B
S

Algorithmen und Datenstrukturen

Vorlesung 20:
Tiefensuche und
topologische Sortierung

e

Alexander Wolff Wintersemester 2025

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

"’i:;: o) Amit Patel, “Introduction to the A™
. Algorithm”, Red Blob Games, 2014,
S | https://www.redblobgames.com/
pathfinding/a-star/introduction.html
® ® s

1. wellenformige Ausbreitung ab s 2. von s moglichst schnell weit weg
Breitensuche (breadth-first search, BFS) Tiefensuche (depth-first search, DFS)
(vorletztes Mal -

¢

»Maze-01 Griiningen hedge maze 1576 (destroyed)"
von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

Utler Wikimedia Commons

»Maze-01 Griiningen hedge maze 1576 (destroyed)"
von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

|

er Wikimedia Commons

»Maze-01 Griiningen hedge maze 1576 (destroyed)"

von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

S o mEE—

er Wikimedia Commons

»Maze-01 Griiningen hedge maze 1576 (destroyed)"
von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

|

er Wikimedia Commons

»Maze-01 Griiningen hedge maze 1576 (destroyed)"

von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

S o s

er Wikimedia Commons

»Maze-01 Griiningen hedge maze 1576 (destroyed)"

von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

S o s

er Wikimedia Commons

»Maze-01 Griiningen hedge maze 1576 (destroyed)"

von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

S o s

er Wikimedia Commons

»Maze-01 Griiningen hedge maze 1576 (destroyed)"

von RTH — Eigenes Werk. Lizenziert unter CC BY-SA 3.0

S o s

er Wikimedia Commons

Tiefensuche

Eingabe: (un)gerichteter Graph G

Tiefensuche
Eingabe: (un)gerichteter Graph G

Ausgabe: ®m Besuchsintervalle (v.d/u.f)

Tiefensuche

Eingabe: (un)gerichteter Graph G

discovery time

Ausgabe: m Besuchsintervalle (u.d/u.f)

Tiefensuche

Eingabe: (un)gerichteter Graph G
ldiscovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)

Tiefensuche

Eingabe: (un)gerichteter Graph G
ldiscovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

Tiefensuche

Eingabe:

Ausgabe:

(un)gerichteter Graph G

| discovery time |

B Besuchsintervalle (uv.d/u.f)
m DFS-Wald (A_zq

Tiefensuche

Eingabe:

Ausgabe:

(un)gerichteter Graph G

| discovery time |

B Besuchsintervalle (uv.d/u.f)
m DFS-Wald (A_zq

Tiefensuche

Eingabe:

Ausgabe:

(un)gerichteter Graph G

| discovery time |

B Besuchsintervalle (uv.d/u.f)
m DFS-Wald (A_zr\)

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

B Riickwartskanten (R)

Farbe Zielknoten:

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

B Riickwartskanten (R)

Farbe Zielknoten:

weil

rot

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

B Riickwartskanten (R)

Farbe Zielknoten:

weil

rot

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

B Riickwartskanten (R)

Farbe Zielknoten:

weil

rot

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

B Riickwartskanten (R)

Farbe Zielknoten:

weil

rot

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

B Riickwartskanten (R)

Farbe Zielknoten:

weil

rot

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)

m Vorwartskanten

Farbe Zielknoten:

weil

rot

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)

m Vorwartskanten

Farbe Zielknoten:

weil

rot

blau

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)

m Vorwartskanten

Farbe Zielknoten:

weil

rot

blau

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)

m Vorwartskanten

Farbe Zielknoten:

weil

rot

blau

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)

m Vorwartskanten

Farbe Zielknoten:

weil

rot

blau

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Kilassifizierung der Graphkanten: Farbe Zielknoten:
m Baumkanten (Kanten von G,) weilB
B Riickwartskanten (R) rot
B Vorwartskanten blau
B Kreuzkanten (K)

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Kilassifizierung der Graphkanten: Farbe Zielknoten:
m Baumkanten (Kanten von G,) weilB
B Riickwartskanten (R) rot
B Vorwartskanten blau
B Kreuzkanten (K) blau

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)
®m Vorwartskanten

B Kreuzkanten (K)

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)
®m Vorwartskanten

B Kreuzkanten (K)

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)
®m Vorwartskanten

B Kreuzkanten (K)

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)
m Vorwartskanten (V)

B Kreuzkanten (K)

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)
m Vorwartskanten (V)

B Kreuzkanten (K)

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche

Eingabe: (un)gerichteter Graph G

|discovery timel
Ausgabe: m Besuchsintervalle (u.d/u.f)

m DFS-Wald (‘_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)
B Riickwartskanten (R)
m Vorwartskanten (V)

B Kreuzkanten (K)

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Kilassifizierung der Graphkanten: Farbe Zielknoten:

m Baumkanten (Kanten von G,) weil

Kanten des DFS-Waldes (entgegen 7 gerichtet)

B Riickwartskanten (R) rot

m Vorwirtskanten (V) blau und
start.d < ziel.d

m Kreuzkanten (K) blau und
start.d > ziel.d

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

Kanten des DFS-Waldes (entgegen 7 gerichtet)

B Riickwartskanten (R)

Nicht-Baumkanten zu einem Vorgangerknoten

m Vorwartskanten (V)

B Kreuzkanten (K)

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche

Eingabe: (un)gerichteter Graph G
|discovery timel

Ausgabe: m Besuchsintervalle (u.d/u.f)
= DFS-Wald (27|

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

Kanten des DFS-Waldes (entgegen 7 gerichtet)

B Riickwartskanten (R)

Nicht-Baumkanten zu einem Vorgangerknoten

m Vorwartskanten (V)

Nicht-Baumkanten zu einem Nachfolgerknoten

B Kreuzkanten (K)

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche

Eingabe:

Ausgabe:

(un)gerichteter Graph G
|discovery timel

B Besuchsintervalle (uv.d/u.f)
m DFS-Wald (A_zr\)

m Klassifizierung der Graphkanten:

B Baumkanten (Kanten von G;)

Kanten des DFS-Waldes (entgegen 7 gerichtet)

B Riickwartskanten (R)

Nicht-Baumkanten zu einem Vorgangerknoten

m Vorwartskanten (V)

Nicht-Baumkanten zu einem Nachfolgerknoten

B Kreuzkanten (K)

Kanten, bei denen kein Endpunkt Vorganger des anderen ist

Farbe Zielknoten:

weil

rot

blau und
start.d < ziel.d

blau und
start.d > ziel.d

Tiefensuche — Pseudocode

Tiefensuche — Pseudocode

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
' L u.color = white

Tiefensuche — Pseudocode

DFS(Graph G)

- foreach u € V(G) do

' L u.color = white
u.m = nil

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

foreach u € V(G) do
L if u.color == white then

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - time =0

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - time =1
- time = time + 1 :

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - time =1
- time = time + 1 :
u.d = time;

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - time =1
. time = time + 1 :
u.d = time: u.color = red

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u)

DFSVisiT(Graph G, Vertex u)
. time = time + 1
u.d = time: u.color = red

Fiir jeden Knoten u von G ist

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) = Y A
DFSVisit(Graph G, Vertex u) | [time =1
. time = time + 1 :
u.d = time; u.color = red X % >

Fiir jeden Knoten u von G ist
‘| @ u.d der Zeitpunkt der Entdeckung,

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) = Y A
DFSVisit(Graph G, Vertex u) | [time =1
. time = time + 1 :
u.d = time; u.color = red X % >

| Fiir jeden Knoten u von G ist
| @ u.d der Zeitpunkt der Entdeckung,
| @ wu.f der Abschluss-Zeitpunkt;

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) = Y o
DFSVisit(Graph G, Vertex u) | [time =1
. time = time + 1

u.d = time: u.color = red % v >

| Fiir jeden Knoten u von G ist

| @ u.d der Zeitpunkt der Entdeckung,
| @ wu.f der Abschluss-Zeitpunkt;

| Besuchsintervall von v ist [u.d, u.f].

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]
foreach u € V(G) do

u "4 w
L if u.color == white then DFSVisiT(G, u)
DFSVisit(Graph G, Vertex u) | [time =1
. time = time + 1 :
u.d = time; u.c.()lor = red | % y >
foreach v € Adj[u] do ,
| Fiir jeden Knoten u von G ist
‘| @ u.d der Zeitpunkt der Entdeckung,
| @ wu.f der Abschluss-Zeitpunkt;
| Besuchsintervall von v ist [u.d, u.f].

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = white
u.m = nil
time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) = Y A
DFSVisit(Graph G, Vertex u) | [time =1
. time = time + 1 :
u.d = time; u.color = red X % >

foreach v € Adj[u] do
LrAufgabe.]| Fiir jeden Knoten u von G ist

. : : ‘| @ u.d der Zeitpunkt der Entdeckung,
Erganzen Sie den Code in und |/ B u.f der Abschluss-Zeitpunkt;

nach der foreach-Schleife. Besuchsintervall von u ist [u.d, u.f].
' Benutzen Sie Rekursion.

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]
foreach u € V(G) do

u "4 w
L if u.color == white then DFSVisiT(G, u)
DFSVisit(Graph G, Vertex u) | [time =1
. time = time + 1 :
u.d = time; u.c.()lor = red | % y >
foreach v € Adj[u] do ,
if v.color == white then | Fiir jeden Knoten u von G ist
| ‘| @ u.d der Zeitpunkt der Entdeckung,
| @ wu.f der Abschluss-Zeitpunkt;
| Besuchsintervall von v ist [u.d, u.f].

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]
foreach u € V(G) do

u "4 w
L if u.color == white then DFSVisiT(G, u) i
DFSVisit(Graph G, Vertex u) | [time =1
. time = time + 1 :
u.d = time; u.c.()lor = red | % y >
foreach v € Adj[u] do ,
if v.color == white then | Fiir jeden Knoten u von G ist
| v.r = u; ‘| @ u.d der Zeitpunkt der Entdeckung,
’ | @ wu.f der Abschluss-Zeitpunkt;
| Besuchsintervall von v ist [u.d, u.f].

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]
foreach u € V(G) do

u "4 w
L if u.color == white then DFSVisiT(G, u) i
DFSVisit(Graph G, Vertex u) | [time =1
. time = time + 1 :
u.d = time; u.c.()lor = red | % y >
foreach v € Adj[u] do ,
if v.color == white then | Fiir jeden Knoten u von G ist
|_ V.T = U DFSVISIT(G V) B u.d der Zeitpunkt der Entdeckung,
B u.f der Abschluss-Zeitpunkt;
| Besuchsintervall von v ist [u.d, u.f].

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - [time =7
 time = time + 1 :
u.d = time; u.color = red

foreach v € Adj[u] do ,
L if v.color == white then Fiir jeden Knoten u von G ist

|_ V.T = U DFSVISIT(G, V) ‘| @ u.d der Zeitpunkt der Entdeckung,
| @ u.f der Abschluss-Zeitpunkt;

| Besuchsintervall von u ist [u.d, u.f].

