ((wachsen nur, schrumpfen nicht))
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Drei Operationen:

MAKE(Element x) legt die Menge {x} an.

- .-y
L 4 ~a

L 3
.....

FIND(Element x) liefert (Zeiger auf) die Menge
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&
~ & L 4
-----------
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--------------
~ L d

‘o N 0 0 momentan x und y enthalten.

~
~
s

S L 4
---------
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UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen ((wachsen nur, schrumpfen nicht))

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X. ((bei Kruskal: X = V)]

Drei Operationen:

MAKE(Element x) legt die Menge {x} an. Beispiel.

- .-y
L 4 ~a

L 3
.....

"""""""" zuriick, die momentan x enthalt.

FIND(Element x) ‘f—liefert (Zeiger auf) die Menge

~
~ « -
-----------

UNION(Elem. x, Elem. y)  vereinigt die Mengen, die

------------------------
T3 L

L0 e 2 momentan x und y enthalten.

.....
~ -
L s -

----------




15- 14

UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen ((wachsen nur, schrumpfen nicht))

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X. ((bei Kruskal: X = V)]

Drei Operationen:

MAKE(Element x) legt die Menge {x} an. Beispiel.

- .-y
L 4 ~a

LY e A e A e A e A
1 1 1 1

LX) 12003004
~ ’
LR ’.4' ’-C' ’-" S

FIND(Element x) liefert (Zeiger auf) die Menge
"""""""" fzurijck, die momentan x enthalt.

~
~ « -
-----------

UNION(Elem. x, Elem. y)  vereinigt die Mengen, die

------------------------
T3 L

L0 e 2 momentan x und y enthalten.

.....
~ -
L s -

----------




UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen

15-15

[(wachsen nur, schrumpfen nicht)]

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X. ((bei Kruskal: X = V)]

Drei Operationen:

MAKE(Element x) legt die Menge {x} an.

- .-y
L 4 ~a

~
.....

FIND(Element x) liefert (Zeiger auf) die Menge
""""""" fzurijck, die momentan x enthalt.

~
~ LS -
____________

UNION(Elem. x, Elem. y)  vereinigt die Mengen, die

------------------------
T3 L

L0 e 2 momentan x und y enthalten.

ey .
-
......
----------

[ ] L]
Beispiel.
il il il il
:' A :' A :' A :' A
1 1 1 1
" 1 H " 2 H " 3 H " 4 H
Q_,' < " Q_,' Q_,'

B UNION(1,2)



UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X.

Drei Operationen:

legt die Menge {x} an.

- .-y
L 4 ~a

O
FIND(Element x) liefert (Zeiger auf) die Menge
o v L 0"“‘f_zurijck, die momentan x enthalt.
B o: ‘o %% .

~
~ LS -
____________

______________________ vereinigt die Mengen, die
L0 o ® momentan x und y enthalten.

ey .
-
......
----------

15-16

[(wachsen nur, schrumpfen nicht)]

((bei Kruskal: X = V)]

Beispiel.

---------

---------



15 - 17

UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen ((wachsen nur, schrumpfen nicht))

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X. ((bei Kruskal: X = V)]

Drei Operationen:

MAKE(Elg_n_”I_?nt X) legt die Menge {x} an. Beispiel.
O SIRCIREYRYY
FIND(Element x) liefert (Zeiger auf) die Menge m UnioN(L,2)
° o (6"‘°Xoi'fzurijck, die momentan x enthalt. 120 3 L4
"""""""" B UNION(2, 3)
UNION(Elem. x, Elem. y)  vereinigt die Mengen, die
o yo o OXO momentan x und y enthalten.




15-18

UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen ((wachsen nur, schrumpfen nicht))

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X. ((bei Kruskal: X = V)]

Drei Operationen:

MAKE(Elg_n_W_?nt X) legt die Menge {x} an. Beispiel.
-2 1423 {3 {a
FIND(Element x) liefert (Zeiger auf) die Menge ® UnON(1,2)
o {g"oxoxfzurijck, die momentan x enthilt. 1 230314
"""""""" B UNION(2, 3)
UNION(Elem. x, Elem. y)  vereinigt die Mengen, die '123 {:21:}
o you & OXO momentan x und y enthalten. -




UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X.

