“‘ O —t/
s s A

Algorithmen und Datenstrukturen

Vorlesung 15:
Augmentieren von Datenstrukturen

Alexander Wolff Wintersemester 2025

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel

-
o

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel

-
o

B Schlange

< g

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel

-
o

B Schlange

- -

B doppelt verkettete Liste

le—{ e e —
'\n—n—nn

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel B Hashtabelle

-
o

B Schlange

< g

B doppelt verkettete Liste

le—{ e e —
I e I e

—

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel B Hashtabelle
-
B Schlange B Heap

- — TR LL

B doppelt verkettete Liste

le—{ e e —
'\n—n—nn

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel

-
—¥

B Schlange

<

-

B doppelt verkettete Liste

—

la—|
-

fe—{ |

%

B Hashtabelle

B Heap

[THERELL]

B binarer Suchbaum

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel

-
—¥

B Schlange

- -

B doppelt verkettete Liste

le—{ e e —
'\n—n—nn

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

B Hashtabelle

B Heap

[THERELL]

B binarer Suchbaum

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel

-
—¥

B Schlange

- -

B doppelt verkettete Liste

le—{ e e —
'\n—n—nn

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

B Hashtabelle

B Heap

[THERELL]

B binarer Suchbaum

Herangehensweise: Augmentieren von Datenstrukturen

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

B Stapel

-
—¥

B Schlange

<

-

B Hashtabelle

B Heap

[THERELL]

B doppelt verkettete Liste B binarer Suchbaum
e} e e
R N |

—

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

Herangehensweise:

Augmentieren von Datenstrukturen

d.h. wir verandern Datenstrukturen, indem wir zusatzliche
Information hinzufiigen und aufrechterhalten.

Ein Beispiel

Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

Ein Beispiel

Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?

Ein Beispiel

Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

Ein Beispiel
Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

2. Welche Zusatzinformation aufrechterhalten?

Ein Beispiel
Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

2. Welche Zusatzinformation aufrechterhalten?
B Summe der Elemente (sum)

B Anzahl der Elemente (size)

Ein Beispiel
Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

2. Welche Zusatzinformation aufrechterhalten?
B Summe der Elemente (sum)

B Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

Ein Beispiel
Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

2. Welche Zusatzinformation aufrechterhalten?
B Summe der Elemente (sum)

B Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

B konstanter Aufwand beim Einfligen und Loschen

Ein Beispiel

Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

2. Welche Zusatzinformation aufrechterhalten?
B Summe der Elemente (sum)

B Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

B konstanter Aufwand beim Einfligen und Loschen

4. Implementiere neue Operationen!

Ein Beispiel

Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

2. Welche Zusatzinformation aufrechterhalten?
B Summe der Elemente (sum)

B Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

B konstanter Aufwand beim Einfligen und Loschen

4. Implementiere neue Operationen!

‘double MEAN()
~ return sum/size

Ein Beispiel

Bestimme fiir eine dynamische Menge von Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
B Beliebig, z.B. Liste

2. Welche Zusatzinformation aufrechterhalten?
B Summe der Elemente (sum)

B Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

B konstanter Aufwand beim Einfligen und Loschen

4. Implementiere neue Operationen!

double MEANO" | Ubung.
return sum/size. | Tun Sie das gleiche fiir die Standardabweichung

""""""""""""""""""" \/% > q(ai —a)%

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

In einer dynamischen Menge bestimmen konnen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das i.-kleinste Element (z.B. den Median):

In einer dynamischen Menge bestimmen konnen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)

In einer dynamischen Menge bestimmen konnen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)

B den Rang eines Elements:

In einer dynamischen Menge bestimmen konnen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)
B den Rang eines Elements: int RANK(ptr x)

In einer dynamischen Menge bestimmen konnen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)
B den Rang eines Elements: int RANK(ptr x)

In einer dynamischen Menge bestimmen konnen.

