B
S

Algorithmen und Datenstrukturen

Vorlesung 20:
Tiefensuche und
topologische Sortierung

e

Alexander Wolff Wintersemester 2025

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

"’i:;: o) Amit Patel, “Introduction to the A™
. Algorithm”, Red Blob Games, 2014,
S | https://www.redblobgames.com/
pathfinding/a-star/introduction.html
® ® s

1. wellenformige Ausbreitung ab s 2. von s moglichst schnell weit weg
Breitensuche (breadth-first search, BFS) Tiefensuche (depth-first search, DFS)
(vorletztes Mal -

¢

»Maze-01 Griiningen hedge maze 1576 (destroyed)"

von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

S o s

er Wikimedia Commons

Tiefensuche

Eingabe:

Ausgabe:

(un)gerichteter Graph G
|discovery timel

B Besuchsintervalle (uv.d/u.f)
m DFS-Wald (A_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

Kanten des DFS-Waldes (entgegen 7 gerichtet)

B Riickwartskanten (R)

Nicht-Baumkanten zu einem Vorgangerknoten

m Vorwartskanten (V)

Nicht-Baumkanten zu einem Nachfolgerknoten

B Kreuzkanten (K)

Kanten, bei denen kein Endpunkt Vorganger des anderen ist

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - [time = 8
 time = time + 1 :
u.d = time; u.color = red

foreach v € Adj[u] do ,
L if v.color == white then : Fiir jeden Knoten u von G ist

|_ V.T = U: DFSVISIT(G V) M u.d der Zeitpunkt der Entdeckung,
B u.f der Abschluss-Zeitpunkt;

: Besuchsintervall von u ist [u.d, u.f].

time = time + 1
u.f = time: u.color = blue

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?
EB_P_‘_S"_/_I_S_I_T_(_G_r_éb_H__C_;_,"_/_e_r_t_e_kut}j""""i B DESVISIT wird nur fiir weiBe Knoten aufgerufen.
. time = time + 1 i

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

| v.m = u; DFSVISIT(G, v)

L if v.color == white then : = DFSVISIT wird fiir jeden Knoten genau 1x aufgerufen.

B DFS ohne if O(V) Zeit
DFSVIsiT ohne Rek. O((out)deg(u))

DFS gesamt O(V + E) Zeit

time = time + 1
u.f = time: u.color = blue

Tiefensuche — Eigenschaften

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (\2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

> time

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)] ,

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen|

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

= alle Kanten, die v verlassen, sind erforscht:

DFSVisiT(Graph G, Vertex u)

E time = time + 1
. u.d = time; u.color = red
- foreach v € Adj[u] do

if v.color == white then E
V.T = u
DFSVisiT(G, v)

E time = time + 1
" u.f = time; u.color = blue

wird blau, bevor DFS zu v zuriickkehrt und v blau macht.

= [v.d, v.f] C [u.d, u.f],d.h. (i)

Tiefensuche — Analyse

1

Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)] _______________________________
_ ~ Y _ _ ' DFSVisiT(Graph G, Vertex u) :
Nach DFS(G) gilt fiir {v, v} € (3) genau eine der Bedingungen tizze:.tz'me—l—ll d
(i) Besuchsintervalle disjunkt und e Adi[u] do
Baumkanten enthalten weder u-v- noch v-u-Weg. - | if v.color == white then
| v.m = u |
(ii) [v.d, u.f] C [v.d, v.f] und Baumkanten enthalten -u-Weg. L DFSVisT(G, v)
. . . time = time + 1
(iii) Wie (ii), nur umgekehrt. | uf = time; u.color = blue

Beweis. Wir betrachten zwei Falle.
1. Fall: u.d < v.d. o/ 2. Fall: v.d < u.d. Symmetrisch! o/

u.d u.f

> il > A) d < u.f. / [Vertausche im Beweis 1 <>]
ud u.f B f < d

d Laut Code gilt auBerdem wv.d < u.f <v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend
der andere noch rot war, d.h. keiner ist Nachfolger des anderen. = (i)

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

B Falls DFS uv zum ersten Mal von u nach v liberschreitet,
Ist v zu diesem Zeitpunkt weiB.

Dann ist vv Baumkante.

Dann ist uv R-Kante, da v dann schon (und immer noch) rot ist.

B Andernfalls wird uv zum ersten Mal von nach u uberschritten.

[]

- 13

Ablaufplanung

Unterhose Socken

T~

Kante bedeutet: | >
H(ise ¥ Unterhose vor SChUhe

|Hose anziehen!

Glrtel Uhr

Schal T-Shirt

T~

Jacke «=—— Pylli

/

Aufgabe: Finde Ablaufplan —

d.h. Reihenfolge der Knoten, so dass alle Ein-
schrankungen erfiillt sind (z.B. T-Shirt vor Pulli).

rTopoIogische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u,v) € E(G) folgt: u kommt vor v.

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke «——Pylli 12/17 <—(DFS-Besuchsintervalle)

Idee: Nutze Tiefensuche! =- Alle Kanten sind nach rechts gerichtet.
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17 13/16 14/15

Socken T-Shirt — Pulli — Jacke — Schal

~— —a — ———a
Uhr Unterhose —Hose — Giirtel Schuhe

9/10 1/8 2/7 5/6 3/4

10 - 15

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G) . Laufzeit?

[= new LIST()) O(\/ 4+ E)

DFS(G) mit folgender Anderung:

® Wenn ein Knoten blau gefarbt wird, - Korrekt?

hang ihn vorne an die Liste L an. -~ Wann

return L - funktioniert’s?

-- Q O
Def. Ein (gerichteter) Graph ist kreisfrei, X

wenn er keinen (gerichteten) Kreis enthalt. © ©

11-15

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
Y D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W & (u, v) ein gerichteter Kreis. %

,<=" DFS(G) liefere keine R-Kanten.

Ang. G enthalt trotzdem Kreis C = (vy, ..., Vi) .-
Sei v; der 1. Knoten in C, den DFS(G) erreicht.
Es gibt einen Weg von v; nach v;_; in G.

= DFS gelangt zu v;_1, solange v; rot ist.
= (vi_1,Vv;) ist R-Kante. %]

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, v,_1, ..

Dann gilt v,.f > ..

., v1) = TOPOLOGICALSORT(G).

. > Wo.f > f.

Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

V; Vi
‘"%’ m v rot =
o B v weil

—
O/_~O N V_j blaU —
—

. ove) _ Widerspruch zu Lemma:
(V” VJ) st R-Kante é [G kreisfrei!]

v; Nachfolger von v; = v;.f > v;.f /

vi.f noch nicht gesetzt, v;.f gesetzt
v;.f > \/Jf \/ []

12 - 24

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E) O(V +E)
Ergebnis BFS-Baum, d- und f-Werte,

d.h. kiirzeste Wege z.B. fiir top. Sortierung
Datenstruktur Schlange Rekursion bzw. Stapel
Vorgehen nicht-lokal lokal

13 -

	Augmentieren von Datenstrukturen
	Tiefensuche
	Kantentypen
	Pseudocode
	Eigenschaften
	Analyse
	Tiefensuche in ungerichteten Graphen

	Ablaufplanung
	Problemstellung
	Topologisch sortieren
	Kreisfrei <-> keine R-Kanten
	Korrektheit

	Vergleich Durchlaufstrategien für Graphen

