Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UN_!VERS'TAT Lehrstuhl fiir I ' ' l I i fl
WURZBURG INFORMATIK |

Algorithmen und Datenstrukturen

Wintersemester 2025
18. Vorlesung

Nachstes Paar

Alexander Wolff Lehrstuhl fiir Informatik |

2

Themen fiir den 3. Zwischentest (Do, 15.1.26)

e Rot-Schwarz-Baume (R-S-Eigenschaften, Hohe)
e Augmentieren von Datenstrukturen
e Nichstes Paar (Teile und Herrsche)

e Amortisierte Analyse

e Graphen und Breitensuche

Problem:

Gegeben: Menge P von n Punkten in der Ebene, |
jeder Punkt p € P als (xp, ¥p).

Finde: Punktepaar {p, g} C P mit kleinstem
(euklidischen) Abstand.

Def. Euklidischer Abstand von p und qg ist
d(p,q) = /(% —x¢)* + (Vo — ¥a)*- o

LOsung:

e Gehe durch alle (g) Punktepaare und o
berechne ihren Abstand.

e Gib ein Paar mit kleinstem Abstand zuriick.

Problem:

Gegeben: Menge P von n Punkten in der Ebene, |
jeder Punkt p € P als (xp, ¥p).

Finde: Punktepaar {p, g} C P mit kleinstem
(euklidischen) Abstand.

Def. Euklidischer Abstand von p und qg ist
d(p,q) = \/(Xp — Xq)2 T (Yp — Yq)2- o
Losung: Laufzeit:
e Gehe durch alle (g) Punktepaare und o

berechne ihren Abstand.
e Gib ein Paar mit kleinstem Abstand zuriick.

Problem:

Gegeben: Menge P von n Punkten in der Ebene, |
jeder Punkt p € P als (xp, ¥p).

Finde: Punktepaar {p, g} C P mit kleinstem
(euklidischen) Abstand.

Def. Euklidischer Abstand von p und qg ist
d(p,q) = \/(Xp — Xq)2 T (Yp — Yq)2- o
Lésung: Laufzeit: O(n?)
e Gehe durch alle (g) Punktepaare und o

berechne ihren Abstand.
e Gib ein Paar mit kleinstem Abstand zuriick.

Mach's besser!

Entwurfsparadigma: - inkrementell?
— randomisiert?
— Teile und Herrsche?

Mach's besser!

Entwurfsparadigma: - inkrementell?
— randomisiert?
— Teile und Herrsche?

Spezialfall: e —9¢ oo o o ¢ o o oo

Mach's besser!

Entwurfsparadigma: - inkrementell?
— randomisiert?

— Teile und Herrsche?

Spezialfall: e —9¢ oo o o ¢ o o oo

LOsung:

Mach's besser!

Entwurfsparadigma: - inkrementell?
— randomisiert?

— Teile und Herrsche?

Spezialfall: e —9¢ oo o o ¢ o o oo

Lésung: e Sortiere (nach x-Koordinate).

Mach's besser!

Entwurfsparadigma: - inkrementell?
— randomisiert?

— Teile und Herrsche?

Spezialfall: e e o o o o o o o 00—

Lésung: e Sortiere (nach x-Koordinate).

e Berechne Abstande aller aufeinanderfolgender
Punktepaare.

Mach's besser!

Entwurfsparadigma: - inkrementell?

Spezialfall:

LOsung:

— randomisiert?
— Teile und Herrsche?

Sortiere (nach x-Koordinate).

Berechne Abstande aller aufeinanderfolgender
Punktepaare.

Bestimme das Minimum dieser Abstande.

Mach's besser!

Entwurfsparadigma: - inkrementell?
— randomisiert?
— Teile und Herrsche?

Spezialfall: e e o o o o o o o 00—

Lésung: e Sortiere (nach x-Koordinate).

e Berechne Abstande aller aufeinanderfolgender
Punktepaare.

e Bestimme das Minimum dieser Abstande.

Strukturelle Einsicht:

Mach's besser!

Entwurfsparadigma: - inkrementell?
— randomisiert?
— Teile und Herrsche?

Spezialfall: e e o o o o o o o 00—

Lésung: e Sortiere (nach x-Koordinate).

e Berechne Abstande aller aufeinanderfolgender
Punktepaare.

e Bestimme das Minimum dieser Abstande.

Strukturelle\ Einsicht:

Kandidatenmenge der GroBe n — 1,
die gesuchtes Objekt enthalt.

Mach's besser!

Entwurfsparadigma: - inkrementell?
— randomisiert?
— Teile und Herrsche?!

Spezialfall: e e o o o o o o o 00—

Lésung: e Sortiere (nach x-Koordinate).

e Berechne Abstande aller aufeinanderfolgender
Punktepaare.

e Bestimme das Minimum dieser Abstande.