Fahrplan:

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)
B den Rang eines Elements: int RANK(ptr x)

In einer dynamischen Menge bestimmen konnen.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)
B den Rang eines Elements: int RANK(ptr x)

In einer dynamischen Menge bestimmen konnen.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)
B den Rang eines Elements: int RANK(ptr x)

In einer dynamischen Menge bestimmen konnen.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen l6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

B das /.-kleinste Element (z.B. den Median): ptr SELECT(int /)
B den Rang eines Elements: int RANK(ptr x)

In einer dynamischen Menge bestimmen konnen.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

12

13

14

17

19

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

12

2. Welche Extrainformation aufrechterhalten?

13

14

17

19

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

12

3 13

2. Welche Extrainformation aufrechterhalten?

14

17

19

B gar keine?

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

38

12

14

2. Welche Extrainformation aufrechterhalten?
3. Aufwand zur Aufrechterhaltung?

13

17

19

B gar keine?

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

38

12

14

2. Welche Extrainformation aufrechterhalten?
3. Aufwand zur Aufrechterhaltung?

13

17

19

B gar keine?
B gar keiner

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

38

12

14

2. Welche Extrainformation aufrechterhalten?
3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

13

17

19

B gar keine?
B gar keiner

21

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14 21
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen!
‘Node SELECT(int /): - lint RANK(Node x):

[Iiefert I.-kleinstes Element] | [Wievieltes Element ist v?]

__

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur? 6

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

5 3

2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner

4. Implementiere neue Operationen!

12

‘Node SELECT(int /):

-~ iint RANK(Node x):
iliefert I .-kleinstes Element] »

[Wievieltes Element ist v?]

rAufgabe.
Schreiben Sie Pseudocode fiir SELECT() und RANK()

unter Benutzung von SUCCESSOR() und PREDECESSOR()

14

19

21

17

__

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur? 6

B balancierte binare Suchbiume

12

14

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

5 3

2. Welche Extrainformation aufrechterhalten?
3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int /):
x = MINIMUM()

-~ iint RANK(Node x):

return x

13

17

19

B gar keine?
B gar keiner

__

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur? 6

B balancierte binare Suchbiume

12

14

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

5 3

2. Welche Extrainformation aufrechterhalten?
3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int /):

x = MiINIMUM() =
while x # nil and i > 1 do

L

return x

-~ iint RANK(Node x):

13

17

19

B gar keine?
B gar keiner

__

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur? 6

B balancierte binare Suchbiume

12

14

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

5 3

2. Welche Extrainformation aufrechterhalten?
3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int /):

x = MINIMUM() =
while x £ niland i > 1do
L x = SUCCESSOR(x) |

I=1—1
return x

-~ iint RANK(Node x):

13

17

19

B gar keine?
B gar keiner

__

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur? 6

B balancierte binare Suchbiume

12

14

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

5 3

2. Welche Extrainformation aufrechterhalten?
3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int /):
x = MINIMUM() =0
while x # nil and i >1do

L x = SUCCESSOR(x) |
j=i—1 .
return x | return |

-~ iint RANK(Node x):

13

17

19

B gar keine?
B gar keiner

__

21

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

5 3

14

13

17

19

2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

B gar keiner

‘Node SELECT(int i):
x = MINIMUM() =0
while x £ nil and i >1do ' = while x # nil do
L x = SUCCESSOR(x) - L
i=i—1 -
return x | return |

-~ iint RANK(Node x):

__

21

21

Das dynamische Auswahlproblem 12
1. Welche Ausgangsdatenstruktur? 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen!
‘Node SELECT(int /): - lint RANK(Node x):
x = MINIMUM() L i=0
while x # nil and i >1do = while x # nil do
L x = SUCCESSOR(x) | L x = PREDECESSOR(x)
i=i—1 I=1i+1

return x ' return /

__

21

Das dynamische Auswahlproblem 12
1. Welche Ausgangsdatenstruktur? 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit?
‘Node SELECT(int /): - lint RANK(Node x):
x = MINIMUM() L i=0
while x # nil and i >1do = while x # nil do
L x = SUCCESSOR(x) | L x = PREDECESSOR(x)
i=i—1 I=1i+1

