
1

Algorithmen und Datenstrukturen

Vorlesung 20:
Tiefensuche und

topologische Sortierungy

x

z

w v u

ts

4/5

3/6

7/8

2/9 1/10

12/13 14/15

11/16
B

R V

K

Unterhose

Hose

Socken

Schuhe

UhrGürtel

PulliJacke

T-ShirtSchal

Alexander Wolff Wintersemester 2025

2

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

1. wellenförmige Ausbreitung ab s

Breitensuche (breadth-first search, BFS)

2. von s möglichst schnell weit weg
Tiefensuche (depth-first search, DFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

heutevorletztes Mal

3 - 8

?

”
Maze-01 Grüningen hedge maze 1576 (destroyed)“
von RTH – Eigenes Werk. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons

$

4 - 35

Tiefensuche
u v w

x y z

1/–
π

2/–

3/–4/–

R

4/5

Eingabe:

Ausgabe:

(un)gerichteter Graph G

■ Besuchsintervalle (u.d/u.f)

■ DFS-Wald
()

■ Klassifizierung der Graphkanten:

■ Baumkanten (Kanten von Gπ)

■ Rückwärtskanten (R)

1/8

V

■ Vorwärtskanten (V)

9/–

K

■ Kreuzkanten (K)

10/–

R

10/11

9/12

Kanten, bei denen kein Endpunkt Vorgänger des anderen ist

Nicht-Baumkanten zu einem Nachfolgerknoten

Nicht-Baumkanten zu einem Vorgängerknoten

Kanten des DFS-Waldes (entgegen π gerichtet)

weiß

rot

blau

Farbe Zielknoten:

blau

start.d < ziel.d
und

start.d > ziel.d
und

π

discovery time finish time

3/6

2/7

5 - 26

Tiefensuche – Pseudocode

π

Für jeden Knoten u von G ist
■ u.d der Zeitpunkt der Entdeckung,
■ u.f der Abschluss-Zeitpunkt;
Besuchsintervall von u ist [u.d , u.f].

DFS(Graph G)

foreach u ∈ V (G) do
u.color = white
u.π = nil

time = 0
foreach u ∈ V (G) do

if u.color == white then DFSVisit(G , u)

DFSVisit(Graph G , Vertex u)

time = time + 1
u.d = time; u.color = red
foreach v ∈ Adj[u] do

if v .color == white then
v .π = u; DFSVisit(G , v)

time = time + 1
u.f = time; u.color = blue

u v w

x y z

1/–
π

2/–

3/–4/–

R

4/5

1/8

V

9/–

K

10/–

R

10/11

9/12

3/6

2/7

globale Variable

u v w

x y z

1/–1/–
π

2/–

3/–4/–

R

4/5

V

3/6

2/71/8

time = 8

5 - 32

Tiefensuche – Pseudocode

DFS(Graph G)

foreach u ∈ V (G) do
u.color = white
u.π = nil

time = 0
foreach u ∈ V (G) do

if u.color == white then DFSVisit(G , u)

DFSVisit(Graph G , Vertex u)

time = time + 1
u.d = time; u.color = red
foreach v ∈ Adj[u] do

if v .color == white then
v .π = u; DFSVisit(G , v)

time = time + 1
u.f = time; u.color = blue

Laufzeit von DFS?

DFSVisit wird für jeden Knoten genau 1× aufgerufen.⇒

■ DFS ohne if O(V) Zeit

DFSVisit ohne Rek. O((out)deg(u))

■ DFSVisit wird nur für weiße Knoten aufgerufen.

■ In DFSVisit wird der neue Knoten sofort rot gefärbt.

DFS gesamt O(V + E) Zeit

u v w

x y z

1/–
π

2/–

3/–4/–

R

4/5

1/8

V

9/–

K

10/–

R

10/11

9/12

3/6

2/7

globale Variable

6 - 48

Tiefensuche – Eigenschaften

1 2 5 10 15

(
s

(
z

(
y (x x) y

) (
w w

)
z
)

s

) (
t
(
v v

) (
u u

)
t

)
s

z

y

x

w

uv

t

time

B

R

V

K

R

y

x

z

w v u

ts

4/5

3/6

7/8

2/9 1/10

12/13 14/15

11/16
B

R V

K

7 - 5

Tiefensuche – Analyse

Nach DFS(G) gilt für {u, v} ∈
(
V
2

)
genau eine der Bedingungen

(i)

(ii)

(iii)

(Klammerntheorem)Satz.

Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v - noch v -u-Weg.

[u.d , u.f] ⊂ [v .d , v .f] und Baumkanten enthalten v -u-Weg.

Wie (ii), nur umgekehrt.

1 2 5 10 15

s

z

y

x

w

uv

t

time

B

R

V

K

R

d.h. für jedes Paar {u, v} von Knoten (mit u ̸= v)

7 - 16

Tiefensuche – Analyse

Nach DFS(G) gilt für {u, v} ∈
(
V
2

)
genau eine der Bedingungen

(i)

(ii)

(iii)

(Klammerntheorem)Satz.

Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v - noch v -u-Weg.

[u.d , u.f] ⊂ [v .d , v .f] und Baumkanten enthalten v -u-Weg.

Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Fälle.

1. Fall: u.d < v .d .

, d.h. v wurde entdeckt, als u noch rot war.

⇒ v ist Nachfolger von u , d.h. es gibt einen u-v -Weg.

Wegen u.d < v .d gilt:

⇒ alle Kanten, die v verlassen, sind erforscht;
v wird blau, bevor DFS zu u zurückkehrt und u blau macht.

⇒ [v .d , v .f] ⊂ [u.d , u.f], ✓

A) v .d < u.f .

v wurde später als u entdeckt.

DFSVisit(Graph G , Vertex u)

time = time + 1
u.d = time; u.color = red
foreach v ∈ Adj[u] do

if v .color == white then
v .π = u
DFSVisit(G , v)

time = time + 1
u.f = time; u.color = blue

d.h. (iii)

u.d

v .d

u.f

d.h. für jedes Paar {u, v} von Knoten (mit u ̸= v)

7 - 34

Tiefensuche – Analyse

Nach DFS(G) gilt für {u, v} ∈
(
V
2

)
genau eine der Bedingungen

(i)

(ii)

(iii)

(Klammerntheorem)Satz.

Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v - noch v -u-Weg.

[u.d , u.f] ⊂ [v .d , v .f] und Baumkanten enthalten v -u-Weg.

Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Fälle.

1. Fall: u.d < v .d .

A) v .d < u.f . ✓
B) u.f < v .d .

Laut Code gilt außerdem u.f < v .d < v .f

[u.d , u.f] ∩ [v .d , v .f] = ∅⇒

⇒ Keiner der beiden Knoten wurde entdeckt, während
der andere noch rot war., d.h. keiner ist Nachfolger des anderen.

✓

✓ 2. Fall: v .d < u.d . Symmetrisch! ✓

DFSVisit(Graph G , Vertex u)

time = time + 1
u.d = time; u.color = red
foreach v ∈ Adj[u] do

if v .color == white then
v .π = u
DFSVisit(G , v)

time = time + 1
u.f = time; u.color = blue

⇒ (i)

u.d

v .d

u.f

u.d

v .d

u.f

u.d <

d.h. für jedes Paar {u, v} von Knoten (mit u ̸= v)

Vertausche im Beweis u ↔ v .

8 - 13

Tiefensuche in ungerichteten Graphen

Beweis. Sei uv (kurz für {u, v}) eine beliebige Kante von G .

O.B.d.A. gilt u.d < v .d .

Dann entdeckt DFS v und färbt v blau,
bevor u blau gefärbt wird (da v ∈ Adj[u]).

■ Falls DFS uv zum ersten Mal von u nach v überschreitet,
ist v zu diesem Zeitpunkt weiß.

■ Andernfalls wird uv zum ersten Mal von v nach u überschritten.
Dann ist uv R-Kante, da u dann schon (und immer noch) rot ist.

Dann ist uv Baumkante.

□

u
v

B

u
v

R

G ungerichtet
⇒ G hat nur Baum- und Rückwärtskanten.

Satz.

9 - 7

Ablaufplanung
Unterhose

Hose

Socken

Schuhe

UhrGürtel

PulliJacke

T-ShirtSchal

Kante bedeutet:
Unterhose vor
Hose anziehen!

