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Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V, E), wobei

— V Knotenmenge und
- EC (%) ={{u,v} CV|u# v} Kantenmenge.

V = {000, 001, . . .,
{u,vie E & 7

Ein gerichteter Graph ist ein Paar (V, E) , wobei

— V Knotenmenge und
-ECVxV={(u,v)|uveV} Kantenmenge.
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Transportnetzwerke — Londoner U-Bahn

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0



Transportnetzwerke — Londoner U-Bahn
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Bioinformatik — Molekulare metabolische Netzwerke
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Technische Netzwerke — Very Large-Scale Integration (VLSI)
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Technische Netzwerke — UML-Diagramme
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Neuronale Netzwerke

input
layer convolutional fully-connected

Q—Q\ layers hidden layers
CE0T0-

8:81 = = \OX/ S
CASE




1]
I8,

IS
felle

0i
_fr]r landgebu
Fahr.

-

|:.e r#

HE (el
. . o




/4 " o r o s o n N\ ~
L/ f - /4 AN . %) i ngr,,.-z“' .“ s I \ ) ..\
[ 4 < . . o 0 ¥ re 8 f = : ‘
T, Qe / G ; s e’ L ¥ e e - llr"f 4
) F, - - o -,
L 1‘.._31 i) I,l. s L .-'. . Ly = = "'I. = s " #
e} A A & 2 . -
4 " ) — — .. AT gl % 2 | == P
/ % AP Bt ’ N T £ e, a3 = = %
) -H\ P ._f"' = g N [ T Fag e _,-l'-’. — I | i i
£ ) N 7y : i 2 BN T o e e Wehrteghhische
= L - ~ (! = = v 1 o = 5, W
: 5 N & e - > 7 ; 3 L { %t Diensisfeiey’,
- & i - - e -
; / ) / 2 i : £ : G 2= S ' - i N~ _ fiir landgafjund
.ﬂ';':t.'n..‘tlr_:e. 5/ - 'J"'\.hﬂ : o d _;5'5‘« X ) La < 3 'A-m:'r\-'_;"ﬂ : I e [~ it 'ﬂhfzﬂ'ug IE‘J:TIE,I-‘_
L 3 A 1 : F . Y/ ! - e LR .
~ F - i G o < 1 by o Bt "IL e i -
: - -3 / > T = = ¥ " s e
o RS b L = <1 NN AL . d TruppSYgEehh
> ik T s | " g & - T ) 7o
i - J — i I
2 = - N 5 1] o ' el “'

)
o

£7¢, f & A b b — I gy

r
o
FI
o
)
N
-
i
’
f
-.

o
=
[

T
.
'IT:‘;
4
y
y

3 ; b
a1 FLANTERR - i . 1 L
ot L= 1 o ! 2

=/ 4 . ; E . i andervierjf W [ .

U

I:“__: III- .-. = - / II e _I" : 5 | T
Ty P, 4 S - / 5 - | -.

|

e
-

k

|
TN
ik Bhagy

¥
T J i 4 % Ia e I v 4
." ] / D, et ol L - _ \ o= i y y ;
} = i = g £ L
! 11y d 8 ,"'-...__.— —s i) M J £ “ E
| o —— : - G ‘ -
- N it 257 m| |
' % 5, LY I
- . - ¥ \ * (= ” i NGy
Y/ - f: Y n -y = N I,
j .-'I P L oy | g (=] L L w L% | = r‘.._ Iﬁ‘""-l i NN f
¥y N T N . o anti A _\H L, e -1 o N\ i H SuloRe b
) i § 3 u - / der Cnversgial
44'30% | ? S & ) — 2t !
& § TiF, [ a2l = — _ 3 7 rigr
- ¥ L Ik | s . —_— = L ;
i - \ 7 _ = - ||I s e 0




IHA LD
7StraBennetze

12 3



IHA LD
7StraBennetze

12 0



Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

13 -



Wie reprasentiere ich einen Graphen?

ungerichteter A diazenzlisten
Graph

13 -



Wie reprasentiere ich einen Graphen?

