
1

Algorithmen und Datenstrukturen

Vorlesung 17:
Graphen und Breitensuche

∞

1

1

0

2

2

2

Alexander Wolff Wintersemester 2025

2 - 1

Was ist das?

2 - 2

Was ist das?

Ein (und derselbe) Graph.

2 - 3

Was ist das?

Ein (und derselbe) Graph.; der dreidimensionale Hyperwürfel.

3 - 1

Was ist ein Graph?

3 - 2

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V ,E)

3 - 3

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V ,E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=

{
{u, v} ⊆ V | u ̸= v

}
Kantenmenge.

, wobei

3 - 4

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V ,E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=

{
{u, v} ⊆ V | u ̸= v

}
Kantenmenge.

, wobei

3 - 5

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V ,E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=

{
{u, v} ⊆ V | u ̸= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111
110

3 - 6

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V ,E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=

{
{u, v} ⊆ V | u ̸= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111

Tom Tobey

110

Andrew

3 - 7

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V ,E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=

{
{u, v} ⊆ V | u ̸= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111

Tom Tobey

110

Andrew

Ein gerichteter Graph ist ein Paar (V ,E)

– V Knotenmenge und
– E ⊆ V × V = {(u, v) | u, v ∈ V } Kantenmenge.

, wobei

4

Soziale Netzwerke – Familienbäume

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster Ahnentafel Herzog Ludwig von Württemberg, 1585

5

Soziale Netzwerke – Verhältnisse

Velitchko Filipov, Davide Ceneda, Michael Koller, Alessio Arleo, and Silvia Miksch, GD Contest 2018

6 - 1

Transportnetzwerke – Londoner U-Bahn

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0

6 - 2

Transportnetzwerke – Londoner U-Bahn

Source: Wiki Commons: London Underground Overground DLR Crossrail map - CC BY-SA 4.0

6 - 3

Transportnetzwerke – Londoner U-Bahn

7

Bioinformatik – Molekulare metabolische Netzwerke

Source: Wiki Commons: Citric acid cycle with aconitate 2 - CC BY-SA 3.0 Source: Thiele et al., Nature Biotechnology 31, 419–425 (2013)

8

Technische Netzwerke – Very Large-Scale Integration (VLSI)

Source: Wiki Commons: Diopsis - CC BY-SA 3.0

Source: Pixabay

9

Technische Netzwerke – UML-Diagramme

© AWS

10

Informative Netzwerke

André Schulz, GD Contest 2023

Najla Amira Ochoa Leonor and Daniela Martinez Duarte, GD Contest 2021

11

Neuronale Netzwerke

convolutional
layers

fully-connected
hidden layers

input
layer

output
layer

Source: Izaak Neutelings, https://tikz.net/neural_networks

12 - 1

?

Straßennetze

12 - 2

?

Straßennetze

12 - 3

?

Straßennetze

12 - 4

?

Straßennetze

13 - 1

Wie repräsentiere ich einen Graphen?

1 2

34

5

ungerichteter
Graph

13 - 2

Wie repräsentiere ich einen Graphen?

1 2

34

5

Adjazenzlistenungerichteter
Graph

13 - 3

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

Adjazenzlistenungerichteter
Graph

13 - 4

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

2

Adjazenzlistenungerichteter
Graph

13 - 5

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

42

Adjazenzlistenungerichteter
Graph

13 - 6

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42

Adjazenzlistenungerichteter
Graph

13 - 7

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42

Adjazenzlistenungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 8

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42

Adjazenzlisten Adjazenzmatrixungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 9

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

Adjazenzlisten Adjazenzmatrixungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 10

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrixungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 11

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 12

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 13

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 14

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 15

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 16

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 17

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

gerichteter
Graph

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 18

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

1
2
3
4
5

5 3
2
1

3

4

gerichteter
Graph

ungerichteter
Graph

Adj[i] = {j ∈ V | (i , j) ∈ E}

Wir sagen: Knoten 3 und 5 sind adjazent.