Drei Operationen:

legt die Menge {x} an.

- .-y
L 4 ~a

O
FIND(Element x) liefert (Zeiger auf) die Menge
o v L 0"\‘f_zurijck, die momentan x enthalt.
% o: ‘o %% .

~
~ LS -
____________

______________________ vereinigt die Mengen, die
L0 o ® momentan x und y enthalten.

ey .
-
......
----------

15-19

[(wachsen nur, schrumpfen nicht)]

((bei Kruskal: X = V)]

Beispiel.

---------

---------

------------
- .~

*

A

-
--------------

B FinD(1) = FIND(3)7?



UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X.

Drei Operationen:

legt die Menge {x} an.

- .-y
L 4 ~a

O
FIND(Element x) liefert (Zeiger auf) die Menge
o v L 0"\‘f_zurijck, die momentan x enthalt.
% o: ‘o %% .

~
~ LS -
____________

______________________ vereinigt die Mengen, die
L0 o ® momentan x und y enthalten.

ey .
-
......
----------

15-20

[(wachsen nur, schrumpfen nicht)]

((bei Kruskal: X = V)]

Beispiel.

---------
---------

------------
- .~

*

A

-
--------------

B FinD(1) = FIND(3)7?
= true



UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X.

Drei Operationen:

legt die Menge {x} an.

- .-y
L 4 ~a

O
FIND(Element x) liefert (Zeiger auf) die Menge
o v L 0"\‘f_zurijck, die momentan x enthalt.
B o: ‘0 9% .

~
~ LS -
____________

______________________ vereinigt die Mengen, die
L0 o ® momentan x und y enthalten.

ey .
-
......
----------

15-21

[(wachsen nur, schrumpfen nicht)]

((bei Kruskal: X = V)]

Beispiel.

---------

---------

------------
- .~

*

A

-
--------------

B FinD(1) = FIND(3)7?
= true

B FIND(2) = FIND(4)7



UNIONFIND-Datenstruktur

Datenstruktur fiir halbdynamische Mengen

Die halbdynamischen Mengen zerlegen immer eine Grundmenge X.

Drei Operationen:

legt die Menge {x} an.

- .-y
L 4 ~a

O
FIND(Element x) liefert (Zeiger auf) die Menge
o v L 0"\‘f_zurijck, die momentan x enthalt.
B o: ‘0 9% .

~
~ LS -
____________

______________________ vereinigt die Mengen, die
L0 o ® momentan x und y enthalten.

ey .
-
......
----------

15- 22

[(wachsen nur, schrumpfen nicht)]

((bei Kruskal: X = V)]

Beispiel.

---------

---------

------------
“ .~

< S
--------------

B FinD(1) = FIND(3)7?
= true

B FIND(2) = FIND(4)7
= false



Anpassung Kruskal

KRUSKAL(Graph G, Weights w: E(G) — Rxy))
 E =y
Sortiere E nicht-absteigend nach Gewicht
foreach uv € E do (in sortierter Reihenfolge)

Joseph Bernard Kruskal, Jr.

*1928 New York, NY
12010 Maplewood, NJ

if £/ U{uv} enthilt keinen Kreis then |

Farbe uv blau Blaue Regel

E'=E" U{uv} |

else |

 Farbe uv rot Rote Regel:

Cretun £/
Laufzeit?
O(E log V)

O(E - a(V)) falls vorsortiert




Anpassung Kruskal

KRUSKAL(Graph G, Weights w: E(G) — Rxy)) :

CE =0 Vv € V(G) : MAKE(v)
Sortiere E nicht-absteigend nach Gewicht |
foreach uv € E do (in sortierter Reihenfolge)

Joseph Bernard Kruskal, Jr.