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - [time = 8
 time = time + 1 :
u.d = time; u.color = red

foreach v € Adj[u] do ,
L if v.color == white then : Fiir jeden Knoten u von G ist

|_ V.T = U: DFSVISIT(G V) M u.d der Zeitpunkt der Entdeckung,
B u.f der Abschluss-Zeitpunkt;

: Besuchsintervall von u ist [u.d, u.f].

time = time + 1

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - [time = 8
 time = time + 1 :
u.d = time; u.color = red

foreach v € Adj[u] do ,
L if v.color == white then : Fiir jeden Knoten u von G ist

|_ V.T = U: DFSVISIT(G V) M u.d der Zeitpunkt der Entdeckung,
B u.f der Abschluss-Zeitpunkt;

: Besuchsintervall von u ist [u.d, u.f].

time = time + 1
u.f = time;

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - [time = 8
 time = time + 1 :
u.d = time; u.color = red

foreach v € Adj[u] do ,
L if v.color == white then : Fiir jeden Knoten u von G ist

|_ V.T = U: DFSVISIT(G V) M u.d der Zeitpunkt der Entdeckung,
B u.f der Abschluss-Zeitpunkt;

: Besuchsintervall von u ist [u.d, u.f].

time = time + 1
u.f = time: u.color = blue

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

DFSVisiT(Graph G, Vertex u)
. time = time + 1
u.d = time: u.color = red
foreach v € Adj[u] do

if v.color == white then |
| v.m = u; DFSVISIT(G, v)

time = time + 1
u.f = time: u.color = blue

Laufzeit von DFS?

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?

;DFSVISIT(GraPh G, Vertex u) B DFSVISIT wird nur fiir weiBe Knoten aufgerufen.

time = time + 1
u.d = time: u.color = red
foreach v € Adj[u] do

if v.color == white then |
| v.m = u; DFSVISIT(G, v)

time = time + 1
u.f = time: u.color = blue

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do '
L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?

DFSVIsIT(Graph G, Vertex u) B DFSVISIT wird nur fiir weiBe Knoten aufgerufen.
. time = time + 1 I

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

if v.color == white then |
| v.m = u; DFSVISIT(G, v)

time = time + 1
u.f = time: u.color = blue

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?
EEF_S-VI_S_I}_(-G}EIZ{H_-C_;_,"_/-e_r_t-e_;(-ujm"mi B DESVISIT wird nur fiir weiBe Knoten aufgerufen.

time = time + 1 5

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

L if v.color == white then = DFSVISIT wird fiir jeden Knoten genau 1x aufgerufen.

| v.m = u; DFSVISIT(G, v)

time = time + 1
u.f = time: u.color = blue

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?
EBF_S-VI_S_I}_(-G_FSIZ{H_-C_;_,"_/-e_r_t-e_;(-ujm"mi B DESVISIT wird nur fiir weiBe Knoten aufgerufen.
 time = time + 1 E

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

| v.m = u; DFSVISIT(G, v)

L if v.color == white then : = DFSVISIT wird fiir jeden Knoten genau 1x aufgerufen.

B DFS ohne if O(V) Zeit
DFSVIsiT ohne Rek. O((out)deg(u))

time = time + 1
u.f = time: u.color = blue

Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?
EB_P_‘_S"_/_I_S_I_T_(_G_r_éb_H__C_;_,"_/_e_r_t_e_kut}j""""i B DESVISIT wird nur fiir weiBe Knoten aufgerufen.
. time = time + 1 i

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

| v.m = u; DFSVISIT(G, v)

L if v.color == white then : = DFSVISIT wird fiir jeden Knoten genau 1x aufgerufen.

B DFS ohne if O(V) Zeit
DFSVIsiT ohne Rek. O((out)deg(u))

DFS gesamt O(V + E) Zeit

time = time + 1
u.f = time: u.color = blue

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

y b4 S

rAufgabe: Kopieren Sie obigen Graphen.
Berechnen Sie dann mit DFES alle Besuchsintervalle.

Beginnen Sie mit s. Wenn Sie eine Wahl haben,
nehmen Sie zuerst den obersten verfiigbaren Knoten.

Tiefensuche — Eigenschaften

rAufgabe: Kopieren Sie obigen Graphen.
Berechnen Sie dann mit DFES alle Besuchsintervalle.

Beginnen Sie mit s. Wenn Sie eine Wahl haben,
nehmen Sie zuerst den obersten verfiigbaren Knoten.

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Eigenschaften

Tiefensuche — Analyse

Tiefensuche — Analyse

d.h. fiir jedes Paar {u, v} von Knoten (mit u # v)

Tiefensuche — Analyse

d.h. fiir jedes Paar {u, v} von Knoten (mit u # v)

Tiefensuche — Analyse

d.h. fiir jedes Paar {u, v} von Knoten (mit u # v)

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (\2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

> time

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue

Tiefensuche — Analyse

Satz.

)|
(Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.

1. Fall: v.d < v.d.

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue

Tiefensuche — Analyse

Satz. (Klammerntheorem)

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder 1-v- noch

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.
(iii) Wie (ii), nur umgekehrt.

1

d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

-u-Weg.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f A)

.d

.d < u.f.

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

.d

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue

Tiefensuche — Analyse

Satz.

(Klammerntheorem)

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

1

d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

(i) Besuchsintervalle disjunkt und

Baumkanten enthalten weder 1-1- noch

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

-u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.

u.d

.d

el |y A)

1. Fall: v.d < v.d.
5 d < u.f dh

wurde entdeckt, als v noch rot war.

= v ist Nachfolger von u

 DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue

Tiefensuche — Analyse

Satz.

(Klammerntheorem)

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder 1-v- noch

1

d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.
(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f A)

.d

.d < u.f, d.h.

=

wurde entdeckt, als v noch rot war.
ist Nachfolger von v, d.h. es gibt einen u-v-Weg.

 DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue

Tiefensuche — Analyse

1

Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)] _______________________________
_ ~ Y _ _ ' DFSVisiT(Graph G, Vertex u) E

Nach DFS(G) gilt fiir {v, v} € (3) genau eine der Bedingungen tizze:.tz'me—l—ll d

(i) Besuchsintervalle disjunkt und e Adi[u] do
Baumkanten enthalten weder u-v- noch v-u-Weg. - | if v.color == white then
| v.m = u !