Strukturelle\ Einsicht:

Kandidatenmenge der GroBe n — 1,
die gesuchtes Objekt enthalt.

P1 o

O
o O
O
O O
O
® O
O
O
® [
1. Teile
O
O
O

P1

o
P rechts
o
o
o
o
o

P1 o

o
° o
o
o o
o
O °
o
o
® [
1. Telle
2. Herrsche
o
o
o

o
P rechts
o
o
o
o
o

P1 o

o
o
o
o
O °
o
o
® [
1. Telle
2. Herrsche
o
o
o

Pln/2]
O

O
® o

o
P rechts
o
o
o
o
o

P1 o

o
o
o
o
O °
o
o
® [
1. Telle
2. Herrsche
o
o
o

Pln/2]
O

O
® o

P rechts

/drechts

P1 o

o
o
o
o
o °
o
o
® [
1. Telle
2. Herrsche
. 3. Kombiniere
o
o

Pln/2]
o
o
o

Xmed |

P rechts

/drechts

P1

1. Telle
2. Herrsche

3. Kombiniere
o

Pln/2]
O

O
® O

P rechts

O
d rechts
O
O
® o
O O
° O
® ®
@

Anz. (e,e)-Kandidaten

flir das nachste Paar?
® ®)

P1 o

o
o
o
o
o °
o
o
® [
1. Telle
2. Herrsche
. 3. Kombiniere
o
o

Pln/2]
o
o
o

Xmed |

P rechts

/drechts

P1

echts

/drechts

. min{dnnks, drechtS}
o

P1

echts

/drechts

. min{dnnks, drechtS}
o

P1

* P
o
o
\dlinks
®
o pl‘n
o
o

echts

/drechts

— min{dnnks, drechtS}

P1

* P
o
o
\dlinks
®
o pl‘n
o
o

echts

/drechts

— min{dnnks, drechtS}

P1

* P
o
o
\dlinks
®
o pl‘n
o
o

echts

/drechts

— min{dnnks, drechtS}

P1

echts

/drechts

— min{dnnks, drechtS}
o

P1

echts

/drechts

— min{dnnks, drechtS}
o

P1

echts

/drechts

— min{dnnks, drechtS}
o

P1

echts

/drechts

— min{dnnks, drechtS}
o

P1

echts

/drechts

— min{dnnks, drechtS}
o

P1

echts

/drechts

— min{dnnks, drechtS}
o

P1

echts

/drechts

— min{dnnks, drechtS}
o

P1

echts

/drechts

— min{dnnks, drechtS}
o

P1 e °

o
° o
din S
. \ link
o
o °
o
o
)
® [
1. Telle
2. Herrsche
. 3. Kombiniere

S

d = min{dlinks; drechts}

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

2 drechts > d

d

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:

d = min{dlink51 drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

\

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (e,e)-Kandidaten
fur das nachste Paar:

o().

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (e,e)-Kandidaten
fur das nachste Paar:

O(n).

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (e,e)-Kandidaten

fur das nachste Paar:
O(n). Und finden?

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (e,e)-Kandidaten

fur das nachste Paar:
O(n). Und finden?

d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

\

Anz. (e,e)-Kandidaten
fur das nachste Paar:
O(n). Und finden?

Ko = Plinks N Bp
d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (e,e)-Kandidaten

fur das nachste Paar:
O(n). Und finden?

Kp — Plinks A Bp = ’KP’ S
d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (e,e)-Kandidaten

fur das nachste Paar:
O(n). Und finden?

Kp = Piinks N Bp — ’Kp’ <6
d = min{dlinks; drechts}

Wieviele griine Punkte

konnen im dunkelgrauen
(d x 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (e,e)-Kandidaten

fur das nachste Paar:
O(n). Und finden?

Algorithmus

1. Sortiere P nach x-Koordinate — pq, ..

-;pn mItX].S‘..

Algorithmus

1. Sortiere P nach x-Koordinate — pq, ..., p, mit xg < ---
2. Teile: Plinks = {pl, ce

,an/ZJ}v Prechts — P\ Plinks

Algorithmus

1. Sortiere P nach x-Koordinate — pq, ..., p, mit xg < ---
2. Teile: Plinks = {pl, ce

3. Herrsche:

,an/ZJ}v Prechts — P\ Plinks

Algorithmus

1. Sortiere P nach x-Koordinate — pq, ..., p, mit x3 < --- < x,
2. Telle: Plinks — {pl; c .oy an/ZJ}r Prechts — 'D\ Plinks
3. Herrsche:

bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie

Algorithmus

1. Sortiere P nach x-Koordinate — pq, ..., p, mit x3 < --- < x,
2. Telle: Plinks — {pl; c .oy an/ZJ}r Prechts — 'D\ Plinks
3. Herrsche:

bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

Algorithmus

1. Sortiere P nach x-Koordinate — pq, ..., p, mit x3 < --- < x,
2. Telle: Plinks — {Pl; c ey an/2J}r Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