*1928 New York, NY
12010 Maplewood, NJ

if £/ U{uv} enthilt keinen Kreis then |

Farbe uv blau Blaue Regel

E'=E " U{uv} |

else |

 Farbe uv rot Rote Regel:
Laufzeit?
O(E log V)

O(E - a(V)) falls vorsortiert




Anpassung Kruskal

KRUSKAL(Graph G, Weights w: E(G) — Rxy)) :

CE =0 Vv € V(G) : MAKE(v)
Sortiere E nicht-absteigend nach Gewicht |
foreach uv € E do (in sortierter Reihenfolge)

Joseph Bernard Kruskal, Jr.
*1928 New York, NY
12010 Maplewood, NJ

if £/U{uv} enthilt keinen Kreis then  if Finp(u) 4 Finvo(v)

Farbe uv blau Blaue Regel

E'=E " U{uv} |

else |

 Farbe uv rot Rote Regel:

Cretun £
Laufzeit?
O(E log V)

O(E - a(V)) falls vorsortiert




Anpassung Kruskal

KRUSKAL(Graph G, Weights w: E(G) — Rxy)) :

CE =0 Vv € V(G) : MAKE(v)
Sortiere E nicht-absteigend nach Gewicht |
foreach uv € E do (in sortierter Reihenfolge)

Joseph Bernard Kruskal, Jr.
*1928 New York, NY
12010 Maplewood, NJ

if £/U{uv} enthilt keinen Kreis then  if Finp(u) 4 Finvo(v)

Farbe uv blau Blaue Regel

E'=E'U{uv} UNION(u, v) !

else

 Farbe uv rot Rote Regel:

Cretun £
Laufzeit?
O(E log V)

O(E - a(V)) falls vorsortiert




Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

17 -



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

Beispiel.

O
1

woO

~O

17 -



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e a2 momentan x und y enthalten.

~~. “
~ —‘
L -
----------

Beispiel.

O
1

woO

~0

17 -



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e a2 momentan x und y enthalten.

~~. “
~ —‘
L -
----------

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

o
4

17 -



17 -

Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

Beispiel.
UN{QN(_E!?_[‘];_Z&_'_E_'_em- y) vereinigt die Mengen, die 9 9 9
L0 o ¥ momentan x und y enthalten.
My, YOI 0 X ® Union(1,2)

= Hange einen Baum an den anderen:



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e a2 momentan x und y enthalten.

~~. ®

~ -
= 'n -

----------

= Hange einen Baum an den anderen:

+ )

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

o
4



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

h.. 'ﬁ
~ -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

;

o
4



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

h.. 'ﬁ
~ -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

Beispiel.
O ©
1 2

@)
3

B UNION(L,2)

{’

1

@)
3

~O



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

h.. 'ﬁ
~ -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

Beispiel.
O ©
1 2

@)
3

B UNION(L,2)

{’

1

@)
3

B UNION(2, 3)

~O



17 - 10

Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

Beispiel.
UN{QN(E!_G!]];_Z{LE'_em- y) vereinigt die Mengen, die 9 9 9
L0 o ¥ momentan x und y enthalten.
My, YOI 0 X ® Union(1,2)
---------------- o o
= Hinge einen Baum an den anderen: ﬁ 3 4
1
T & - B UnioN(2, 3)
o
4

£

1



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) fliefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

@)

5
1

B UNION(2, 3)

£

1

~0

~0

17 - 11



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) fliefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

@)

5
1

B UNION(2, 3)

£

1

~0

~0

17 - 12



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) fliefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

@)

5
1

B UNION(2, 3)

£

1

~0

~0

17 - 13



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) fliefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

@)

5
1

B UNION(2, 3)

£

1

~0

~0

17 - 14



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) fliefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

@)

5
1

B UNION(2, 3)

~0

~0

17 - 15



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) fliefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

@)

5
1

B UNION(2, 3)

£

1
B FinD(1)? = 3

~0

~0

17 - 16



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) /Iiefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

@)

5
1

B UNION(2, 3)

£

1
B FinD(1)? = 3

B FiNnD(3)?

~0

~0

17 - 17



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) /Iiefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

Beispiel.
O 0o ©
1 2 3

B UNION(L,2)

@)

5
1

B UNION(2, 3)

£

1
B FinD(1)? = 3

B FiND(3)7 = 3

~0

~0

17 - 18



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) /Iiefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

17 - 19

Beispiel.
O O ©o0 o
1 2 3 4

B UNION(L,2)

@) @)
55
1
B UNION(2, 3)

3
¢
1
B FinD(1)? = 3

B FiND(3)7 = 3
B FinD(1) = FIND(3)7

~0



Realisierung Union-Find-Datenstruktur

Baumstruktur fiir jede Menge

UNION(Elem. x, Elem. y)  vereinigt die Mengen, die

-----------------------
L 4 e

e I momentan x und y enthalten.

