»—‘ gf,fa;ﬁﬂ 'll%l 3 g_
SELE R

Algorithmen und Datenstrukturen

Vorlesung 17:
Graphen und Breitensuche

Alexander Wolff Wintersemester 2025

Was ist das?

Was ist das?

Ein (und derselbe) Graph.

Was ist das?

Ein (und derselbe) Graph; der dreidimensionale Hyperwiirfel. 57

Was ist ein Graph?

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V, E)

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V, E), wobei
— V Knotenmenge

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V, E), wobei

— V Knotenmenge und
- EC (%) ={{u,v} CV|u# v} Kantenmenge.

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei
— V Knotenmenge und
- EC (%) ={{u,v} CV|u# v} Kantenmenge.

V = {000,001, . . .,
{u,vie E & 7

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V, E), wobei
— V Knotenmenge und
- EC (%) ={{u,v} CV|u# v} Kantenmenge.

V = {000, 001, . . .,
{u,vie E & 7

Was ist ein Graph?

Ein (ungerichteter) Graph ist ein Paar (V, E), wobei

— V Knotenmenge und
- EC (%) ={{u,v} CV|u# v} Kantenmenge.

V = {000, 001, . . .,
{u,vie E & 7

Ein gerichteter Graph ist ein Paar (V, E) , wobei

— V Knotenmenge und
-ECVxV={(u,v)|uveV} Kantenmenge.

oziale Netzwerke — Familienbaume

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster Ahnentafel Herzog Ludwig von Wiirttemberg, 1585

Soziale Netzwerke — Verhaltnisse

oWt

NressssPPzes ==

Velitchko Filipov, Davide Ceneda, Michael Koller, Alessio Arleo, and Silvia Miksch, GD Contest 2018

Transportnetzwerke — Londoner U-Bahn

Source: Wiki Commons: London Underground full map - CC BY-SA 3.0

Transportnetzwerke — Londoner U-Bahn

Route map of und, Docklands Light Railway and Eli

Epping ==
_;® Cheshunt
Theobalds Grove
Turkey Street Debden

| & Rodin
" Southbury | aughtan vquwg Chigwell Grangs Hil
Edmoriton Green

. Theydon Bois
Enfield Town

Cockfosters
iathis zone charges significantly more. Oakwood Bush Hill Park
High Barnet Sowthgare

Fare zone 1. Journe)

@ Watford Junction Totteridge & Whetstone Arnos Grove ’ A e Chingford Buckhurst Hill Shenfield
Chesham - Woodsice Park Bounds Green r Hainauft Brentwooe
= Watford High Street W : o k Whte Hart Lane L Highams Park Woodford
Amersham est Finchley ood Green Fairlop Harold Wood
Watford Turnpike Lane = Bruce Grove Blackh L Wood Street South Woodiord Gidea Park
&3 Bushe: Finchley Central W o ackhorse . MNewbury s Barkingside
Chalfort & Latimer 2 ¥ Edgware il Hill East East Finchley Harringay etablckork Ragd s Snareshrook Redbridge Park Romford
Chorleywood Crouch Hill Green Lanes Wicta finfin: ‘)\‘ Central £l
A, & Carpenders Park B Highgate =it B2 a Tottenham HaJiJ_]_“ — -0 — Wanstead Garts Hill G‘,hadl:!well Heath
! P Walthamstow Leyton oodmayes
Al Hateh End Stanmore Colindale ;Upper Holloway Menbr:ticlize St. James Street 5 Queen's Road Midland Road \Le{m;:mn:) Seven Kings
Finsbury Park) Leytonstone
2l Headstone Canons Park Hendon Central Tufnel Park Y) High Road
2 ane 5 Keniish Town Arzenal Clapton = %,
o Harrow & Queensbury Golders Green 2 F—— Holloway Foacd Leyton
West North Harrow Wealdstone |- Kingsbury Hampstead Kentish Town ’
§ R”“P Ruislip Raymers Harrow-on- Kento! B L Hampstead Hem‘;ﬂest Cim)da?] . Highbury & Dalston =, = Stratford
Hillingcion Wanar Lane the-Hil EMIDIT IWembley Park yesopoiitn ine g y Caledonian Road | |sfing Ki “r\' d %‘\ yDowns . International
: S West Northwick Prest IR "IBSISife Ehelk Camden | [—— O = Homerton Hack Sy
Uxbridge lekenh Ruisli Eastcot & orthwicl reston /' Parl arm own : edonian Fo 3 ackney Homerton Hackney 5
ibridge leken uislip cote Harr Parl oad Neasden Dolfs Wilesden Kilgurn 2, o Road & Froanal Morrington |& Sarnsbury Lanonbury N | Central Wick ~ Swatford Meryland
i i reen inchley Ro rogn rescent o
Flisip Gardens ? x 9" Euston King's Cross ncaon % b Lowdon Fields Eloh et Ao,
South Harrow = South Kerten Finchley — uston 5t Pancras W igh Stre f
Road ; ; laggerston :
oo Narth Wemble: i Pudding ast
Sodh Ruisig ¢ _,"'l_ Angel Hoxton ~aubidne Heath B il Lange é;’:gy Ham
Wembley Central _\ * Euston Shareditch &4 " ODBow Church .
Sudbury Hill & Stansbridas Park Squarc B I Old Street & Highr Street |\\ Bethnal Green o Flaistew 221
Harlesden Goodge Street o S\sagﬁe Farringdon! Liverpool i 2 il Bow || Bromley-by-Bow | || West o
: Martholt Tottenham & 2 Street 4 En; Road Ham
Reading Kilburn Court 2324 Barbican] ooy gate e,
Sudbury Town = High Foad 020 ~ 4T E%m W, Stepney r Devons Road
P = - el W
Twyford Grcrtond B A WMarylehore e N Green k Langdon Park Star Lane Beckton
) ; a " i) _
WMaidenhead i Kilburn Park Edgware Road Chfljmceery St. Aldgate O At Whitechapel - b All Saints = Gallions Reach
aliate : Paddington Paul's % Bank Fenchurch Sieet, 7 O = Canning Foyal Prince
Taplow Parivale Waica Vale } Cg:llrnor{ e i "o Westferry poplar Eastindia p/)Town ~ Victoria Fegent Beckton Park
ff Warwick Avenue o el) O = T % L - = ¥ L ¥
Burnham J Leicester Lansion 77 pMghument Tower Tower 7" Limehouse * West India Blackwall T -2 Foyal Cyprus
Hanger Lane { Westbourne gjuare: | House Hill - Gateway i T Ry QL West usmf:)n Iéugsf . Albert
Slough) Pl W Blaclciiars o = Wapping Canary WharFQIT Canary = Silvertown T Extel
i .+ Poyal Oak », Temple z RiverThames, . Sanary Shar i Fortoon Dock
Langley : : Bayswater L : Heron Quays Q) Canary pjorh
Worth Ealing p 4) 4 r © Wharf a ick
Iver West Hayes & Ealing Rabroke Graue haring Closs s chDI'Ian Bermo‘ndsey Canada | South Quay : Bresnwih 5
: K i ‘7. Embankment %} il o -
Drayton Harlington Hanwell Broadvay - Sléfrsl;lerd 5 H’i‘l‘l’g:hg Southwark | Bridge - Kng George V Eale
i . n : e~ e v - Hydg Fark b, L Borough Surrey Quays - Crossharbour =/ Woolwich
LAl Southall West iy, ane Holland Park Queensway P O “Waterloo B Arsemal
[Reading sestion] Ealing Ealing % El Westminster s Mudchute = 2
E gommalt Shepherd's N) Knightsbriclge St James's Park g Elephant & Castle &
o Bush Market . T High Street it Island Gardens =2 Key to
g %
) = gnla‘:thWk Kensington || Kensington South i " .ﬁm_y Sa!Gk for " London Underground:
Higher fre: apply i Boston Manor =0 (Olympia) (5 Kensington il ! Maritime Greenwic Bakerloo line Metropolitan lire
on allirp vin | 5 H it |} Sloane & Hew Cross Greenwich — SR
this section ofrmcs. || 3 Osterley ITIET S M [N Square Y 4 Queens Road e Central line lMorthern line
H = | | s . Waxhall 0O g P ekiam w (]
% llounslow Cost T T | T = Kennington @y Cross Gate - Deptford Bridge Cirele line Piccaudily linc
5 Barons West s oucester b 7 Brociey = istrict i r—
Heathrons e row b Court Kznsington | Road . oval Peckham Rye 4 3 wElverson Road bl e
eathrow Richmond e ham & % Hammersmith & City line ‘Waterloo & City line
h Heathrow WestBrompton _ b P z : e il L Ry
Terminglz (| SRetVE Hounslow West i o High Street _(fSwockwen ’ A y Honor Ozk Park @Lewisham Jubilee line
mperi =]
e | Hatton Cross Fulham Broadway W‘:ﬁ” 3 Brixton Dermark Hill ;4.”‘ Forest Hill
;'eamr;\g 4+ h a z i ilapl;mn Morth)@Sydenham . n
i i arsons Green Clapl aphiam Comman !
Hezcuprows Terminalh) Jlﬂ-.q;:%:: Clapham SoLth Crystal Palace @E—— Bechenham Interchange + Richmond/Clapham Junction-Stratford
Putney Bridge < ¢ . B Jinctian Loy + Gospel Oak-Barking
“p | between all il stations within Heath am 7 . " " -
iyt et of g i Oy o o cotcdess curd, East Puney _ 7 Penge West - imerchanges for | | , Dalstonttighoury & Isiington-Clapham Junctiont
regardless ofLosdon Underground, TL Rail or Heathrow Express. Southfields Tooting Bec P S isbeck National Rail West CroydoniCrystal Palace/MNew Cross
Aismrpery s Lsbens s e Sy st 4 Tooting Broacway MEFY ST——— + Liverpod Street—Enfield Town/Cheshurt/Chiraford
backto Heathrow Airport without exiting the station Wirnbleclon Park Colliers Wood y A1 jorwood Junction A interchanges + Romford-Upminster
Wimbledon South Wimbledan rd Eranch line of Docklands Light Railway (DLR)
Tn ” i ok E
>—r——— - . PP o S S S ——] imited service
m{;;m o Addingtan Elizabeth line (ta be oper TiL Rail
Junction Birport \)

