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Routenplanun

R Qi - R e — ik i TR, = . =
+ i pine® Erin® Schirerstrane ot o [ menr.. || Karte | satelit | Gelande
Stiftung wﬁa‘ﬁz’ . Movotel Besthovensiralle '! [ ™ - .-1,-4:,&? M;.'l:-“': E :
Juliusspital a‘i"‘&a 2 Wilrzharg J m o — e St Nﬂh‘n.l; m
b = @f&“ﬁ b % EE = Gneismau;ﬁﬂe — Erer Sy '
wm —
. R = én £ ’ fefmhar351ra'3'e Cneisanag gy, gume Niimberger sy Marmbperger St
Bilrgerspital Zum 4% §_g!r E / %! e, rafie —— o - -
Heiligem Geist > %& :g_.l g %E} Ea.rb&% = Y = neisanaustrale
TR = Rotkreuzklink %, % 5 @é"f 5 e ced “aig »
) Mainfranken Wrzhbar =i i i f o e
Theater g'«"&l‘l'lkﬁlHEI E,:\éﬁhﬁ \ﬁ’ﬁ' ﬁgm"""“ﬂ"‘a:rmga Klinik gGmbH % e ﬁl@Q
Wilirzbarg = z 3 o
Ren ,,,5&@ E] f Sa'rl’q.- ‘Ef"’e' S
A Mg ) ﬁ? o o2 "-?%. ‘@ﬂ? i Q_r
F Fistr Park 3 b B & = Lay,
- i i mn‘s'l:i:“:le u Residenz 5 ‘\‘I’ ‘ﬁng 13 .;_'F % mﬂ"'-'bﬂ_l,. %aﬂ-ﬂarrﬂCHE-
Dom St & & F m. Bl
Kilian = & Wilrzhurger = T d"%'m.ﬂ 5,
g"' Residenz & i il &
sresienknik o &
& = %" Rar = %
A eng ren-Ba {
g, Hl:ufg‘an‘en & k" orfer Sir Leid Macks [} %o,
%%ﬂe o g o " s : Rﬂﬂm% &@:.
Meubaustraie x - 1']:!3 . = O 3
t '5"1‘%.3 T‘--i& 5 E" § ﬁ c}ﬁf} ﬂ"bl‘t.r.-m E &L&&“\ k3 <. , R':‘t"ﬁndur.‘.;r Sir §
' > . E o Wag & s Bigh
N % % e E E' 5 # et -g h'a],.- ﬁ% ﬂ':,% tan. Eal'n’ma
g & ¥ = T1e St Z %&Qﬁ’@ % e sae 5
o T Warzburg Mtran & y
% -:9‘2‘57‘61ﬁs SI.'Il:IL_I--"r ;4# ._ﬁ? &3“’)\9 Grg e £ 5 padams Adanus ';';, Adams Avang
?'::- . g ‘,E = = %'9:-;5. g J‘%% “, b, O-Bray-strah® E‘ Ed g
Jniversitst y i 1 -]
£ e ‘&‘% Wiirzburg ";3@ c?-,i‘n} %‘3} _-_"-“',§I %qﬁ' iy {.f%' o T E =4
alie "5"{?{’ q‘?@_ 0 %ﬂﬂ % o w =1
Reuerer . r e o ﬁ,ﬁ' 5 = = 3 3 g
g, o arteni A & e -~ > @ r @
darming / -‘5'% g ‘ﬁ_ﬁ? "Fban 't"n@ & = ]
4 Sﬂph-'én.ga-a f\( aﬁ;a,% & _dfln(? = ﬁ E,r_;. % i
%"&-p . 2 "-?3 f -b-g? F @ qd:'&l
< .& ] -W.-E.EE .'I & Hr'rmb{l'hlat a TE = g 4 ‘bé‘b o E st.ﬂﬁ =5
= % = rafia E o &IE' & A ackson Auenus
&
r R- [ w3
% L Tz 2 3 = Mﬁ'ﬂ'ﬁﬁﬂ e f Ay
'y % Adulterokirch S, g et & “Spg = G"%
rale X alberokirche A Erthalziral® % hﬁuf;ﬁ %ﬂ% & [ ppopheEd
jandot & -
& ‘35@5‘& %ﬁr o™ # 4 Nﬁ_\ﬂ‘fl =
get B3 & it & 2
g5 £ @3 g & % & %9,% -
e Da e BlE % & e b 3 : alhe
(o0 T =1 (=] 3, ] e il
L, & ¥ = % 4, o erers® G a I’&- pn B1E v
e HE L N A : L T
m 5§ =ET LR S 5 éf Julius-Manimilians-Universitat < % gy |
E:n % 'E-u'El!- - “‘B\i‘ a..nqib -ﬂ.é:rﬂ. — ® '& e i