(ii) [v.d, u.f] C [v.d, v.f] und Baumkanten enthalten -u-Weg. L DFSVisT(G, v)

. . time = time 4+ 1

(iii) Wie (ii), nur umgekehrt. | uf = time; u.color = blue

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt:

Tiefensuche — Analyse

1

Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

.d
= v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

= alle Kanten, die v verlassen, sind erforscht:

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue

wird blau, bevor DFS zu v zuriickkehrt und v blau macht.

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)] ,

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen|

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

= alle Kanten, die v verlassen, sind erforscht:

DFSVisiT(Graph G, Vertex u)

E time = time + 1
. u.d = time; u.color = red
- foreach v € Adj[u] do

if v.color == white then E
V.T = u
DFSVisiT(G, v)

E time = time + 1
" u.f = time; u.color = blue

wird blau, bevor DFS zu v zuriickkehrt und v blau macht.

= [v.d, v.f] C [u.d, u.f],

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)] ,

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen|

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

= alle Kanten, die v verlassen, sind erforscht:

DFSVisiT(Graph G, Vertex u)

E time = time + 1
. u.d = time; u.color = red
- foreach v € Adj[u] do

if v.color == white then E
V.T = u
DFSVisiT(G, v)

E time = time + 1
" u.f = time; u.color = blue

wird blau, bevor DFS zu v zuriickkehrt und v blau macht.

= [v.d, v.f] C [u.d, u.f],d.h. (i)

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.
e Lo A)vd<uf. /

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.
C—— A)vd<uf. /

B)

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
A) v. 1.
>) d < u.f /
Yoy B) u.f <v.d

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
A) v. .f.
>) d<uf/
vd _uf B) uf <v.d

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
A) v. .f.
>) d < u.f /
Yoy B) u.f <vd. —

d Laut Code gilt auBerdem uf <v.d

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
A) v. .f.
>) d < u.f /
Yoy B) u.f <vd. —

d Laut Code gilt auBerdem wu.d < u.f < v.d

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
A) v. .f.
>) d < u.f /
Yoy B) u.f <vd.

3 Laut Code gilt auBerdem 1.d < uf< v.d < v.f

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
A) v.d .f.
> B;) < Ud /
ud u.f u.r < v.d.
RO_ N IS
3 Laut Code gilt auBerdem 1.d < uf< v.d < v.f

—

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
A) v.d .f.
> B;) < Ud /
ud u.f u.tr < v.d.
RO_ N IS
3 Laut Code gilt auBerdem 1.d < uf< v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

ol p A) v.d < u.f. [/
e B) uf <v.d
-) . . .
3 Laut Code gilt auBerdem 1.d < uf< v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend
der andere noch rot war.

' DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

ol p A) v.d < u.f. [/
e B) uf <v.d
-) . . .
3 Laut Code gilt auBerdem 1.d < uf< v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend

' DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

der andere noch rot war, d.h. keiner ist Nachfolger des anderen.

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

ol p A) v.d < u.f. [/
e B) uf <v.d
-) . . .
3 Laut Code gilt auBerdem 1.d < uf< v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend

' DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

der andere noch rot war, d.h. keiner ist Nachfolger des anderen. = (i)

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

ol p A) v.d < u.f. [/
u.d u.f.d B) U f < d /
d Laut Code gilt auBerdem wv.d < u.f <v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend

' DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

der andere noch rot war, d.h. keiner ist Nachfolger des anderen. = (i)

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < .d.‘/

ol p A) v.d < u.f. [/
u.d u.f.d B) U f < d /
d Laut Code gilt auBerdem wv.d < u.f <v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend

' DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

der andere noch rot war, d.h. keiner ist Nachfolger des anderen. = (i)

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: ud < v.d. o/ 2. Fall: v.d < u.d.

ol p A) v.d < u.f. [/
u.d u.f.d B) U f < d /
d Laut Code gilt auBerdem wv.d < u.f <v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend

' DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

der andere noch rot war, d.h. keiner ist Nachfolger des anderen. = (i)

Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: u.d < v.d.// 2. Fall: v.d < u.d. Symmetrisch!

ol p A) v.d < u.f. [/
u.d u.f.d B) U f < d /
d Laut Code gilt auBerdem wv.d < u.f <v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend

' DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue

der andere noch rot war, d.h. keiner ist Nachfolger des anderen. = (i)

Tiefensuche — Analyse

1

Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)] _______________________________
_ ~ Y _ _ ' DFSVisiT(Graph G, Vertex u) :
Nach DFS(G) gilt fiir {v, v} € (3) genau eine der Bedingungen tizze:.tz'me—l—ll d
(i) Besuchsintervalle disjunkt und e Adi[u] do
Baumkanten enthalten weder u-v- noch v-u-Weg. - | if v.color == white then
| v.m = u |
(ii) [v.d, u.f] C [v.d, v.f] und Baumkanten enthalten -u-Weg. L DFSVisT(G, v)
. . . time = time + 1
(iii) Wie (ii), nur umgekehrt. | uf = time; u.color = blue

Beweis. Wir betrachten zwei Falle.
1. Fall: u.d < v.d.// 2. Fall: v.d < u.d. Symmetrisch!

u.d u.f

> il > A) d < u.f. / [Vertausche im Beweis 1 <>]
ud u.f B f < d

d Laut Code gilt auBerdem wv.d < u.f <v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend
der andere noch rot war, d.h. keiner ist Nachfolger des anderen. = (i)

Tiefensuche — Analyse

1

Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #)] _______________________________
_ ~ Y _ _ ' DFSVisiT(Graph G, Vertex u) :
Nach DFS(G) gilt fiir {v, v} € (3) genau eine der Bedingungen tizze:.tz'me—l—ll d
(i) Besuchsintervalle disjunkt und e Adi[u] do
Baumkanten enthalten weder u-v- noch v-u-Weg. - | if v.color == white then
| v.m = u |
(ii) [v.d, u.f] C [v.d, v.f] und Baumkanten enthalten -u-Weg. L DFSVisT(G, v)
. . . time = time + 1
(iii) Wie (ii), nur umgekehrt. | uf = time; u.color = blue

Beweis. Wir betrachten zwei Falle.
1. Fall: u.d < v.d. o/ 2. Fall: v.d < u.d. Symmetrisch! o/

u.d u.f

> il > A) d < u.f. / [Vertausche im Beweis 1 <>]
ud u.f B f < d

d Laut Code gilt auBerdem wv.d < u.f <v.d < v.f

= [u.d, u.flO[v.d, v.f] =0

— Keiner der beiden Knoten wurde entdeckt, wahrend
der andere noch rot war, d.h. keiner ist Nachfolger des anderen. = (i)

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis.