4. Kombiniere:

Algorithmus

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Telle: Plinks — {Pl; c ey an/2J}r Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

4. Kombiniere:
o d= min{dlink51 drechts}

Algorithmus

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Telle: Plinks — {Pl; c ey an/2J}r Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

4. Kombiniere:
o d= min{dlink51 drechts}

e Sortiere Pjinks und Prechts Nach y-Koordinate

Algorithmus

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Telle: Plinks — {Pl; c ey an/2J}r Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

4. Kombiniere:
o d= min{dlinks; drechts}
e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P

s die Punkte im grauen Streifen in Plinks.

Algorithmus

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Telle: Plinks — {Pl; c ey PLn/zj}, Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

4. Kombiniere:
o d= min{dlinks; drechts}
e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P

s die Punkte im grauen Streifen in Plinks.
— . gehe in P

Fir jeden Punkt p in P, ochts DIs y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj).

Algorithmus

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Telle: Plinks — {Pl; c ey PLn/zj}, Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

4. Kombiniere:
o d= min{dlinks; drechts}
e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P .

die Punkte im grauen Streifen in Pjks.
Fir jeden Punkt p in P, . gehe in P__ . bis y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

Algorithmus

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Telle: Plinks — {Pl; c ey PLn/zj}, Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

4. Kombiniere:
o d= min{dlinks; drechts}
e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P

s die Punkte im grauen Streifen in Plinks.
— . gehe in P

Fir jeden Punkt p in P, ochts DIs y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, diinks Und drechts (und entspr. Paar) zuriick.

Algorithmus T(n) = { Laufzeit des rekursiven Teils,

d.h. ohne Vorverarbeitung (1.)

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Telle: Plinks — {Pl; c ey an/2J}r Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
drechts P rechts

4. Kombiniere:
o d= min{dlinks; drechts}
e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P

s die Punkte im grauen Streifen in Plinks.
— . gehe in P

Fir jeden Punkt p in P, ochts DIs y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, diinks Und drechts (und entspr. Paar) zuriick.

Algorithmus [T(n) =|T({(n/2])

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Telle: Plinks — {Pl; c ey PLn/zj}, Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand dji ks v. Paaren in Pjinks
drechts P rechts

4. Kombiniere:
o d= min{dlinks; drechts}
e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P

s die Punkte im grauen Streifen in Plinks.
— . gehe in P

Fir jeden Punkt p in P, ochts DIs y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, diinks Und drechts (und entspr. Paar) zuriick.

Algorithmus [T(n) =

T(ln/2]) ~ T([n/2])

1. Sortiere P nach x-Koordinate — p1,...,p, mit x3 < --- < x,

2. Teile: Piinks = {p1, -+, Plnj2) }+ Prechts = P\ Plinks

3. Herrsche:

4. Kombiniere:
o d= min{dlinks; drechts}
e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P .

die Punkte im grauen Streifen in Pjngs. (P, entsprech.)
Fir jeden Punkt p in P, . gehe in P_,.. bis y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— K,).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, dlinks UNd drechts (Und entspr. Paar) zuriick.

Algorithmus [T(n) =

T(ln/2]) ~ T([n/2])

1. Sortiere P nach x-Koordinate — p1,...,p, mit x3 < --- < x,

2. Teile: Piinks = {p1, -+, Plnj2) }+ Prechts = P\ Plinks

3. Herrsche:

4. Kombiniere:
o d= min{dlinks; drechts}
e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P .

die Punkte im grauen Streifen in Pjngs. (P, entsprech.)
Fir jeden Punkt p in P, . gehe in P_,.. bis y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— K,).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, dlinks UNd drechts (Und entspr. Paar) zuriick.

Algorithmus [T(n) =

T(ln/2]) ~ T([n/2])

1. Sortiere P nach x-Koordinate — p1,...,p, mit x3 < --- < x,

2. Teile: Piinks = {p1, -+, Plnj2) }+ Prechts = P\ Plinks

3. Herrsche:

4. Kombiniere:

o d = min{dinks, drechts O(1)

e Sortiere Pjinks und Prechts Nach y-Koordinate

e Seien P/, . die Punkte im grauen Streifen in Piinks. (P, entsprech.)
Fir jeden Punkt p in P, . gehe in P_,.. bis y-Koord. y, + d;

halte die letzten 6 Punkte im grauen Streifen aufrecht (— K,).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, dlinks UNd drechts (Und entspr. Paar) zuriick.

