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Routenplanung
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Modellierung des Problems Routenplanung

StraBenkreuzung
StraBenabschnitt
EinbahnstraBenabschnitt
Fahrtzeit fiir Abschnitt e
StraBennetz

Start

Liel

Start-Ziel-Route

$§ 3§ 3 3 3 3 1}

Knoten

zwel entgegengerichtete Kanten

in Fahrtrichtung gerichtete Kante

Kantengewicht w(e) >0

gerichteter, gewichteter und zusammenhangender Graph G
Knoten s € V(G)

Knoten t € V(G)

s-t-Weg: Folge von Kanten (s, v1), (v1, v2), ..., (v, t) in G
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Routenplanung mit Zeitkomponente

16:40 ® Wiirzburg Hbf > Gl. 8

1h 14min (J | RE 10 (58225)

nach Nilrnberg Hbf

(< Beforderer &% Fahrradmitnahme

s Mittlere Auslastung erwartet

‘ Fahrtinformationen ‘

10 Haltestellen ™

17:54 © Niirnberg Hbf > Gl. 18

= Umstieg

11min

Umstiegszeit verlangern

18:05 © Niirnberg Hbf > Gl. 20

55min @ | RE 38 (3445)

nach Bamberg

{2 Beforderer @% Fahrradmitnahme
[ Fahrtinformationen J

3 Haltestellen v

19:00 ¢ Bayreuth Hbf > Gl 1



Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s und t

Ausgabe:

m kiirzester s-t-Weg W in G, d.h. ___,,, w(e) minimal.

Darstellung durch Vorganger-Zeiger
fiir jeden Knoten v sei € V(G) U {nil} Vorgénger
von v auf kiirzestem s-v-Weg.



Was ist das Problem?

Eingabe:

B gerichteter, zusammenhangender Graph G
mit nicht-negativen Kantengewichten w: £(G) — Q,

B Knoten s une~t"

Ausgabe: fir jedes t € V(G)
m kiirzestey s-t-Wege W in G, d.h. 3°__,, w(e) minimal.

Darstellung durch Vorganger-Zeiger
fiir jeden Knoten v sei € V(G) U {nil} Vorgénger
von v auf kiirzestem s-v-Weg.

Nebenbemerkung:  Analoge Berechnungsverfahren?

- 11



Wiederholung Breitensuche
EBFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new Queue()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] d0 ¢+
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red ~ foreach u € V(G) do
v.d =u.d+1 5 u.color = white
V.T = U u.d = oo
. Q.ENQUEUE(v) L our =il
— | s.color = red
| u.color = blue |




Ausbreitung

Breitensuche (breadth-first search, BFS)
Alle Kanten gleich schwer

+H++++

o e

B o

Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html
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DIJKSTRA

Lot R o

Edsger W. Dijkstra
(Rotterdam 1930-2002 Nuenen)

A note on two problems in connexion with graphs.
In: Numerische Mathematik, Band 1, 1959

E.W. Drisria: |

The solution given above is to be preferred to the solution by L. R. FOrp [3]
as described by C. BERGE [4], for, 1rrespective of the number of branches, we
need not store the data for all branches simultaneously but only those for the
branches in sets I and II, and this number is always less than #. Furthermore,
the amount of work to be done seems to be considerably less.

1. the branches definitely assigned to the tise under construction (they wil
form a subtree};

II. the branches frem which the next branch to be added to set I, will be
selected |

IIL. the remaining branches (rejected or not yet considered).

The noedes are subdivided into two sets:

A. the nodes connected by the branches of set I,

B. the remaining nodes (one and only one branch of set 11 will lead to each
of these nodes).

We start the construction by choosing an arbitrary node as the only member
of set A, and by placing all branches that end in this node in set II. To start
with, set I is empty. From then onwards we perform the following two steps
repeatedly

Step 1. The shortest branch of set 11 is removed from this set and added to
set L. As a result one node is transferred from set B to set A.