return x ' return /

__

21

Das dynamische Auswahlproblem 12
1. Welche Ausgangsdatenstruktur? 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit?
‘Node SELECT(int /): - lint RANK(Node x):
x = MINIMUM() L i=0
while x # nil and i >1do = while x # nil do
L x = SUCCESSOR(x) | L x = PREDECESSOR(x)
i=i—1 I=1i+1

return x ' return /

__

21

Das dynamische Auswahlproblem 12
1. Welche Ausgangsdatenstruktur? 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit?
‘Node SELECT(int /): - lint RANK(Node x):
x = MINIMUM() L i=0
while x # nil and i >1do = while x # nil do
L x = SUCCESSOR(x) O(h): L x = PREDECESSOR(x)
i=i—1 - i=i+1

return x ' return /

__

Das dynamische Auswahlproblem 12

14

17

19

1. Welche Ausgangsdatenstruktur? 6
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3 2
= Baumhohe h € O(log n) : o 13
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit?
Node SELECT(int i): O(i - h): iint RANK(Node x):
x = MINIMUM() - i=0
while x # nil and i >1do = while x # nil do
L x = SUCCESSOR(x) O(h) ' L x = PREDECESSOR(x)
i=i—1 | I=1i+1

return x ' return /

__

21

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit?
Node SELECT(int i): O(i - h): iint RANK(Node x):
x = MINIMUM() - i=0
while x # nil and i >1do = while x # nil do .
L x = SUCCESSOR(x) O(h): L x = PREDECESSOR(x) O(h)
i=i—1 | I=1-+1 '

return x ' return /

__

21

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit?
‘Node SELECT(int i): O(i - h): :int RANK(Node x): O(rank - h):
x = MINIMUM() - i=0
while x # nil and i >1do = while x # nil do .
L x = SUCCESSOR(x) O(h): L x = PREDECESSOR(x) O(h)
i=i—1 | I=1-+1 '

return x ' return /

__

21

19

21

17

Das dynamische Auswahlproblem 12
1. Welche Ausgangsdatenstruktur?
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14
= Baumhohe h € O(log n) : o 13
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit? Abschatzung bestmoglich?
‘Node SELECT(int i): O(i - h): :int RANK(Node x): O(rank - h):
x = MINIMUM() L i=0 ’
while x # nil and / > 1 do E ~ while x # nil do
L x = SUCCESSOR(x) O(h): L x = PREDECESSOR(x) O(h)
I =1—1 ' I =1+1

return x ' return |

__

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14 21
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit? Abschatzung bestmoglich? Nein!
‘Node SELECT(int i): O(i - h): :int RANK(Node x): O(rank - h):
x = MINIMUM() L i=0 ’
while x # nil and / > 1 do E ~ while x # nil do
L x = SUCCESSOR(x) O(h): L x = PREDECESSOR(x) O(h)
I =1—1 ' I =1+1

return x ' return |

__

Das dynamische Auswahlproblem 12
1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14 21
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit? Abschatzung bestmoglich?
‘Node SELECT(int i): O(i - h): :int RANK(Node x): O(rank - h):
x = MINIMUM() L i=0 ’
while x # nil and / > 1 do E ~ while x # nil do
L x = SUCCESSOR(x) O(h): L x = PREDECESSOR(x) O(h)
I =1—1 ' I =1+1

return x ' return |

__

SELECT(7)

Nein!