13 - 19

Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

1
2
3
4
5

5 3
2
1

3

4 5
4
3
2
1

1 2 3 4 5

0 0 1 0 0

0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 1

gerichteter
Graph

ungerichteter
Graph

Adj[i] = {j ∈ V | (i , j) ∈ E} ai j = 1 ⇔ (i , j) ∈ E

Wir sagen: Knoten 3 und 5 sind adjazent.

14 - 1

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

14 - 2

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

14 - 3

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

14 - 4

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

14 - 5

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

14 - 6

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

2 · |E | .

14 - 7

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

2 · |E | .

14 - 8

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

2 · |E | .

14 - 9

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

2 · |E | .

14 - 10

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

2 · |E | .

14 - 11

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Eine Kante ist inzident zu
ihren Endknoten.

2 · |E | .

14 - 12

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Eine Kante ist inzident zu
ihren Endknoten.

Ein Knoten ist inzident zu
allen Kanten, deren
Endknoten er ist.

2 · |E | .

14 - 13

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten:

Eine Kante ist inzident zu
ihren Endknoten.

Ein Knoten ist inzident zu
allen Kanten, deren
Endknoten er ist.

2 · |E | .

14 - 14

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten:

∑
v∈V deg(v)

Eine Kante ist inzident zu
ihren Endknoten.

Ein Knoten ist inzident zu
allen Kanten, deren
Endknoten er ist.

2 · |E | .

14 - 15

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten:

∑
v∈V deg(v)

2 · |E |

Eine Kante ist inzident zu
ihren Endknoten.

Ein Knoten ist inzident zu
allen Kanten, deren
Endknoten er ist.

2 · |E | .

14 - 16

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten: also gleich!

∑
v∈V deg(v)

2 · |E |

Eine Kante ist inzident zu
ihren Endknoten.

Ein Knoten ist inzident zu
allen Kanten, deren
Endknoten er ist.

2 · |E | .

14 - 17

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

✓2 · |E | .

14 - 18

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 19

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v)

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 20

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 21

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

gerade!

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 22

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

gerade! gerade!

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 23

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

gerade! gerade! gerade!

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 24

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

gerade! gerade! gerade!

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 25

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

gerade! gerade! gerade! ⇒ gerade!

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 26

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

gerade! gerade! gerade! ⇒ gerade!∑
v∈V ung

deg(v) gerade ⇒

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

14 - 27

Grad eines Knotens

Beob. Sei G = (V ,E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

gerade! gerade! gerade! ⇒ gerade!∑
v∈V ung

deg(v) gerade ⇒ |V ung| ist gerade! □

✓
Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .

15 - 1

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

15 - 2

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

15 - 3

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Königsberger Brückenproblem

Bogdan Giuşcă, CC BY-SA 3.0,
via Wikimedia Commons

15 - 4

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Königsberger Brückenproblem

Bogdan Giuşcă, CC BY-SA 3.0,
via Wikimedia Commons

Das Haus vom Nikolaus

https://www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

15 - 5

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

Königsberger Brückenproblem

Bogdan Giuşcă, CC BY-SA 3.0,
via Wikimedia Commons

Das Haus vom Nikolaus

https://www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

15 - 6

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Königsberger Brückenproblem

Bogdan Giuşcă, CC BY-SA 3.0,
via Wikimedia Commons

Das Haus vom Nikolaus

https://www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

15 - 7

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

Königsberger Brückenproblem

Bogdan Giuşcă, CC BY-SA 3.0,
via Wikimedia Commons

Das Haus vom Nikolaus

https://www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

Kapitän Nemo, Public domain, via Wikimedia Commons

15 - 8

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

P
Königsberger Brückenproblem

Bogdan Giuşcă, CC BY-SA 3.0,
via Wikimedia Commons

Das Haus vom Nikolaus

https://www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

Kapitän Nemo, Public domain, via Wikimedia Commons

15 - 9

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

P
Königsberger Brückenproblem

Bogdan Giuşcă, CC BY-SA 3.0,
via Wikimedia Commons

Das Haus vom Nikolaus

https://www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

Kapitän Nemo, Public domain, via Wikimedia Commons

NP-schwer

16 - 1

Zusammenhang
Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist

eine Folge von Kanten, die in u beginnt und in v endet.

