
1

Algorithmen und Datenstrukturen

Wintersemester 2025

18. Vorlesung

Alexander Wolff Lehrstuhl für Informatik I

Nächstes Paar

2

Themen für den 3. Zwischentest (Do, 15.1.26)

• Rot-Schwarz-Bäume (R-S-Eigenschaften, Höhe)

• Augmentieren von Datenstrukturen

• Amortisierte Analyse

• Nächstes Paar (Teile und Herrsche)

• Graphen und Breitensuche

3

Wo

ist

das
nächste

Paar?

3

3

Problem:

Gegeben: Menge P von n Punkten in der Ebene,
jeder Punkt p ∈ P als (xp, yp).

3

Problem:

Gegeben: Menge P von n Punkten in der Ebene,
jeder Punkt p ∈ P als (xp, yp).

Finde: Punktepaar {p, q} ⊆ P mit kleinstem
(euklidischen) Abstand.

3

Problem:

Gegeben: Menge P von n Punkten in der Ebene,
jeder Punkt p ∈ P als (xp, yp).

Def. Euklidischer Abstand von p und q ist
d(p, q) =

√
(xp − xq)2 + (yp − yq)2.

Finde: Punktepaar {p, q} ⊆ P mit kleinstem
(euklidischen) Abstand.

3

(Rohe Gewalt)

Problem:

Gegeben: Menge P von n Punkten in der Ebene,
jeder Punkt p ∈ P als (xp, yp).

Lösung:

Def. Euklidischer Abstand von p und q ist
d(p, q) =

√
(xp − xq)2 + (yp − yq)2.

Finde: Punktepaar {p, q} ⊆ P mit kleinstem
(euklidischen) Abstand.

3

(Rohe Gewalt)

Problem:

Gegeben: Menge P von n Punkten in der Ebene,
jeder Punkt p ∈ P als (xp, yp).

Lösung:

• Gehe durch alle
(
n
2

)
Punktepaare und

berechne ihren Abstand.

• Gib ein Paar mit kleinstem Abstand zurück.

Def. Euklidischer Abstand von p und q ist
d(p, q) =

√
(xp − xq)2 + (yp − yq)2.

Finde: Punktepaar {p, q} ⊆ P mit kleinstem
(euklidischen) Abstand.

3

(Rohe Gewalt)

Problem:

Gegeben: Menge P von n Punkten in der Ebene,
jeder Punkt p ∈ P als (xp, yp).

Lösung:

• Gehe durch alle
(
n
2

)
Punktepaare und

berechne ihren Abstand.

• Gib ein Paar mit kleinstem Abstand zurück.

Def. Euklidischer Abstand von p und q ist
d(p, q) =

√
(xp − xq)2 + (yp − yq)2.

Finde: Punktepaar {p, q} ⊆ P mit kleinstem
(euklidischen) Abstand.

Laufzeit:

3

(Rohe Gewalt)

Problem:

Gegeben: Menge P von n Punkten in der Ebene,
jeder Punkt p ∈ P als (xp, yp).

Lösung:

• Gehe durch alle
(
n
2

)
Punktepaare und

berechne ihren Abstand.

• Gib ein Paar mit kleinstem Abstand zurück.

Def. Euklidischer Abstand von p und q ist
d(p, q) =

√
(xp − xq)2 + (yp − yq)2.

Finde: Punktepaar {p, q} ⊆ P mit kleinstem
(euklidischen) Abstand.

Laufzeit: Θ(n2)

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

Spezialfall:

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

Spezialfall:

Lösung:

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

Spezialfall:

Lösung: • Sortiere (nach x-Koordinate).

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

Spezialfall:

Lösung: • Sortiere (nach x-Koordinate).

• Berechne Abstände aller aufeinanderfolgender
Punktepaare.

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

Spezialfall:

Lösung: • Sortiere (nach x-Koordinate).

• Berechne Abstände aller aufeinanderfolgender
Punktepaare.

• Bestimme das Minimum dieser Abstände.