Source: Wiki Commons: London Underground Overground DLR Crossrail map - CC BY-SA 4.0

Transportnetzwerke — Londoner U-Bahn

Bioinformatik — Molekulare metabolische Netzwerke

; -
=23L 1

Acetd
; [cos }5H + NAD* o Hydrogen 5llz, Bdenssne
Q &) Pyruvate detydrogenase Q O Ctabon HE uqﬂm@m
o CO,+NADH, H* @ ooz g, cmen
. & i 518 vihosphote

N
SH Q Coenzyme O Exipuiyir A

S0

Il
HED; +('(P?1I'P-‘>J Water | NADH Micotinamide adenine dinuclevtide
yruvate Ea)!goxyla:ae Pyruwte dehydrogenase Fnzyme

ABE £ Aconitase

NADH, H*
Izocitrate dehydrogenase

-&a@g%

NAD: + (SRR}
o-ketoglutarate dehydrogenase
MADH, H'+ Cy

Succiic dehydrogenase

Source: Wiki Commons: Citric acid cycle with aconitate 2 - CC BY-SA 3.0

Ll

VL e T ey A,

ol B TR T
i e s e O
i =

—t

AT

= - B R
LT AR L VT
Y R

L pas
EWE LT L

T L
i e A

et e

Source: Thiele et al., Nature Biotechnology 31, 419-425 (2013)

Technische Netzwerke — Very Large-Scale Integration (VLSI)

TN
AEEEEEE

-

Source: Pixabay o150l O MiEz e
e
5 M lla |
s © \

= L 5 W W
@-w ® 1P1PINIY prarrry

» s om om g

E ™

riy

-
. -
- .e.... -

»

Source: Wiki Commons: Diopsis - CC BY-SA 3.0 |

Technische Netzwerke — UML-Diagramme

PCDAQ class diagram

PCDQ System

Query library Audit_criteria Analysis_plan
A 2 | -Date -Project -Project
i Ae:gtr_egathe ' I -Topic -Topic
1 relationship ' R K
:- -: Projoct_query 1 Text 1 1 Text
r 1S n
! {A‘ -Project name 1 PCT T
1 Association ' i [1 1 [PcT D)
i - I A
\ |] 1 -Name ;
P '|_ | | Data_set ’—.'FJDPMHUON S?Sstynlax
i Demographic eontact e
il Z i -Synta
, ‘_\l:__ -Diagnosis GP practice yntax
-Risk factors -PraclD
-Treament -PCTID
HOL_query -Contact
+Enquirer -Population Local PCT Project
areement Redpceas -GPSystem PraciD PCT_ID
Title " -
-SetlD -Header
-Order -Query copy
-Write Date -respose text Data collection
-Coding Scheme +Authorise() Collecter
\ fQuery text +Export() -Practice
+update() +Template() -Date
aaRazaaT +import() ~ . |Time
? 1.. 1
! +authorise() g _Status
; +execute()
+details() —_— ‘—‘7
1 Patient_case
| .
! —\é)\—l> Refference 1 N Analysis_Output
{ -Age {collection schedule} -Title
! / -Sex 1 -Task
| |Generic_query| | EMIS_query 'grap'l")
=.onclusion
} 11 Collection_issues
! i
: -PraclD Floppy_diskgtt.e
2 = -Collect'n S =
! Triplet _Comment Project
! -PraclD
! Pilot_data -Date B -Date |
. T | -Code B
-Value Setld 1
1
g Practice_data_set Project_data_set
Pilot data used for Numericle value Bl 2 T [Project
query modification optional for triplet

T

| Queries have a dependency
i on pilet data.

| Careful analysis helps

! to improve the predictability

Any errors would get propogated " i

L No classes or associations for

*yi Needs one-to-many

| generic gry & to emis qry .

ii should be compared and validated. :E activity issues, system issues, :i type relationship

it Their parent class is influential. | data entry issues,query issues. E: fot better planning
i

) Product v
Broduct_ID INT I
Proguct_Name VARCHAR(45)

Description TINYTEXT

7 Category INT

Weight_Class INT
Warranty_Period INT
»Supplier_ID INT

2 Stafus VARCHAR(15)
List_Price DECIMAL
Minimum _Price DECIMAL
Price_Currency VARCHAR(S)
» Catalog_URL VARCHAR(128)

»

m Customer_Company v
Company_[D INT
Company_Name VARCHAR(45)
 Company_Credit_Limt INT
» Credit,_Limit_Currency VARCHAR(S) |
>

T customer_Employee ¥

Customer_Employee_ID LT

? Company._ID INT

~Badge_Number VARCHAR(20)
Jab_Tite VARCHAR(45)
Department VARCHAR(45)

> Credit_Limit INT

2 Credit_Limit_Currency VARCHAR(S) |

T mventory ¥
Inventory_ID INT
1 Product_ID INT
Warehouse_ID INT "C)—i‘é_
> Quantity_on_Hend INT |
Quantity_Available INT
>

] Order_Ttem ¥
Order_em_[DINT
| ¥ Order 10 T
¢ ¥ Product_ID INT
5 7 Unit_Price DECIMAL
| > Quantity DOUBLE
>

o =

Order_ID INT

Cusiomer_ID INT

Sales Rep IO INT

Order_Date DATE

Ordar_Code INT

Order_Status VARCHAR(15)

Order_Total INT

Order_Currency VARCHAR(S)

Promotion_Code VARCHAR{45)
>

>

[

) customer v
1 Cusomer_ID INT
¥ person_ID INT
1 Customer_Em ployee_ID INT
O Account)Mgr_ID INT

Incom e_jevel INT

© AWS

Pt

e

) Employment ¥
1 Employee_ID INT
I ¥ Person_ID INT
| T HR_Job_ID INT
|
|

? Manager_Employee I
4| 7 Start_Date DATE
»End_Date DATE

Salary INT

Commission_Percent D.