EEIDFE Illiﬂgf'raﬂn



Routenplanun

|58 = i . E s T Bl T TN =
x .;J'g'ﬂ"gsua o o ) \‘}\,’\l:‘ﬁ' .';|L||l.l =

+ o [ menr. |[ Karte | satelit | Gelande
2 Jovote OWENSITEREE " ; o
tiftung 5 e Movotel Seeth i Ny e o
_Juhu\qm'tal {I"\.ﬂ 'l."'\.'.'ll?l‘l.ll:; .",\‘_-.u{h N 18
c_-_,l-f-(n ] [ =St Lh-ml&r
2 Greisenalzn gy, ger Sy,
Ly rails ]
iy Ty
» L}‘-@k £ Barbarasirans T Grejsan Lir Wergar Stk arnberger St
Birgerspital Zum ,5&‘@' 'i'l"-";u}{, Moar Austrage ' .
il i - . - Tey
Heiligem Geist % Gbu..tb ‘Eﬂ'-"&wa Wag GnEIEBI’IEUE”aﬂ'H
Strag
= Rotkreuzklinik g - i
IMainfranken Wilrzburg M}I{E-I_ﬂlﬂhnﬁﬁgfzﬂg,:e %hrstraﬁi ﬁ%
Theater g3mbH Ik glami )
Wilirzbarg G _I:-'ll:'?'-"
FE”'-IWE';I %"
Bom St b - Residenz = A ——
AOITE <3 o
Kilian w7 Wilirzhurger =
S = Residenz i &
sresienkinik f:"f & @ﬁw
F e &
* LeigrtoM-Barmay [:i {a
5
D:"Tﬂ"gﬂh " Hofgarten fg'}?fn_r’,
"_.l e .
Yrana "-:’q,
Meubaustrate . | &
S Ti Rottendarfer sty pi
A 25
& 2 %1
El Leightan-Barracks T ey,
it T €
E':.'l %_ ,_33,';@“ ptgms Sggriile =Taw
‘% B - s
L 'E-l ':ls, LIniversitst
= o Wilrzhurg
alye
Rewerer
Garten
derming
iy
o,
&
< e

[ |
Adalberokirche

aqenaue e
(i}
%
n
&
|"|_J

'.':rl-.LE-’.'r‘.'=~"'E'I'-!'F=
<]
_'
e'*'-“'f'i“ s K Minsalg=tsches - L 4
3 e H = e B %)
b Musd B g & N o 0
'-E--."-a'l::' = ) — Q.a':l
'."-“E’I" é Ba!f".:' SR D > '.
m S % B .z Julis-Maximilians OTivegsitit N .
=1 @ n Qi:& EPPeiingirem : 1
= 2 W & T



Routenplanun

. 152 LN W T = - g ST By Ty T = . -
LS SRR : v art iy : =
+ = ﬂwﬁ 1 Mehr... | | Karte | Satelit Geldnde
Stiftung 1&\5&& Movotel Beathovencmans ,-1_.%? e -
Juliugapital o Wilrzharg -'.':-Erb =
E:.ll'-'r’:n ] b y B B Nul'ﬂber
.:a{\-.a"' G MeiSenaUs g, Jer Sy
Ly rails ]
o Ha ; Miirry
u &;‘ﬂb s rbargsiraie = 5”'3'55!13.-_.5,- - Brger St pimrnbaerger i
Fh'."!|+|.=.|||'.i_h Zum -,}'Syk- ‘l‘..v;u}! a mg&'?&ﬁ rafie
Heiligem Geist Gburtb l,.&was — Wy G,-,E|E.E:I'IEJ'-'5”3F"H
L Tam
= Rotkreuzklinik g - oo
Mainfranken - Wiirzburg M}'E'I?'ﬂh”ﬁ‘gzﬂg::ﬁ %hrstraﬁi ﬁ%
Theater g3mbH Ik glami ) &
Wilirzbarg G &
R = 4
EﬂﬂWE';I _'::‘
Ofspry Park = y
u e f o iy Lo T
Bom St o - Residenz = ":'""‘;‘-"-'-.f,_, Fon-Barracks
- = i L
Kilian w Wilrzharger i -"E‘._.‘?
] o Residenz == i &
sresienkinik 5 ] £ -
= = ﬁﬂl WES"
e 0
* Leigrhen-Bamacy, h a
5
D:"T“"ﬁﬂ Hofgarten fﬂ.ﬁ,ﬁ
P ; _ i,
rafa [ By,
re 3 = o
eubaustrala 4 £ & 2
e il - Rottendorfer sty 5
. Y ‘gl
& & Q’é " Barracs
=3 Lesighiton- A f
i - g Barracks ':I”E"lﬂ'c-,rre
) % !
% S .;Eﬁ“ﬁ A ams S s
‘% ?} -
e 'E-, ':ls, LIniversitst
= £ Wilrzhurg
alie
Rewerer
Garten
derming
iy
o,
.& -W.-a,a‘?

aqenaue e
(i}
J
|"|_J

Adalberokirche

v.':r".Ll:-’.'r‘.a':-s'.'!-F:
_|
'{-*l““'ﬂi“ e - e _3'-".11| &
i D) AP
calE 1 Q} Zhurg =3 Dy po -5.‘:'@
l;'.f“-‘_'r'-"-s"' ‘;_: Bays - My :—';"
= S R > Julius-Maximilians Uveraitdt RN .
2 B D Q% EPPeiingirem : 1
T -y, A HET