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor 1 blau gefarbt wird

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

B Falls DFS uv zum ersten Mal von u nach v liberschreitet,
ur ist v zu diesem Zeitpunkt weiB.

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

\\\\\\\\\ v B Falls DES uv zum ersten Mal von © nach v iiberschreitet,
ur ist v zu diesem Zeitpunkt weiB.

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

\\\\\\\\\ v B Falls DES uv zum ersten Mal von © nach v iiberschreitet,
UF Ist v zu diesem Zeitpunkt weil.

Dann ist vv Baumkante.

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

\\\\\\\\\ v B Falls DES uv zum ersten Mal von © nach v iiberschreitet,
UF Ist v zu diesem Zeitpunkt weil.

Dann ist vv Baumkante.

B Andernfalls wird vv zum ersten Mal von nach u uberschritten.
Dann ist u

vl

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

\\\\\\\\\ v B Falls DES uv zum ersten Mal von © nach v iiberschreitet,
UF Ist v zu diesem Zeitpunkt weil.

Dann ist vv Baumkante.

B Andernfalls wird vv zum ersten Mal von nach u uberschritten.
Dann ist u

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.

0.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

Ist v zu diesem Zeitpunkt weiB.

Dann ist vv Baumkante.

B Andernfalls wird uv zum ersten Mal von
Dann ist u

B Falls DFS uv zum ersten Mal von u nach v liberschreitet,

nach u uberschritten.

- 12

Tiefensuche in ungerichteten Graphen

Satz. G ungerichtet
= G hat nur Baum- und Rickwartskanten.

Beweis. Sei vv (kurz fiir {u, v}) eine beliebige Kante von G.
O.B.d.A. gilt u.d < v.d.

Dann entdeckt DFS v und farbt v blau,
bevor u blau gefarbt wird (da v € Adj[u]).

B Falls DFS uv zum ersten Mal von u nach v liberschreitet,
Ist v zu diesem Zeitpunkt weiB.

Dann ist vv Baumkante.

Dann ist uv R-Kante, da v dann schon (und immer noch) rot ist.

B Andernfalls wird uv zum ersten Mal von nach u uberschritten.

[]

- 13

Ablaufplanung

Hose
Gurtel

Schal

Unterhose

Jacke

Socken
Schuhe
Uhr
T-Shirt

Pulli

Ablaufplanung

Unterhose Socken

HOSG Kante bedeutet: Schuhe
Unterhose vor
Hose anziehen!

Glrtel Uhr

Schal T-Shirt

Jacke Pulli

Ablaufplanung

Unterhose Socken

Hose = [Kante bedeutet: \ Schuhe
Unterhose vor
Hose anziehen!

Glrtel Uhr

Schal T-Shirt

Jacke Pulli

Ablaufplanung

Unterhose Socken

Hose = [Kante bedeutet: \ Schuhe
Unterhose vor
‘ Hose anziehen!

Glrtel Uhr

Schal T-Shirt

Jacke Pulli

Ablaufplanung

Unterhose Socken

T~

Kante bedeutet: | >
H(ise ¥ Unterhose vor SChUhe

|Hose anziehen!

Glrtel Uhr

Schal T-Shirt

T~

Jacke «=—— Pulli

/

Ablaufplanung

Unterhose Socken

T~

Kante bedeutet: | >
H(ise %< Unterhose vor SChUhe

|Hose anziehen!

Glrtel Uhr

Schal T-Shirt

T~

Jacke «=—— Pulli

/

Aufgabe: Finde Ablaufplan —

d.h. Reihenfolge der Knoten, so dass alle Ein-
schrankungen erfiillt sind (z.B. T-Shirt vor Pulli).

Ablaufplanung

Unterhose Socken

T~

Kante bedeutet: | >
H(ise ¥ Unterhose vor SChUhe

|Hose anziehen!

Glrtel Uhr

Schal T-Shirt

T~

Jacke «=—— Pylli

/

Aufgabe: Finde Ablaufplan —

d.h. Reihenfolge der Knoten, so dass alle Ein-
schrankungen erfiillt sind (z.B. T-Shirt vor Pulli).

rTopoIogische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u,v) € E(G) folgt: u kommt vor v.

Ablaufplanung

Unterhose Socken

T~

Kante bedeutet: | >
H(ise ¥ Unterhose vor SChUhe

|Hose anziehen!

Glrtel Uhr

Schal T-Shirt

T~

Jacke «=—— Pulli

/

ldee:

Nutze Tiefensuchel

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke «——Pylli 12/17 <—(DFS-Besuchsintervalle)

Idee: Nutze Tiefensuche!