Algorithmus [T(n) =

T(ln/2]) ~ T([n/2])

1. Sortiere P nach x-Koordinate — p1,...,p, mit x3 < --- < x,

2. Teile: Piinks = {p1, -+, Plnj2) }+ Prechts = P\ Plinks

3. Herrsche:

4. Kombiniere:

o d = min{dinks, drechts O(1)

e Sortiere Pjjnks und Prechts Nach y-Koordinate

e Seien P/, . die Punkte im grauen Streifen in Piinks. (P, entsprech.)
Fir jeden Punkt p in P, . gehe in P_,.. bis y-Koord. y, + d;

halte die letzten 6 Punkte im grauen Streifen aufrecht (— K,).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, dlinks UNd drechts (Und entspr. Paar) zuriick.

Algorithmus T(n)=(IT(|n/2]) +-

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Teile: Piinks = {p1, -+ Pln/2] }+ Prechts = P\ Plinks
3. Herrsche:

bestimme rekursiv kleinsten Abstand dji ks v. Paaren in Pjinks

4. Kombiniere:

o d= min{dlink51 drechts} O(].)
e Sortiere Pjjnks und Prechts Nach y-Koordinate O(n log n)

e Seien P .

die Punkte im grauen Streifen in Pjnks. (P entsprech.)
Fir jeden Punkt p in P, . gehe in P_,.. bis y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— K,).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, dlinks UNd drechts (Und entspr. Paar) zuriick.

Algorithmus T(n)=(IT(|n/2]) +-

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Teile: Piinks = {p1, -+ Pln/2] }+ Prechts = P\ Plinks
3. Herrsche:

bestimme rekursiv kleinsten Abstand dji ks v. Paaren in Pjinks

4. Kombiniere:

o d= min{dlink51 drechts} O(].)
e Sortiere Pjjnks und Prechts Nach y-Koordinate O(n log n)

e Seien P .

die Punkte im grauen Streifen in Pjnks. (P entspreyh.)
Fir jeden Punkt p in P, . gehe in P_,.. bis y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— K,).

e Bestimme Min. dpitte liber alle d(p, g) mit p € P, und g € K,,.

links

e Gib Min. von dpitte, dlinks UNd drechts (Und entspr. Paar) zuriick.)

Algorithmus T(n)=(IT(|n/2]) +-

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Teile: Piinks = {p1, -+ Pln/2] }+ Prechts = P\ Plinks
3. Herrsche:

bestimme rekursiv kleinsten Abstand dji ks v. Paaren in Pjinks

4. Kombiniere:

o d= min{dlink51 drechts} O(].)
e Sortiere Pjjnks und Prechts Nach y-Koordinate O(n log n)

e Seien P .

die Punkte im grauen Streifen in Pjnks. (P entspreyh.)
Fir jeden Punkt p in P, . gehe in P_,.. bis y-Koord. y, + d;

halte die letzten 6 Punkte im grauen Streifen aufrecht (— K,). >’E
e Bestimme Min. dpiwe Uber alle d(p, q) mit p € P, . und g € K,.| ©

links

e Gib Min. von dpitte, dlinks UNd drechts (Und entspr. Paar) zuriick.)

7

Algorithmus [T(n) =|[T([a/2]) + FEER2T + O(nlog n)

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,
2. Teile: Plinks — {Pl; c .oy an/2J}y Prechts — 'D\ Plinks
3. Herrsche:
bestimme rekursiv kleinsten Abstand dji ks v. Paaren in Pjinks
drechts P rechts
4. Kombiniere:
o d= min{dlink51 drechts} O(].)
e Sortiere Pjjnks und Prechts Nach y-Koordinate O(n log n)
e Seien P/, . die Punkte im grauen Streifen in Pjinks.)

Fir jeden Punkt p in P, . gehe in P__ . bis y-Koord. y, + d;

halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj). >’E
e Bestimme Min. dpiwe Uber alle d(p, q) mit p € P, . und g € K,.| ©

links

e Gib Min. von dpitte, diinks Und drechts (und entspr. Paar) zuriick.)

8

Laufzeit T(n)= T(|n/2]) + T([n/2]) + O(nlog n)

Laufzeit

Also T(n) ~2T(n/2)+ O(nlog n)

Laufzeit
Also T(n) ~2T(n/2)+ O(nlog n)

Rekursionsgleichung mit Master-Theorem |6sen?

Laufzeit
Also T(n) ~2T(n/2)+ O(nlog n)
Rekursionsgleichung mit Master-Theorem |6sen?

Bestimme Parameter fiir das Theorem:
a=>b=2, f(n) = O(nlogn).

Laufzeit

Also T(n) ~2T(n/2)+ O(nlog n)
Rekursionsgleichung mit Master-Theorem |6sen?

Bestimme Parameter fir das Theorem:

a=>b=2, f(n) = O(nlogn).

Betrachte n'o8s2 = plog2 — pl

Laufzeit

Also T(n) ~2T(n/2)+ O(nlog n)
Rekursionsgleichung mit Master-Theorem |6sen?