Routenplanung mit Zeitkomponente

16:40 ® Wiirzburg Hbf > Gl. 8

1h 14min (J | RE 10 (58225)

nach Nilrnberg Hbf

(< Beforderer &% Fahrradmitnahme

s Mittlere Auslastung erwartet

‘ Fahrtinformationen ‘

10 Haltestellen ™

17:54 © Niirnberg Hbf > Gl. 18

= Umstieg

11min

Umstiegszeit verlangern

18:05 © Niirnberg Hbf > Gl. 20

55min @ | RE 38 (3445)

nach Bamberg

{2 Beforderer @% Fahrradmitnahme
[ Fahrtinformationen J

3 Haltestellen v

19:00 ¢ Bayreuth Hbf > Gl 1
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BFS(Graph G, Vertex s)
INITIALIZE(G, 5) L O 2
@ = new Queue() ‘
Q.ENQUEUE(s)
while not Q.EMPTY() do 2 O o
u = Q.DEQUEUE() v W X
foreach v € Adj[u] do
if v.color == white then INITIALIZE(Graph G, Vertex s)
v.color = red foreach v € V(G) do
v.d =u.d+1 u.color = white
V. = U u.d = oo
. Q.ENQUEUE(v) L u.r = nil
u.color = blue 5. color = red
B s.d=20

INITIALIZE] [EN—/DEQUEUES] [Adjazenzlisten (foreach—SchIeifen)]

Laufzeit? — O(|V]) + O([V]) + O(E)) = O(V|+|E|)

[Beob. tiber Knotengrade!]
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A Note on Two Problems in Connexion with Graphs
By
E. W.DIJKSTRA

We consider # points [nodes), some or all pairs of which are connected by a
branch; the length of each branch is given, We restrict ourselves to the case
where at least one path exists between any two nodes. We now consider two
problems.

Problem 1. Construct the tree of minimum total length between the m nodes,
(A tree is a graph with one and only one path between every two nodes.)

In the course of the construction that we present here, the branches are
subdivided into three sets:

L. the branches definitely assigned to the tree under construction (they will
form a subtree);

II. the branches from which the next branch to be added to set I, will be
selected ;

ITI. the remaining branches (rejected or not yet considered).

The nedes are subdivided into two sats:

A. the nodes connected by the branches of set I,

B. the remaining nodes (one and only one branch of set 11 will lead to each
of these nodes).

We start the construction by choosing an arbitrary node as the only member
of set A, and by placing all branches that end in this node in set Il. To start
with, set I is empty. From then onwards we perform the following two steps
repeatedly

Step 1. The shortest branch of set 11 is removed from this set and added to
set L. As a result one node is transferred from set B to set A.

Step 2. Consider the branches leading from the node, that has just been trans-
ferred to set A, to the nodes that are still in set B. If the branch under con-
sideration is longer than the corresponding branch in set I, it is rejected; if it
is shorter, it replaces the corresponding branch in set I1, and the latter is rejected.

‘We then return to step 1 and repeat the process until sets [T and B are empty.
‘The branches in set I form the tree required.

The solution given here is to be preferred to the solution given by J. B.
Knuskar [/] and those given by H. Lopersan and A. WEINBERGER [2]. In
their solutions all the — passibly §m(s — 1} — branches are first of all sorted
according to length, Even if the length of the branches is a computable function
of the node coordinates, their methods demand that data for all branches are
stored simultaneously. Our method only requires the simultancous storing of

Dumer, Math. B 1 5
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the data for at most » branches, viz. the branches in sets [ and IT and the branch
under consideration in step 2.

Problem 2. Find the path of minimum total length between two given nodes
Fand Q.

We use the fact that, if K is a node on the minimal path from P to @, knowledge
of the latter implies the knowledge of the minimal path from P to R. In the
solution presented, the minimal paths from P to the other nodes are constructed
in order of increasing length until @ is reached,

In the course of the solution the nodes are subdivided into three sets:

A. the nodes for which the path of minimum length from P is known; nodes
will be added to this set in order of increasing minimum path length from node P;

B. the nodes from which the next node to be added to set A will be selected ;
this set comprises all those nodes that are connected to at least one node of
set A but do not vet belong to A themselves;

C. the remaining nodes.

The branches are also subdivided imto three sets:

I. the branches occurring in the minimal paths from node P to the nodes
inset A;

IL. the branches from which the next branch to be placed in set I will be
selected; one and only onc branch of this set will lead to each node in set B;

HI. the remaining branches (rejected or not yet considered).

To start with, all nodes are in et C and all branches are in set III. We now
transfer node P to set A and from then onwards repeatedly perform the following
steps.

Step 1. Consider all branches » connecting the node just transferred to set A
with nodes R in sets B or C. If node R belongs to set B, we investigate whather
the use of branch r gives rise to a shorter path from P to & than the known
path that uses the corresponding branch in set I If this is not co, branch r is
rejected ; if, however, use of branch r results in a shorter connexion between P
and R than hitherto obtained, it replaces the corresponding branch in set [I
and the latter is rejected. If the node & belongs to set C, it is added to set B and
branch r is added to set IT.

Step 2. Every node in set B can be connected to node P in only one way
if we restrict ourselves to branches from set T and one from set I1. In this sense
each node in set B has a distance from node P: the node with minimum distance
from P is transferred from set B to set A, and the corresponding branch is trans-
ferred from set II to set I. We then return to step 4 and repeat the process
until node @ is transferred to set A, Then the solution has been found,

Remark 1. The above process can also be applied in the case where the length
of a branch depends on the direction im which it is traversed,

Remark 2. For each branch in sets I and IT it is advisable to record its two
nodes (in arder of increasing distance from P), and the distance between P and
that node of the branch that is furthest from P. For the branches of set I this

Two Problems in Connexion with Graphs e |

is the actual minimum distance, for the branches of set IT it is only the minimum
thus far obtained.

