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Themen für den 3. Zwischentest (Do, 15.1.26)

• Rot-Schwarz-Bäume (R-S-Eigenschaften, Höhe)

• Augmentieren von Datenstrukturen

• Amortisierte Analyse

• Nächstes Paar (Teile und Herrsche)

• Graphen und Breitensuche



3

Wo

ist

das
nächste

Paar?
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(Rohe Gewalt)

Problem:

Gegeben: Menge P von n Punkten in der Ebene,
jeder Punkt p ∈ P als (xp, yp).

Lösung:

• Gehe durch alle
(
n
2

)
Punktepaare und

berechne ihren Abstand.

• Gib ein Paar mit kleinstem Abstand zurück.

Def. Euklidischer Abstand von p und q ist
d(p, q) =

√
(xp − xq)2 + (yp − yq)2.

Finde: Punktepaar {p, q} ⊆ P mit kleinstem
(euklidischen) Abstand.

Laufzeit: Θ(n2)
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– randomisiert?

Spezialfall:

Lösung: • Sortiere (nach x-Koordinate).

• Berechne Abstände aller aufeinanderfolgender
Punktepaare.
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!

Kandidatenmenge der Größe n − 1,
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für das nächste Paar:
O(n).

⇓

Und finden?

p

Bp = [xmed, xmed + d ]× [yp − d , yp + d ]

Kp = Plinks ∩ Bp



6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
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Noch besser?
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Ist die Laufzeit O(n log n) optimal?

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?
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Angenommen wir könnten Nächstes Paar in o(n log n)
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wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?



12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?
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Das heißt. . .

Satz. Das Problem Nächstes Paar kann nicht schneller als in
Ω(n log n) Zeit gelöst werden, wenn man als Rechen-
modell das algebraische Entscheidungsbaummodell
zugrunde legt.

Kor. Unser O(n log n)-Zeit-Algorithmus für das Problem
Nächstes Paar ist asymptotisch optimal, wenn man. . . .
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• Implementieren Sie den hier vorgestellten
Teile-und-Herrsche-Algorithmus, der in
O(n log n) Zeit läuft!

Goodrich & Tamassia:
Data Structures & Algorithms in Java.
Wiley, 4. Aufl., 2005 (5. Aufl., 2010)
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