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) ∈ E (G) folgt: u kommt vor v .

Aufgabe: Finde Ablaufplan –

d.h. Reihenfolge der Knoten, so dass alle Ein-
schränkungen erfüllt sind (z.B. T-Shirt vor Pulli).

9 - 23

Ablaufplanung

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f -Zeiten.

Unterhose

Hose

Socken

Schuhe

UhrGürtel

PulliJacke

T-ShirtSchal

1/8

2/7 3/4

5/6 9/10

11/18

12/1713/16

14/15

19/20

Socken

19/20

T-Shirt

11/18

Pulli

12/17

Jacke

13/16

Schal

14/15

Uhr
9/10

Unterhose
1/8

Hose
2/7

Gürtel
5/6

Schuhe
3/4

Kante bedeutet:
Unterhose vor
Hose anziehen!

⇒ Alle Kanten sind nach rechts gerichtet.

DFS-Besuchsintervalle

10 - 15

Topologisch sortieren

TopologicalSort(DirectedGraph G)

L = new List()
DFS(G) mit folgender Änderung:
■ Wenn ein Knoten blau gefärbt wird,

häng ihn vorne an die Liste L an.
return L

Laufzeit?
O(V + E)

Korrekt?
Wann
funktioniert’s?

✓

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) ∈ E folgt: u kommt vor v .

Def. Ein (gerichteter) Graph ist kreisfrei,
wenn er keinen (gerichteten) Kreis enthält.

✗

11 - 15

Kreisfrei ⇔ keine R-Kanten

Beweis.
”
⇒“

”
⇐“

Sei G kreisfrei.

Angenommen DFS(G) liefert R-Kante (u, v).

Dann ist u Nachfolger von v im DFS-Wald.

D.h. G enthält einen gerichteten v -u-Weg W .

Aber dann ist W ⊕ (u, v) ein gerichteter Kreis.

DFS(G) liefere keine R-Kanten.

Ang. G enthält trotzdem Kreis C = ⟨v1, . . . , vk⟩.
Sei vi der 1. Knoten in C , den DFS(G) erreicht.

Es gibt einen Weg von vi nach vi−1 in G .

⇒ DFS gelangt zu vi−1, solange vi rot ist.

⇒ (vi−1, vi) ist R-Kante. □

u

v

W

vi

vi−1

R

Lemma. Ein gerichteter Graph G ist kreisfrei
⇔ DFS(G) liefert keine Rückwärtskanten.

E

E

12 - 24

Korrektheit von TopologicalSort

Beweis. Sei L = ⟨vn, vn−1, . . . , v1⟩ = TopologicalSort(G).

Dann gilt vn.f > . . . > v2.f > v1.f .

Sei (vi , vj) Kante von G . Zu zeigen:

Welche Farbe hat vj , wenn DFS (vi , vj) überschreitet?

■ vj rot

■ vj weiß

■ vj blau

⇒ (vi , vj) ist R-Kante

⇒ vj Nachfolger von vi ⇒ vi .f > vj .f ✓
⇒ vi .f noch nicht gesetzt, vj .f gesetzt

⇒ vi .f > vj .f □

vi vj

vi .f > vj .f

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TopologicalSort(G) eine topologische Sortierung von G .

E Widerspruch zu Lemma:
G kreisfrei!

✓

13 - 9

Vergleich Durchlaufstrategien für Graphen

Breitensuche Tiefensuche

Laufzeit O(V + E) O(V + E)

Ergebnis BFS-Baum,
d.h. kürzeste Wege

d- und f -Werte,
z.B. für top. Sortierung

Datenstruktur Schlange Rekursion bzw. Stapel

Vorgehen nicht-lokal lokal

	Augmentieren von Datenstrukturen
	Tiefensuche
	Kantentypen
	Pseudocode
	Eigenschaften
	Analyse
	Tiefensuche in ungerichteten Graphen

	Ablaufplanung
	Problemstellung
	Topologisch sortieren
	Kreisfrei <-> keine R-Kanten
	Korrektheit

	Vergleich Durchlaufstrategien für Graphen