16 - 2

Zusammenhang

u

v

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

16 - 3

Zusammenhang

u

v

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

16 - 4

Zusammenhang

u

v

✓

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

16 - 5

Zusammenhang

u

v

u

v

✓

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

16 - 6

Zusammenhang

✓
u

v

u

v

✓

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

16 - 7

Zusammenhang

✓
u

v

u

v

u

v

✓

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

16 - 8

Zusammenhang

✓
u

v

u

v

u

v

✓ ✗

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

16 - 9

Zusammenhang

✓
u

v

u

v

u

v

✓ ✗

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

Def. Ein ungerichteter Graph heißt zusammenhängend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

16 - 10

Zusammenhang

✓
u

v

u

v

u

v

✓ ✗

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

Def. Ein ungerichteter Graph heißt zusammenhängend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

Def. Ein gerichteter Graph heißt (schwach) zusammenhängend, wenn
der zugehörige ungerichtete Graph zusammenhängend ist.

16 - 11

Zusammenhang

✓
u

v

u

v

u

v

✓ ✗

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in u beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

Def. Ein ungerichteter Graph heißt zusammenhängend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

Def. Ein gerichteter Graph heißt (schwach) zusammenhängend, wenn
der zugehörige ungerichtete Graph zusammenhängend ist.

Def. Einen maximalen zusammenhängenden Teilgraphen nennt man eine
Zusammenhangskomponente.

17 - 1

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

17 - 2

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?
Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

17 - 3

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?
Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

17 - 4

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?
Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

17 - 5

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

1. wellenförmige Ausbreitung ab s

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

17 - 6

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

1. wellenförmige Ausbreitung ab s

Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

17 - 7

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

1. wellenförmige Ausbreitung ab s

Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

17 - 8

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

1. wellenförmige Ausbreitung ab s

Breitensuche (breadth-first search, BFS)

2. von s möglichst schnell weit weg

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

17 - 9

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

1. wellenförmige Ausbreitung ab s

Breitensuche (breadth-first search, BFS)

2. von s möglichst schnell weit weg

Tiefensuche (depth-first search, DFS)

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

17 - 10

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

1. wellenförmige Ausbreitung ab s

Breitensuche (breadth-first search, BFS)

2. von s möglichst schnell weit weg

Tiefensuche (depth-first search, DFS)
heute

Amit Patel, “Introduction to the A∗
Algorithm”, Red Blob Games, 2014,
https://www.redblobgames.com/
pathfinding/a-star/introduction.html

nächstes Mal

18 - 1

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

r s t

v w x

18 - 2

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

r s t

v w x

18 - 3

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

18 - 4

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

18 - 5

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

18 - 6

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

18 - 7

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞ ∞

∞∞

18 - 8

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞ ∞

∞∞

18 - 9

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞ ∞

∞

Vorgänger

∞

18 - 10

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞ ∞

∞

Vorgänger

∞

18 - 11

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

∞

0

18 - 12

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

s

Q:

∞

0

18 - 13

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

s

Q:

∞

0

18 - 14

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

s

Q:

∞

0

18 - 15

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

Q:

∞

0

18 - 16

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

Q:

∞

0

18 - 17

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

Q:

∞

0

18 - 18

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

Q:

∞

0

Aufgabe:

Schreiben Sie Pseudocode, so dass:
v .d = Länge eines kürzesten

s-v -Weges über u, falls ...
v .π = Vorgänger auf diesem Weg

18 - 19

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

Q:

∞

0

18 - 20

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

Q:

∞

0

18 - 21

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

Q:

∞

0

18 - 22

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

∞

∞

Vorgänger

Q:

∞

0

18 - 23

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

∞

0

18 - 24

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

∞

0

18 - 25

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

∞

0

18 - 26

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

∞

0

18 - 27

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

r

∞

0

18 - 28

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

r

∞

0

18 - 29

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

r

∞

0

18 - 30

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

r

1

0

18 - 31

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

r

1

0

18 - 32

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

1

r w

0

18 - 33

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

1

r w

0

18 - 34

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

1

r w

0

18 - 35

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

1

r w

0

18 - 36

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

1

r w

0

18 - 37

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

1

0

w

18 - 38

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

∞

∞

Vorgänger

Q:1

1

0

w

18 - 39

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Vorgänger

Q:1

1

0

w

2

18 - 40

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Vorgänger

Q:1

1

0

w v

2

18 - 41

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Vorgänger

Q:1

1

0

w v

2

18 - 42

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Vorgänger

Q:1

1

0

v

2

18 - 43

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x

∞

∞

Vorgänger

Q:1

1

0

v

2

18 - 44

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

v

2

2

18 - 45

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

v t

2

2

18 - 46

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

v t

2

2

18 - 47

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

v t

2

2

2

18 - 48

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

v t x

2

2

2

18 - 49

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

v t x

2

2

2

18 - 50

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

t x

2

2

2

18 - 51

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

t x

2

2

2

18 - 52

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

x

2

2

18 - 53

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

x

2

2

18 - 54

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

18 - 55

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

18 - 56

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

18 - 57

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

https://algo.uni-trier.de/demos/graphtraversal.html

Demo.

https://algo.uni-trier.de/demos/graphtraversal.html

18 - 58

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit?

18 - 59

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit?
Initialize

18 - 60

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |)
Initialize

18 - 61

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |)
Initialize En-/Dequeues

18 - 62

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |)
Initialize En-/Dequeues

18 - 63

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |)
Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

18 - 64

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |) + O(|E |)
Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Beob. über Knotengrade!

18 - 65

Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |) + O(|E |) = O(|V |+ |E |)
Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Beob. über Knotengrade!

19 - 1

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

19 - 2

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

19 - 3

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).
berechneter Abstand von s tatsächlicher Abstand von s

19 - 4

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).
berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 5

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 6

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v
Beweis.

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 7

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v
Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 8

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v

s

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 9

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 10

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

Dieser s-v -Weg hat Länge δ(s, u) + 1.

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 11

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

Dieser s-v -Weg hat Länge δ(s, u) + 1.

⇓

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 12

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

Dieser s-v -Weg hat Länge δ(s, u) + 1.

Kürzester s-v -Weg hat Länge ≤ δ(s, u) + 1.
⇓

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

19 - 13

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v
Beweis.

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

2. Fall: u ist nicht von s erreichbar (d.h. ∄ s-u-Weg)

s

19 - 14

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v
Beweis.

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

2. Fall: u ist nicht von s erreichbar (d.h. ∄ s-u-Weg)

s

⇒ δ(s, u) = ∞

19 - 15

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v
Beweis.

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

2. Fall: u ist nicht von s erreichbar (d.h. ∄ s-u-Weg)

s

⇒ δ(s, u) = ∞
⇒ δ(s, v) ≤ ∞+ 1 ✓

20 - 1

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

20 - 2

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

20 - 3

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis.

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

20 - 4

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis.

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

20 - 5

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

20 - 6

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

20 - 7

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

20 - 8

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

20 - 9

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

20 - 10

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

20 - 11

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

20 - 12

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

20 - 13

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

20 - 14

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

20 - 15

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

20 - 16

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

20 - 17

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

20 - 18

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

20 - 19

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

Induktionsannahme für u

20 - 20

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

Induktionsannahme für u

20 - 21

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

Induktionsannahme für u

20 - 22

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

Induktionsannahme für u Lemma 1

20 - 23

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Jetzt ist v rot.
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

Induktionsannahme für u Lemma 1

20 - 24

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Jetzt ist v rot. ⇒ v .d ändert sich nicht mehr.
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

Induktionsannahme für u Lemma 1

20 - 25

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Jetzt ist v rot. ⇒ v .d ändert sich nicht mehr.
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

Induktionsannahme für u Lemma 1

20 - 26

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Jetzt ist v rot. ⇒ v .d ändert sich nicht mehr.
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

✓

□

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0

r s t

v w x
∞

1

1

0

2

2

Induktionsannahme für u Lemma 1

21 - 1

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

✓

21 - 2

Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = ⟨v1, v2, . . . , vr ⟩ während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

✓

21 - 3

Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = ⟨v1, v2, . . . , vr ⟩ während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

✓

Also d-Werte der Knoten in Q z.B. ⟨3, 3, 4, 4, 4⟩.