=N W B O
e &6 o o o

ungerichteter A diazenzlisten
Graph

13 -



Wie reprasentiere ich einen Graphen?

=N W B O

—>»le

ungerichteter A diazenzlisten
Graph




Wie reprasentiere ich einen Graphen?

=N W B O

o—»)|e—»i4|0

ungerichteter A diazenzlisten
Graph




Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

=N W B O

?

>3

>4

—> ]

—{3

—»5

—{ 2

—>14

—>5

C??.

>3

L AIRAILAIK

> 1

—{ 2

*

—>14

olfo||e|le]lo

Adjazenzlisten

13 -



Wie reprasentiere ich einen Graphen?
Wir sagen: Knoten 3 und 5 sind adjazent.

ungerichteter

Graph

5

=N W S

?

>3

—> ]

C??.

—{ 2

>3

—{ 2

>4[0
—>{3| &5
—>14|e—>5

>1[o
—>14]0

Adjazenzlisten



Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

5

=N W S

>3

—> ]

—{ 2

C??.

>3

?

—{ 2

>4[0
—>{3| &5
—>14|e—>5

>1[o
—>14]0

Adjazenzlisten

Adjazenzmatrix



Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

5

=N W S

?

>3

>4

O

—> ]

—{3

—»5

—{ 2

—>14

C??.

—>5

>3

> 1

—{ 2

OlIOC||®]||®

—>14

Adjazenzlisten

1 2 3 45

Or A W N =

Adjazenzmatrix



Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

5

=N W S

?

>3

>4

O

—> ]

—{3

—»5

—{ 2

—>14

C??.

—>5

>3

> 1

—{ 2

OlIOC||®]||®

—>14

Adjazenzlisten

1 &~ W N
= O = O
O = O Mo
= O = O|lWw
O —H O |~
== O OO

Adjazenzmatrix



Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

5

=N W S

?

®

@

>3

>4

O

—> ]

—{3

—»5

—{ 2

—>14

C??.

—>5

>3

> 1

—{ 2

OlIOC||®]||®

—>14

Adjazenzlisten

1 &~ W N
= O = O
O = O Mo
= O = O|lWw
O —H O |~
== O OO

Adjazenzmatrix



13-12

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45

5| e—>{3|e—>4 |0 10 1 0 1 0

4| o1 |e+—> 3| e—> 5|0 211 0 1 00

3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1

2| &3 |e—> 1|0 4110 1 0 1

L[ e—>{2|e+—>i4 0 51001 10

ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
®

(4

3)
2

®



13-13

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45

5| e—>{3|e—>4 |0 10 1 0 1 0

4| o1 |e+—> 3| e—> 5|0 211 0 1 00

3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1

2| &3 |e—> 1|0 4110 1 0 1

L[ e—>{2|e+—>i4 0 51001 10

ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
®

(4)—>=(3

O+—



13- 14

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45

5| e—>{3|e—>4 |0 10 1 0 1 0

4| o1 |e+—> 3| e—> 5|0 211 0 1 00

3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1

2| &3 |e—> 1|0 4110 1 0 1

L[ e—>{2|e+—>i4 0 51001 10

ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
®

(4)—>=(3

O+—



13-15

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e—>{3|e—>4 |0 10 1 0 1 0
4| o1 |e+—> 3| e—> 5|0 211 0 1 00
3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1
2| &3 |e—> 1|0 4110 1 0 1
L[ e—>{2|e+—>i4 0 51001 10
ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
’® (3

O+—



13-16

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e—>{3|e—>4 |0 10 1 0 1 0
4| o1 |e+—> 3| e—> 5|0 211 0 1 00
3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1
2| &3 |e—> 1|0 4110 1 0 1
L[ e—>{2|e+—>i4 0 51001 10
ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
’® 3