Employm enteol VARCH..
>

| warehouse v

¥ warehouse 1D INT
¥ Location _ID INT
Warehouse_Name VARCHAR(4S) |
»

] Location %
Locaton_ID INT
Country_ID M1
Address_Line_1 VARCHAR(45)
* Address Ling_2 VARCHAR(45)
* City VARCHAR(45)
Stae VARCHAR(24)
District VARCHAR (24)
Postal_code VARCHAR(2D)
Locaton_type_code INT
Descripton VARCHAR(128)
Shipping_notes VARCHAR(256)

T Countries_Country_ID INT
¥ Persong_Pergon_ID INT >

i

|

{ ¥ Locations_Locavon_ID L.

| L T
|

|

|

'l phone_Number ¥

Phone_nwmber_ID INT

+Bhone_number INT
| Country_code INT

2Phone, T ype 1D INT 7] Person_Location ¥
? Persons_Person_ID INT
L2 T Locations_Lacaten_ID INT
» Sub_Address VARCHAR (45)
*Locabon _Usage VARCHAR(4,
S Motes TINVTEXT
] person v =
Persen_ID INT)
First_name VARCHAR (20)
Last_name VARCHAR(20)
Middie_names VARGHAR(45)
Nickname VARCH AR(20)
Nat_lang_code INT
Culture_code INT '] country
> Gender VARCHAR(12) Country_ID INT
Country_Name VARCHAR(24)
> Country_Code VARCHAR(3)
= Nat_Lang_Code INT
Currency_Code VARCHAR(10}
Tl Restricted Info ¥ ;;
? Person_ID INT '] employment_Jobs ¥
 Date_of Birth DATE 18 _iob_ID INT |
»Date_of Death DATE T Countries_Country_ID INT
Government_ID VARCHAR{24) -4~ > Job_Tifle VARCHAR(45)
Passpart_ID VARCHAR (24) Min_Salary INT
’ Hire_Date DATE Max_Salary INT

Seniarity_Code INT

=

Informative Netzwerke
REMAKES FILM FESTIVAL

28th. finnual Graph Drawing Contest

===~

e
ii.ae

o, 7

Najla Amira Ochoa Leonor and Daniela Martinez Duarte, GD Contest 2021

André Schulz, GD Contest 2023

10

Neuronale Netzwerke

input
layer convolutional fully-connected

Q—Q\ layers hidden layers
CE0T0-

8:81 = = \OX/ S
CASE

1]
I8,

IS
felle

0i
_fr]r landgebu
Fahr.

-

|:.e r#

HE (el
. . o

/4 " o r o s o n N\ ~
L/ f - /4 AN . %) i ngr,,.-z“' .“ s I \) ..\
[4 < . . o 0 ¥ re 8 f = : ‘
T, Qe / G ; s e’ L ¥ e e - llr"f 4
) F, - - o -,
L 1‘.._31 i) I,l. s L .-'. . Ly = = "'I. = s " #
e} A A & 2 . -
4 ") — — .. AT gl % 2 | == P
/ % AP Bt ’ N T £ e, a3 = = %
) -H\ P ._f"' = g N [T Fag e _,-l'-’. — I | i i
£) N 7y : i 2 BN T o e e Wehrteghhische
= L - ~ (! = = v 1 o = 5, W
: 5 N & e - > 7 ; 3 L { %t Diensisfeiey’,
- & i - - e -
; /) / 2 i : £ : G 2= S ' - i N~ _ fiir landgafjund
.ﬂ';':t.'n..‘tlr_:e. 5/ - 'J"'\.hﬂ : o d _;5'5‘« X) La < 3 'A-m:'r\-'_;"ﬂ : I e [~ it 'ﬂhfzﬂ'ug IE‘J:TIE,I-‘_
L 3 A 1 : F . Y/ ! - e LR .
~ F - i G o < 1 by o Bt "IL e i -
: - -3 / > T = = ¥ " s e
o RS b L = <1 NN AL . d TruppSYgEehh
> ik T s | " g & - T) 7o
i - J — i I
2 = - N 5 1] o ' el “'

)
o

£7¢, f & A b b — I gy

r
o
FI
o
)
N
-
i
’
f
-.

o
=
[

T
.
'IT:‘;
4
y
y

3 ; b
a1 FLANTERR - i . 1 L
ot L= 1 o ! 2

=/ 4 . ; E . i andervierjf W [.

U

I:“__: III- .-. = - / II e _I" : 5 | T
Ty P, 4 S - / 5 - | -.

|

e
-

k

|
TN
ik Bhagy

¥
T J i 4 % Ia e I v 4
."] / D, et ol L - _ \ o= i y y ;
} = i = g £ L
! 11y d 8 ,"'-...__.— —s i) M J £ “ E
| o —— : - G ‘ -
- N it 257 m| |
' % 5, LY I
- . - ¥ \ * (= ” i NGy
Y/ - f: Y n -y = N I,
j .-'I P L oy | g (=] L L w L% | = r‘.._ Iﬁ‘""-l i NN f
¥y N T N . o anti A _\H L, e -1 o N\ i H SuloRe b
) i § 3 u - / der Cnversgial
44'30% | ? S &) — 2t !
& § TiF, [a2l = — _ 3 7 rigr
- ¥ L Ik | s . —_— = L ;
i - \ 7 _ = - ||I s e 0

IHA LD
7StraBennetze

12 3

IHA LD
7StraBennetze

12 0

Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

13 -

Wie reprasentiere ich einen Graphen?

ungerichteter A diazenzlisten
Graph

13 -

Wie reprasentiere ich einen Graphen?

=N W B O
e &6 o o o

ungerichteter A diazenzlisten
Graph

13 -

Wie reprasentiere ich einen Graphen?

=N W B O

—>»le

ungerichteter A diazenzlisten
Graph

Wie reprasentiere ich einen Graphen?

=N W B O

o—»)|e—»i4|0

ungerichteter A diazenzlisten
Graph

Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

=N W B O

?

>3

>4

—>]

—{3

—»5

—{ 2

—>14

—>5

C??.

>3

L AIRAILAIK

> 1

—{ 2

*

—>14

olfo||e|le]lo

Adjazenzlisten

13 -

Wie reprasentiere ich einen Graphen?
Wir sagen: Knoten 3 und 5 sind adjazent.

ungerichteter

Graph

5

=N W S

?

>3

—>]

C??.

—{ 2

>3

—{ 2

>4[0
—>{3| &5
—>14|e—>5

>1[o
—>14]0

Adjazenzlisten

Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

5

=N W S

>3

—>]

—{ 2

C??.

>3

?

—{ 2

>4[0
—>{3| &5
—>14|e—>5

>1[o
—>14]0

Adjazenzlisten

Adjazenzmatrix

Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

5

=N W S

?

>3

>4

O

—>]

—{3

—»5

—{ 2

—>14

C??.

—>5

>3

> 1

—{ 2

OlIOC||®]||®

—>14

Adjazenzlisten

1 2 3 45

Or A W N =

Adjazenzmatrix

Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

5

=N W S

?

>3

>4

O

—>]

—{3

—»5

—{ 2

—>14

C??.

—>5

>3

> 1

—{ 2

OlIOC||®]||®

—>14

Adjazenzlisten

1 &~ W N
= O = O
O = O Mo
= O = O|lWw
O —H O |~
== O OO

Adjazenzmatrix

Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

5

=N W S

?

®

@

>3

>4

O

—>]

—{3

—»5

—{ 2

—>14

C??.

—>5

>3

> 1

—{ 2

OlIOC||®]||®

—>14

Adjazenzlisten

1 &~ W N
= O = O
O = O Mo
= O = O|lWw
O —H O |~
== O OO

Adjazenzmatrix

13-12

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45

5| e—>{3|e—>4 |0 10 1 0 1 0

4| o1 |e+—> 3| e—> 5|0 211 0 1 00

3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1

2| &3 |e—> 1|0 4110 1 0 1

L[e—>{2|e+—>i4 0 51001 10

ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
®

(4

3)
2

®

13-13

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45

5| e—>{3|e—>4 |0 10 1 0 1 0

4| o1 |e+—> 3| e—> 5|0 211 0 1 00

3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1

2| &3 |e—> 1|0 4110 1 0 1

L[e—>{2|e+—>i4 0 51001 10

ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
®

(4)—>=(3

O+—

13- 14

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45

5| e—>{3|e—>4 |0 10 1 0 1 0

4| o1 |e+—> 3| e—> 5|0 211 0 1 00

3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1

2| &3 |e—> 1|0 4110 1 0 1

L[e—>{2|e+—>i4 0 51001 10

ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
®

(4)—>=(3

O+—

13-15

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e—>{3|e—>4 |0 10 1 0 1 0
4| o1 |e+—> 3| e—> 5|0 211 0 1 00
3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1
2| &3 |e—> 1|0 4110 1 0 1
L[e—>{2|e+—>i4 0 51001 10
ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
’® (3