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Ildee: Nutze Tiefensuche!
Sortiere Knoten nach

- 10

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

- 11

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20
Socken

- 12

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18
Socken T-Shirt

- 13

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17
Socken T-Shirt — Pull;

_14

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17 13/16
Socken T-Shirt — Pulli — Jacke

- 15

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17 13/16 14/15
Socken T-Shirt — Pulli — Jacke — Schal

- 16

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17 13/16 14/15
Socken T-Shirt — Pulli — Jacke — Schal

Uhr
9/10

- 17

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke =—— Pulli 12/17 <—(DFS-Besuchsintervalle]

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17 13/16 14/15
Socken T-Shirt — Pulli — Jacke — Schal

Uhr Unterhose
9/10 1/8

- 18

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke «——Pylli 12/17 <—(DFS-Besuchsintervalle)

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17 13/16 14/15
Socken T-Shirt — Pulli — Jacke — Schal
—_
.\

Uhr Unterhose —>Hose
9/10 1/8 2/7

- 19

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke «——Pylli 12/17 <—(DFS-Besuchsintervalle)

Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17 13/16 14/15
Socken T-Shirt — Pulli — Jacke — Schal
—_
.\
Uhr Unterhose —>Hose — Giirtel

9/10 1/8 2/7 5/6

- 20

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Giirtel \Uhr 0/10
14/15 Schal \ / T-Shirt 11/18
}
13/16 Jacke «——Pylli 12/17 <—(DFS-Besuchsintervalle)
Idee: Nutze Tiefensuche!
Sortiere Knoten nach absteigenden f-Zeiten.
19/20 Kl/w 12/17 13/16 14/15
Socken T-Shirt — Pulli — Jacke — Schal
—
44— A
Uhr Unterhose —=Hose — Giirtel Schuhe

9/10 1/8 2/7 5/6 3/4

- 21

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal \ / T-Shirt 11/18
}
13/16 Jacke «——Pylli 12/17 <—(DFS-Besuchsintervalle)
Ildee: Nutze Tiefensuche!l = Alle Kanten sind
Sortiere Knoten nach absteigenden f-Zeiten.
19/20 Kl/w 12/17 13/16 14/15
Socken T-Shirt — Pulli — Jacke —= Schal
—_
4~ A
Uhr Unterhose —>Hose — Giirtel Schuhe

9/10 1/8 2/7 5/6 3/4

- 22

Ablaufplanung

1/8 Unterhose Socken 19/20

T~

Kante bedeutet: | o 4
2/7 Hcise ¥ Unterhose vor SChUhe 3/

|Hose anziehen!

5/6 Gurtel \Uhr 9/10
14/15 Schal T-Shirt 11/18
13/16 Jacke «——Pylli 12/17 <—(DFS-Besuchsintervalle)

Idee: Nutze Tiefensuche! =- Alle Kanten sind nach rechts gerichtet.
Sortiere Knoten nach absteigenden f-Zeiten.

19/20 11/18 12/17 13/16 14/15

Socken T-Shirt — Pulli — Jacke — Schal

~— —a — ———a
Uhr Unterhose —Hose — Giirtel Schuhe

9/10 1/8 2/7 5/6 3/4

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

10 -

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

10 -

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G)
L = new LisT()

10 -

10 -

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G)

[= new LisT())
DFS(G) mit folgender Anderung:

10 -

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G)
[= new LisT()
DFS(G) mit folgender Anderung:
®m Wenn ein Knoten blau gefarbt wird,
hang ihn vorne an die Liste L an.

10 -

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G)
[= new LisT()
DFS(G) mit folgender Anderung:
®m Wenn ein Knoten blau gefarbt wird,
hang ihn vorne an die Liste L an.
return L

10 -

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- TOPOLOGICALSORT(DirectedGraph G) ' Laufzeit?
L = new LisT() :
DFS(G) mit folgender Anderung:
®m Wenn ein Knoten blau gefarbt wird,
hang ihn vorne an die Liste L an.
return L

10 -

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- TOPOLOGICALSORT(DirectedGraph G) ' Laufzeit?
L = new LIST()) O(V + E)
DFS(G) mit folgender Anderung: i
®m Wenn ein Knoten blau gefarbt wird,

hang ihn vorne an die Liste L an.
return L

10 -

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- TOPOLOGICALSORT(DirectedGraph G) ' Laufzeit?
L = new LisT() __ O(V + E)
DFS(G) mit folgender Anderung:
® Wenn ein Knoten blau gefarbt wird, - Korrekt?

hang ihn vorne an die Liste L an. -~ Wann

return L - funktioniert’s?

10 - 10

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G) ' Laufzeit?
L = new LisT() __ O(V + E)
DFS(G) mit folgender Anderung:
® Wenn ein Knoten blau gefarbt wird, - Korrekt?
hang ihn vorne an die Liste L an. -~ Wann
return L - funktioniert’s?

Def. Ein (gerichteter) Graph ist kreisfrei,
wenn er keinen (gerichteten) Kreis enthalt.

10-11

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G) . Laufzeit?
[= new LIST()) O(\/ 4+ E)
DFS(G) mit folgender Anderung:
® Wenn ein Knoten blau gefarbt wird, - Korrekt?
hang ihn vorne an die Liste L an. -~ Wann
return L - funktioniert’s?
-- Q 0O
Def. Ein (gerichteter) Graph ist kreisfrei,
wenn er keinen (gerichteten) Kreis enthalt. © ©

10 - 12

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G) . Laufzeit?
[= new LIST()) O(\/ 4+ E)
DFS(G) mit folgender Anderung:
® Wenn ein Knoten blau gefarbt wird, - Korrekt?
hang ihn vorne an die Liste L an. -~ Wann
return L - funktioniert’s?
-- Q O
Def. Ein (gerichteter) Graph ist kreisfrei,
wenn er keinen (gerichteten) Kreis enthalt. © ©

10 - 13

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G) . Laufzeit?

[= new LIST()) O(\/ 4+ E)

DFS(G) mit folgender Anderung:

® Wenn ein Knoten blau gefarbt wird, - Korrekt?

hang ihn vorne an die Liste L an. -~ Wann

return L - funktioniert’s?

-- Q O
Def. Ein (gerichteter) Graph ist kreisfrei, X

wenn er keinen (gerichteten) Kreis enthalt. © ©

10 - 14

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G) . Laufzeit?