The sclution given above is to be preferred to the solution by L. R. Forp [3]
as described by C. BeRce [4], for, irrespective of the number of branches, we
need not store the data for all branches simultaneously but only those for the
branches in sets I and I, and this number is always less than n. Furthermore,
the amount of work to be done seems to be considerably less.
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E.W. Drisria: |

The solution given above is to be preferred to the solution by L. R. FOrp [3]
as described by C. BERGE [4], for, 1rrespective of the number of branches, we
need not store the data for all branches simultaneously but only those for the
branches in sets I and II, and this number is always less than #. Furthermore,
the amount of work to be done seems to be considerably less.

1. the branches definitely assigned to the tise under construction (they wil
form a subtree};

II. the branches frem which the next branch to be added to set I, will be
selected |

IIL. the remaining branches (rejected or not yet considered).

The noedes are subdivided into two sets:

A. the nodes connected by the branches of set I,

B. the remaining nodes (one and only one branch of set 11 will lead to each
of these nodes).

We start the construction by choosing an arbitrary node as the only member
of set A, and by placing all branches that end in this node in set II. To start
with, set I is empty. From then onwards we perform the following two steps
repeatedly

Step 1. The shortest branch of set 11 is removed from this set and added to
set L. As a result one node is transferred from set B to set A.

Step 2. Consider the branches leading from the node, that has just been trans-
ferred to set A, to the nodes that are still in set B. If the branch under con-
sideration is longer than the corresponding beanch in set TT, it is rejected; if it
is shorter, it replaces the corresponding branch in set IT, and the latter is rejected.

‘We then return to step 1 and repeat the process until sets [T and B are empty.
The branches in set I form the tree required

The solution given here is to be preferred to the solution given by J. B.
Knuskar [/] and those given by H. Lopersan and A. WEINBERGER [2]. In
their solutions all the — passibly §m (s = i} — branches are first of all sorted
according to length, Even if the length of the branches is a computable function
of the node coordinates, their methods demand that data for all branches are

stored simultaneously. Our method only requires the simultancous storing of
19
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Selectea; One and only one Drancn of this set Wil lead 10 each node mn et i)

HI. the remaining branches (rejected or not yet considered).

To start with, all nodes are in et C and all branches are in set 1II. We now
transfer node P to set A and from then onwards repeatedly perform the following
steps.

Step 1. Consider all branches » connecting the node just transferred to set A
with nodes R in sets B or C. If node R belongs to set B, we investigate whather
the use of branch r gives rise to a shorter path from P to & than the known
path that uses the corresponding branch in set I1. If this is not so, branch r is
rejected ; if, however, use of branch r results in a shorter connexion between P
and R than hitherto obtained, it replaces the corresponding branch in set [T
and the latter is rejected. If the node & belongs to set C, it is added to set B and
branch r is added to set IT.

Step 2. Every node in set B can be connected to node P in only one way
if we restrict ourselves to branches from set T and one from set I1. In this sense
each node in set B has a distance from node P: the node with minimum distance
from P is transferred from set B to set A, and the corresponding branch is trans-
ferred from set II to set I. We then return to step 4 and repeat the process
until node @ is transferred to set A, Then the solution has been found,

Remark 1. The above process can also be applied in the case where the length
of a branch depends on the direction im which it is traversed,

Remark 2. For each branch in sets I and IT it is advisable to record its two
nodes (in arder of increasing distance from P), and the distance between P and
that node of the branch that is furthest from P. For the branches of set I this

{Received Junme 11, 18058)
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BFS(Graph G, Vertex s)

| INITIALIZE(G, 5)
Q = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()

oreiafcv ‘C/OZT zj[:U]wh(Zte then - INITIALIZE(Graph G, Vertex s)
| . foreach u € V do
v.color = red | u.color = white
Vd:Ud_|_1 E i u.d:OO
P | u.m = nil

.ENQUEUE B =
L = Q.ENg (v) - s.color = red
| u.color = blue =
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INITIALIZE(G, 5)

@ = new QUEUE()
Q.ENQUEUE(s)

while not Q.EmMPTY() do

u = Q.DEQUEUE()

foreiafct \C/OZ fiJ[_“]wc;:Zte P INITIALIZE(Graph G, Vertex s)
: == -+ foreach u € V do
v.color = red = u.color = white
Vd:Ud_l_]- i i u.d = oo
v.m = u u.m = nil

ENQUEUE u.
| QENQUEUR(v) | s.color = red
| u.color = blue |

_____________________________________________________
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INITIALIZE(G, 5)