O+—

13-16

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e—>{3|e—>4 |0 10 1 0 1 0
4| o1 |e+—> 3| e—> 5|0 211 0 1 00
3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1
2| &3 |e—> 1|0 4110 1 0 1
L[e—>{2|e+—>i4 0 51001 10
ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
’® 3

O+—

13- 17

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e—>{3|e—>4 |0 10 1 0 1 0
4| o1 |e+—> 3| e—> 5|0 211 0 1 00
3|e—>2|e—>{4|e—>5|0] 3|0 1 0 1 1
2| &3 |e—> 1|0 4110 1 0 1
L[e—>{2|e+—>i4 0 51001 10
ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
’® 3
O=—C

gerichteter
Graph

13-18

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e4—»{3|e—w{4 |0 110 1 0 1 O
4| o4—l1[e+—>{3|e}—> 5|0 2101 00
3|eT—>2|e—>4|e5—>5|0] 3|0 1 0 1 1
2| e—>{3|e—»{1]|0 4110 1 0 1
1| o+—>i2|e—>i4]|0 510 01 1 0
ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
/4@ 5| e—*3]°
(4) (3) /| e+—»l5[e+—»{3]0
3| e1—*1210
2| {10
(D)=—2) 1|40
gerichieter Adjli] = {j € V| (ij) € E}

Graph

13-19

Wie reprasentiere ich einen Graphen?

Wir sagen: Knoten 3 und 5 sind adjazent. 1 2 3 45
5| e4—»{3|e—w{4 |0 110 1 0 1 O
4| o4—l1[e+—>{3|e}—> 5|0 2101 00
3|eT>12/e—>{4|e—>5[c] 3|0 1 0 1 1
2| e—>{3|e—>1 |0 410101
1| o+—»{2|e+—>{4]|0 510 01 1 0
ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
1 2 3 45
/,@ 5 [e—»(3T5 fooo o
¢3) 1@, 4| e+—»l 5 [e+—»{3]0 211 0 0 0O
3| e+—2]|0 310 1.0 0 O
| e+—i1|0 410 0 1 0 1
(::}‘--42) 1| e+—»l4]o0 510 01 00
gerichteter Adj[i] — {J cV | (,"j) - E} ajj = 1= (I,j) cE

Graph

Grad eines Knotens

Def.

—o—

14 -

Grad eines Knotens

Def.

—o—

deg(u) = |Adj[u]|

14 -

Grad eines Knotens

Def.
O dealo) = IAdil]

Grad eines Knotens

Def.

O dealo) = IAdil]
_}®<: outdeg(v) = |Adj[v]|

Grad eines Knotens

Def.

—o—
0=

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Grad eines Knotens

Def.
%u)< deg(u) = |Adj[u]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}
Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade =

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

Grad eines Knotens

Def.
O dealo) = IAdil]
—:,:@<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

/ahle alle Knoten-Kanten-Inzidenzen.

14 - 10

Grad eines Knotens

Def.
O dealo) = IAdil]
—:,:@<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

/ahle alle Knoten-Kanten-Inzidenzen.

14 - 11

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

ine Kante ist inzident zu
ihren Endknoten.

Beweis. Technik des zweifachen Abzahlens: E/

/ahle alle Knoten-Kanten-Inzidenzen.

14 - 12

Grad eines Knotens

Def.
O dealo) = IAdil]
_}®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

[Eine Kante ist inzident zu |
ihren Endknoten.

/ahle alle Knoten-Kanten-Inzidenzen.

Ein Knoten ist inzident zu |
allen Kanten, deren
| Endknoten er ist.

14 - 13

Grad eines Knotens

Def.
O dealo) = IAdil]
_}®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

[Eine Kante ist inzident zu |
ihren Endknoten.

/ahle alle Knoten-Kanten-Inzidenzen.

Ein Knoten ist inzident zu |

Aus Sicht der Knoten: allen Kanten, deren

| Endknoten er ist.

Aus Sicht der Kanten:

14 - 14

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

[Eine Kante ist inzident zu |
ihren Endknoten.

/ahle alle Knoten-Kanten-Inzidenzen.

Ein Knoten ist inzident zu |

Aus Sicht der Knoten: ZvEV deg(v) |2/en Kanten, deren

| Endknoten er ist.

Aus Sicht der Kanten:

14 - 15

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

[Eine Kante ist inzident zu |
ihren Endknoten.

/ahle alle Knoten-Kanten-Inzidenzen.

Ein Knoten ist inzident zu |

Aus Sicht der Knoten: ZvEV deg(v) |2/en Kanten, deren

| Endknoten er ist.
Aus Sicht der Kanten: 2 - |E|

14 - 16

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 |E].

Beweis. Technik des zweifachen Abzahlens:

[Eine Kante ist inzident zu |
ihren Endknoten.

/ahle alle Knoten-Kanten-Inzidenzen.

Ein Knoten ist inzident zu |

Aus Sicht der Knoten: ZvEV deg(v) |2/en Kanten, deren

| Endknoten er ist.

Aus SlCht der Kanten: 2 - |E| also g|e|ch|

14 - 17

Grad eines Knotens

Def.
O dealo) = IAdil]
—:,:@<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

14 - 18

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

[Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade.)

14 - 19

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

[Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade.)

Beweis. 2. |E| =) . deg(v)

14 - 20

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

[Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade.)

Beweis. 2. |E| =57, deg(v) =3 ¢y, deg(v)+ > ,cy,, deg(v)

ung

14 - 21

Grad eines Knotens

Def.
O dealo) = IAdil]
—:,:@<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

(Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade.)

Beweis. 2-|E| =", deg(v) =>_ ¢\ deg(v)+ > ,cy,, deg(v)

ung

gerade!

14 - 22

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

(Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade. J

Beweis. 2-|E| =3 o deg(v) =>_ o, deg(v)+>_ ¢y, deg(v)

ung

gerade! gerade!

14 - 23

Grad eines Knotens

Def.
O dealo) = IAdil]
_:e®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

(Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade. J

Beweis. 2-|E| =3\ deg(v) =3, ey, deg(v)+>_ ¢y, deg(v)

ung

gerade! gerade! gerade!

14 - 24

Grad eines Knotens

Def.
O dealo) = IAdil]
_}®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

(Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade. J

Beweis. 2-|E[=) ., deg(v) =3, cv deg(v)+2 ¢y, deg(v)

ung

gerade! gerade! gerade!

14 - 25

Grad eines Knotens

Def.
O dealo) = IAdil]
_}®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

(Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade. J

Beweis. 2-|E[=) ., deg(v) =3, cv deg(v)+2 ¢y, deg(v)

ung

gerade! gerade! gerade! = gerade!

14 - 26

Grad eines Knotens

Def.
O dealo) = IAdil]
_}®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

(Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade. J

Beweis. 2-|E[=) ., deg(v) =3, cv deg(v)+2 ¢y, deg(v)

ung

gerade! gerade! gerade! = gerade!
D veV,, de8(v) gerade =

14 - 27

Grad eines Knotens

Def.
O dealo) = IAdil]
_}®<: outdeg(v) = |Adj[v]|
indeg(v) = |{ue V: (u,v) € E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2-|E|. v

(Séitzle. Die Anzahl der Knoten ungeraden Grades ist gerade. J

Beweis. 2-|E[=) ., deg(v) =3, cv deg(v)+2 ¢y, deg(v)

ung

gerade! gerade! gerade! = gerade_l
Zvevung deg(v) gerade = \Vung\ Ist gerade! []

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

15 -

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

15 -

15 -

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

: : : Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [SOPRTER TP]

Charakterisierung: Bei welchen Graphen geht das (nicht)?

el O
Bogdan Giusca, CC BY-SA 3.0,
via Wikimedia Commons

15-4

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

: : : Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [SOPRTER TP]

Charakterisierung: Bei welchen Graphen geht das (nicht)?

el O
Bogdan Giusca, CC BY-SA 3.0,
via Wikimedia Commons

[Das Haus vom Nikolaus]

/S 7 X X
X X &

https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

15-5

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

i i i Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ik i]
Charakterisierung: Bei welchen Graphen geht das (nicht)? O L S TN

g Py

Konstruktion: Wie (und in welcher Zeit) finde ich einen
solchen Rundlauf, falls er existiert?