L = new LisT() 5 O(V + E)

DFS(G) mit folgender Anderung:

® Wenn ein Knoten blau gefarbt wird, - Korrekt?

hang ihn vorne an die Liste L an. -~ Wann

return L - funktioniert’s?

-- Q O
—— — X
Def. Ein (gerichteter) Graph ist kreisfrei,
O O

wenn er keinen (gerichteten) Kreis enthalt.

10 - 15

Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———

- ToPOLOGICALSORT(DirectedGraph G) . Laufzeit?

[= new LIST()) O(\/ 4+ E)

DFS(G) mit folgender Anderung:

® Wenn ein Knoten blau gefarbt wird, - Korrekt?

hang ihn vorne an die Liste L an. -~ Wann

return L - funktioniert’s?

-- Q O
Def. Ein (gerichteter) Graph ist kreisfrei, X

wenn er keinen (gerichteten) Kreis enthalt. © ©

Kreisfrel < keine R-Kanten

11 -

Kreisfrel < keine R-Kanten

Beweis. ="

11 -

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.
Beweis. ,,=" Sei G kreisfrei.

11 -

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.
Beweis. ,,=" Sei G kreisfrei.
v Angenommen DFS(G) liefert R-Kante (u, v).
u

11 -

11 -

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. ,,=" Sei G kreisfrei.
v Angenommen DFS(G) liefert R-Kante (u, v).

Dann ist u Nachfolger von v im DFS-Wald.

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. ,,=" Sei G kreisfrei.
v Angenommen DFS(G) liefert R-Kante (u, v).

Dann ist u Nachfolger von v im DFS-Wald.

W D.h. G enthalt einen gerichteten v-u-Weg WV

11 -

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
W D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W @& (u, v) ein gerichteter Kreis.

11 -

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
W D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W @& (u, v) ein gerichteter Kreis.

4

11 -

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
W D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W @& (u, v) ein gerichteter Kreis.
,<=" DFS(G) liefere keine R-Kanten.

4

11 -

11-10

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
Y D.h. G enthalt einen gerichteten v-u-Weg WV
u Aber dann ist W & (u, v) ein gerichteter Kreis. %

,<=" DFS(G) liefere keine R-Kanten.
Ang. G enthdlt trotzdem Kreis C = (v

11-11

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
Y D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W & (u, v) ein gerichteter Kreis. %

,<=" DFS(G) liefere keine R-Kanten.
Ang. G enthalt trotzdem Kreis C = (vy, ..., Vi) .-
Sei v; der 1. Knoten in C, den DFS(G) erreicht.

c

11-12

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
Y D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W & (u, v) ein gerichteter Kreis. %

,<=" DFS(G) liefere keine R-Kanten.
Ang. G enthalt trotzdem Kreis C = (vy, ..., Vi) .-
Sei v; der 1. Knoten in C, den DFS(G) erreicht.

Es gibt einen Weg von v; nach v;_; in G.

11-13

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
Y D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W & (u, v) ein gerichteter Kreis. %

,<=" DFS(G) liefere keine R-Kanten.
Ang. G enthalt trotzdem Kreis C = (vy, ..., Vi) .-
Sei v; der 1. Knoten in C, den DFS(G) erreicht.

Es gibt einen Weg von v; nach v;_; in G.

= DFS gelangt zu v;_1, solange v; rot ist.

11- 14

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
Y D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W & (u, v) ein gerichteter Kreis. %

,<=" DFS(G) liefere keine R-Kanten.
Ang. G enthalt trotzdem Kreis C = (vy, ..., Vi) .-
Sei v; der 1. Knoten in C, den DFS(G) erreicht.

Es gibt einen Weg von v; nach v;_; in G.

= DFS gelangt zu v;_1, solange v; rot ist.

= (vi_1, vj) ist R-Kante.

11-15

Kreisfrei < keine R-Kanten

Lemma. Ein gerichteter Graph G ist kreisfrei
< DFS(G) liefert keine Riickwartskanten.

Beweis. , =" Sei G kreisfrei.

v Angenommen DFS(G) liefert R-Kante (u, v).
Dann ist u Nachfolger von v im DFS-Wald.
Y D.h. G enthalt einen gerichteten v-u-Weg WV

Aber dann ist W & (u, v) ein gerichteter Kreis. %

,<=" DFS(G) liefere keine R-Kanten.

Ang. G enthalt trotzdem Kreis C = (vy, ..., Vi) .-
Sei v; der 1. Knoten in C, den DFS(G) erreicht.
Es gibt einen Weg von v; nach v;_; in G.

= DFS gelangt zu v;_1, solange v; rot ist.
= (vi_1,Vv;) ist R-Kante. %]

Korrektheit von TOPOLOGICALSORT

Satz.

Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

12 -

Korrektheit von TOPOLOGICALSORT

Satz.

Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

12 -

12 -

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f ... vy.f.

12 -

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... > w.f > v;.f.

12 -

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,

12 -

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).
Dann gilt v,.f > ... >w.f > .1,

Sei (vj, vj) Kante von G.