@ = new QUEUE()
Q.ENQUEUE(s)

while not Q.EmMPTY() do

u = Q.DEQUEUE()

foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d =u.d+1

vV.im = u

. Q.ENQUEUE(Vv)

| u.color = blue

_____________________________________________________

- InrTiALIZE(Graph G, Vertex s)

foreach v € V do

u.color = white
u.d = oo

L u. = nal
s.color = red

- 10
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INITIALIZE(G, s) i
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do

u = Q.DEQUEUE()

foreach v € Adj[u] do

if v.color == white then
v.color = red
v.d =u.d+1
V.T = U

. Q.ENQUEUE(Vv)

| u.color = blue

_____________________________________________________

INITIALIZE(Graph G, Vertex s) .
~ foreach u € V do '
u.color = whate
u.d = oo
| u.m = nal

s.color = red

- 11
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INITIALIZE(G, s) |
@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foreach u € V do
v.color = red u.color = white
VdZUd_l_]- u_d:OO
V. m = u u.m = nail
ENQUEUE |
L QR.ENQ (v) . 1 s.color = red

| u.color = blue - s.d=0

______________________________________________________________________________________________
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@ = new PRIORITYQUEUE(V(G), d)

while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foreach u € V do
v.color = red u.color = white
VdZUd_l_]- u_d:OO
V. m = u u.m = nail
ENQUEUE e
L QR.ENQ (v) . 1 s.color = red

| u.color = blue - s.d=0

______________________________________________________________________________________________
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while not Q.EmMPTY() do
U= Q.EXTRACTMIN()
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INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foronch o e U do
e u.color = white
v.d =u.d+1 o
v.m = u - '
QENQUEUE(V) b . = n1
- .+ s.color = red

| u.color = blue - s.d=0
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U= Q.EXTRACTMIN()
foreach v € Adj[u] do

INTTIALIZE(Graph G, Vertex s) .

if v.color == white then foronch o e U do
e u.color = white
v.d =u.d+1 o
v.m = u - '
QENQUEUE(V) b . = n1
- .+ s.color = red

| u.color = blue - s.d=0

______________________________________________________________________________________________




DIJKSTRA
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while not Q.EmMPTY() do

U= Q.EXTRACTMIN()
foreach v € Adj[u] do

if v.color == white then
v.color = red

v.d = u.d+ w(u,v)
V.T = u

| QENQUEUE(v) | s.color = red

| u.color = blue - s.d=0

______________________________________________________________________________________________

INTTIALIZE(Graph G, Vertex s) .
~ foreach v € V do '
u.color = white

u.d = oo
| u. = nal
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u.color = white
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L . s.color = red
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______________________________________________________________________________________________

Demo. https://algo.uni-trier.de/demos/graphtraversal.html
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DIJKSTRA — die Laufzeit

D1JKSTRA(WeightedGraph G, Vertex 5)

. INITIALIZE(G, 5)
- Q = new PRIORITYQUEUE(V/(G), d)
~ while not Q.EmMPTY() do |
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<«— \Wie oft wird der
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DIJKSTRA — die Laufzeit

Satz.

Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(|V| TEXTRACTMIN(|V|) + |E| : TDECREASEKEY(|V|)) Lelt.
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Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
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PRIORITYQUEUE

TExTRACTMIN ( n )
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TDIJKSTRA(| \/‘, ‘ED
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DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE

TExTRACTMIN ( n )

T DECREASEKEY ( n )

TDIJKSTRA(| V‘, ‘ED

als unsortiertes Feld
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O(n)

o(1)"
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Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

11-10



DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer

PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n)

*)

Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
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DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TexrracrMin(n) | TDecreaseKey (1) | TDuxstra(| V], | E])
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~
*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohl
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DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|' TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TexrracrMin(n) | TDecreaseKey (1) | TDuxstra(| V], | E])
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~
*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.
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DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TexrracrMin(n) | TDecreaseKey (1) | TDuxstra(| V], | E])
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.
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DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer

PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)

als FIBONACCIHEAP

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.
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Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer

PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V?+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
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lamortisiert]
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**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.
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Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.
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PRIORITYQUEUE TexrracrMin(n) | TDecreaseKey (1) | TDuxstra(| V], | E])
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
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lamortisiert] lamortisiert)
*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.



11-18
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Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
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**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.
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Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|' TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBONACCIHEAP | O(log n) O(1) O(E+ Vlog V)
gehe Master-Vorlesung Fortgeschrittene Algorithmenk]

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)

**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.
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Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNACCIHEAP | O(log n) O(1) O(E+ Vlog V)
lamortisiert] lamortisiert) lim Worst-Case! |

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.
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Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNACCIHEAP | O(log n) O(1) O(E+ Vlog V)
lamortisiert] lamortisiert) lim Worst-Case! |

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

Korollar. In einem Graphen G = (V, E; w) mit w: E — Q> kann
man in O(E + Vlog V) Zeit die kiirzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).
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DIJKSTRA — die Laufzeit

Satz. Gegeben ein Graph G=(V, E), lauft Dijkstras Alg. in
@(| V|’ TEXTRACTMIN(| V|) + |E| ' TDECREASEKEY(| V|)) Lelt.

Implementierung einer
PRIORITYQUEUE TEXTRACTMIN(”) TDECREASEKEY(”) TDIJKSTRA(| V‘, ‘ED
als unsortiertes Feld | O(n) O(1)* O(V2+ 1)
als HEAP | O(log n) O(logn) ™~ O((E+ V)log V)
als FiBoNACCIHEAP | O(log n) O(1) O(E+ Vlog V)
lamortisiert] lamortisiert) lim Worst-Case! |

*) Das geht, weil wir bei EXTRACTMIN Liicken im Feld lassen; daher bleiben die Schliissel an ihrem Platz (— Direktzugriff)
**) Das geht, obwohlwir im Heap nicht suchen kénnen (!). Wir merken uns stindig fiir jeden Knoten, wo er im Heap steht.