Das dynamische Auswahlproblem 12
1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindre Suchbaume
z.B. Rot-Schwarz-Baume 3) 14 21
= Baumhohe h € O(log n) : 2 = [
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit? Abschatzung bestmoglich?
‘Node SELECT(int i): O(i - h): :int RANK(Node x): O(rank - h):
x = MINIMUM() L i=0 ’
while x # nil and / > 1 do E ~ while x # nil do
L x = SUCCESSOR(x) O(h): L x = PREDECESSOR(x) O(h)
I =1—1 ' I =1+1

return x ' return |

__

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

14

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

__

13

17

19

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

14

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

__

13

17

19

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

14

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

__

13

17

19

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

14

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

__

13

17

19

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

14

)?—I
13

17

19

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

__

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

__

int RANK(Node x):

1 =0

return /

__

12

B gar keine?
B gar keiner

14

13

17

19

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank - h):

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

__

int RANK(Node x):

1 =0

return /

__

12

B gar keine?
B gar keiner

14

13

17

19

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank - h):

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

__

int RANK(Node x):

1 =0

return /

__

12

B gar keine?
B gar keiner

14

13

17

19

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank - h):

SELECT(7)

Nein!

Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i+h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

__

int RANK(Node x):

1 =0

return /

__

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

12

B gar keine?
B gar keiner

14

13

17

19

O(rank+h):

21

SELECT(7)

Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindre Suchbaume v/
z.B. Rot-Schwarz-Baume 3 2 14 21
= Baumhohe h € O(log n) : o 73 17 SELECT(7)
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit?
'N'da'é"S'tiL'lizé?E(]H{'T)"""(;)'(}'Jr"h')' 'i'ri{:"}'{A'Ni{(i\'l'éiié'}%')':""'('9'('%&5i/%¥h')"i 'Problem:
x = MINIMUM() - i=0 | Wenn i € ©(n) -
while x # nil and / > 1 do i ~ while x # nil do | z.B. beim Median -,
L X = SUCCESSOR(x) O(h) L x = PREDECESSOR(x) O(h) || dann ist die Laufzeit
i=1i—1 :. i=1i+1 Elinear(wieim
return x .~ return;, istatischen Fall).

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

12

2. Welche Extrainformation aufrechterhalten?

13

14

17

19

21

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

12

3 13

2. Welche Extrainformation aufrechterhalten?

14

17

19

B GroBBen der Tell

paume;

21

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindare Suchbiaume
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte binare Suchbiaume
. 3 9 14 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] g 173] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte binare Suchbiaume
. 3 9 14 1121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte binare Suchbiaume
. I3 o 14 1121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] g 173] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? | 6 19
B balancierte binare Suchbiaume
. I3 o 14 1121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] g 173] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? fir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 |
if i == then
else
if 1 < then

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 |
if i == then return

else
if i < then

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if 1 < then
| return SELECT(.left, i)
else
L

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i —)

Das dynamische Auswahlproblem 112
1. Welche Ausgangsdatenstruktur? [6 5(19
B balancierte binare Suchbiaume
) 213 9 14 1
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] g 173 1%
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater...

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i —)

21

fiir jeden Knoten v, speichere v.size

- 17

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i —)

- 18

Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? °| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] 13 73] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i —)

- 19

Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? °| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) el 13 1|—1§ 1117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i —)

Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? °| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) el 13 1|—1§ 1117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i —)

- 21

Das dynamische Auswahlproblem 1o
1. Welche Ausgangsdatenstruktur? 6 5(19
B balancierte bindare Suchbiaume , > , .
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 1173] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then |
| return SELECT(.left, i) L
else y=y.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 22

Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? °| 6 5(19
y:
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] 13 73] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then |
| return SELECT(.left, i) L
else y=y.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 23

Das dynamische Auswahlproblem 1o
1. Welche Ausgangsdatenstruktur? 6 B 5(19
B balancierte bindare Suchbiaume , > - , .
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 73] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then |
| return SELECT(.left, i) L
else y=y.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 24

Das dynamische Auswahlproblem 1o ,
1. Welche Ausgangsdatenstruktur? 6 5(19
B balancierte bindare Suchbiaume , > , 15
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 73] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then -
| return SELECT(.left, i) L
else y=y.p
| return SELECT(~.right,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 25

Das dynamische Auswahlproblem 1o ,
1. Welche Ausgangsdatenstruktur? 6 5(19
B balancierte bindare Suchbiaume , > , 15
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 73] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then -
| return SELECT(.left, i) L
else y=y.p
| return SELECT(~.right,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 26