Bestimme Parameter fir das Theorem:

a=>b=2, f(n) = O(nlogn).
Betrachte n'°8 3 = plo&22 — pl

O(n'=¢) fiireine >0
Gilt f € < O(n') 7
Q(n**e) fireine >0

Laufzeit
Also T(n) ~2T(n/2)+ O(nlog n)
Rekursionsgleichung mit Master-Theorem |6sen?

Bestimme Parameter fiir das Theorem:
a=>b=2, f(n) = O(nlogn).

Betrachte n'o8s2 = plog2 — pl

O(n'=¢) fiireine >0
Gilt f € < O(n') 7
Q(n**e) fireine >0

Nein, f: n+— O(nlogn) passt in keinen der drei Fille.

Laufzeit

Also T(n) ~2T(n/2)+ O(nlog n)
Rekursionsgleichung mit Master-Theorem |6sen?

Bestimme Parameter fir das Theorem:

a=>b=2, f(n) = O(nlogn).
Betrachte n'°8 3 = plo&22 — pl

O(n'=¢) fiireine >0
Gilt f € < O(n') 7
Q(n**e) fireine >0

Nein, f: n+— O(nlogn) passt in keinen der drei Fille.

Die Rekursionsbaummethode liefert. . .

Laufzeit

Also T(n) ~2T(n/2)+ O(nlog n)
Rekursionsgleichung mit Master-Theorem |6sen?

Bestimme Parameter fir das Theorem:

a=>b=2, f(n) = O(nlogn).
Betrachte n'°8 3 = plo&22 — pl

O(n'=¢) fiireine >0
Gilt f € < O(n') 7
Q(n**e) fireine >0

Nein, f: n+— O(nlogn) passt in keinen der drei F3

Die Rekursionsbaummethode liefert... T(n) = O(n

9

Noch besser? |T(n)~|2T(n/2)+ O(nlogn) = O(nlog® n)

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,

2. Teile: P in 'Dlinks — {plv s ey an/2J} und 'Drechts — P\ 'Dlinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dj; ks v. Paaren in Pjinks
drechts P rechts
4. Kombiniere:
e d = Min{diinks, Arechts }
o sortiere Pjinks Und Prechts Nach y-Koordinate O(nlog n)

r o gehe , gleichzeitig" durch Pjuks und Prechis:

fir jeden Punkt p in Pjns gehe in Prechts bis y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj,)

e bestimme Min. dnite liber alle d(p, g) mit p € Pjinks und g € K,

e gib Min. von dnitte, diinks Und drechts (und entspr. Paar) zuriick

9
Noch besser? |T(n)~|2T(n/2)+ O(n = O(nlog?n)

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --. < x,

2. Teile: P in 'Dlinks — {plv s ey an/2J} und 'Drechts — P\ 'Dlinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dj; ks v. Paaren in Pjinks
drechts P rechts
4. Kombiniere:
e d = Min{diinks, Arechts }
o sortiere Pjinks Und Prechts Nach y-Koordinate O(nlog n)

r o gehe , gleichzeitig" durch Pjuks und Prechis:

fir jeden Punkt p in Pjns gehe in Prechts bis y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj,)

e bestimme Min. dnite liber alle d(p, g) mit p € Pjinks und g € K,

e gib Min. von dnitte, diinks Und drechts (und entspr. Paar) zuriick

9
Noch besser? |T(n)~|2T(n/2)+ O(n = O(nlog?n)

1.>Sortiere P nach x-Koordinate — py,...,p, mit x3 < --- < x,
2. Teile: P in 'Dlinks — {pl; - ey an/2J} und 'Drechts — P\ 'Dlinks
3. Herrsche:
3 bestimme rekursiv kleinsten Abstand djhe v. Paaren in Pjinie
- drechts Prechts
4. Kombiniere:

o d= min{d“nk51 drechts}

e sortiere Pjnks und Prechts Nach y-Koordinate O(n log n)

r o gehe , gleichzeitig" durch Pjuks und Prechis:

fir jeden Punkt p in Pjns gehe in Prechts bis y-Koord. y, + d;
halte die letzten 6 Punkte im grauen Streifen aufrecht (— Kj,)

e bestimme Min. dnite liber alle d(p, g) mit p € Pjinks und g € K,

e gib Min. von dpitte, dlinks UNd drechts (und entspr. Paar) zuriick

Noch besser! T(n) ~|2T(n/2) + O(n = O(nlog2n)

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --- < Xx,
u. P"=P nach y-Koordinate — pf,...,p, mit y; <--- <y’

2. Teile: P in Plinks — {plv s ooy an/2J} und Prechts — P\ Plinks
P"in P, und P/, _ (sortiert nach y-Koordinate)

links rechts
3. Herrsche:
bestimme rekursiv kleinsten Abstand dji ks v. Paaren in Pjinks

o drechts Prechts
4. Kombiniere:

(o d= min{dlink51 drechts}
e gehe , gleichzeitig” durch Pfaks und Plechs:

fir jeden Punkt p in Pfinks gehe in Plechts bis y-Koord. y, + d;

=
6/< halte die letzten 6 Punkte im grauen Streifen aufrecht (— K))

e bestimme Min. dnite liber alle d(p, g) mit p € Pliws und g € K,

| @ gib Min. von dhitte, diinks Und drechts (und entspr. Paar) zuriick

Noch besser! T(n) ~|2T(n/2) + O(n = O(nlog®n)

1. Sortiere P nach x-Koordinate — p1, ..., p, mit x3 < --- < Xx,
u. P"=P nach y-Koordinate — pf,...,p, mit y; <--- <y’

2. Teile: P in Plinks — {plv s ey an/2J} und Prechts — P\ Plinks
P"in P, und P/, _ (sortiert nach y-Koordinate)

links rechts
3. Herrsche:
bestimme rekursiv kleinsten Abstand dji ks v. Paaren in Pjinks

o drechts Prechts
4. Kombiniere:

(o d= min{dlink51 drechts}
e gehe , gleichzeitig” durch Pfaks und Plechs:

fir jeden Punkt p in Pfinks gehe in Plechts bis y-Koord. y, + d;

=
6’< halte die letzten 6 Punkte im grauen Streifen aufrecht (— K))

e bestimme Min. dnite liber alle d(p, g) mit p € Pliws und g € K,

| @ gib Min. von dhitte, diinks Und drechts (und entspr. Paar) zuriick

/usammenfassung

1. Vorverarbeitung (2x Sortieren)

11

/usammenfassung

1. Vorverarbeitung (2x Sortieren)

O(nlog n)

11

/usammenfassung
1. Vorverarbeitung (2x Sortieren)

2. Teilen

O(nlog n)

11

/usammenfassung
1. Vorverarbeitung (2x Sortieren)

2. Teilen O(n)

O(nlog n)

11

/usammenfassung
1. Vorverarbeitung (2x Sortieren)

2. Teilen O(n)

3. Herrschen

O(nlog n)

11

/usammenfassung
1. Vorverarbeitung (2x Sortieren)

2. Teilen O(n)
3. Herrschen 2T(n/2)

O(nlog n)

11

/usammenfassung

1. Vorverarbeitung (2x Sortieren)

2. Teilen O(n)
3. Herrschen 2T(n/2)

4. Kombinieren

O(nlog n)

11

/usammenfassung

1. Vorverarbeitung (2x Sortieren)

2. Teilen O(n)
3. Herrschen 2T(n/2)
4. Kombinieren O(n)

O(nlog n)

11

/usammenfassung

1. Vorverarbeitung (2x Sortieren) O(nlog n)

2. Teilen O(n))
3. Herrschen ~ 2T(n/2) 5 T(n) =
4. Kombinieren O(n))

/usammenfassung

1. Vorverarbeitung (2x Sortieren) O(nlog n)

2. Teilen O(n))
3. Herrschen 2T(n/2) 3 T(n) = O(nlog n)
4. Kombinieren O(n))

/usammenfassung

1. Vorverarbeitung (2x Sortieren) O(nlog n)

2. Teilen O(n))
3. Herrschen 2T(n/2) 3 T(n) = O(nlog n)
4. Kombinieren O(n))

Gesamtlaufzeit

11

/usammenfassung

1. Vorverarbeitung (2x Sortieren) O(nlog n)

2. Teilen O(n))
3. Herrschen 2T(n/2) 3 T(n) = O(nlog n)
4. Kombinieren O(n))

Gesamtlaufzeit O(nlog n)

11

/usammenfassung

1. Vorverarbeitung (2x Sortieren) O(nlog n)

2. Teilen O(n))
3. Herrschen 2T(n/2) 3 T(n) = O(nlog n)
4. Kombinieren O(n))

Gesamtlaufzeit O(nlog n)

Speicherplatzbedarf?

11

/usammenfassung

1. Vorverarbeitung (2x Sortieren) O(nlog n)

2. Teilen O(n))
3. Herrschen 2T(n/2) 3 T(n) = O(nlog n)
4. Kombinieren O(n))

Gesamtlaufzeit O(nlog n)

Speicherplatzbedarf?
O(n),

11

/usammenfassung

1. Vorverarbeitung (2x Sortieren) O(nlog n)

2. Teilen O(n))
3. Herrschen 2T(n/2) 3 T(n) = O(nlog n)
4. Kombinieren O(n))

Gesamtlaufzeit O(nlog n)

Speicherplatzbedarf?
und P’

/ " " n /
O(n), wenn P’ in situ in P chis

ks zerlegt wird.