Korollar. In einem Graphen G = (V, E; w) mit w: E — Q>¢ kann
man in O(E + Vlog V) Zeit die kiirzesten Wege von einem
zu allen Knoten berechnen (SSSP-Problem).
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DIJKSTRA — die Korrektheit

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
v.d = u.d+ w(u, v)
V.m =u
Q.DECREASEKEY(v, v.d)




DIJKSTRA — die Korrektheit

12-2

Definition.

Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei

O(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

D1JKSTRA(WeightedGraph G, Vertex s)

INITIALIZE(G, )
- Q = new PRIORITYQUEUE(V, d)
. while not Q.EmPTY() do

u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
v.d = u.d+ w(u, v)
V.T = u .
Q.DECREASEKEY(v, v.d)
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q.EMPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d + w(u,v) then

v.d = u.d+ w(u, v)
V.T = U

Q.DECREASEKEY(v, v.d)
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
O(s,v1) < d(s,va) < ...<d(s, vp)
Im Allgemeinen gilt nur S]

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q.EMPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d + w(u,v) then

L v.d = u.d+ w(u, v)

V.m = u
Q.DECREASEKEY(v, v.d)
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
v.d = u.d+ w(u, v)
V.m =u .
Q.DECREASEKEY(v, v.d)
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
v.d = u.d+ w(u, v)
V.m =u .
Q.DECREASEKEY(v, v.d)
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass

O(s,v1) < d(s,va) < ...<d(s, vp)
0. Schleifeninvariante EDIJKSTRA(WeIghtedGI’aph G, Vertex s)
- INITIALIZE(G, 5)

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)

~ while not Q.EMPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d + w(u,v) then

v.d = u.d+ w(u, v)
V. = U

Q.DECREASEKEY(v, v.d)
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass

O(s,v1) < d(s,va) < ...<d(s, vp)
0. Schleifeninvariante EDIJKSTRA(WeIghtedGI’aph G, Vertex s)
- INITIALIZE(G, 5)

Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)

1) gilt vi.d =94(s,v;) firalle 1 <<k - while not Q. EmPTY() do
| u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d + w(u,v) then
L v.d = u.d+ w(u, v)

V.m =u
Q.DECREASEKEY(v, v.d)
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass

0(s,v1) < d(s,v) <...<d(s,vp)
0. Schleifeninvariante fDIJKSTRA(WeightedGraph G, Vertex s) |
| - : . 1 G, '
Zu Beginn des k-ten Durchlaufs der while-Schleife gflﬁszéRK;LTYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k ~ while not Q EMPTY() do

I1)  enthidlt Q genau die Knoten v, ..., v, ;’oza(iff?zgf[%?o()

if v.d > u.d + w(u,v) then
L v.d = u.d+ w(u, v)

V.m = u
Q.DECREASEKEY(v, v.d)
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DIJKSTRA — die Korrektheit

Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife ' Q = new PrIORITYQUEUE(V, d)
) giltvi.d=4(s,v;) firalle 1l <<k - while not Q.EMPTY() do
. : | u = Q.EXTRACTMIN()
1) epthalt @ genau die Knoten v, ..., Vi, | foreach v € Adi[1] do
1) gilt vy = Q.FINDMIN() if v.d > u.d+ w(u,v) then

V.m =u
Q.DECREASEKEY(v, v.d)

L v.d = u.d+ w(u, v)




12-11
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Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife @ = new PRIORITYQUEUE(V, d)
) giltvi.d=4(s,v;) firalle 1l <<k - while not Q.EMPTY() do

. : | u = Q.EXTRACTMIN()
I1) enthidlt Q genau die Knoten v, ..., Vi, foreach v € Adj[u] do

1) gilt vk = Q. FINDMIN() if v.d > 1.d+ w(u, v) then

1. Initialisierung (k = 1) L szi Z-d+ w(u, v)

Q.DECREASEKEY(v, v.d) |
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Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

/Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k ~ while not Q EMPTY() do
. . ! = QR.E M
1) epthalt Q genau die Knoten vy, ..., v, : ;’Orea(ih fTERz‘\ng[u] Iif)
1) gilt v = Q.FINDMIN() | if v.d > u.d+ w(u, v) then
1. Initialisierung (k = 1) | v.d = udtwln)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d)
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Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

/Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k ~ while not Q EMPTY() do
i} . | — QE M
1) epthalt Q genau die Knoten vy, ..., v, | ;’Orea(ih szz‘\ng[u] Icll\IO()
1) gilt v = Q.FINDMIN() | if v.d > u.d+ w(u, v) then
1. Initialisierung (k = 1) | v.d = udtwln)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

In INITIALIZE(G, s) wird s.d = 0 gesetzt = |) AL
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Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

/Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k ~ while not Q EMPTY() do
i} . | — QE M
1) epthalt Q genau die Knoten vy, ..., v, | ;’Orea(ih szz‘\ng[u] Icll\IO()
1) gilt v = Q.FINDMIN() | if v.d > u.d+ w(u, v) then
1. Initialisierung (k = 1) | v.d = udtwln)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

In INITIALIZE(G, s) wird s.d = 0 gesetzt = |) L e r——————
Alle Knoten sind in Q = Il)
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Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

/Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k ~ while not Q EMPTY() do
i} . | — QE M
1) epthalt Q genau die Knoten vy, ..., v, | ;’Orea(ih szz‘\ng[u] Icll\IO()
1) gilt v = Q.FINDMIN() | if v.d > u.d+ w(u, v) then
1. Initialisierung (k = 1) | v.d = udtwln)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

In INITIALIZE(G, s) wird s.d = 0 gesetzt = |) L e r——————
Alle Knoten sind in Q = Il)
Fiir jeden Knoten v # s wird v.d = oo gesetzt
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Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

/Zu Beginn des k-ten Durchlaufs der while-Schleife " Q = new PRIORITYQUEUE(V, d)
1) gilt vi.d =94(s,v;) firalle 1 <<k ~ while not Q EMPTY() do
i} . | — QE M
1) epthalt Q genau die Knoten vy, ..., v, | ;’Orea(ih szz‘\ng[u] Icll\IO()
1) gilt v = Q.FINDMIN() | if v.d > u.d+ w(u, v) then
1. Initialisierung (k = 1) | v.d = udtwln)
Offensichtlich ist vy = s und §(s, s) = 0. Q.DECREASEKEY(v, v.d) |

In INITIALIZE(G, s) wird s.d = 0 gesetzt = |) L e r——————
Alle Knoten sind in Q = Il)
Fiir jeden Knoten v #£ s wird v.d = oo gesetzt = Ill)
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Definition.  Fiir einen (un)gerichteten Graphen G und u,v € V(G) sei
d(u, v) := Lange eines kiirzesten u-v-Wegs
(falls v von u erreichbar; sonst d(u, v) := 00).

Annahme:  Es gibt eine Nummerierung vy, ..., v, der Knotenmenge von G, so dass
0(s,v1) < d(s,v) <...<d(s,vp)

0. Schleifeninvariante

D1JKSTRA(WeightedGraph G, Vertex s)
- INITIALIZE(G, 5) '

Zu Beginn des k-ten Durchlaufs der while-Schleife @ = new PRIORITYQUEUE(V, d)
) giltvi.d=4(s,v;) firalle 1l <<k - while not Q.EMPTY() do

. : | u = Q.EXTRACTMIN()
I1) enthidlt Q genau die Knoten v, ..., Vi, foreach v € Adj[u] do
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Alle Knoten sind in Q = Il)
Fiir jeden Knoten v # s wird v.d = oo gesetzt = Ill)
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung v

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
V.m =u .
Q.DECREASEKEY(v, v.d)
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1IKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung ; INITIALIZ(E(G N ).

Betrachte kiirzesten s-v,-Pfad P. " Q = new PRIORITYQUEUE(V, d)
- while not Q.EMPTY() do

u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
vV.T = u .
Q.DECREASEKEY(v, v.d)
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
s_ s = S
1. Initialisierung v S P e | R
* 'DIJKSTRA (Weight , t !
2. Aufrechterhaltung / o (WeightedGrap S S):
- INITIALIZE(G, 5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
vV.T = u .
Q.DECREASEKEY(v, v.d)
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
D1KSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung v/ o (WeightedGrap ertex <)
j - INITIALIZE(G, 5) :
Betrachte kiirzesten s-vi-Pfad P. | "o .~ Q = new PRIORITYQUEUE(V, d) '
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von vy auf P. b — Oy

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
vV.T = u .
Q.DECREASEKEY(v, v.d)
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DuKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung v/ o (WeightedGrap ertex <)
j - INITIALIZE(G, 5) :
Betrachte kiirzesten s-vi-Pfad P. | "o .~ Q = new PRIORITYQUEUE(V, d) '
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist 1 < k. foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

V. m=u
Q.DECREASEKEY(v, v.d) |




13-7

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DuKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung 6(s, vi){ v/ o (WeightedGrap ertex <)
j - INITIALIZE(G, 5) :
Betrachte kiirzesten s-vi-Pfad P. | "o .~ Q = new PRIORITYQUEUE(V, d) '
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist 1 < k. foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
D1JKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
3 i (v, vi)| NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist 1 < k. foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
D1JKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
3 i (v, vi)| NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
) i (v, v NITIALIZE(G, 5) |
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy

V. m = u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
. i (i) NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy
= vk.d = vi.d + w(v;, vg)

V. m = u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
. i (i) NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy
= Vk.d = vi.d + w(v;, vg)

V. m = u
Q.DECREASEKEY(v, v.d) |




13- 14

DIJKSTRA — die Korrektheit

0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
. i (i) NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, v = vy
= Vi.d = vi.d + w(v;, vii) = 0(s, v;) + w(v;, vg)

V. m = u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
. i (i) NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v = v;, vi= vy
= Vik.d = vi.d + w(v;, vii) = (s, v;) + w(v;, vi) = (s, vk)

V. m = u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
D1JKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s,vi)i o ( eég e o S);
3 i (v, vi)| NITIALIZE(G, s5) :
Betrachte kiirzesten s-vi-Pfad P. | "o " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von v, auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v =v;,vi= v, |
= Vi.d = vid + w(vi, vii) = (s, vi) + w(vi, vi) = (s, vk) = 1)