TR L : T B
AT e e e i
i, ;‘"‘\?.‘i‘_!;r i 12 A Faadi e A J

P WL el i

Bogdan Giuscs, CC BY-SA 3.0,
via Wikimedia Commons

[Das Haus vom Nikolaus]

/S 7 X X
X X &

https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

15-6

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

)) i Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ik i]

Charakterisierung: Bei welchen Graphen geht das (nicht)? * S
i ok ’ 0 3];;-_ a

g Py

Konstruktion: Wie (und in welcher Zeit) finde ich einen . ,... =
solchen Rundlauf, falls er existiert? T e o

o . : T .-.‘
: : i g ...',....1.5_"" .I, i
s o [p——
e Tl ¢ TR SR o L

[l Bl S B o/ e

2. Durchlaufe einen Graphen auf einem Kreis, Bogdan Giuscs, CC BY-SA 3.0,

via Wikimedia Commons

so dass jeder Knoten genau einmal durchlaufen wird.

[Das Haus vom Nikolaus]

/S 7 X X
X X &

https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

15-7

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

)) i Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [ik i]

Charakterisierung: Bei welchen Graphen geht das (nicht)? * S
i ok ’ 0 3];;-_ a

g Py

Konstruktion: Wie (und in welcher Zeit) finde ich einen . ,... =
solchen Rundlauf, falls er existiert? T e o

o . : T a‘
: : i g .;q1;?al: ": i
s o [p——
e Tl ¢ TR SR o L

[l Bl S B o/ e

2. Durchlaufe einen Graphen auf einem Kreis, Bogdan Giuscs, CC BY-SA 3.0,

via Wikimedia Commons

so dass jeder Knoten genau einmal durchlaufen wird.

[Das Haus vom Nikolaus]

S XX

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich einen

=i solchen Rundlauf, falls er existiert? X i i
/ W = m | https:// www.skizzen— | |
L - zeichnungen.de/anleitung-zeichnen-vom-

EEEEEEEE

haus-vom-nikolaus/

FRANCE

L ot awe Kapitin Nemo, Public domain, via Wikimedia Commons

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bel

Konstruktion:

Wie (ufd i
solch

raphen geht das (nicht)?

elcher Zeit) finde ich einen
undlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Ko{qs}ru ktion:

uuuuuuuuuuuu

CZECH
EEEEEEEE

FRANCE

Wie (und in welcher Zeit) finde ich einen

solchen Rundlauf, falls er existiert?

L ot awe Kapitin Nemo, Public domain, via Wikimedia Commons

15 -

[Konigsberger Briickenproblem]

g Py

TRy L : s = T o
AT e e e i
i, ;‘"‘\?.‘i‘_!;r i 12 A Faadi e A J

P WL el i

Bogdan Giuscs, CC BY-SA 3.0,
via Wikimedia Commons

[Das Haus vom Nikolaus]

/S 7 X X
X X &

https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

15-9

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

: : : Konigsberger Briickenproblem
so dass jede Kante genau einmal durchlaufen wird. [SOPRTER TP]

Charakterisierung: Bei raphen geht das (nicht)?

Konstruktion: Wie (ulld ipAvelcher Zeit) finde ich einen _
solch undlauf, falls er existiert?
2. Durchlaufe einen Graphen auf einem Kreis, Bosdan G'iu;cg,-cﬁi_g;\ S0

via Wikimedia Commons

so dass jeder Knoten genau einmal durchlaufen wird.

[Das Haus vom Nikolaus]

S XX

Bei welchen Graghen geht das (nicht)?

=Skl P WET < « &

A https: //www.skizzen-
zeichnungen.de/anleitung-zeichnen-vom-
haus-vom-nikolaus/

== Kapitin Nemo, Public domain, via Wikimedia Commons

/usammenhang

Def.

Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

16 -

16 -

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

16 -

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

O—0

16 -

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

O_
| v
Oam®.

16 -

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

\ /
Oam®.

16 -

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

\ /
Oam®.

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

e

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

NN a0

/usammenhang

Def.

Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def.

Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

[11

Def.

Ein ungerichteter Graph heiBt zusammenhangend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

16 -

16 - 10

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

[11

Def. Ein ungerichteter Graph heiBt zusammenhangend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

Def. Ein gerichteter Graph heit (schwach) zusammenhangend, wenn
der zugehorige ungerichtete Graph zusammenhangend ist.

16 - 11

/usammenhang

Def. Ein (un)gerichteter Pfad von einem Knoten u zu einem Knoten v ist
eine Folge von Kanten, die in v beginnt und in v endet.

Def. Ein Knoten v ist von einem Knoten u aus erreichbar, wenn es einen
(un)gerichteten Pfad von u nach v gibt.

[11

Def. Ein ungerichteter Graph heiBt zusammenhangend, wenn jedes
Knotenpaar voneinander aus erreichbar ist.

Def. Ein gerichteter Graph heit (schwach) zusammenhangend, wenn
der zugehorige ungerichtete Graph zusammenhangend ist.

Def. Einen maximalen zusammenhangenden Teilgraphen nennt man eine
Zusammenhangskomponente.

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

17 -

17 -

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html

17 -

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten S aus erreichbar sind?

~ Amit Patel, “Introduction to the A™
| Algorithm”, Red Blob Games, 2014,
e https://www.redblobgames.com/

pathfinding/a-star/introduction.html

17 -

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

==========..======== f::::::" ’f: ':3:3:3:3:33 Amit Patel, “Introduction to the A™
: N Algorithm”, Red Blob Games, 2014,

 https://www.redblobgames.com/

pathfinding/a-star/introduction.html

Frb by
s

+
I,
+ :
+
l
|.
|
I

17 -

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?
EEEEEEEEEEEEEEEEEEEE e N : “ : *
EEEEEEEEEEEEEEE ‘- - - Amit Patel, “Introduction to the A

. ’ @ . Algorithm”, Red Blob Games, 2014,
= : @ https://www.redblobgames.com/
pathfinding/a-star/introduction.html

vvvvvv
uuuuuuu

Frtd
R o
f+444 - bt b

17 -

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?
EEEEEEEEEEEEEEEEEEEE "

TR g
Kbt -.‘-,

vvvvv Fh A,

- '“"
- -

X v

uuuuuuu

Amit Patel, “Introduction to the A™
= Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html

1. wellenformige Ausbreitung ab s
Breitensuche (breadth-first search, BFS)

17 -

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten S aus erreichbar sind?

~ Amit Patel, “Introduction to the A™
| Algorithm”, Red Blob Games, 2014,
e https://www.redblobgames.com/

pathfinding/a-star/introduction.html

1. wellenformige Ausbreitung ab s
Breitensuche (breadth-first search, BFS)

17 -

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten S aus errelchbar sind?

~ Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
y https://www.redblobgames.com/

pathfinding/a-star/introduction.html

1. wellenformige Ausbreitung ab s 2. von s moglichst schnell weit weg
Breitensuche (breadth-first search, BFS)

17-9

Wie durchlaufe ich einen Graphen?

Wie finde ich heraus, welche Knoten von einem Startknoten s aus errelchbar sind?

==========..======== R -:E:: ~ Amit Patel, “Introduction to the A™

ENEEEEEEEN (e \ ~ Algorithm”, Red Blob Games, 2014,
| RN = '@ https://www.redblobgames.com/
~ pathfinding/a-star/introduction.html

1. wellenformige Ausbreitung ab s 2. von s moglichst schnell weit weg
Breitensuche (breadth-first search, BFS) Tiefensuche (depth-first search, DFS)

¢

Wie durchlaufe ich einen Graphen?

17 - 10

Wie finde ich heraus, welche Knoten von einem Startknoten s aus erreichbar sind?