Ist die Laufzeit O(nlog n) optimal?

Def. Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a1, .. ., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

12

12

Ist die Laufzeit O(nlog n) optimal?

Def. Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a1, .. ., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

12

Ist die Laufzeit O(nlog n) optimal?

Def. Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a1, .. ., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?

12

Ist die Laufzeit O(nlog n) optimal?

Def. Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a1, .. ., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Naichstes Paar?
Angenommen wir konnten Nachstes Paar in o(nlog n)
/eit losen —

12

Ist die Laufzeit O(nlog n) optimal?

Def. Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a1, .. ., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?
Angenommen wir konnten Nachstes Paar in o(nlog n)
Zeit |osen — dann auch Element Uniqueness! ﬁ

12

Ist die Laufzeit O(nlog n) optimal?

Def. Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a1, .. ., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?
Angenommen wir konnten Nachstes Paar in o(nlog n)
Zeit |osen — dann auch Element Uniqueness! ﬁ
Wie?

12

Ist die Laufzeit O(nlog n) optimal?

Def. Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a1, .. ., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Naichstes Paar?
Angenommen wir konnten Nachstes Paar in o(nlog n)

Zeit |osen — dann auch Element Uniqueness! ﬁ
Wie? Teste, ob das nachste Paar Abstand 0 hat!

12

Ist die Laufzeit O(nlog n) optimal?

Def.

Satz.

Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a;, ..., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?

Angenommen wir konnten Nachstes Paar in o(nlog n)
Zeit l6sen — dann auch Element Uniqueness! ﬁ
Wie? Teste, ob das nachste Paar Abstand 0 hat!

Genaugenommen muss man die Zahlen ai,...,an in eine Menge von (paarweise verschiedenen!)
Punkten der Ebene transformieren, aber auch das geht! — Wie?

Ist die Laufzeit O(nlog n) optimal?

Def.

Satz.

Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a;, ..., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?

Angenommen wir konnten Nachstes Paar in o(nlog n)
Zeit l6sen — dann auch Element Uniqueness! ﬁ
Wie? Teste, ob das nachste Paar Abstand 0 hat!

Genaugenommen muss man die Zahlen ai,...,an in eine Menge von (paarweise verschiedenen!)

12

D G G B G §
—O——0—0—F—0—06—>» = —>

Punkten der Ebene transformieren, aber auch das geht! — Wie? /

12

Ist die Laufzeit O(nlog n) optimal?

Def.

Satz.

Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a;, ..., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?

Angenommen wir konnten Nachstes Paar in o(nlog n)
Zeit l6sen — dann auch Element Uniqueness! ﬁ
Wie? Teste, ob das nachste Paar Abstand 0 hat!

Genaugenommen muss man die Zahlen ai,...,an in eine Menge von (paarweise verschiedenen!)

Punkten der Ebene transformieren, aber auch das geht! — Wie? /

bt — Ofe

12

Ist die Laufzeit O(nlog n) optimal?

Def.

Satz.

Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a;, ..., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?

Angenommen wir konnten Nachstes Paar in o(nlog n)
Zeit l6sen — dann auch Element Uniqueness! ﬁ
Wie? Teste, ob das nachste Paar Abstand 0 hat!

Genaugenommen muss man die Zahlen aq, ., an in eine Menge von (paarweise verschiedenen!)

Punkten der Ebene transformieren, aber auch das gehtI Wie?
D . - Jate o g/

12

Ist die Laufzeit O(nlog n) optimal?

Def.

Satz.

Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a;, ..., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?

Angenommen wir konnten Nachstes Paar in o(nlog n)
Zeit l6sen — dann auch Element Uniqueness! ﬁ
Wie? Teste, ob das nachste Paar Abstand 0 hat!

Genaugenommen muss man die Zahlen aq, ., an in eine Menge von (paarweise verschiedenen!)

Punkten der Ebene transformieren, aber auch das gehtI Wie?
. /(}Ié‘@‘@“@/

12

Ist die Laufzeit O(nlog n) optimal?

Def.

Satz.

Element-Uniqueness-Problem (fiir natiirliche Zahlen)

Gegeben eine Folge a;, ..., a, von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. a; # a; fur 1 # 7

Das Element-Uniqueness-Problem kann nicht schneller
als in 2(nlog n) Zeit gelost werden

Was bedeutet das fiir das Problem Nachstes Paar?

Angenommen wir konnten Nachstes Paar in o(nlog n)
Zeit l6sen — dann auch Element Uniqueness! ﬁ
Wie? Teste, ob das nachste Paar Abstand 0 hat!

Genaugenommen muss man die Zahlen aq, ., an in eine Menge von (paarweise verschiedenen!)