21 - 4

Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = ⟨v1, v2, . . . , vr ⟩ während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

✓

Also d-Werte der Knoten in Q z.B. ⟨3, 3, 4, 4, 4⟩.

Korollar. Angenommen u wird früher als v in Q eingefügt,
dann gilt u.d ≤ v .d , wenn v in Q eingefügt wird.

21 - 5

Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = ⟨v1, v2, . . . , vr ⟩ während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Beweis. Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten ≤ 1× einen endlichen d-Wert bekommt.

Lemma 2. Sei G = (V ,E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

✓

Also d-Werte der Knoten in Q z.B. ⟨3, 3, 4, 4, 4⟩.

Korollar. Angenommen u wird früher als v in Q eingefügt,
dann gilt u.d ≤ v .d , wenn v in Q eingefügt wird.

22 - 1

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

22 - 2

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

22 - 3

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

22 - 4

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

22 - 5

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Beweis.

22 - 6

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Beweis. (i) ⇒ (ii), (iii).

22 - 7

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Beweis. (i) ⇒ (ii), (iii). Es genügt also (i) zu zeigen.

22 - 8

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Beweis. (i) ⇒ (ii), (iii). Es genügt also (i) zu zeigen.

Lemma 2 ⇒ v .d ≥ δ(s, v).

22 - 9

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Beweis. (i) ⇒ (ii), (iii). Es genügt also (i) zu zeigen.

Lemma 2 ⇒ v .d ≥ δ(s, v). Noch z.z.: v .d ≤ δ(s, v).

22 - 10

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Beweis.

Widerspruchsbeweis mit Wahl des
”
kleinsten Schurken“.

Siehe Kapitel 22.2 [CLRS].

(i) ⇒ (ii), (iii). Es genügt also (i) zu zeigen.

Lemma 2 ⇒ v .d ≥ δ(s, v). Noch z.z.: v .d ≤ δ(s, v).

23 - 1

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

s

23 - 2

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}
s

23 - 3

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}
s

23 - 4

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}
s

23 - 5

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}
s

23 - 6

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum

s

23 - 7

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

s

23 - 8

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Behauptung: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

s

23 - 9

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Behauptung: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

■ Vπ = {v ∈ V : v erreichbar von s}

s

23 - 10

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Behauptung: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

■ Vπ = {v ∈ V : v erreichbar von s}
■ für alle v ∈ Vπ enthält Gπ einen eindeutigen Weg von

s nach v , der ein kürzester s-v -Weg ist.

s

23 - 11

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Behauptung: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

■ Vπ = {v ∈ V : v erreichbar von s}
■ für alle v ∈ Vπ enthält Gπ einen eindeutigen Weg von

s nach v , der ein kürzester s-v -Weg ist.

s

23 - 12

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Behauptung: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

■ Vπ = {v ∈ V : v erreichbar von s}
■ für alle v ∈ Vπ enthält Gπ einen eindeutigen Weg von

s nach v , der ein kürzester s-v -Weg ist.

Beweis:

s

23 - 13

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ,Eπ) von G :

■ Vπ = {v ∈ V : v .π ̸= nil} ∪ {s}

■ Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Behauptung: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

■ Vπ = {v ∈ V : v erreichbar von s}
■ für alle v ∈ Vπ enthält Gπ einen eindeutigen Weg von

s nach v , der ein kürzester s-v -Weg ist.

Beweis: Folgt aus (ii) und (iii) im Hauptsatz.

s

□

	Graphen und Breitensuche
	Was ist das?
	Was ist ein Graph?

	Transportnetzwerke -- Londoner U-Bahn
	Bioinformatik -- Molekulare metabolische Netzwerke
	Technische Netzwerke -- UML-Diagramme
	Wie repräsentiere ich einen Graphen?
	Grad eines Knotens
	Rundlaufstrategien für ungerichtete Graphen
	Zusammenhang
	Wie durchlaufe ich einen Graphen?
	Breitensuche
	Korrektheit von BFS
	Lemma 1
	Lemma 2
	Lemma 3
	Hauptsatz

	BFS-Bäume

