»—‘ gf,fa;ﬁﬂ 'll%l 3 g_
SELE R

Algorithmen und Datenstrukturen

Vorlesung 17:
Graphen und Breitensuche

Alexander Wolff Wintersemester 2025

Was ist das?

Ein (und derselbe) Graph; der dreidimensionale Hyperwiirfel. 57

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V, E), wobei

— V Knotenmenge und
- EC (%) ={{u,v} CV|u# v} Kantenmenge.

V = {000, 001, . . .,
{u,vie E & 7

Ein gerichteter Graph ist ein Paar (V, E) , wobei

— V Knotenmenge und
-ECVxV={(u,v)|uveV} Kantenmenge.

Soziale Netzwerke — Verhaltnisse

oWt

NressssPPzes ==

Velitchko Filipov, Davide Ceneda, Michael Koller, Alessio Arleo, and Silvia Miksch, GD Contest 2018

Neuronale Netzwerke

input
layer convolutional fully-connected

Q—Q\ layers hidden layers
CE0T0-

8:81 = = \OX/ S
CASE

IHA LD
7StraBennetze

12 0

13-19

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e4—»{3|e—w{4 |0 110 1 0 1 O
4| o4—l1[e+—>{3|e}—> 5|0 2101 00
3|eT>12/e—>{4|e—>5[c] 3|0 1 0 1 1
2| e—>{3|e—>1 |0 410101
1| o+—»{2|e+—>{4]|0 510 01 1 0
ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
1 2 3 45
/,@ 5 [e—»(3T5 fooo o
¢3) 1@, 4| e+—»l 5 [e+—»{3]0 211 0 0 0O
3| e+—2]|0 310 1.0 0 O
| e+—i1|0 410 0 1 0 1
(::}‘--42) 1| e+—»l4]o0 510 01 00
gerichteter Adj[i] — {J cV | (,"j) - E} ajj = 1= (I,j) cE

Graph

14 - 16

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

[Eine Kante ist inzident zu |
ihren Endknoten.

/ahle alle Knoten-Kanten-Inzidenzen.

Ein Knoten ist inzident zu |

Aus Sicht der Knoten: ZvEV deg(v) |2/en Kanten, deren

| Endknoten er ist.

Aus SlCht der Kanten: 2 - |E| also g|e|ch|

14 - 27

Grad eines Knotens

Def.
O dealo) = IAdil]
_}®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

(Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade. J

Beweis. 2-|E[=) ., deg(v) =3, cv deg(v)+2 ¢y, deg(v)

ung

gerade! gerade! gerade! = gerade_l
Zvevung deg(v) gerade = \Vung\ Ist gerade! []

15-9

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

: : : Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [SOPRTER TP]

Charakterisierung: Bei raphen geht das (nicht)?

Konstruktion: Wie (ulld ipAvelcher Zeit) finde ich einen _
solch undlauf, falls er existiert?
2. Durchlaufe einen Graphen auf einem Kreis, Bosdan G'iu;cg,-cﬁi_g;\ S0

via Wikimedia Commons

so dass jeder Knoten genau einmal durchlaufen wird.

[Das Haus vom Nikolaus]

S XX

Bei welchen Graghen geht das (nicht)?

=Skl P WET < « &

A https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

== Kapitin Nemo, Public domain, via Wikimedia Commons

16 - 11

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

[11

Def. Ein ungerichteter Graph heiBt zusammenhangend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

Def. Ein gerichteter Graph heit (schwach) zusammenhangend, wenn
der zugehorige ungerichtete Graph zusammenhangend ist.

Def. Einen maximalen zusammenhangenden Teilgraphen nennt man eine
Zusammenhangskomponente.

Wie durchlaufe ich einen Graphen?

17 - 10

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

Ll

1. wellenformige Ausbreitung ab s
Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html

2. von s moglichst schnell weit weg

Tiefensuche (depth-first search, DFS)
(n3chstes M/am

¢

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[u] do
if v.color == white then
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(V) L uw=nil (Vorginger]
— 1 s.color = red
| u.color = blue B

Demo.

https://algo.uni-trier.de/demos/graphtraversal.html

https://algo.uni-trier.de/demos/graphtraversal.html

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[u] do
if v.color == white then
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(V) L uw=nil (Vorginger]
— 1 s.color = red
| u.color = blue B

(INITIALIZE] [EN—/DEQUEUES] [Adjazenzlisten (foreach—SchIeifen)]

Laufzeit? — O(|V]) + O([V]) + O(E)) = O(V|+|E|)

[Beob. tiber Knotengrade!]

19-12

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

V Dieser s-v-Weg hat Lange (s, u) + 1.
(s M
5 U y Kurzester s-v-Weg hat Lange < 6(s, u) + 1.

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel:

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/g tatsichlicher Abstand von s

Lemma 1.

(Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis.

2. Fall: u ist nicht von s erreichbar (d.h. 3 s-u-Weg)

v = d(s, u) = o0
) = §(s,v)<oo+1¢
So u

19-15

20 - 26

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) :
. @ = new QUEUE() : A
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5)
. while not Q. EmpTY() do : . .
' | u— Q.Drqueus() : B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)
foreach v € Adj[u] d : . :
Oeiafcv.color :J: 'whzte then kK > 1: Situation nach Q.ENQUEUE(V): /
v.color = red : . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
= - v.d=ud+1>0d(s,u)+12=>d(s,v)
Q.ENQUEUE(v) : — r = ;
| U color = blue E (Induktionsannahme f'Lir/h

""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)

Jetzt ist v rot. = v.d andert sich nicht mehr. []

Korrektheit von BFS — Fortsetzung

Lemma 2.

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Lemma 3.

Sei @ = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d < vp.d+1 und
(B) V,'.d S V,'_|_1.d furi =1, ..., r—1.

[Also d-Werte der Knoten in Q z.B. (3, 3,4,4,4>.]

Korollar.

Angenommen u wird frither als v in @ eingefiigt,
dann gilt u.d < v.d, wenn v in Q eingefiigt wird.

Beweis.

Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten < 1x einen endlichen d-Wert bekommt.

21 -

22 - 10

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also (i) zu zeigen.
Lemma 2 = v.d > d(s,v). Noch z.z.: v.d < (s, v).

Widerspruchsbeweis mit Wahl des , kleinsten Schurken®.
Siehe Kapitel 22.2 [CLRS].

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

Klar:

Behauptung: G; ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

={veV:vr#mnml}U{s} 32"\: P
={(v.m,v):ve V. \{s}}} " b

G, ist ein Baum (da zshg. und |E;| = |V| — 1).

m V,={v e V:verreichbar von s}

m fiir alle v € V. enthidlt G, einen eindeutigen Weg von
s nach v, der ein kiirzester s-v-Weg ist.

Beweis: Folgt aus (ii) und (iii) im Hauptsatz. []

23 - 13

	Graphen und Breitensuche
	Was ist das?
	Was ist ein Graph?

	Wie repräsentiere ich einen Graphen?
	Grad eines Knotens
	Rundlaufstrategien für ungerichtete Graphen
	Zusammenhang
	Wie durchlaufe ich einen Graphen?
	Breitensuche
	Korrektheit von BFS
	Lemma 1
	Lemma 2
	Lemma 3
	Hauptsatz

	BFS-Bäume