.....
- -
-y -

----------

= Hange einen Baum an den anderen:

+ ) =

--------------
~ L 4

FIND(Element x) /Iiefert (Zeiger auf) die Menge

PR

~

~ 'S -
____________

zuruck, die momentan x enthalt.

= Laufe zur Wurzel, gib Wurzel zuriick.

17 - 20

Beispiel.
O O ©o0 o
1 2 3 4

B UNION(L,2)

@) @)
55
1
B UNION(2, 3)

3
¢
1
B Finp(1)7 = 3

B FiND(3)7 = 3

B FIND(1) = FIND(3)7
= true

~0



/wel Verbesserungen

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

o momentan x und y enthalten.

~~. "
~ —‘
L -
----------

18 -



/wel Verbesserungen

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

o momentan x und y enthalten.

.....
- -
-y -

----------

Union-by-Rank: Fiihre die Op. so aus, dass der neue
Baum moglichst geringe Tiefe hat:

18 -



/wel Verbesserungen

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

o momentan x und y enthalten.

.....
- -
-y -

----------

Union-by-Rank: Fiihre die Op. so aus, dass der neue
Baum moglichst geringe Tiefe hat:

e

18 -



/wel Verbesserungen

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

o momentan x und y enthalten.

.....
- -
-y -

----------

Union-by-Rank: Fiihre die Op. so aus, dass der neue
Baum moglichst geringe Tiefe hat:

+ ) =

18 -



/wel Verbesserungen

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

~~. “
~ —‘
L -
----------

o momentan x und y enthalten.

Union-by-Rank: Fiihre die Op. so aus, dass der neue
Baum moglichst geringe Tiefe hat:

= Hange Baum mit kleinerer
Tiefe an den mit groBerer.

+ ) =

18 -



/wel Verbesserungen

UNION(Elem. x, Elem. y) vereinigt die Mengen, die

-----------------------
L 4 e

U o momentan x und y enthalten.

~~. “
~ —‘
L -
----------

Union-by-Rank: Fiihre die Op. so aus, dass der neue
Baum moglichst geringe Tiefe hat:

= Hange Baum mit kleinerer
Tiefe an den mit groBerer.

FIND(Element x) liefert (Zeiger auf) die Menge
P zuriick, die momentan x enthilt.
% 0% 0 O .

S
~ ~ *
-----------

18 -



/wel Verbesserungen

-----------------------
L 4 e

vereinigt die Mengen, die
momentan x und y enthalten.

~~. ®

~ -
= 'n -

----------

Union-by-Rank: Fiihre die Op. so aus, dass der neue
Baum moglichst geringe Tiefe hat:

= Hange Baum mit kleinerer
Tiefe an den mit groBerer.

FIND(Element x)

-----------
N

liefert (Zeiger auf) die Menge
‘o et O zurtick, die momentan x enthalt.

L
~ LS Pa g
-----------

Laufe zur Wurzel r, merke alle
besuchten Knoten und mache sie
zu Kindern von r.

Pfadkompression:




/wel Verbesserungen

-----------------------
L 4 e

vereinigt die Mengen, die
momentan x und y enthalten.

~~. ®

~ -
= 'n -

----------

Union-by-Rank: Fiihre die Op. so aus, dass der neue
Baum moglichst geringe Tiefe hat:

e

= Hange Baum mit kleinerer
Tiefe an den mit groBerer.

FIND(Element x)

-----------
N

liefert (Zeiger auf) die Menge
‘o et O zurtick, die momentan x enthalt.

L
~ LS Pa g
-----------

Laufe zur Wurzel r, merke alle
besuchten Knoten und mache sie
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B bearbeitet Kanten nach aufsteigendem
(genauer: nicht-absteig.) Gewicht,

®m nach Einfligen der /. Kante gibt es
n—i Zusammenhangskomponenten,

B Laufzeit O(E log V) oder
O(E - a(V)) falls vorsortiert.

Blaue Regel:
Waihle Schnitt, den keine blaue Kante kreuzt.

Farbe leichte Kante blau.

Rote Regel:
Wahle Kreis ohne rote Kante.
Farbe groBte ungefarbte Kante auf Kreis rot.
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