Step 2. Consider the branches leading from the node, that has just been trans-
ferred to set A, to the nodes that are still in set B. If the branch under con-
sideration is longer than the corresponding beanch in set TT, it is rejected; if it
is shorter, it replaces the corresponding branch in set IT, and the latter is rejected.

‘We then return to step 1 and repeat the process until sets [T and B are empty.
The branches in set I form the tree required

The solution given here is to be preferred to the solution given by J. B.
Knuskar [/] and those given by H. Lopersan and A. WEINBERGER [2]. In
their solutions all the — passibly §m (s = i} — branches are first of all sorted
according to length, Even if the length of the branches is a computable function
of the node coordinates, their methods demand that data for all branches are

stored simultaneously. Our method only requires the simultancous storing of
19

Dumer, Math. B 1

Selectea; One and only one Drancn of this set Wil lead 10 each node mn et i)

HI. the remaining branches (rejected or not yet considered).

To start with, all nodes are in et C and all branches are in set 1II. We now
transfer node P to set A and from then onwards repeatedly perform the following
steps.

Step 1. Consider all branches » connecting the node just transferred to set A
with nodes R in sets B or C. If node R belongs to set B, we investigate whather
the use of branch r gives rise to a shorter path from P to & than the known
path that uses the corresponding branch in set I1. If this is not so, branch r is
rejected ; if, however, use of branch r results in a shorter connexion between P
and R than hitherto obtained, it replaces the corresponding branch in set [T
and the latter is rejected. If the node & belongs to set C, it is added to set B and
branch r is added to set IT.

Step 2. Every node in set B can be connected to node P in only one way
if we restrict ourselves to branches from set T and one from set I1. In this sense
each node in set B has a distance from node P: the node with minimum distance
from P is transferred from set B to set A, and the corresponding branch is trans-
ferred from set II to set I. We then return to step 4 and repeat the process
until node @ is transferred to set A, Then the solution has been found,

Remark 1. The above process can also be applied in the case where the length
of a branch depends on the direction im which it is traversed,

Remark 2. For each branch in sets I and IT it is advisable to record its two
nodes (in arder of increasing distance from P), and the distance between P and
that node of the branch that is furthest from P. For the branches of set I this

{Received Junme 11, 18058)
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DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foreach u € V do
v.color = red u.color = white
VdZUd_l_]- u_d:OO
V. m = u u.m = nail
ENQUEUE e
L QR.ENQ (v) . 1 s.color = red

| u.color = blue - s.d=0

______________________________________________________________________________________________



DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

Q.DECREASEKEY(v, v.d)i .
- .+ s.color = red

| u.color = blue - s.d=0

______________________________________________________________________________________________

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal




DIJKSTRA

INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then
v.color = red

v.d = u.d+ w(u,v)

V.T = u

Q.DECREASEKEY(v, v.d)i i
- .+ s.color = red

| u.color = blue - s.d=0

______________________________________________________________________________________________

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do
u.color = white

u.d = oo
| u. = nal




DIJKSTRA

INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmPTY() do

U= Q.EXTRACTMIN()

foreach v € Adj[u] do

if v.d > u.d + w(u, v) then

v.d = u.d+ w(u,v)
V.T = U ,
 Q.DECREASEKEY(v, v.d):

_____________________________________________________

INTTIALIZE(Graph G, Vertex s) .

foreach v € V do

u.d = oo
| u. = nal

- 54



DIJKSTRA — die Laufzeit

EDIJKSTRA(WeIghtedGraph G, Vertex 5)

. INITIALIZE(G, 5) |
- Q = new PRIORITYQUEUE(V/(G), d)

- while not Q. EMPTY() do

U= Q.EXTRACTMIN()=

foreach v € Adj[u] do

if v.d > u.d+ w(u,v) then

v.color = red

v.d = u.d+ w(u,v)

V. = u
Q.DECREASEKEY(v, v.d)

u.color = blue

Also wird DECREASEKEY
O(E) mal aufgerufen.

Lybk fiir O(|V(G)|)]
O(V) Zeit

genau |V(G)| mal

<«— \Wie oft wird der

Schleifeninhalt aufgerufen?