Ll

1. wellenformige Ausbreitung ab s
Breitensuche (breadth-first search, BFS)

Amit Patel, “Introduction to the A™
Algorithm”, Red Blob Games, 2014,
https: //www.redblobgames.com/

pathfinding/a-star/introduction.html

2. von s moglichst schnell weit weg

Tiefensuche (depth-first search, DFS)
(n3chstes M/am

¢

Breitensuche

18 -

Breitensuche

18 -

Breitensuche

18 -

Breitensuche

18 -

Breitensuche

18 -

Breitensuche

18 -

Breitensuche

r S

N

&9
"4

w

t
9

/4

X

18 -

Breitensuche

r S

N

&9
"4

w

t
9

/4

X

18 -

Breitensuche

‘4

18 -

18 - 10

Breitensuche

‘4

18- 11

Breitensuche

‘4

18- 12

Breitensuche

r S t
‘ & o
>
v w X

Breitensuche

___ r S t

‘BFS(Graph G, Vertex s) E

 INITIALIZE(G, 5) | & O O Q:
Q@ = new QUEUE()] G |er
Q.ENQUEUE(s) 5
while not Q. EMPTY() do | &9 o9 S

- INrTIALIZE(Graph G, Vertex s)
' foreach u e V do

u.color = whate

u.d = oo

| u.m = nil [Vorginger]
s.color = red

Breitensuche

___ r S t

‘BFS(Graph G, Vertex s) E

 INITIALIZE(G, 5) | & O O Q:
Q@ = new QUEUE()] G |er
Q.ENQUEUE(s) 5
while not Q.EmMPTY() do | S S S

u = Q.DEQUEUE() 4 w X

- INrTIALIZE(Graph G, Vertex s)
' foreach u e V do

u.color = whate

u.d = oo

| u.m = nil [Vorginger]
s.color = red

Breitensuche

___ r S t

‘BFS(Graph G, Vertex s) E 0

 INITIALIZE(G, 5) | & O Q:
Q = new QUEUE() -——
Q.ENQUEUE(s) 5
while not Q.EmMPTY() do | S S S

u = Q.DEQUEUE() 4 w X

- INrTIALIZE(Graph G, Vertex s)
' foreach u e V do

u.color = whate

u.d = oo

| u.m = nil [Vorginger]
s.color = red

Breitensuche

___ r S t

‘BFS(Graph G, Vertex s) E 0

 INITIALIZE(G, 5) | & O Q:
Q = new QUEUE() -——
Q.ENQUEUE(s) 5
while not Q. EMPTY() do | S S S

u = Q.DEQUEUE() 4 w X
foreach v € Adj[u] do

- INrTIALIZE(Graph G, Vertex s)
' foreach u e V do

u.color = whate

u.d = oo

| u.m = nil [Vorginger]
s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

- INITIALIZE(Graph G, Vertex s)
' foreach u e V do

u.color = whate

u.d = oo

L u.m = nal [Vorgéinger]
s.color = red

Breitensuche

___ r S t

‘BFS(Graph G, Vertex s) E @ @

 INITIALIZE(G, 5) i & Q:
Q = new QUEUE() |

e —
Q.ENQUEUE(s) 5
while not Q.EmMPTY() do | S o9 S
- V w X
u = Q.DEQUEUE() |
foreach v € Adj[u] do S
Aufgabe: iINITIALIZE(Graph G, Vertex s) .
Schreiben Sie Pseudocode, so dass:: foreach u € V' do
v.d = Linge eines kiirzesten B u.color = white
s-v-Weges iiber u, falls ... u.d = oo
v.m = Vorganger auf diesem Weg | | u.m = nil [Vorginger]
-~ s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
' foreach u € V do

u.color = white
u.d = oo

| u.m = nil [Vorginger]
' s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
B u.color = white
u.d = oo
| u.m = nil [Vorginger]

s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
B u.color = white
u.d = oo
| u.m = nil [Vorginger]

s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
| u.d = oo
| u.m = nil [Vorginger]

s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
| u.d = oo
| u.m = nil [Vorginger]

s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
Q@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
V.T = u 5 u.d = oo
| u.mm = nal [Vorgéinger]

s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)
~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do
u = Q.DEQUEUE()
foreach v € Adj[u] do

if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u 5 u.d = oo
| u.mm = nal [Vorgéinger]

s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
B . s.color = red

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
V.T = U u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue |

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
V.T = U u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue |

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
V.T = U u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue |

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
V.T = U u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue |

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
V.T = U u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue |

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) - L wu.m = nil [Vorginger]
— 1 s.color = red
| u.color = blue B

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[u] do
if v.color == white then
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(V) L uw=nil (Vorginger]
— 1 s.color = red
| u.color = blue B

Demo.

https://algo.uni-trier.de/demos/graphtraversal.html

https://algo.uni-trier.de/demos/graphtraversal.html

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =u.d+1 | u.color = white
V.T = U u.d = oo
. Q.ENQUEUE(v) | u.m = nil [Vorginger]
u._color = blue 5. color = red
B . s5.d=0

Laufzeit?

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[y]d0
if v.color == white then - INrTIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) | u.m = nil [Vorginger]
u._color = blue - color = red
s d =0
(INITIALIZE]

Laufzeit?

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[y]d0
if v.color == white then - INrTIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) | u.m = nil [Vorginger]
u._color = blue - color = red
s d =0
(INITIALIZE]

Laufzeit? O(|V|)

Breitensuche

‘BFS(Graph G, Vertex s)
 INITIALIZE(G, 5) Q:
Q = new QUEUE() -

Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) | u.m = nil [Vorginger]
u._color = blue 5. color = red
B o s.d=0

(InrTraLizE) (EN-/DEQUEUES]

Laufzeit? O(|V|)

Breitensuche

‘BFS(Graph G, Vertex s)
 INITIALIZE(G, 5) Q:
Q = new QUEUE() -

Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[] dl0
if v.color == white then - INITIALIZE(Graph G, Vertex s)
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(v) | u.m = nil [Vorginger]
u._color = blue 5. color = red
B o s.d=0

(InrTraLizE) (EN-/DEQUEUES]

Laufzeit? o(V]) + O(|V]|)

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[u] do
if v.color == white then
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(V) L uw=nil (Vorginger]
— 1 s.color = red
| u.color = blue B

(INITIALIZE] [EN—/DEQUEUES] [Adjazenzlisten (foreach—SchIeifen)]

Laufzeit? o(V]) + O(|V]|)

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[u] do
if v.color == white then
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(V) L uw=nil (Vorginger]
— 1 s.color = red
| u.color = blue B

(INITIALIZE] [EN—/DEQUEUES] [Adjazenzlisten (foreach—SchIeifen)]
Laufzeit? O(|V|) + O(V]) + O(E))

[Beob. tiber Knotengrade!]

Breitensuche

‘BFS(Graph G, Vertex s)

~ INITIALIZE(G, 5)
@ = new QUEUE()
Q.ENQUEUE(s)
while not Q.EmMPTY() do

u = Q.DEQUEUE()
foreach v € Adj[u] do
if v.color == white then
v.color = red . foreach u € V do
v.d =ud+1 | u.color = white
V.T = u u.d = oo
. Q.ENQUEUE(V) L uw=nil (Vorginger]
— 1 s.color = red
| u.color = blue B

(INITIALIZE] [EN—/DEQUEUES] [Adjazenzlisten (foreach—SchIeifen)]

Laufzeit? — O(|V]) + O([V]) + O(E)) = O(V|+|E|)

[Beob. tiber Knotengrade!]

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

19 -

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,

(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

19 -

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

19 -

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).
Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).
|berechneter Abstand von/a tatsichlicher Abstand von s
Lemma 1. (Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

19 -

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).
Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).
|berechneter Abstand von/a tatsichlicher Abstand von s
Lemma 1. (Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

]

u

19 -

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis.

]

u

19 -

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel:

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1.

(Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis.

1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

]

u

19 -

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel:

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1.

(Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis.

1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

"4
SM)”

19 -

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel:

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1.

(Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis.

1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

4

19 -

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

v Dieser s-v-Weg hat Lange 6(s, u) + 1.
O(s, u
S u

19-10

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

v Dieser s-v-Weg hat Lange 6(s, u) + 1.
O(s, u v
S u

19-11

19-12

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

V Dieser s-v-Weg hat Lange (s, u) + 1.
(s M
5 U y Kurzester s-v-Weg hat Lange < 6(s, u) + 1.

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel:

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/g tatsichlicher Abstand von s

Lemma 1.

(Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis.

2. Fall: u ist nicht von s erreichbar (d.h. 3 s-u-Weg)

Al

19-13

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel:

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/a tatsichlicher Abstand von s

Lemma 1.

(Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis.

