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Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

"’i:;: o) Amit Patel, “Introduction to the A™
. Algorithm”, Red Blob Games, 2014,
S | https://www.redblobgames.com/
pathfinding/a-star/introduction.html
® ® s

1. wellenformige Ausbreitung ab s 2. von s moglichst schnell weit weg
Breitensuche (breadth-first search, BFS) Tiefensuche (depth-first search, DFS)
(vorletztes Mal -
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L u.color = white
u.m = nil
time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) = Y A
DFSVisit(Graph G, Vertex u) | [time =1
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. : : ‘| @ u.d der Zeitpunkt der Entdeckung,
Erganzen Sie den Code in und |/ B u.f der Abschluss-Zeitpunkt;

nach der foreach-Schleife. Besuchsintervall von u ist [u.d, u.f].
' Benutzen Sie Rekursion.
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| @ u.f der Abschluss-Zeitpunkt;

| Besuchsintervall von u ist [u.d, u.f].
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time = 0 [globale Variable]

foreach u € V(G) do -
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u.d = time; u.color = red

foreach v € Adj[u] do ,
L if v.color == white then : Fiir jeden Knoten u von G ist

|_ V.T = U: DFSVISIT(G V) M u.d der Zeitpunkt der Entdeckung,
B u.f der Abschluss-Zeitpunkt;

: Besuchsintervall von u ist [u.d, u.f].

time = time + 1




Tiefensuche — Pseudocode

DFS(Graph G)
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u.m = nil

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)
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 time = time + 1 :
u.d = time; u.color = red

foreach v € Adj[u] do ,
L if v.color == white then : Fiir jeden Knoten u von G ist

|_ V.T = U: DFSVISIT(G V) M u.d der Zeitpunkt der Entdeckung,
B u.f der Abschluss-Zeitpunkt;

: Besuchsintervall von u ist [u.d, u.f].

time = time + 1
u.f = time;
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DFS(Graph G)
- foreach u € V(G) do
L u.color = whaite
u.m = nil

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

iDFSVISIT(Graph G, Vertex u) - [time = 8
 time = time + 1 :
u.d = time; u.color = red

foreach v € Adj[u] do ,
L if v.color == white then : Fiir jeden Knoten u von G ist

|_ V.T = U: DFSVISIT(G V) M u.d der Zeitpunkt der Entdeckung,
B u.f der Abschluss-Zeitpunkt;

: Besuchsintervall von u ist [u.d, u.f].

time = time + 1
u.f = time: u.color = blue
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_________________________________________________________________

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]

foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u)

DFSVisiT(Graph G, Vertex u)
. time = time + 1
u.d = time: u.color = red
foreach v € Adj[u] do

if v.color == white then |
| v.m = u; DFSVISIT(G, v)

time = time + 1
u.f = time: u.color = blue

Laufzeit von DFS?
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_________________________________________________________________

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do -
L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?

;DFSVISIT(GraPh G, Vertex u) B DFSVISIT wird nur fiir weiBe Knoten aufgerufen.

time = time + 1
u.d = time: u.color = red
foreach v € Adj[u] do

if v.color == white then |
| v.m = u; DFSVISIT(G, v)

time = time + 1
u.f = time: u.color = blue



Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do '
L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?

DFSVIsIT(Graph G, Vertex u) B DFSVISIT wird nur fiir weiBe Knoten aufgerufen.
. time = time + 1 I

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

if v.color == white then |
| v.m = u; DFSVISIT(G, v)

time = time + 1
u.f = time: u.color = blue



Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?
EEF_S-VI_S_I}_(-G}EIZ{H_-C_;_,"\_/-e_r_t-e_;(-ujm"mi B DESVISIT wird nur fiir weiBe Knoten aufgerufen.

time = time + 1 5

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

L if v.color == white then = DFSVISIT wird fiir jeden Knoten genau 1x aufgerufen.

| v.m = u; DFSVISIT(G, v)

time = time + 1
u.f = time: u.color = blue



Tiefensuche — Pseudocode

DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?
EBF_S-VI_S_I}_(-G_FSIZ{H_-C_;_,"\_/-e_r_t-e_;(-ujm"mi B DESVISIT wird nur fiir weiBe Knoten aufgerufen.
 time = time + 1 E

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

| v.m = u; DFSVISIT(G, v)

L if v.color == white then : = DFSVISIT wird fiir jeden Knoten genau 1x aufgerufen.

B DFS ohne if O(V) Zeit
DFSVIsiT ohne Rek.  O((out)deg(u))

time = time + 1
u.f = time: u.color = blue
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DFS(Graph G)
- foreach u € V(G) do

L u.color = white
u.m = nail

time = 0 [globale Variable]
foreach u € V(G) do

L if u.color == white then DFSVisiT(G, u) Laufzeit von DES?
EB_P_‘_S"\_/_I_S_I_T_(_G_r_éb_H__C_;_,"\_/_e_r_t_e_kut}j""""i B DESVISIT wird nur fiir weiBe Knoten aufgerufen.
. time = time + 1 i

u.d = time; u.color = red B In DFSVISIT wird der neue Knoten sofort rot gefarbt.

foreach v € Adj[u] do

| v.m = u; DFSVISIT(G, v)

L if v.color == white then : = DFSVISIT wird fiir jeden Knoten genau 1x aufgerufen.

B DFS ohne if O(V) Zeit
DFSVIsiT ohne Rek.  O((out)deg(u))

DFS gesamt O(V + E) Zeit

time = time + 1
u.f = time: u.color = blue
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y b4 S

rAufgabe: Kopieren Sie obigen Graphen.
Berechnen Sie dann mit DFES alle Besuchsintervalle.