O+—
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Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e—>{3|e—>4 |0 10 1 0 1 0
4| o1 |e+—> 3| e—> 5|0 211 0 1 00
3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1
2| &3 |e—> 1|0 4110 1 0 1
L[ e—>{2|e+—>i4 0 51001 10
ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
’® 3
O=—C

gerichteter
Graph
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Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e4—»{3|e—w{4 |0 110 1 0 1 O
4| o4—l1[e+—>{3|e}—> 5|0 2101 00
3|eT—>2|e—>4|e5—>5|0] 3|0 1 0 1 1
2| e—>{3|e—»{1]|0 4110 1 0 1
1| o+—>i2|e—>i4]|0 510 01 1 0
ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
/4@ 5| e—*3]°
(4) (3) /| e+—»l5[e+—»{3]0
3| e1—*1210
2| {10
(D)=—2) 1|40
gerichieter  Adjli] = {j € V| (ij) € E}

Graph
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Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e4—»{3|e—w{4 |0 110 1 0 1 O
4| o4—l1[e+—>{3|e}—> 5|0 2101 00
3|eT>12/e—>{4|e—>5[c] 3|0 1 0 1 1
2| e—>{3|e—>1 |0 410101
1| o+—»{2|e+—>{4]|0 510 01 1 0
ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
1 2 3 45
/,@ 5 [e—»(3T5 fooo o
¢3) 1@, 4| e+—»l 5 [e+—»{3]0 211 0 0 0O
3| e+—2]|0 310 1.0 0 O
| e+—i1|0 410 0 1 0 1
(::}‘--42) 1| e+—»l4]o0 510 01 00
gerichteter Adj[i] — {J cV | (,"j) - E} ajj = 1= (I,j) cE

Graph
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Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}
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[Eine Kante ist inzident zu |
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Def.
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Zvevung deg(v) gerade = \Vung\ Ist gerade! []
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Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

: : : Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ SOPRTER TP ]

Charakterisierung: Bei welchen Graphen geht das (nicht)?

el O
Bogdan Giusca, CC BY-SA 3.0,
via Wikimedia Commons
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Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

: : : Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ SOPRTER TP ]

Charakterisierung: Bei welchen Graphen geht das (nicht)?

el O
Bogdan Giusca, CC BY-SA 3.0,
via Wikimedia Commons

[Das Haus vom Nikolaus]

/S 7 X X
X X &

https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/




15-5

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

i i i Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ ik i ]
Charakterisierung: Bei welchen Graphen geht das (nicht)? O L S TN

g Py

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

TR L : T B
AT e e e i
i, ;‘"‘\?.‘i‘_!;r i 12 A Faadi e A J

P WL el i

Bogdan Giuscs, CC BY-SA 3.0,
via Wikimedia Commons

[Das Haus vom Nikolaus]

/S 7 X X
X X &

https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/
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Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

) ) i Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ ik i ]

Charakterisierung: Bei welchen Graphen geht das (nicht)? * S
i ok ’ 0 3 ];;-_ a

g Py

Konstruktion: Wie (und in welcher Zeit) finde ich einen . ,... =
solchen Rundlauf, falls er existiert? T e o

o . : T .-.‘
: : i g ...',....1.5_"" .I, i
s o [ p——
e Tl ¢ TR SR o L

[l Bl S B o/ e

2. Durchlaufe einen Graphen auf einem Kreis, Bogdan Giuscs, CC BY-SA 3.0,

via Wikimedia Commons

so dass jeder Knoten genau einmal durchlaufen wird.

[Das Haus vom Nikolaus]

/S 7 X X
X X &

https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/
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Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

) ) i Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ ik i ]

Charakterisierung: Bei welchen Graphen geht das (nicht)? * S
i ok ’ 0 3 ];;-_ a

g Py

Konstruktion: Wie (und in welcher Zeit) finde ich einen . ,... =
solchen Rundlauf, falls er existiert? T e o

o . : T a‘
: : i g .;q1;?al: ": i
s o [ p——
e Tl ¢ TR SR o L

[l Bl S B o/ e

2. Durchlaufe einen Graphen auf einem Kreis, Bogdan Giuscs, CC BY-SA 3.0,

via Wikimedia Commons

so dass jeder Knoten genau einmal durchlaufen wird.

