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Themen fiir den 3. Zwischentest (Do, 15.1.26)

e Rot-Schwarz-Baume (R-S-Eigenschaften, Hohe)
e Augmentieren von Datenstrukturen
e Nichstes Paar (Teile und Herrsche)

e Amortisierte Analyse

e Graphen und Breitensuche





















Problem:

Gegeben: Menge P von n Punkten in der Ebene, |
jeder Punkt p € P als (xp, ¥p).

Finde: Punktepaar {p, g} C P mit kleinstem
(euklidischen) Abstand.

Def. Euklidischer Abstand von p und qg ist
d(p,q) = /(% —x¢)* + (Vo — ¥a)*- o

LOsung:

e Gehe durch alle (g) Punktepaare und o
berechne ihren Abstand.

e Gib ein Paar mit kleinstem Abstand zuriick.
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Algorithmus [T(n) =|[T([a/2]) + FEER2T + O(nlog n)

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
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4. Kombiniere:
o d= min{dlink51 drechts} O(].)
e Sortiere Pjjnks und Prechts Nach y-Koordinate O(n log n)
e Seien P/, . die Punkte im grauen Streifen in Pjinks. )
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Das heil3t. ..

Satz.

Kor.

Das Problem Nachstes Paar kann nicht schneller als in
2(nlog n) Zeit gelost werden

Unser O(nlog n)-Zeit-Algorithmus fiir das Problem
Nachstes Paar ist asymptotisch optimal
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