2. Fall: u ist nicht von s erreichbar (d.h. 3 s-u-Weg)

V} = (s, u) = oo
So u

19- 14

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel:

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

|berechneter Abstand von/g tatsichlicher Abstand von s

Lemma 1.

(Eigenschaft kiirzester Wege)

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

Beweis.

2. Fall: u ist nicht von s erreichbar (d.h. 3 s-u-Weg)

v = d(s, u) = o0
) = §(s,v)<oo+1¢
So u

19-15

Korrektheit von BFS — Fortsetzung

Lemma 1.

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

20 -

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.
Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

20 -

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.
Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis.

20 -

20 -

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis.

EBFS(Graph G, Vertex s)

' INITIALIZE(G, 5)

. Q = new QUEUE()

. Q.ENQUEUE(s)

. while not Q. EmpTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d =u.d+1
V.T = U

Q.ENQUEUE(v)

u.color = blue

Korrektheit von BFS — Fortsetzung

o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.

EBFS(Graph G, Vertex s)

' INITIALIZE(G, 5)

. Q = new QUEUE()

. Q.ENQUEUE(s)

. while not Q. EmpTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d =u.d+1
V.T = U

Q.ENQUEUE(v)

u.color = blue

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v

20 -

Korrektheit von BFS — Fortsetzung

o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.

EBFS(Graph G, Vertex s)

' INITIALIZE(G, 5)

. Q = new QUEUE()

. Q.ENQUEUE(s)

. while not Q. EmpTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d =u.d+1
V.T = U

Q.ENQUEUE(v)

u.color = blue

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v

20 -

Korrektheit von BFS — Fortsetzung

o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.

BFS(Graph G, Vertexs) | k = 1:

* INITIALIZE(G, 5) :

. Q = new QUEUE()

. Q.ENQUEUE(s)

. while not Q. EmpTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
vV.m = u

Q.ENQUEUE(v)

u.color = blue

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v

20 -

20 -

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BEFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s):

' INITIALIZE(G, 5)

. Q = new QUEUE()

. Q.ENQUEUE(s)

. while not Q. EmpTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
V. T =u

Q.ENQUEUE(v)

u.color = blue

Korrektheit von BFS — Fortsetzung

o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BEFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s):

' INITIALIZE(G, 5)

. Q = new QUEUE()

. Q.ENQUEUE(s)

. while not Q. EmpTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
V. T =u

Q.ENQUEUE(v)

u.color = blue

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v

20 - 10

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s):

" INITIALIZE(G, 5) : @ @
. @ = new QUEUE() : N
| Q.ENQeUEUE(s) E B sd=0= 5(5' 5) ‘

E e &9

 while not Q. EmMPTY() do

i u = Q.DEQUEUE()

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
VT = u

Q.ENQUEUE(v)

u.color = blue

20 - 11

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s):

" INITIALIZE(G, 5) : @ @
. @ = new QUEUE() : N
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5) ‘

E e &9

i m fiir alle v € V\ {s} gilt v.d = oo

foreach v € Adj[v] do

if v.color == white then
v.color = red '
v.d=ud+1
V.T = U

Q.ENQUEUE(v)

u.color = blue

20 - 12

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s):

" INITIALIZE(G, 5) : @ Q @

. @ = new QUEUE() : N

| T 5 B s.d=0=/(s,s) ‘
&

 while not Q.EMPTY() do ' - .
' UIQ%EQUEUE(()) 5 B fiir alle v € V\ {s} gilt v.d = 00 > §(s, v) (9
foreach v € Adj[u] do ' v
if v.color == white then

v.color = red '

v.d=ud+1

VT = u

Q.ENQUEUE(v)

r S t

w X

u.color = blue

20 - 13

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v

" INITIALIZE(G, 5) : @ Q @

. @ = new QUEUE() : N

| T 5 B s.d=0=/(s,s) ‘
&

 while not Q.EMPTY() do ' - .
' UIQ%EQUEUE(()) 5 B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v) (9
foreach v € Adj[u] do ' v
if v.color == white then

v.color = red '

v.d=ud+1

VT = u

Q.ENQUEUE(v)

r S t

w X

u.color = blue

20 - 14

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
r S t
BFS(Graph G, Vertexs) k= 1: Situation nach Q.ENQUEUE(s):
" INITIALIZE(G, 5) : () ‘/ @ Q @
. @ = new QUEUE() : N
E Q.ENQUEUE(s) E B sd=0= 5(5' 5) ‘
Wh"§2°g%EE§§PETU‘;(())°'° 5 B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v) >

foreach v € Adj[u] do : i _
if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):

v.color = red
v.d=ud+1
V.T = u

Q.ENQUEUE(v)

u.color = blue

20 - 15

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph 6, Vertexs) ilk = 1: Situation nach Q.ENQUEUE(s): J
' INITIALIZE(G, 5) E
. Q= new QUEUE() | B s.d=0=(s,5s)

. Q.ENQUEUE(s)
. while not Q. EmpTY() do
i u = Q.DEQUEUE()
foreach v € Adj|u] do . .
if v.color :[:]'white then K > 1: Situation nach Q.ENQUEUE(V):
v.color = red :
v.d=ud+1
VT = u

Q.ENQUEUE(v)

B fiiralle ve V\ {s} gilt v.d = co > §(s, v)

u.color = blue

20 - 16

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) E
- Omvavnoe) - W sd=0=9(s5)
Wh“ifg%gggﬁgﬁ" B fir alle v € V\ {s} gilt v.d = 00 > §(s, v)
f“?f';_;fo,f‘ijf]wi‘;te thené k > 1: Situation nach Q. ENQUEUE(v):
Z:f,ofruj:all v war gerade noch weill und ist benachbart zu wv.

Q.ENQUEUE(v)

u.color = blue

20 - 17

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) E
- Omvavnoe) - W sd=0=9(s5)
Wh“ifg%gggﬁgﬁ" B fir alle v € V\ {s} gilt v.d = 00 > §(s, v)
f“?f';_;fo,f‘ijf]wi‘;te thené k > 1: Situation nach Q. ENQUEUE(v):
Z:f,ofrujfi 5 v war gerade noch weill und ist benachbart zu wv.

Q.ENQUEUE(v)

o= : v.d =u.d+1

u.color = blue

20 - 18

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Q.ENQUEUE(v)

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) :
. Q = new QUEUE() : — N —
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5)
. while not Q. EmpTY() do : . .
SR G, —— : B fiiralle ve V\ {s} gilt v.d = co > §(s, v)
foreach v € Adj[u] d : . :
Oeiafcv.color :J: 'whzte theni k > 1: Situation nach Q.ENQUEUE(V):
Z:f,ofruj:all | v war gerade noch weill und ist benachbart zu w.
V= : v.d =ud+1>6(s,u)+1

u.color = blue

20 - 19

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Q.ENQUEUE(v)

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) :
. Q = new QUEUE() : — N —
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5)
. while not Q. EmpTY() do : . .
SR G, —— : B fiiralle ve V\ {s} gilt v.d = co > §(s, v)
foreach v € Adj[u] d : . :
Oeiafcv.color :J: 'whzte theni k > 1: Situation nach Q.ENQUEUE(V):
Z:f,ofruj:all | v war gerade noch weill und ist benachbart zu w.
V= : v.d =ud+1>6(s,u)+1

[Induktionsannahme fur u

u.color = blue

20 - 20

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[u] do : i _
if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):

v.color = red

vd—ud+1 | v war gerade noch weill und ist benachbart zu w.
= : v.d =ud+1>6(s,u)+1

Q.ENQUEUE(v)

' L u.color = blue
""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)

[Induktionsannahme fur u

20 - 21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[u] do : i _
if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):

v.color = red

vd—ud+1 | v war gerade noch weill und ist benachbart zu w.
v = U : v.d =ud+12>6(s,u)+1>6(s,v)

Q.ENQUEUE(v)

' L u.color = blue
""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)

[Induktionsannahme fur u

20 - 22

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[v] do

if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):
v.color = red ! . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
e | v.d=ud+1>9(s,u)+1>0s,v)
U color = blue E (Induktionsannahme f'Lir/h

""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)

20 - 23

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[v] do

if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):
v.color = red ! . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
e | v.d=ud+1>9(s,u)+1>0s,v)
U color = blue E (Induktionsannahme f'Lir/h

B (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)
Jetzt ist v rot.