[Das Haus vom Nikolaus]

S XX

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen

=i solchen Rundlauf, falls er existiert? X i i
/ W = m | https:// www.skizzen— | |
L - zeichnungen.de/anleitung-zeichnen-vom-

EEEEEEEE

haus-vom-nikolaus/

FRANCE

L ot awe  Kapitin Nemo, Public domain, via Wikimedia Commons



Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bel

Konstruktion:

Wie (ufd i
solch

raphen geht das (nicht)?

elcher Zeit) finde ich einen
undlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Ko{qs}ru ktion:

uuuuuuuuuuuu

CZECH
EEEEEEEE

FRANCE

Wie (und in welcher Zeit) finde ich einen

solchen Rundlauf, falls er existiert?

L ot awe  Kapitin Nemo, Public domain, via Wikimedia Commons

15 -

[ Konigsberger Briickenproblem ]

---------

g Py

TRy L : s = T o
AT e e e i
i, ;‘"‘\?.‘i‘_!;r i 12 A Faadi e A J

P WL el i

Bogdan Giuscs, CC BY-SA 3.0,
via Wikimedia Commons

[Das Haus vom Nikolaus]

/S 7 X X
X X &

https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/
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Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

: : : Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ SOPRTER TP ]

Charakterisierung: Bei raphen geht das (nicht)?

Konstruktion: Wie (ulld ipAvelcher Zeit) finde ich einen _
solch undlauf, falls er existiert?
2. Durchlaufe einen Graphen auf einem Kreis, Bosdan G'iu;cg,-cﬁi_g;\ S0

via Wikimedia Commons

so dass jeder Knoten genau einmal durchlaufen wird.

[Das Haus vom Nikolaus]

S XX

Bei welchen Graghen geht das (nicht)?

=Skl P WET < « &

A https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

== Kapitin Nemo, Public domain, via Wikimedia Commons
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/usammenhang

Def.  Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

[ 11

Def. Ein ungerichteter Graph heiBt zusammenhangend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

Def. Ein gerichteter Graph heit (schwach) zusammenhangend, wenn
der zugehorige ungerichtete Graph zusammenhangend ist.
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/usammenhang

Def.  Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

[ 11

Def. Ein ungerichteter Graph heiBt zusammenhangend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

Def. Ein gerichteter Graph heit (schwach) zusammenhangend, wenn
der zugehorige ungerichtete Graph zusammenhangend ist.

Def. Einen maximalen zusammenhangenden Teilgraphen nennt man eine
Zusammenhangskomponente.
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‘BFS(Graph G, Vertex s) E

 INITIALIZE(G, 5) | & O O Q:
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' foreach u e V do
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Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).
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Korrektheit von BFS — Fortsetzung
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Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.
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o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).
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foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
vV.m = u

Q.ENQUEUE(v)

u.color = blue

Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BEFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s):

' INITIALIZE(G, 5)

. Q = new QUEUE()

. Q.ENQUEUE(s)

. while not Q. EmpTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
V. T =u

Q.ENQUEUE(v)

u.color = blue
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o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BEFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s):

' INITIALIZE(G, 5)

. Q = new QUEUE()

. Q.ENQUEUE(s)

. while not Q. EmpTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
V. T =u

Q.ENQUEUE(v)

u.color = blue

Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s):

" INITIALIZE(G, 5) : @ @
. @ = new QUEUE() : N
| Q.ENQeUEUE(s) E B sd=0= 5(5' 5) ‘

E e &9

 while not Q. EmMPTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
VT = u

Q.ENQUEUE(v)

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s):

" INITIALIZE(G, 5) : @ @
. @ = new QUEUE() : N
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5) ‘

E e &9

i m fiir alle v € V\ {s} gilt v.d = oo

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
V.T = U

Q.ENQUEUE(v)

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s):

