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Algorithmen und Datenstrukturen

Vorlesung 19:
Kürzeste Wege und
Dijkstras Algorithmus
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Routenplanung
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Modellierung des Problems Routenplanung

Straßenkreuzung ➡ Knoten

Straßenabschnitt ➡ zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt ➡ in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt e ➡ Kantengewicht w(e) ≥ 0

Straßennetz ➡ gerichteter, gewichteter und zusammenhängender Graph G

Start ➡ Knoten s ∈ V (G )

Ziel ➡ Knoten t ∈ V (G )

Start-Ziel-Route ➡ s-t-Weg: Folge von Kanten (s, v1), (v1, v2), . . . , (vk , t) in G
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Routenplanung
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Routenplanung mit Zeitkomponente
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Was ist das Problem?
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Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G ) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G ) ∪ {nil} Vorgänger
von v auf kürzestem s-v -Weg.
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Eingabe:

■ gerichteter, zusammenhängender Graph G
mit nicht-negativen Kantengewichten w : E (G ) → Q+

0 ,

■ Knoten s und t

Ausgabe:

■ kürzester s-t-Weg W in G , d.h.
∑

e∈W w(e) minimal.

Darstellung durch Vorgänger-Zeiger π:
für jeden Knoten v sei π(v) ∈ V (G ) ∪ {nil} Vorgänger
von v auf kürzestem s-v -Weg.

Nebenbemerkung: Analoge Berechnungsverfahren?

e t

für jedes t ∈ V (G )︸ ︷︷ ︸

Abbildung aus:
Solving the Shortest Path Problem Using an Analog Network
Linkai Bu & Tzi-Dar Chiueh

(nur für ungerichtete Graphen!)
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Wiederholung Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V (G) do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Q:1

r

∞

0
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Ausbreitung

G
s

Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

Alle Kanten gleich schwer

Dijkstra
Kanten unterschiedlich schwer

G

s
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Dijkstra r s t
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Edsger W. Dijkstra
(Rotterdam 1930–2002 Nuenen)

A note on two problems in connexion with graphs.
In: Numerische Mathematik, Band 1, 1959
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Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0
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BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)
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Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0
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BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)
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Q

∞

s x
0 ∞
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1
v
∞

t
∞

w

5

∞

∞

Q.DecreaseKey(v , v .d)
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Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0
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BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)
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∞
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∞

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then
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Dijkstra

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

1

5
3

7
2

4

1

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Dijkstra(Graph G , Edge weights w , Vertex s)

Q = new PriorityQueue(V (G), d)

u = Q.ExtractMin()

v .d = u.d + w(u, v)

01

48

Q

6

7

Q.DecreaseKey(v , v .d)

v .d > u.d + w(u, v) then
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Dijkstra – die Laufzeit

Dijkstra(WeightedGraph G , Vertex s)

genau |V (G )| mal

Wie oft wird der
Schleifeninhalt aufgerufen?

Für jeden Knoten u von G

genau |Adj[u]| mal,

also insg. Θ(E ) mal.

= deg(u)

Also wird DecreaseKey
O(E ) mal aufgerufen.

O( ) ZeitV

(out-)

Initialize(G , s)
Q = new PriorityQueue(V (G ), d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .color = red
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

u.color = blue

Abk. für O(|V (G)|)
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Dijkstra – die Laufzeit

⋆⋆) Das geht, obwohlwir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (→ Direktzugriff)

⋆

⋆) Das geht, weil

Implementierung einer
PriorityQueue TExtractMin(n) TDecreaseKey(n)

als unsortiertes Feld

als Heap

als FibonacciHeap

O(1)O(n)

TDijkstra(|V |, |E |)

O(V 2 + E )

O(log n) O(log n) O((E + V ) logV )

O(log n) O(1) O(E+V logV )

⋆⋆

amortisiert amortisiert im Worst-Case!

Korollar. In einem Graphen G = (V ,E ;w) mit w : E → Q≥0 kann
man in O(E + V logV ) Zeit die kürzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).

≥0

Satz. Gegeben ein Graph G=(V,E ), läuft Dijkstras Alg. in
Θ(|V |· TExtractMin(|V |) + |E | · TDecreaseKey(|V |)) Zeit.
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Dijkstra – die Korrektheit

Annahme: Es gibt eine Nummerierung v1, . . . , vn der Knotenmenge von G , so dass
δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

0. Schleifeninvariante

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi ) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

1. Initialisierung (k = 1)
Offensichtlich ist v1 = s und δ(s, s) = 0.
In Initialize(G , s) wird s.d = 0 gesetzt ⇒ I)

Für jeden Knoten v ̸= s wird v .d = ∞ gesetzt ⇒ III)

✓

III) gilt vk = Q.FindMin()

Alle Knoten sind in Q ⇒ II)

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)

Definition. Für einen (un)gerichteten Graphen G und u, v ∈ V (G ) sei
δ(u, v) := Länge eines kürzesten u-v -Wegs

(falls v von u erreichbar; sonst δ(u, v) := ∞).
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Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

Betrachte kürzesten s-vk -Pfad P.

s
vk

vi

Sei vi der Vorgänger von vk auf P.
Dann ist i < k. I) ⇒ vi .d = δ(s, vi )

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi ) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.FindMin()

P

⇒ vk .d = vi .d + w(vi , vk) = δ(s, vi ) + w(vi , vk) = δ(s, vk)

δ(s, vi )
w(vi , vk )

Betrachte i-ten Schleifendurchlauf mit u = vi , v = vk
⇒ I)

✓

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)
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Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi ) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.FindMin()

Q enthielt genau die Knoten vk−1, . . . , vn

✓

II) ⇒

III) ⇒ es wurde genau vk−1 aus Q entfernt ⇒ II)

✓

Betrachte (k − 1)-ten Schleifendurchlauf

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)
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Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi ) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.FindMin()✓
✓

Betrachte Knoten vℓ mit ℓ > k.

Dann gilt vℓ.d ≥ δ(s, vℓ) > δ(s, vk) = vk .d

δ(s, v1) < δ(s, v2) < . . . < δ(s, vn)

I)

✓

✓
Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)
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Dijkstra – die Korrektheit

0. Schleifeninvariante

1. Initialisierung ✓
2. Aufrechterhaltung

I)
Zu Beginn des k-ten Durchlaufs der while-Schleife

gilt vi .d = δ(s, vi ) für alle 1 ≤ i ≤ k
II) enthält Q genau die Knoten vk , . . . , vn

III) gilt vk = Q.FindMin()

✓
3. Terminierung

I) ⇒ vi .d = δ(s, vi ) für alle 1 ≤ i ≤ n

✓

Dijkstra(WeightedGraph G , Vertex s)

Initialize(G , s)
Q = new PriorityQueue(V , d)
while not Q.Empty() do

u = Q.ExtractMin()
foreach v ∈ Adj[u] do

if v .d > u.d + w(u, v) then
v .d = u.d + w(u, v)
v .π = u
Q.DecreaseKey(v , v .d)
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Kürzeste Wege nach Dijkstra

Eingabe Algorithmus Laufzeit

ungewichteter Graph Breitensuche O(E + V )

nicht-neg. Kantengew. Dijkstra O(E + V logV )

azyklischer Graph Topol. Sortieren O(E + V )

negative Kantengew. Bellman-Ford O(EV )

für alle Knotenpaare |V | × Dijkstra O(V (E + V logV ))

+ negative Kantengew. Floyd-Warshall O(V 3)

Johnson O(V (E + V logV ))

k kürzeste s-t-Wege Eppstein O(k + E + V logV )

heute

heute

Vorlesung 18

Vorlesung 20
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