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

Spezialfall:

Lösung: • Sortiere (nach x-Koordinate).

• Berechne Abstände aller aufeinanderfolgender
Punktepaare.

• Bestimme das Minimum dieser Abstände.

Strukturelle Einsicht:

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

Spezialfall:

Lösung: • Sortiere (nach x-Koordinate).

• Berechne Abstände aller aufeinanderfolgender
Punktepaare.

• Bestimme das Minimum dieser Abstände.

Kandidatenmenge der Größe n − 1,
die gesuchtes Objekt enthält.

Strukturelle Einsicht:

4

Mach’s besser!

Entwurfsparadigma: – inkrementell?

– Teile und Herrsche?
– randomisiert?

Spezialfall:

Lösung: • Sortiere (nach x-Koordinate).

• Berechne Abstände aller aufeinanderfolgender
Punktepaare.

• Bestimme das Minimum dieser Abstände.

!

Kandidatenmenge der Größe n − 1,
die gesuchtes Objekt enthält.

Strukturelle Einsicht:

5

5

1. Teile

5

1. Teile

5

p⌊n/2⌋

p1

pn

1. Teile

xmed

5

p⌊n/2⌋

p1

pn

1. Teile

Plinks Prechts

xmed

5

p⌊n/2⌋

p1

pn

1. Teile
2. Herrsche

Plinks Prechts

xmed

5

p⌊n/2⌋

p1

pn

dlinks

1. Teile
2. Herrsche

Plinks Prechts

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche

Plinks Prechts

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

Anz. (•,•)-Kandidaten
für das nächste Paar?

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks

d

d

Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks

d

d

Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks

d

d

Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

5

p⌊n/2⌋

p1

pn

dlinks

drechts

1. Teile
2. Herrsche
3. Kombiniere

Plinks Prechts

d = min{dlinks, drechts}

xmed

6

d = min{dlinks, drechts}d

d

d

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

≥ drechts ≥ d

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

≥ drechts ≥ d
Packungsargument:

d/2

d/2

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

⇓

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (•,•)-Kandidaten
für das nächste Paar:
O(n).

⇓

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (•,•)-Kandidaten
für das nächste Paar:
O(n).

⇓

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (•,•)-Kandidaten
für das nächste Paar:
O(n).

⇓

Und finden?

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (•,•)-Kandidaten
für das nächste Paar:
O(n).

⇓

Und finden?

p

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (•,•)-Kandidaten
für das nächste Paar:
O(n).

⇓

Und finden?

p

Bp = [xmed, xmed + d]× [yp − d , yp + d]

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (•,•)-Kandidaten
für das nächste Paar:
O(n).

⇓

Und finden?

p

Bp = [xmed, xmed + d]× [yp − d , yp + d]

Kp = Plinks ∩ Bp

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (•,•)-Kandidaten
für das nächste Paar:
O(n).

⇓

Und finden?

p

Bp = [xmed, xmed + d]× [yp − d , yp + d]

Kp = Plinks ∩ Bp ⇒ |Kp| ≤

6

d = min{dlinks, drechts}d

d

d

Wieviele grüne Punkte
können im dunkelgrauen
(d × 2d)-Rechteck liegen?

Packungsargument:
maximal 6!

Anz. (•,•)-Kandidaten
für das nächste Paar:
O(n).

⇓

Und finden?

p

Bp = [xmed, xmed + d]× [yp − d , yp + d]

Kp = Plinks ∩ Bp ⇒ |Kp| ≤ 6

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) =
Laufzeit des rekursiven Teils,
d.h. ohne Vorverarbeitung (1.)

{

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋)

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉)

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉)

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉)

O(1)

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉)

O(1)

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉)

O(1)
O(n log n)

7

Algorithmus

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉)



O(1)
O(n log n)

7

Algorithmus

O
(n
)

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉)



O(1)
O(n log n)

7

Algorithmus

O
(n
)

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: Plinks = {p1, . . . , p⌊n/2⌋}, Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• Sortiere Plinks und Prechts nach y-Koordinate

• Seien P=
links die Punkte im grauen Streifen in Plinks. (P

=
rechts entsprech.)