" INITIALIZE(G, 5) : @ Q @

. @ = new QUEUE() : N

| T 5 B s.d=0=/(s,s) ‘
&

 while not Q.EMPTY() do ' - .
' UIQ%EQUEUE(()) 5 B fiir alle v € V\ {s} gilt v.d = 00 > §(s, v) (9
foreach v € Adj[u] do ' v
if v.color == white then

v.color = red '

v.d=ud+1

VT = u

Q.ENQUEUE(v)

r S t

w X

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v

" INITIALIZE(G, 5) : @ Q @

. @ = new QUEUE() : N

| T 5 B s.d=0=/(s,s) ‘
&

 while not Q.EMPTY() do ' - .
' UIQ%EQUEUE(()) 5 B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v) (9
foreach v € Adj[u] do ' v
if v.color == white then

v.color = red '

v.d=ud+1

VT = u

Q.ENQUEUE(v)

r S t

w X

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
r S t
BFS(Graph G, Vertexs) k= 1: Situation nach Q.ENQUEUE(s):
" INITIALIZE(G, 5) : ( ) ‘/ @ Q @
. @ = new QUEUE() : N
E Q.ENQUEUE(s) E B sd=0= 5(5' 5) ‘
Wh"§2°g%EE§§PETU‘;(())°'° 5 B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v) >

foreach v € Adj[u] do : i _
if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):

v.color = red
v.d=ud+1
V.T = u

Q.ENQUEUE(v)

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph 6, Vertexs) ilk = 1:  Situation nach Q.ENQUEUE(s): J
' INITIALIZE(G, 5) E
. Q= new QUEUE() | B s.d=0=(s,5s)

. Q.ENQUEUE(s)
. while not Q. EmpTY() do
i u = Q.DEQUEUE()
foreach v € Adj|u] do . .
if v.color :[:]'white then K > 1: Situation nach Q.ENQUEUE(V):
v.color = red :
v.d=ud+1
VT = u

Q.ENQUEUE(v)

B fiiralle ve V\ {s} gilt v.d = co > §(s, v)

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) E
- Omvavnoe) - W sd=0=9(s5)
Wh“ifg%gggﬁgﬁ" B fir alle v € V\ {s} gilt v.d = 00 > §(s, v)
f“?f';_;fo,f‘ijf]wi‘;te thené k > 1: Situation nach Q. ENQUEUE(v):
Z:f,ofruj:all v war gerade noch weill und ist benachbart zu wv.

Q.ENQUEUE(v)

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) E
- Omvavnoe) - W sd=0=9(s5)
Wh“ifg%gggﬁgﬁ" B fir alle v € V\ {s} gilt v.d = 00 > §(s, v)
f“?f';_;fo,f‘ijf]wi‘;te thené k > 1: Situation nach Q. ENQUEUE(v):
Z:f,ofrujfi 5 v war gerade noch weill und ist benachbart zu wv.

Q.ENQUEUE(v)

o= : v.d =u.d+1

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Q.ENQUEUE(v)

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) :
. Q = new QUEUE() : — N —
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5)
. while not Q. EmpTY() do : . .
SR G, —— : B fiiralle ve V\ {s} gilt v.d = co > §(s, v)
foreach v € Adj[u] d : . :
Oeiafcv.color :J: 'whzte theni k > 1: Situation nach Q.ENQUEUE(V):
Z:f,ofruj:all | v war gerade noch weill und ist benachbart zu w.
V= : v.d =ud+1>6(s,u)+1

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Q.ENQUEUE(v)

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) :
. Q = new QUEUE() : — N —
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5)
. while not Q. EmpTY() do : . .
SR G, —— : B fiiralle ve V\ {s} gilt v.d = co > §(s, v)
foreach v € Adj[u] d : . :
Oeiafcv.color :J: 'whzte theni k > 1: Situation nach Q.ENQUEUE(V):
Z:f,ofruj:all | v war gerade noch weill und ist benachbart zu w.
V= : v.d =ud+1>6(s,u)+1

[Induktionsannahme fur u

u.color = blue
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[u] do : i _
if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):

v.color = red

vd—ud+1 | v war gerade noch weill und ist benachbart zu w.
= : v.d =ud+1>6(s,u)+1