Fiir jeden Knoten u \)/on G
out

genau |Adj[u]| = deg( ) mal,

also insg. ©(E) mal.

10 - 14
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DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNACCIHEAP | O(log n) O(1) O(E+ Vlog V)
lamortisiert] lamortisiert) lim Worst-Case! |

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

Korollar. In einem Graphen G = (V, E; w) mit w: E — Q>¢ kann
man in O(E + Vlog V) Zeit die kiirzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife @ = new PRIORITYQUEUE(V, d)
) giltvi.d=4(s,v;) firalle 1l <<k - while not Q.EMPTY() do

. : | u = Q.EXTRACTMIN()
I1) enthidlt Q genau die Knoten v, ..., Vi, foreach v € Adj[u] do

1)  gilt v = Q.FINDMIN() if v.d > u.d+ w(u, v) then

1. Initialisierung (k = 1) / L vd = u.dtwiu)
Offensichtlich ist vy = s und d(s,s) = 0. , Q.DECREASEKEY(v, v.d) |
In INITIALIZE(G, s) wird s.d = 0 gesetzt = 1) L e r——————
Alle Knoten sind in Q = Il)
Fiir jeden Knoten v # s wird v.d = oo gesetzt = Ill)
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DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()

I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s vi)i I ( Gg i );
) i v v) NITIALIZE(G, s5) |
Betrachte kiirzesten s-vi-Pfad P. | ™ " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von vy auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v =v;,vi= v, |
= Vi.d = vid + w(vi, vii) = (s, vi) + w(vi, vi) = (s, vk) = 1)

V. m = u
Q.DECREASEKEY(v, v.d) |
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DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung
Betrachte (k — 1)-ten Schleifendurchlauf
I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

I11) = es wurde genau vx_1 aus Q entfernt = Il)

V. m=u
Q.DECREASEKEY(v, v.d) |
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DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d =0(s,v;) fiiralle 1 <i <k s ) gilt vy = Q. FINDMIN() /
I1) enthilt @ genau die Knoten vy, ..., v, v

1. Initialisierung v
2. Aufrechterhaltung /

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

Betrachte Knoten vy mit £ > k. . @ = new PRIORITYQUEUE(V/, d)

@ - while not Q. EmPTY() do

: : = R.EXTRACTMIN

Dann gilt vp.d > 6(s, vp) > (s, vk) = vk.d | £ , € Adj[u] do()
(6(s,v1) < 8(s,v2) < ... < (s, v:ﬂ | if v.d > u.d+w(u, v) then

V. m=u
Q.DECREASEKEY(v, v.d) |

L v.d = u.d+ w(u, v)




DIJKSTRA — die Korrektheit

0. Schleifeninvariante

Zu Beginn des k-ten Durchlaufs der while-Schleife
=d0(s,v;) firalle 1 <i <k
I1) enthdlt @ genau die Knoten v, ...,

|) gilt v;.d

1. Initialisierung v
2. Aufrechterhaltung /

3. Terminierung v

|) = V.

d=0(s,v;) firallel1 <i<n

13- 35

1) gilt vy = Q.FINDMIN()

rDIJKSTRA(WelghtedGraph G, Vertex s)

5 INITIALIZE(G, )

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

v.d = u.d+ w(u, v)
V.T = u

Q.DECREASEKEY(v, v.d) |




Kurzeste Wege nach DIJKSTRA

Eingabe Algorithmus Laufzeit
ungewichteter Graph BREITENSUCHE O(E + V) Vorlesung 18 |
nicht-neg. Kantengew. DIJKSTRA O(E + Vlog V) heute |
azyklischer Graph TopPOL. SORTIEREN O(E + V) Vorlesung 20
negative Kantengew. BELLMAN-FORD O(EV)
fiir alle Knotenpaare  |V| x DukstRa  O(V(E + Vlog V))
+ negative Kantengew. FLOYD-WARSHALL O(V?3)
JOHNSON O(V(E + VlogV))
k kiirzeste s-t-Wege EPPSTEIN O(k + E+ Vlog V)
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