Für jeden Punkt p in P=
links gehe in P=

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp).

• Bestimme Min. dmitte über alle d(p, q) mit p ∈ P=
links und q ∈ Kp.

• Gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)



O(1)
O(n log n)

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

Also T (n) ≈ 2T (n/2) + O(n log n)

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

Also T (n) ≈ 2T (n/2) + O(n log n)

Rekursionsgleichung mit Master-Theorem lösen?

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

Also T (n) ≈ 2T (n/2) + O(n log n)

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:
a = b = 2, f (n) = O(n log n).

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

Also T (n) ≈ 2T (n/2) + O(n log n)

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:
a = b = 2, f (n) = O(n log n).

Betrachte nlogb a = nlog2 2 = n1.

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

Also T (n) ≈ 2T (n/2) + O(n log n)

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:
a = b = 2, f (n) = O(n log n).

Betrachte nlogb a = nlog2 2 = n1.

Gilt f ∈


O(n1−ε) für ein ε > 0

Θ(n1)

Ω(n1+ε) für ein ε > 0

 ?

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

Also T (n) ≈ 2T (n/2) + O(n log n)

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:
a = b = 2, f (n) = O(n log n).

Betrachte nlogb a = nlog2 2 = n1.

Gilt f ∈


O(n1−ε) für ein ε > 0

Θ(n1)

Ω(n1+ε) für ein ε > 0

 ?

Nein, f : n 7→ O(n log n) passt in keinen der drei Fälle.

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

Also T (n) ≈ 2T (n/2) + O(n log n)

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:
a = b = 2, f (n) = O(n log n).

Betrachte nlogb a = nlog2 2 = n1.

Gilt f ∈


O(n1−ε) für ein ε > 0

Θ(n1)

Ω(n1+ε) für ein ε > 0

 ?

Nein, f : n 7→ O(n log n) passt in keinen der drei Fälle.

Die Rekursionsbaummethode liefert. . .

8

Laufzeit T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + O(n log n)

Also T (n) ≈ 2T (n/2) + O(n log n)

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:
a = b = 2, f (n) = O(n log n).

Betrachte nlogb a = nlog2 2 = n1.

Gilt f ∈


O(n1−ε) für ein ε > 0

Θ(n1)

Ω(n1+ε) für ein ε > 0

 ?

Nein, f : n 7→ O(n log n) passt in keinen der drei Fälle.

Die Rekursionsbaummethode liefert. . .T (n) = O(n log2 n).

9

Noch besser?

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: P in Plinks = {p1, . . . , p⌊n/2⌋} und Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• sortiere Plinks und Prechts nach y-Koordinate

• gehe
”
gleichzeitig“ durch Plinks und Prechts:

für jeden Punkt p in Plinks gehe in Prechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp)

• bestimme Min. dmitte über alle d(p, q) mit p ∈ Plinks und q ∈ Kp

• gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück

T (n) ≈ 2T (n/2)+ O(n log n)

O(
n
)

= O(n log2 n)

O(n log n)

9

Noch besser?

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: P in Plinks = {p1, . . . , p⌊n/2⌋} und Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• sortiere Plinks und Prechts nach y-Koordinate

• gehe
”
gleichzeitig“ durch Plinks und Prechts:

für jeden Punkt p in Plinks gehe in Prechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp)

• bestimme Min. dmitte über alle d(p, q) mit p ∈ Plinks und q ∈ Kp

• gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück

T (n) ≈ 2T (n/2)+ O(n log n)

O(
n
)

= O(n log2 n)

O(n log n)

9

Noch besser?