Punkten der Ebene transformieren, aber auch das gehtI Wie?
. /(}Ié‘@j@“@/

Das heil3t. ..

Satz.

Kor.

Das Problem Nachstes Paar kann nicht schneller als in
2(nlog n) Zeit gelost werden

Unser O(nlog n)-Zeit-Algorithmus fiir das Problem
Nachstes Paar ist asymptotisch optimal

13

Uben. iiben, iiben.

14

14

Uben, uben, uben.

e Implementieren Sie die einfache Brute-Force-Losung in Java.

14

Uben, iiben, iiben.
e Implementieren Sie die einfache Brute-Force-Losung in Java.

e Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(e,0)-Kandidaten testet.

14

Uben, iiben, iiben.
e Implementieren Sie die einfache Brute-Force-Losung in Java.

e Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(e,0)-Kandidaten testet.

14

Uben, iiben, iiben.
e Implementieren Sie die einfache Brute-Force-Losung in Java.

e Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(e,0)-Kandidaten testet.

e Implementieren Sie den hier vorgestellten Teile-und-Herrsche-
Algorithmus, der in O(nlog” n) Zeit l3uft!

14

Uben, iiben, iiben.
e Implementieren Sie die einfache Brute-Force-Losung in Java.

e Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(e,0)-Kandidaten testet.

e Implementieren Sie den hier vorgestellten Teile-und-Herrsche-
Algorithmus, der in O(nlog” n) Zeit l3uft!

e Implementieren Sie den hier vorgestellten
Teile-und-Herrsche-Algorithmus, der in
O(nlog n) Zeit lauft!

14

Uben, iiben, iiben.
Implementieren Sie die einfache Brute-Force-Losung in Java.

Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(e,0)-Kandidaten testet.

Implementieren Sie den hier vorgestellten Teile-und-Herrsche-
Algorithmus, der in O(nlog” n) Zeit lauft!

Implementieren Sie den hier vorgestellten '__f:',"i 2
Teile-und-Herrsche-Algorithmus, der in "-r-: o ¥
O(nlog n) Zeit lauft! L

Data Structures %
&Algorlthmsm |
> s 1}

Algorithmen & Datenstrukturen

Lernziele: In dieser Veranstaltung haben Sie schon gelernt. ..

15

Algorithmen & Datenstrukturen

Lernziele: In dieser Veranstaltung haben Sie schon gelernt. ..

die Effizienz von Algorithmen zu messen und
miteinander zu vergleichen,

grundlegende Algorithmen und
Datenstrukturen in Java zu implementieren,
selbst Algorithmen und Datenstrukturen zu
entwerfen sowie

deren Korrektheit und Effizienz zu lbeweisen.

15

Algorithmen & Datenstrukturen

Lernziele: In dieser Veranstaltung haben Sie schon gelernt. ..

e die Effizienz von Algorithmen zu messen und
miteinander zu vergleichen,

e grundlegende Algorithmen und
Datenstrukturen in Java zu implementieren,

e selbst Algorithmen und Datenstrukturen zu
entwerfen sowie

e deren Korrektheit und Effizienz zu beweisen.

Inhalt: e Grundlagen und Analysetechniken
e Sortierverfahren

e Java

e Datenstrukturen

e Graphenalgorithmen

[

Systematisches Probieren

15

15

Algorithmen & Datenstrukturen

Lernziele: In dieser Veranstaltung haben Sie schon gelernt. ..

e die Effizienz von Algorithmen zu messen und
miteinander zu vergleichen,

e grundlegende Algorithmen und
Datenstrukturen in Java zu implementieren,

e selbst Algorithmen und Datenstrukturen zu
entwerfen sowie

e deren Korrektheit und Effizienz zu beweisen.

Inhalt: e Grundlagen und Analysetechniken
e Sortierverfahren

e Java

e Datenstrukturen

e Graphenalgorithmen
e Systematisches Probieren

To do

15

Algorithmen & Datenstrukturen

Lernziele: In dieser Veranstaltung haben Sie schon gelernt. ..

e die Effizienz von Algorithmen zu messen und
miteinander zu vergleichen,

e grundlegende Algorithmen und
Datenstrukturen in Java zu implementieren,

e selbst Algorithmen und Datenstrukturen zu
entwerfen sowie

e deren Korrektheit und Effizienz zu beweisen.

Inhalt:

e Grundlagen und Analysetechniken
e Sortierverfahren

e Java

° Datenstrukturen

o

o

To do

	Titel
	Themen für den 3. Zwischentest (Do,\;15.1.26)
	Mach's besser!
	Algorithmus
	Packungsargument
	Algorithmus
	Laufzeit
	Noch besser?
	Zusammenfassung
	Ist die Laufzeit $O(n \log n)$ optimal?
	Das heißt\dots
	Üben, üben, üben.
	Algorithmen & Datenstrukturen

