“‘ O —t/
s s A

Algorithmen und Datenstrukturen

Vorlesung 15:
Augmentieren von Datenstrukturen

Alexander Wolff Wintersemester 2025

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel

-
—¥

B Schlange

<

-

B Hashtabelle

B Heap

[THERELL]

B doppelt verkettete Liste B binarer Suchbaum
e} e e
R N |

—

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

Herangehensweise:

Augmentieren von Datenstrukturen

d.h. wir verandern Datenstrukturen, indem wir zusatzliche
Information hinzufiigen und aufrechterhalten.

Ein Beispiel

Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

2. Welche Zusatzinformation aufrechterhalten?
B Summe der Elemente (sum)

B Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

B konstanter Aufwand beim Einfligen und Loschen

4. Implementiere neue Operationen!

double MEANO" | Ubung.
return sum/size. | Tun Sie das gleiche fiir die Standardabweichung

""""""""""""""""""" \/% > q(ai —a)%

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)
B den Rang eines Elements: int RANK(ptr x)

In einer dynamischen Menge bestimmen konnen.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

19

21

17

Das dynamische Auswahlproblem 12
1. Welche Ausgangsdatenstruktur?
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14
= Baumhohe h € O(log n) : o 13
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit? Abschatzung bestmoglich?
‘Node SELECT(int i): O(i - h): :int RANK(Node x): O(rank - h):
x = MINIMUM() L i=0 ’
while x # nil and / > 1 do E ~ while x # nil do
L x = SUCCESSOR(x) O(h): L x = PREDECESSOR(x) O(h)
I =1—1 ' I =1+1

return x ' return |

__

Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i+h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

__

int RANK(Node x):

1 =0

return /

__

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

12

B gar keine?
B gar keiner

14

13

17

19

O(rank+h):

21

SELECT(7)

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): O(h): 'RANK(Node x): O(h):
' — .left.size + 1 = x.left.size + 1 :
if i == then return Y=
else -~ while y # root do
if 1 < then = if v == y.p.right then
| return SELECT(~.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

y-Rang(x)]

1.) Initialisierung

Vor 1. lteration gilt y = x = y-Rang(x) = x.left.size + 1. /

__

‘RANK(Node x):
| = <.left.size + 1
y:

while y # root do &

if v == y.p.right then .

| = +vy.pleft.size+1 |

y=y.p '
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder lteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

/ [)A/\—Rang()]

1.) Initialisierung

2.) Aufrechterhaltung /

Annahme: Invariante galt zu Beginn der aktuellen Iteration.

Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

Yneu
1. Fall: y war linkes Kind. Rank(lode)
Yalt = y-Rang von x bleibt gleich. " _ jes gize 41

y:

while y # root do &

2. Fall: y war rechtes Kind. L if v == y.p.right then

| = + v.p.left.size + 1

Yneu = y-Rang von x erhéht sich E
. . . | y — _yp :

m um GroBe des I.|.. Teilbaums ' eturmn 5
von .y pIUS 1 (fur .y SerSt)' : (vorausgesetzt, dass T.nil.size = O)E

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

[)J/\—Rang()]

2.) Aufrechterhaltung /

1.) Initialisierung

3.) Terminierung /
Bei Schleifenabbruch: v = root.

__

= r = y-Rang(x) = Rang(x). ‘RANK(Node x):
, 1 | = «.left.size + 1
Zusammenfassung: Y=
while y # root do &
Die Methode RANK() liefert ; if y == y.p.right then :
wie gewiinscht den Rang des L yL: v +y-p-left-size +1
ibergebenen Knotens. ~ return

1
(vorausgesetzt, dass T.nil.size = 0)!

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

O(h)

zusatzliche Laufzeit fiirs Einfiigen:

'Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Laufzeit O(h)

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

LEFTROTATE(x)

Laufzeit O(1)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

RBDELETE() kann man
analog ,,upgraden”.

- 17

Ergebnis

Satz.

Das dynamische Auswahlproblem kann man so I6sen, dass SELECT() und RANK()
sowie alle gewohnlichen Operationen fiir dynamische Mengen in einer Menge von
n Elementen in O(log n) Zeit laufen.

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:
f(v) lasst sich aus Information in v, v.left, v.right (inklusive f(v.left)
und f(v.right)) in konstanter Zeit berechnen.

|

Dann kann man beim Einfiigen und Loschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
UPDATE-Operationen zu verandern.

Beweisidee. Im Prinzip wie im Spezialfall f = size.

Allerdings ist es im Prinzip moglich, dass sich die Veranderungen von einem gewissen
veranderten Knoten bis in die Wurzel hochpropagieren. [Details Kapitel 14.2, CLRS]

11-12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) Jizs ——
B ptr SEARCH(Interval i) P

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.

	Augmentieren von Datenstrukturen
	Plan
	Ein Beispiel
	Neues Beispiel
	Das dynamische Auswahlproblem
	1. Versuch
	2. Versuch

	Korrektheit von Rank()
	Aufwand zur Aufrechterhaltung
	Ergebnis
	Verallgemeinerung
	Noch ein Beispiel