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

2. Teile: P in Plinks = {p1, . . . , p⌊n/2⌋} und Prechts = P \ Plinks

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts

4. Kombiniere:

• d = min{dlinks, drechts}
• sortiere Plinks und Prechts nach y-Koordinate

• gehe
”
gleichzeitig“ durch Plinks und Prechts:

für jeden Punkt p in Plinks gehe in Prechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp)

• bestimme Min. dmitte über alle d(p, q) mit p ∈ Plinks und q ∈ Kp

• gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück

T (n) ≈ 2T (n/2)+ O(n log n)

O(
n
)

= O(n log2 n)

?!

O(n log n)

10

Noch besser!

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts
4. Kombiniere:

• d = min{dlinks, drechts}

P ′ in P ′
links und P ′

rechts (sortiert nach y-Koordinate)

• gehe
”
gleichzeitig“ durch P ′

links und P ′
rechts:

für jeden Punkt p in P ′
links gehe in P ′

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp)

• bestimme Min. dmitte über alle d(p, q) mit p ∈ P ′
links und q ∈ Kp

• gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück

T (n) ≈ 2T (n/2)+ O(n log n)



= O(n log2 n)

u. P ′=P nach y-Koordinate → p′1, . . . , p
′
n mit y ′

1 ≤ · · · ≤ y ′
n

O
(n
)

2. Teile: P in Plinks = {p1, . . . , p⌊n/2⌋} und Prechts = P \ Plinks

10

Noch besser!

1. Sortiere P nach x-Koordinate → p1, . . . , pn mit x1 ≤ · · · ≤ xn

3. Herrsche:
bestimme rekursiv kleinsten Abstand dlinks v. Paaren in Plinks

drechts Prechts
4. Kombiniere:

• d = min{dlinks, drechts}

P ′ in P ′
links und P ′

rechts (sortiert nach y-Koordinate)

• gehe
”
gleichzeitig“ durch P ′

links und P ′
rechts:

für jeden Punkt p in P ′
links gehe in P ′

rechts bis y-Koord. yp + d ;
halte die letzten 6 Punkte im grauen Streifen aufrecht (→ Kp)

• bestimme Min. dmitte über alle d(p, q) mit p ∈ P ′
links und q ∈ Kp

• gib Min. von dmitte, dlinks und drechts (und entspr. Paar) zurück

T (n) ≈ 2T (n/2)+ O(n log n)



= O(n log2 n)

u. P ′=P nach y-Koordinate → p′1, . . . , p
′
n mit y ′

1 ≤ · · · ≤ y ′
n

O
(n
)

2. Teile: P in Plinks = {p1, . . . , p⌊n/2⌋} und Prechts = P \ Plinks

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren)

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen O(n)

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

O(n)

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

O(n)

2T (n/2)

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

O(n)

2T (n/2)

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

O(n)

2T (n/2)

O(n)

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

O(n)

2T (n/2)

O(n)

T (n) =

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

O(n)

2T (n/2)

O(n)

T (n) = O(n log n) [MergeSort-Rek.!]

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

Gesamtlaufzeit

O(n)

2T (n/2)

O(n)

T (n) = O(n log n) [MergeSort-Rek.!]

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

Gesamtlaufzeit O(n log n)

O(n)

2T (n/2)

O(n)

T (n) = O(n log n) [MergeSort-Rek.!]

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

Gesamtlaufzeit O(n log n)

O(n)

2T (n/2)

O(n)

T (n) =

Speicherplatzbedarf?

O(n log n) [MergeSort-Rek.!]

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

Gesamtlaufzeit O(n log n)

O(n)

2T (n/2)

O(n)

T (n) =

Speicherplatzbedarf?

O(n),

O(n log n) [MergeSort-Rek.!]

11

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) O(n log n)

2. Teilen

3. Herrschen

4. Kombinieren

Gesamtlaufzeit O(n log n)

O(n)

2T (n/2)

O(n)

T (n) =

Speicherplatzbedarf?

wenn P ′ in situ in P ′
links und P ′

rechts zerlegt wird.O(n),

O(n log n) [MergeSort-Rek.!]

12

Ist die Laufzeit O(n log n) optimal?

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen –

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!
Wie?

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!
Wie? Teste, ob das nächste Paar Abstand 0 hat!