Beginnen Sie mit s. Wenn Sie eine Wahl haben,
nehmen Sie zuerst den obersten verfiigbaren Knoten.
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rAufgabe: Kopieren Sie obigen Graphen.
Berechnen Sie dann mit DFES alle Besuchsintervalle.

Beginnen Sie mit s. Wenn Sie eine Wahl haben,
nehmen Sie zuerst den obersten verfiigbaren Knoten.
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Tiefensuche — Analyse

)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (\2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

> time




Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue
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Satz.

)|
(Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.

1. Fall: v.d < v.d.

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue
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Satz.  (Klammerntheorem)

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder 1-v- noch

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.
(iii) Wie (ii), nur umgekehrt.

1

d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

-u-Weg.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f A)

.d

.d < u.f.

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

E time = time + 1
" u.f = time; u.color = blue
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)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

.d

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue
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Satz.

(Klammerntheorem)

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

1

d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

(i) Besuchsintervalle disjunkt und

Baumkanten enthalten weder 1-1- noch

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

-u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.

u.d

.d

el |y A)

1. Fall: v.d < v.d.
5 d < u.f dh

wurde entdeckt, als v noch rot war.

= v ist Nachfolger von u

 DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue
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Satz.

(Klammerntheorem)

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder 1-v- noch

1

d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.
(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f A)

.d

.d < u.f, d.h.

=

wurde entdeckt, als v noch rot war.
ist Nachfolger von v, d.h. es gibt einen u-v-Weg.

 DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue
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1

Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )] _______________________________
_ ~ Y _ _ ' DFSVisiT(Graph G, Vertex u) E

Nach DFS(G) gilt fiir {v, v} € (3) genau eine der Bedingungen tizze:.tz'me—l—ll d

(i) Besuchsintervalle disjunkt und e Adi[u] do
Baumkanten enthalten weder u-v- noch v-u-Weg. - | if v.color == white then
| v.m = u !

(ii) [v.d, u.f] C [v.d, v.f] und Baumkanten enthalten -u-Weg. L DFSVisT(G, v)

. . time = time 4+ 1

(iii) Wie (ii), nur umgekehrt. | uf = time; u.color = blue

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt:
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1

Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u #

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

.d
= v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue
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)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

= alle Kanten, die v verlassen, sind erforscht:

' DFSVisiT(Graph G, Vertex u)

" time = time + 1
u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

time = time + 1
u.f = time; u.color = blue

wird blau, bevor DFS zu v zuriickkehrt und v blau macht.
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)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )] ,

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen|

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

= alle Kanten, die v verlassen, sind erforscht:

DFSVisiT(Graph G, Vertex u)

E time = time + 1
. u.d = time; u.color = red
- foreach v € Adj[u] do

if v.color == white then E
V.T = u
DFSVisiT(G, v)

E time = time + 1
" u.f = time; u.color = blue

wird blau, bevor DFS zu v zuriickkehrt und v blau macht.

= [v.d, v.f] C [u.d, u.f],



Tiefensuche — Analyse

)|
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )] ,

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen|

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
Q| . A) v.d < u.f, d.h. v wurde entdeckt, als v noch rot war.

¢ = v ist Nachfolger von v, d.h. es gibt einen u-v-Weg.
Wegen u.d < v.d gilt: v wurde spater als v entdeckt.

= alle Kanten, die v verlassen, sind erforscht:

DFSVisiT(Graph G, Vertex u)

E time = time + 1
. u.d = time; u.color = red
- foreach v € Adj[u] do

if v.color == white then E
V.T = u
DFSVisiT(G, v)

E time = time + 1
" u.f = time; u.color = blue

wird blau, bevor DFS zu v zuriickkehrt und v blau macht.

= [v.d, v.f] C [u.d, u.f],d.h. (i)
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)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.
e Lo A)vd<uf. /

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue
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)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.
C—— A)vd<uf. /

B)

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue
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)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.

(iii) Wie (ii), nur umgekehrt.

Beweis. Wir betrachten zwei Falle.
1. Fall: v.d < v.d.

u.d u.f
A) v. 1.
> ) d < u.f /
Yoy B) u.f <v.d

 DFSVisiT(Graph G, Vertex u)

E ttme = time + 1

. u.d = time; u.color = red

- foreach v € Adj[u] do ,
L if v.color == white then E

v.m =u
DFSVisit(G, v)

. time = time + 1
" u.f = time; u.color = blue
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)
Satz. (Klammerntheorem) d.h. fiir jedes Paar {u, v} von Knoten (mit u # )]

Nach DFS(G) gilt fir {u, v} € (‘2/) genau eine der Bedingungen

(i) Besuchsintervalle disjunkt und
Baumkanten enthalten weder u-v- noch v-u-Weg.

(ii) [v.d,u.f] C[v.d, v.f] und Baumkanten enthalten -u-Weg.
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Topologisch sortieren

Topologische Sortierung: Lineare Ordnung der Knoten, so dass
aus (u, v) € E folgt: u kommt vor v.

———————————————————————————————————————————————————————————————————

- ToPOLOGICALSORT(DirectedGraph G) ' Laufzeit?
L = new LisT() __ O(V + E)
DFS(G) mit folgender Anderung:
® Wenn ein Knoten blau gefarbt wird, - Korrekt?
hang ihn vorne an die Liste L an. -~ Wann
return L - funktioniert’s?

Def.  Ein (gerichteter) Graph ist kreisfrei,
wenn er keinen (gerichteten) Kreis enthalt.
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Satz.  Sei G ein gerichteter kreisfreier Graph. Dann liefert
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