Q.ENQUEUE(v)

' L u.color = blue
""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)

[Induktionsannahme fur u
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[u] do : i _
if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):

v.color = red

vd—ud+1 | v war gerade noch weill und ist benachbart zu w.
v = U : v.d =ud+12>6(s,u)+1>6(s,v)

Q.ENQUEUE(v)

' L u.color = blue
""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)

[Induktionsannahme fur u
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[v] do

if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):
v.color = red ! . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
e | v.d=ud+1>9(s,u)+1>0s,v)
U color = blue E (Induktionsannahme f'Lir/h

""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[v] do

if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):
v.color = red ! . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
e | v.d=ud+1>9(s,u)+1>0s,v)
U color = blue E (Induktionsannahme f'Lir/h

B (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)
Jetzt ist v rot.
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[v] do

if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):
v.color = red ! . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
e | v.d=ud+1>9(s,u)+1>0s,v)
U color = blue E (Induktionsannahme f'Lir/h

T (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)
Jetzt ist v rot. = v.d andert sich nicht mehr.
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[v] do

if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):
v.color = red ! . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
T | v.d=ud+1>0d(s,u)+12=>d(s,v)
U color = blue E (Induktionsannahme f'Lir/h

T (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)
Jetzt ist v rot. = v.d andert sich nicht mehr.
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Lemma 1.  Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1:  Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) :
. @ = new QUEUE() : A
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5)
. while not Q. EmpTY() do : . .
' | u— Q.Drqueus() : B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)
foreach v € Adj[u] d : . :
Oeiafcv.color :J: 'whzte then kK > 1: Situation nach Q.ENQUEUE(V): /
v.color = red : . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
= - v.d=ud+1>0d(s,u)+12=>d(s,v)
Q.ENQUEUE(v) : — r = ;
| U color = blue E (Induktionsannahme f'Lir/h

""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)

Jetzt ist v rot. = v.d andert sich nicht mehr. [ ]
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Lemma 2.

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).
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Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Lemma 3. Sei Q = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d <w.d+1 und
(B) V,'.d S V,'_|_1.d fuirir =1, ..., r — 1.
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Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Lemma 3. Sei Q = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d < vp.d+1 und
(B) V,'.d S V,'_|_1.d fuiri=1,..., r — 1.

[Also d-Werte der Knoten in Q z.B. (3, 3,4,4,4>.]
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Korrektheit von BFS — Fortsetzung

Lemma 2.

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Lemma 3.

Sei @ = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d < vp.d+1 und
(B) V,'.d S V,'_|_1.d furi =1, ..., r—1.

[Also d-Werte der Knoten in Q z.B. (3, 3,4,4,4>.]

Korollar.

Angenommen u wird frither als v in @ eingefiigt,
dann gilt u.d < v.d, wenn v in Q eingefiigt wird.
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Lemma 2.

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Lemma 3.

Sei @ = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d < vp.d+1 und
(B) V,'.d S V,'_|_1.d furi =1, ..., r—1.

[Also d-Werte der Knoten in Q z.B. (3, 3,4,4,4>.]

Korollar.

Angenommen u wird frither als v in @ eingefiigt,
dann gilt u.d < v.d, wenn v in Q eingefiigt wird.

Beweis.

Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten < 1x einen endlichen d-Wert bekommt.
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Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.
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Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also (i) zu zeigen.
Lemma 2 = v.d > d(s,v). Noch z.z.: v.d < (s, v).

Widerspruchsbeweis mit Wahl des , kleinsten Schurken®.
Siehe Kapitel 22.2 [CLRS].
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Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er
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Behauptung: G; ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

={veV:vr#mnml}U{s} 32"\: P
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G, ist ein Baum (da zshg. und |E;| = |V| — 1).

m V,={v e V:verreichbar von s}

m fiir alle v € V. enthidlt G, einen eindeutigen Weg von
s nach v, der ein kiirzester s-v-Weg ist.

Beweis: Folgt aus (ii) und (iii) im Hauptsatz. []
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