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!
Wie? Teste, ob das nächste Paar Abstand 0 hat!
Genaugenommen muss man die Zahlen a1, . . . , an in eine Menge von (paarweise verschiedenen!)
Punkten der Ebene transformieren, aber auch das geht! – Wie?

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!
Wie? Teste, ob das nächste Paar Abstand 0 hat!
Genaugenommen muss man die Zahlen a1, . . . , an in eine Menge von (paarweise verschiedenen!)
Punkten der Ebene transformieren, aber auch das geht! – Wie?

a1a4a6a3 a2/5

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!
Wie? Teste, ob das nächste Paar Abstand 0 hat!
Genaugenommen muss man die Zahlen a1, . . . , an in eine Menge von (paarweise verschiedenen!)
Punkten der Ebene transformieren, aber auch das geht! – Wie?

ε
≥ 1−εa1a4a6a3 a2/5

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!
Wie? Teste, ob das nächste Paar Abstand 0 hat!
Genaugenommen muss man die Zahlen a1, . . . , an in eine Menge von (paarweise verschiedenen!)
Punkten der Ebene transformieren, aber auch das geht! – Wie?

ε
≥ 1−εa1a4a6a3 a2/5

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!
Wie? Teste, ob das nächste Paar Abstand 0 hat!
Genaugenommen muss man die Zahlen a1, . . . , an in eine Menge von (paarweise verschiedenen!)
Punkten der Ebene transformieren, aber auch das geht! – Wie?

ε
≥ 1−εa1a4a6a3 a2/5

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

12

Ist die Laufzeit O(n log n) optimal?

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in o(n log n)
Zeit lösen – dann auch Element Uniqueness!
Wie? Teste, ob das nächste Paar Abstand 0 hat!
Genaugenommen muss man die Zahlen a1, . . . , an in eine Menge von (paarweise verschiedenen!)
Punkten der Ebene transformieren, aber auch das geht! – Wie?

ε
≥ 1−ε≤ εa1a4a6a3 a2/5

Satz. Das Element-Uniqueness-Problem kann nicht schneller
als in Ω(n log n) Zeit gelöst werden –
wenn man als Rechenmodell das sogenannte
algebraische Entscheidungsbaummodell zugrunde legt.

Def. Element-Uniqueness-Problem (für natürliche Zahlen)

Gegeben eine Folge a1, . . . , an von n Zahlen,
kommt jede Zahl nur einmal vor, d.h. ai ̸= aj für i ̸= j?

13

Das heißt. . .

Satz. Das Problem Nächstes Paar kann nicht schneller als in
Ω(n log n) Zeit gelöst werden, wenn man als Rechen-
modell das algebraische Entscheidungsbaummodell
zugrunde legt.

Kor. Unser O(n log n)-Zeit-Algorithmus für das Problem
Nächstes Paar ist asymptotisch optimal, wenn man. . . .

14

Üben, üben, üben.

14

Üben, üben, üben.

• Implementieren Sie die einfache Brute-Force-Lösung in Java.

14

Üben, üben, üben.

• Implementieren Sie die einfache Brute-Force-Lösung in Java.

• Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(•,•)-Kandidaten testet.

14

Üben, üben, üben.

• Implementieren Sie die einfache Brute-Force-Lösung in Java.

• Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(•,•)-Kandidaten testet. (Ist der schneller als der Brute-Force-Alg.?)

14

Üben, üben, üben.

• Implementieren Sie die einfache Brute-Force-Lösung in Java.

• Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(•,•)-Kandidaten testet.

• Implementieren Sie den hier vorgestellten Teile-und-Herrsche-
Algorithmus, der in O(n log2 n) Zeit läuft!

(Ist der schneller als der Brute-Force-Alg.?)

14

Üben, üben, üben.

• Implementieren Sie die einfache Brute-Force-Lösung in Java.

• Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(•,•)-Kandidaten testet.

• Implementieren Sie den hier vorgestellten Teile-und-Herrsche-
Algorithmus, der in O(n log2 n) Zeit läuft!