20 - 24

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[v] do

if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):
v.color = red ! . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
e | v.d=ud+1>9(s,u)+1>0s,v)
U color = blue E (Induktionsannahme f'Lir/h

T (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)
Jetzt ist v rot. = v.d andert sich nicht mehr.

20 - 25

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
© INITIALIZE(G, 5) E
Qe Qa0 . Esd=0=0(s5)
W“"§2°5%EE§JPETU‘§())°'° B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)

foreach v € Adj[v] do

if v.color == white theni k > 1: Situation nach Q.ENQUEUE(V):
v.color = red ! . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
T | v.d=ud+1>0d(s,u)+12=>d(s,v)
U color = blue E (Induktionsannahme f'Lir/h

T (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)
Jetzt ist v rot. = v.d andert sich nicht mehr.

20 - 26

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E: v
o(s,v) < d(s,u)+ 1.

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Beweis. Induktion liber die Anzahl k von ENQUEUE-Operationen.
BFS(Graph G, Vertexs) | k = 1: Situation nach Q.ENQUEUE(s): v
' INITIALIZE(G, 5) :
. @ = new QUEUE() : A
: Q.ENQeUEUE(S) E B sd=0= 5(5' 5)
. while not Q. EmpTY() do : . .
' | u— Q.Drqueus() : B fiir alle v € V' \ {s} gilt v.d = 00 > §(s, v)
foreach v € Adj[u] d : . :
Oeiafcv.color :J: 'whzte then kK > 1: Situation nach Q.ENQUEUE(V): /
v.color = red : . .
vd = d41 : v war gerade noch weill und ist benachbart zu w.
= - v.d=ud+1>0d(s,u)+12=>d(s,v)
Q.ENQUEUE(v) : — r = ;
| U color = blue E (Induktionsannahme f'Lir/h

""""""""""""""""" (u.d wurde gesetzt, als Anz. ENQUEUE-Oper. < k)

Jetzt ist v rot. = v.d andert sich nicht mehr. []

Korrektheit von BFS — Fortsetzung

Lemma 2.

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

21 -

Korrektheit von BFS — Fortsetzung

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Lemma 3. Sei Q = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d <w.d+1 und
(B) V,'.d S V,'_|_1.d fuirir =1, ..., r — 1.

21 -

Korrektheit von BFS — Fortsetzung

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Lemma 3. Sei Q = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d < vp.d+1 und
(B) V,'.d S V,'_|_1.d fuiri=1,..., r — 1.

[Also d-Werte der Knoten in Q z.B. (3, 3,4,4,4>.]

21 -

Korrektheit von BFS — Fortsetzung

Lemma 2.

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Lemma 3.

Sei @ = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d < vp.d+1 und
(B) V,'.d S V,'_|_1.d furi =1, ..., r—1.

[Also d-Werte der Knoten in Q z.B. (3, 3,4,4,4>.]

Korollar.

Angenommen u wird frither als v in @ eingefiigt,
dann gilt u.d < v.d, wenn v in Q eingefiigt wird.

21 -

Korrektheit von BFS — Fortsetzung

Lemma 2.

Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > §(s, v).

Lemma 3.

Sei @ = (w1, v, ..., v,) wahrend BFS. Dann gilt:
(A) v,.d < vp.d+1 und
(B) V,'.d S V,'_|_1.d furi =1, ..., r—1.

[Also d-Werte der Knoten in Q z.B. (3, 3,4,4,4>.]

Korollar.

Angenommen u wird frither als v in @ eingefiigt,
dann gilt u.d < v.d, wenn v in Q eingefiigt wird.

Beweis.

Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten < 1x einen endlichen d-Wert bekommt.

21 -

Korrektheit von BFS — Hauptsatz

22 -

Korrektheit von BFS — Hauptsatz

22 -

Korrektheit von BFS — Hauptsatz

22 -

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem

kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

22 -

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem

kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis.

22 -

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem

kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii).

22 -

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem

kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also (i) zu zeigen.

22 -

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem

kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also (i) zu zeigen.

Lemma 2 = v.d > J(s, v).

22 -

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem

kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also (i) zu zeigen.
Lemma 2 = v.d > d(s,v). Noch z.z.: v.d < (s, v).

22 -

22 - 10

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).
(i1) Jeder von s erreichbare Knoten wird entdeckt.

(i) Fir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also (i) zu zeigen.
Lemma 2 = v.d > d(s,v). Noch z.z.: v.d < (s, v).

Widerspruchsbeweis mit Wahl des , kleinsten Schurken®.
Siehe Kapitel 22.2 [CLRS].

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

23 -

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

={v e V:vr#nil}lU{s}

23 -

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

={v e V:vr#nil}lU{s}

={(v.m,v):ve V. \{s}}}

23 -

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

={v e V:vr#nil}lU{s}

={(v.m,v):ve V. \{s}}}

23 -

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

={v e V:vr#nil}lU{s}

={(v.m,v):ve V. \{s}}}

23 -

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

BV, ={veV:vr#mnmul}uU{s}

mE={(vm,v):ve V. \{s}}}

Klar: G, ist ein Baum

23 -

23 -

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

m\V.|={veV:vr#£nil}u{s} SN o

mE. ={(vmv):ve V. \{s}}} —

Klar: G, ist ein Baum (da zshg. und |E;| = |V, | — 1).

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

Klar:

Behauptung: G; ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

={veV:vr#mnml}U{s} SN P
={(v.m,v):ve V. \{s}}} " ».O

G, ist ein Baum (da zshg. und |E;| = |V;| — 1).

23 -

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

Klar:

Behauptung: G; ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

={veV:vr#mnml}U{s} SN P
={(v.m,v):ve V. \{s}}} " >

G, ist ein Baum (da zshg. und |E;| = |V;| — 1).

m V,={v e V:verreichbar von s}

23 -

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

Klar:

Behauptung: G; ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

={veV:vr#mnml}U{s} 32"\: P
={(v.m,v):ve V. \{s}}} " b

G, ist ein Baum (da zshg. und |E;| = |V| — 1).

m V,={v e V:verreichbar von s}

m fiir alle v € V. enthidlt G, einen eindeutigen Weg von
s nach v, der ein kiirzester s-v-Weg ist.

23 -10

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

Klar:

Behauptung: G; ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

={veV:vr#mnml}U{s} Bi.‘\: 0
={(v.m,v):ve V. \{s}}} >
G, ist ein Baum (da zshg. und |E;| = |V| — 1).

m V,={v e V:verreichbar von s}

m fiir alle v € V. enthidlt G, einen eindeutigen Weg von
s nach v, der ein kiirzester s-v-Weg ist.

23 - 11

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

Klar:

Behauptung: G; ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

={veV:vr#mnml}U{s} 32"\: P
={(v.m,v):ve V. \{s}}} " b

G, ist ein Baum (da zshg. und |E;| = |V| — 1).

m V,={v e V:verreichbar von s}

m fiir alle v € V. enthidlt G, einen eindeutigen Weg von
s nach v, der ein kiirzester s-v-Weg ist.

Beweis:

23 - 12

BFS-Biume

Betrachte den Vorganger-Graphen G, = (V,, E;) von G:

Var

Er

Klar:

Behauptung: G; ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

={veV:vr#mnml}U{s} 32"\: P
={(v.m,v):ve V. \{s}}} " b

G, ist ein Baum (da zshg. und |E;| = |V| — 1).

m V,={v e V:verreichbar von s}

m fiir alle v € V. enthidlt G, einen eindeutigen Weg von
s nach v, der ein kiirzester s-v-Weg ist.

Beweis: Folgt aus (ii) und (iii) im Hauptsatz. []

23 - 13

	Graphen und Breitensuche
	Was ist das?
	Was ist ein Graph?

	Transportnetzwerke -- Londoner U-Bahn
	Bioinformatik -- Molekulare metabolische Netzwerke
	Technische Netzwerke -- UML-Diagramme
	Wie repräsentiere ich einen Graphen?
	Grad eines Knotens
	Rundlaufstrategien für ungerichtete Graphen
	Zusammenhang
	Wie durchlaufe ich einen Graphen?
	Breitensuche
	Korrektheit von BFS
	Lemma 1
	Lemma 2
	Lemma 3
	Hauptsatz

	BFS-Bäume

