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Ein (und derselbe) Graph.; der dreidimensionale Hyperwürfel.
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Soziale Netzwerke – Familienbäume

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster Ahnentafel Herzog Ludwig von Württemberg, 1585
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Soziale Netzwerke – Verhältnisse

Velitchko Filipov, Davide Ceneda, Michael Koller, Alessio Arleo, and Silvia Miksch, GD Contest 2018
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Transportnetzwerke – Londoner U-Bahn

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0
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Transportnetzwerke – Londoner U-Bahn

Source: Wiki Commons: London Underground Overground DLR Crossrail map - CC BY-SA 4.0
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Transportnetzwerke – Londoner U-Bahn
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Bioinformatik – Molekulare metabolische Netzwerke

Source: Wiki Commons: Citric acid cycle with aconitate 2 - CC BY-SA 3.0 Source: Thiele et al., Nature Biotechnology 31, 419–425 (2013)
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Technische Netzwerke – Very Large-Scale Integration (VLSI)

Source: Wiki Commons: Diopsis - CC BY-SA 3.0

Source: Pixabay
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Technische Netzwerke – UML-Diagramme

© AWS
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Informative Netzwerke

André Schulz, GD Contest 2023

Najla Amira Ochoa Leonor and Daniela Martinez Duarte, GD Contest 2021
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Neuronale Netzwerke

convolutional
layers

fully-connected
hidden layers

input
layer

output
layer

Source: Izaak Neutelings, https://tikz.net/neural_networks
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outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

Beweis. 2 · |E | =
∑

v∈V deg(v) =
∑

v∈V ger
deg(v) +

∑
v∈V ung

deg(v)

gerade! gerade! gerade! ⇒ gerade!∑
v∈V ung
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Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

2 · |E | .
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u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0
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∞
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1

0

2

2

2

https://algo.uni-trier.de/demos/graphtraversal.html

Demo.

https://algo.uni-trier.de/demos/graphtraversal.html
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil
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r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit?
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit?
Initialize
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |)
Initialize
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |)
Initialize En-/Dequeues
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |)
Initialize En-/Dequeues
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |)
Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |) + O(|E |)
Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Beob. über Knotengrade!
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Breitensuche

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d = ∞
u.π = nil

s.color = red
s.d = 0

r s t

v w x
∞

Vorgänger

Q:1

1

0

2

2

2

Laufzeit? O(|V |) + O(|V |) + O(|E |) = O(|V |+ |E |)
Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Beob. über Knotengrade!
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Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E ) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).
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Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E ) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).
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Definition. Sei G = (V ,E ) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).
berechneter Abstand von s tatsächlicher Abstand von s
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Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E ) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).
berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.
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Definition. Sei G = (V ,E ) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

u

v

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.
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Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:
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u
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Beweis.
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Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)
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Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

Dieser s-v -Weg hat Länge δ(s, u) + 1.

berechneter Abstand von s tatsächlicher Abstand von s
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Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

Dieser s-v -Weg hat Länge δ(s, u) + 1.

⇓

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)
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Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:
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u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

Dieser s-v -Weg hat Länge δ(s, u) + 1.

Kürzester s-v -Weg hat Länge ≤ δ(s, u) + 1.
⇓

berechneter Abstand von s tatsächlicher Abstand von s
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2. Fall: u ist nicht von s erreichbar (d.h. ∄ s-u-Weg)
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Definition. Sei G = (V ,E ) (un)gerichteter Graph, u, v ∈ V .
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Dann gilt für jede Kante (u, v) ∈ E :
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2. Fall: u ist nicht von s erreichbar (d.h. ∄ s-u-Weg)
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⇒ δ(s, u) = ∞
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Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V ,E ) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) := ∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).
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v
Beweis.

berechneter Abstand von s tatsächlicher Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

2. Fall: u ist nicht von s erreichbar (d.h. ∄ s-u-Weg)

s

⇒ δ(s, u) = ∞
⇒ δ(s, v) ≤ ∞+ 1 ✓
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Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).
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Beweis.
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis.

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.
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Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
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u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓



20 - 8

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞

0
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x
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∞∞

0
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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v w x
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x
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∞

∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞

∞

∞

∞∞
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∞

1

1

0

2

2

Induktionsannahme für u



20 - 21

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x

∞
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Jetzt ist v rot.
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓

r s t

v w x
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Jetzt ist v rot. ⇒ v .d ändert sich nicht mehr.
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Jetzt ist v rot. ⇒ v .d ändert sich nicht mehr.
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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∞∞
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∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Beweis. Induktion über die Anzahl k von Enqueue-Operationen.

Situation nach Q.Enqueue(s):

■ s.d = 0 = δ(s, s)

■ für alle v ∈ V \ {s} gilt v .d = ∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = red
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = blue

✓

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Jetzt ist v rot. ⇒ v .d ändert sich nicht mehr.
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

✓

□

Situation nach Q.Enqueue(v):k > 1:

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1.

✓
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∞∞
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Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

✓
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Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = ⟨v1, v2, . . . , vr ⟩ während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Lemma 2. Sei G = (V ,E ) ein (un)gerichteter Graph, s ∈ V .
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Lemma 3. Sei Q = ⟨v1, v2, . . . , vr ⟩ während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Beweis. Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten ≤ 1× einen endlichen d-Wert bekommt.
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22 - 1

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v ̸= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v .π-Weg und der Kante (v .π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.
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Widerspruchsbeweis mit Wahl des
”
kleinsten Schurken“.

Siehe Kapitel 22.2 [CLRS].
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