12 -

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).
Dann gilt v,.f > ... >w.f > .1,

Sei (vj, vj) Kante von G. Zu zeigen:

12 -

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).
Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.
Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

12 -

12-10

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?
Vi o v rot
o B v weil
o % W v blau

12-11

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?
Vi o v rot =
o B v weil
o % W v blau

12 - 12

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?
Vie%7 m v rot = (v;, v;) ist R-Kante
o B v weil
o % W v blau

12-13

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?
Vie%7 m v rot = (vi,vj) ist R-Kante 4
o B v weil
o % W v blau

12 - 14

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,

Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?
Vim0 m v; rot = (vi,v)) ist R-Kante 4 [Widerspruch zu Lemma:

G kreisfrei!
o %o [] Vi welil3

12-15

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,

Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?
Vim0 m v; rot = (vi,v)) ist R-Kante 4 [Widerspruch zu Lemma:

G kreisfreil!
o % Hm v weill} —

o %o LI blau

12-16

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

Vi Vi : Widerspruch zu Lemma:
oo = VJ rot — (Vi’ Vf) st R-Kante é [G kreismerei!

o %o Wy weil3 — v; Nachfolger von v;

o %o LI blau

12 - 17

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).
Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

Vi _—aV . . _
IO/—AOJ O VJ rot — (Vi1 V_/) Ist R—Kante é [\éVf:fﬁ::ﬁh zu Lemma:
o % Hm v weill} — v; Nachfolger von v; =

o %o LI blau

12 - 18

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).
Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

V; Vi . . :
IO/—AOJ O VJ rot — (Vi1 V_/) Ist R—Kante é [\éVf:fﬁ::ﬁh zu Lemma:
o %o Wy weil3 — vj Nachfolger von v; = v;.f > v;.f

o %o LI blau

12-19

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

Vi Vi : Widerspruch zu Lemma:
o ‘o By rot = (v, vj) Ist R-Kante j [G Cereprue]

o %o Wy weil3 = vj Nachfolger von v; = vi.f > v;.f /

o %o LI blau

12- 20

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

Vi Vi : Widerspruch zu Lemma:
o ‘o By rot = (v, vj) Ist R-Kante j [G Cereprue]

o %o Wy weil3 = vj Nachfolger von v; = vi.f > v;.f /

o %o LI blau =

12-21

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,
Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f
Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

Vi Vi : Widerspruch zu Lemma:
o ‘o By rot = (v, vj) Ist R-Kante j [G Cereprue]

o %o Wy weil3 = vj Nachfolger von v; = vi.f > v;.f /

o W y; blau — v;.f noch nicht gesetzt, v;.f gesetzt

12 - 22

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, vy_1,..., vi) = TOPOLOGICALSORT(G).

Dann gilt v,.f > ... >w.f > .1,

Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?
Vo7 m v rot = (vi,vj) ist R-Kante 7 [W‘derspr“d‘ 28 Lemma:]

G kreisfrei!
o %o [] Vi welil3

—_—
o W y; blau — v;.f noch nicht gesetzt, v;.f gesetzt
—

v; Nachfolger von v; = v;.f > v;.f /

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, v,_1, ..

Dann gilt v,.f > ..

., v1) = TOPOLOGICALSORT(G).

. > Wo.f > f.

Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

V; Vi
‘"%’ m v rot =
o B v weil

—
O/_~O N V_j blaU —
—

. ove) _ Widerspruch zu Lemma:
(V” VJ) st R-Kante é [G kreisfrei!]

v; Nachfolger von v; = v;.f > v;.f /

vi.f noch nicht gesetzt, v;.f gesetzt
v;.f > \/Jf

12- 23

Korrektheit von TOPOLOGICALSORT

Satz. Sei G ein gerichteter kreisfreier Graph. Dann liefert
TOPOLOGICALSORT(G) eine topologische Sortierung von G.

Beweis. Sei L = (v,, v,_1, ..

Dann gilt v,.f > ..

., v1) = TOPOLOGICALSORT(G).

. > Wo.f > f.

Sei (vj, vj) Kante von G. Zu zeigen: v,-f;*vj.f

Welche Farbe hat v;, wenn DFS (v;, v;) liberschreitet?

V; Vi
‘"%’ m v rot =
o B v weil

—
O/_~O N V_j blaU —
—

. ove) _ Widerspruch zu Lemma:
(V” VJ) st R-Kante é [G kreisfrei!]

v; Nachfolger von v; = v;.f > v;.f /

vi.f noch nicht gesetzt, v;.f gesetzt
v;.f > \/Jf \/ []

12 - 24

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche

Laufzeit

Ergebnis

Datenstruktur

Vorgehen

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E)
Ergebnis
Datenstruktur

Vorgehen

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E) O(V + E)
Ergebnis
Datenstruktur

Vorgehen

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E) O(V + E)
Ergebnis BFS-Baum,

d.h. kiirzeste Wege

Datenstruktur

Vorgehen

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V+E) O(V +E)
Ergebnis BFS-Baum, d- und f-Werte,

d.h. kiirzeste Wege z.B. fiir top. Sortierung
Datenstruktur

Vorgehen

13 -

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E) O(V +E)
Ergebnis BFS-Baum, d- und f-Werte,

d.h. kiirzeste Wege z.B. fiir top. Sortierung
Datenstruktur Schlange

Vorgehen

13 -

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E) O(V +E)
Ergebnis BFS-Baum, d- und f-Werte,

d.h. kiirzeste Wege z.B. fiir top. Sortierung
Datenstruktur Schlange Rekursion bzw. Stapel

Vorgehen

13 -

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E) O(V +E)
Ergebnis BFS-Baum, d- und f-Werte,

d.h. kiirzeste Wege z.B. fiir top. Sortierung
Datenstruktur Schlange Rekursion bzw. Stapel
Vorgehen nicht-lokal

13 -

Vergleich Durchlaufstrategien fiir Graphen

Breitensuche Tiefensuche
Laufzeit O(V + E) O(V +E)
Ergebnis BFS-Baum, d- und f-Werte,

d.h. kiirzeste Wege z.B. fiir top. Sortierung
Datenstruktur Schlange Rekursion bzw. Stapel
Vorgehen nicht-lokal lokal

13 -

	Augmentieren von Datenstrukturen
	Tiefensuche
	Kantentypen
	Pseudocode
	Eigenschaften
	Analyse
	Tiefensuche in ungerichteten Graphen

	Ablaufplanung
	Problemstellung
	Topologisch sortieren
	Kreisfrei <-> keine R-Kanten
	Korrektheit

	Vergleich Durchlaufstrategien für Graphen