• Implementieren Sie den hier vorgestellten
Teile-und-Herrsche-Algorithmus, der in
O(n log n) Zeit läuft!

(Ist der schneller als der Brute-Force-Alg.?)

14

Üben, üben, üben.

• Implementieren Sie die einfache Brute-Force-Lösung in Java.

• Implementieren Sie einen einfachen Teile-und-Herrsche-Algo-
rithmus, der im Herrsche-Schritt alle (quadratisch vielen)
(•,•)-Kandidaten testet.

• Implementieren Sie den hier vorgestellten Teile-und-Herrsche-
Algorithmus, der in O(n log2 n) Zeit läuft!

• Implementieren Sie den hier vorgestellten
Teile-und-Herrsche-Algorithmus, der in
O(n log n) Zeit läuft!

Goodrich & Tamassia:
Data Structures & Algorithms in Java.
Wiley, 4. Aufl., 2005 (5. Aufl., 2010)

(Ist der schneller als der Brute-Force-Alg.?)

15

Algorithmen & Datenstrukturen

Lernziele: In dieser Veranstaltung haben Sie schon gelernt. . .

15

Algorithmen & Datenstrukturen

Lernziele:

• die Effizienz von Algorithmen zu messen und
miteinander zu vergleichen,

• grundlegende Algorithmen und
Datenstrukturen in Java zu implementieren,

• selbst Algorithmen und Datenstrukturen zu
entwerfen sowie

• deren Korrektheit und Effizienz zu beweisen.

In dieser Veranstaltung haben Sie schon gelernt. . .

15

Algorithmen & Datenstrukturen

• Grundlagen und Analysetechniken
• Sortierverfahren
• Java
• Datenstrukturen
• Graphenalgorithmen
• Systematisches Probieren

Lernziele:

Inhalt:

• die Effizienz von Algorithmen zu messen und
miteinander zu vergleichen,

• grundlegende Algorithmen und
Datenstrukturen in Java zu implementieren,

• selbst Algorithmen und Datenstrukturen zu
entwerfen sowie

• deren Korrektheit und Effizienz zu beweisen.

In dieser Veranstaltung haben Sie schon gelernt. . .

15

Algorithmen & Datenstrukturen

• Grundlagen und Analysetechniken
• Sortierverfahren
• Java
• Datenstrukturen
• Graphenalgorithmen
• Systematisches Probieren

Lernziele:

Inhalt:

• die Effizienz von Algorithmen zu messen und
miteinander zu vergleichen,

• grundlegende Algorithmen und
Datenstrukturen in Java zu implementieren,

• selbst Algorithmen und Datenstrukturen zu
entwerfen sowie

• deren Korrektheit und Effizienz zu beweisen.

In dieser Veranstaltung haben Sie schon gelernt. . .
T
o
d
o

15

Algorithmen & Datenstrukturen

• Grundlagen und Analysetechniken
• Sortierverfahren
• Java
• Datenstrukturen
• Graphenalgorithmen
• Systematisches Probieren

Lernziele:

Inhalt:

• die Effizienz von Algorithmen zu messen und
miteinander zu vergleichen,

• grundlegende Algorithmen und
Datenstrukturen in Java zu implementieren,

• selbst Algorithmen und Datenstrukturen zu
entwerfen sowie

• deren Korrektheit und Effizienz zu beweisen.

In dieser Veranstaltung haben Sie schon gelernt. . .

(dynamisches Progr., Greedy-Alg.)

(kürzeste Wege, min. Spannbäume)

T
o
d
o

	Titel
	Themen für den 3. Zwischentest (Do,\;15.1.26)
	Mach's besser!
	Algorithmus
	Packungsargument
	Algorithmus
	Laufzeit
	Noch besser?
	Zusammenfassung
	Ist die Laufzeit $O(n \log n)$ optimal?
	Das heißt\dots
	Üben, üben, üben.
	Algorithmen & Datenstrukturen