V. m = u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()

I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung V4 S v
DLIKSTRA(WeightedGraph G, Vertex s) |
2. Aufrechterhaltung o(s vi)i I ( Gg i );
) i v v) NITIALIZE(G, s5) |
Betrachte kiirzesten s-vi-Pfad P. | ™ " Q = new PRIORITYQUEUE(V, d)
: . . while not Q.EmMPTY() do
Sei v; der Vorganger von vy auf P. b — Oy
Dann ist / < k. |) = v;.d = 5(5, V,') foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte i-ten Schleifendurchlauf mit v =v;,vi= v, |
= Vi.d = vid + w(vi, vii) = (s, vi) + w(vi, vi) = (s, vk) = 1)

V. m = u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,

1. Initialisierung v
2. Aufrechterhaltung

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
V. m =u .
Q.DECREASEKEY(v, v.d)
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,

1. Initialisierung v
2. Aufrechterhaltung

Betrachte (k — 1)-ten Schleifendurchlauf

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
V. m =u :
Q.DECREASEKEY(v, v.d)
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,

1. Initialisierung v
2. Aufrechterhaltung

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

Betrachte (k — 1)-ten Schleifendurchlauf

I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung
Betrachte (k — 1)-ten Schleifendurchlauf
I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

I11) = es wurde genau vx_1 aus @ entfernt

V.m = u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
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D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung
Betrachte (k — 1)-ten Schleifendurchlauf
I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

I11) = es wurde genau vx_1 aus Q entfernt = Il)

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

2. Aufrechterhaltung
Betrachte (k — 1)-ten Schleifendurchlauf
I1) = Q@ enthielt genau die Knoten v,_1,..., Vv,

I11) = es wurde genau vx_1 aus Q entfernt = Il)

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v

1. Initialisierung v
2. Aufrechterhaltung

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)

~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()

foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
V. m =u .
Q.DECREASEKEY(v, v.d)
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v

1. Initialisierung v
2. Aufrechterhaltung

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

L v.d = u.d+ w(u, v)

Betrachte Knoten vy mit ¢ > k.

V. m=u
Q.DECREASEKEY(v, v.d) |
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0. Schleifeninvariante
Zu Beginn des k-ten Durchlaufs der while-Schleife

1) gilt vi.d=94(s,v;) furallel <i<k s ) gilt vi = Q. FINDMIN()
I1) enthilt @ genau die Knoten vy, ..., v, v

1. Initialisierung v
2. Aufrechterhaltung

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)
. Q = new PRIORITYQUEUE(V, d)
- while not Q. EmPTY() do
: : U= Q.EXTRACTMIN
Dann gilt v,.d > foreach v € Adj[u] do()
: if v.d > u.d+ w(u, v) then
L v.d = u.d+ w(u, v)

Betrachte Knoten vy mit ¢ > k.

V. m=u
Q.DECREASEKEY(v, v.d) |
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1) gilt vi.d=94(s,v;) furallel <i<k 1) gilt vy = Q.FINDMIN()
I1) enthdlt @ genau die Knoten vy, ..., v,
1. Initialisierung o

D1JKSTRA(WeightedGraph G, Vertex s)

- INITIALIZE(G, 5)

. . . Q = new PRIORITYQUEUE(V, d)
3. Terminierung ~ while not Q.EMpTY() do

R N € - u = Q.EXTRACTMIN()
) = vi.d=4(s,v;) firallel <i<n foreach v € Adj[u] do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
V.T = u
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0. Schleifeninvariante

Zu Beginn des k-ten Durchlaufs der while-Schleife
=d0(s,v;) firalle 1 <i <k
I1) enthdlt @ genau die Knoten v, ...,

|) gilt v;.d

1. Initialisierung v
2. Aufrechterhaltung /

3. Terminierung v

|) = V.

d=0(s,v;) firallel1 <i<n
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1) gilt vy = Q.FINDMIN()

rDIJKSTRA(WelghtedGraph G, Vertex s)

5 INITIALIZE(G, )

. Q = new PRIORITYQUEUE(V, d)
~ while not Q. EmPTY() do

' u = Q.EXTRACTMIN()
foreach v € Adj[v] do

if v.d > u.d+ w(u, v) then

v.d = u.d+ w(u, v)
V.T = u

Q.DECREASEKEY(v, v.d) |
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Kurzeste Wege nach DIJKSTRA
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ungewichteter Graph BREITENSUCHE O(E + V) :Vorlesung 18]
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negative Kantengew. BELLMAN-FORD O(EV)
fiir alle Knotenpaare  |V| x DukstRa  O(V(E + Vlog V))
+ negative Kantengew. FLOYD-WARSHALL O(V?3)
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negative Kantengew. BELLMAN-FORD O(EV)
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Kurzeste Wege nach DIJKSTRA

Eingabe Algorithmus Laufzeit
ungewichteter Graph BREITENSUCHE O(E + V) Vorlesung 18 |
nicht-neg. Kantengew. DIJKSTRA O(E + Vlog V) heute |
azyklischer Graph TopPOL. SORTIEREN O(E + V) Vorlesung 20
negative Kantengew. BELLMAN-FORD O(EV)
fiir alle Knotenpaare  |V| x DukstRa  O(V(E + Vlog V))
+ negative Kantengew. FLOYD-WARSHALL O(V?3)
JOHNSON O(V(E + VlogV))
k kiirzeste s-t-Wege EPPSTEIN O(k + E+ Vlog V)
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