
1

Algorithmen und Datenstrukturen

Vorlesung 15:
Augmentieren von Datenstrukturen

Alexander Wolff Wintersemester 2025

2 - 10

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste ■ binärer Suchbaum

■ Stapel ■ Hashtabelle

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen

d.h. wir verändern Datenstrukturen, indem wir zusätzliche
Information hinzufügen und aufrechterhalten.

■ Heap■ Schlange

3 - 10

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

■ Summe der Elemente (sum)

■ Anzahl der Elemente (size)

double Mean()
return sum/size

■ konstanter Aufwand beim Einfügen und Löschen

Aufwand zur Aufrechterhaltung der Extrainformation?3.

Implementiere neue Operationen!4.

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

Übung.
Tun Sie das gleiche für die Standardabweichung√

1
n

∑n
i=1(ai − ā)2.

4 - 11

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

ptr Select(int i)

int Rank(ptr x)

5 - 24

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich?4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 36

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

Select(7)

+ +

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

6 - 35

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

hO()h4.

(vorausgesetzt, dass T.nil .size = 0)

O()

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

7 - 7

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

Vor 1. Iteration gilt y = x ⇒ y -Rang(x) = x .left .size + 1.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

y -Rang(x)

7 - 15

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

2. Fall: y war rechtes Kind.

⇒ y -Rang von x erhöht sich
um Größe des li. Teilbaums
von y plus 1 (für y selbst).

yneu

x

yalt

yneu

x

yalt

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

y -Rang(x)

7 - 19

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

3.) Terminierung

Bei Schleifenabbruch: y = root .
⇒ r = y -Rang(x) = Rang(x). Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

✓

Zusammenfassung:

Die Methode Rank() liefert
wie gewünscht den Rang des
übergebenen Knotens.

y -Rang(x)

8 - 17

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.
Laufzeit O(h)

zu
sä
tz
lic
h
e
L
au

fz
ei
t
fü
rs

E
in
fü
g
en
:

O
(h
)

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

RBDelete() kann man
analog

”
upgraden“.

9

Ergebnis

Satz. Das dynamische Auswahlproblem kann man so lösen, dass Select() und Rank()
sowie alle gewöhnlichen Operationen für dynamische Mengen in einer Menge von
n Elementen in O(log n) Zeit laufen.

10 - 9

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee. Im Prinzip wie im Spezialfall f ≡ size.

[Details Kapitel 14.2, CLRS]

Allerdings ist es im Prinzip möglich, dass sich die Veränderungen von einem gewissen
veränderten Knoten bis in die Wurzel hochpropagieren.

11 - 12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

■ ptr Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ ̸= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

i
i ′neu

	Augmentieren von Datenstrukturen
	Plan
	Ein Beispiel
	Neues Beispiel
	Das dynamische Auswahlproblem
	1. Versuch
	2. Versuch

	Korrektheit von Rank()
	Aufwand zur Aufrechterhaltung
	Ergebnis
	Verallgemeinerung
	Noch ein Beispiel