Das dynamische Auswahlproblem 1o
1. Welche Ausgangsdatenstruktur? 6 _r\y 5(19
B balancierte bindare Suchbiaume , > , .
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 73] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then -
| return SELECT(.left, i) L
else y=y.p
| return SELECT(~.right,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 27

Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur?)| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] 13 i3] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if 1 < then = if v == y.p.right then
| return SELECT(.left, i) | L
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 28

Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur?)| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] 13 i3] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if 1 < then = if v == y.p.right then
| return SELECT(.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 29

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4.:SELECT(Node x = root, int i): O(): ‘RANK(Node x):

= <.left.size + 1 - = <.left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then - if v == y.p.right then
| return SELECT(.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4.:SELECT(Node x = root, int i): O(): ‘RANK(Node x):

= <.left.size + 1 - = <.left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then - if v == y.p.right then
| return SELECT(~.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): O(h): 'RANK(Node x):

= <.left.size + 1 - = <.left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then - if v == y.p.right then
| return SELECT(~.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. :SELECT(Node x = root, int i): O(h): RANK(Node x): O()
' — .left.size + 1 = x.left.size + 1 :
if i == then return Y=
else -~ while y # root do
if 1 < then = if v == y.p.right then
| return SELECT(~.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. :SELECT(Node x = root, int i): O(h): RANK(Node x): O()
' — .left.size + 1 = x.left.size + 1 :
if i == then return Y=
else -~ while y # root do
if 1 < then = if v == y.p.right then
| return SELECT(~.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n)] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): O(h): 'RANK(Node x): O(h):
' — .left.size + 1 = x.left.size + 1 :
if i == then return Y=
else -~ while y # root do
if 1 < then = if v == y.p.right then
| return SELECT(~.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i—) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante:

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist

Rank(Node x): |
| = <.left.size + 1

Yy
while y # root do &

| = + v.p.left.size + 1
Yy =Y.P
return

\\ if v == y.p.right then

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

Rank(Node x): |
| = <.left.size + 1

Yy
while y # root do &

if v == y.p.right then
| = + v.p.left.size + 1
Yy =Y.P
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

y-Rang(x)]

Rank(Node x): |
= <.left.size + 1

y p—
while y # root do &

if v == y.p.right then
| = + v.p.left.size + 1
Yy =Y.P
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

[)J/\—Rang()]

1.) Initialisierung

__

‘RANK(Node x):
| = <.left.size + 1
y:

while y # root do &

if v == y.p.right then
| = + v.p.left.size + 1
y=y.p
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

y-Rang(x)]

1.) Initialisierung

Vor 1. lteration gilt y = x = y-Rang(x) = x.left.size + 1.

__

‘RANK(Node x):
| = <.left.size + 1
y:

while y # root do &

if v == y.p.right then .

| = +vy.pleft.size+1 |

y=y.p '
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

y-Rang(x)]

1.) Initialisierung

Vor 1. lteration gilt y = x = y-Rang(x) = x.left.size + 1. /

__

‘RANK(Node x):
| = <.left.size + 1
y:

while y # root do &

if v == y.p.right then .

| = +vy.pleft.size+1 |

y=y.p '
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

[)J/\—Rang(x)]

1.) Initialisierung ¢/

2.) Aufrechterhaltung

__

‘RAaNK(Node x):
| = <.left.size + 1
y =X

while y # root do &

if v == y.p.right then .

| = +vy.pleft.size+1 |

y=y.p '
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

/ [)J/\—Rang()]

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.

__

‘RANK(Node x):
| = <.left.size + 1
y:

while y # root do &
if v == y.p.right then
| = + v.p.left.size + 1
y=y.p
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

/ [)A/\—Rang()]

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.

Zu zeigen: Invariante gilt dann auch am Ende der aktuellen lteration.

__

‘RANK(Node x):
| = <.left.size + 1
y:

while y # root do &
if v == y.p.right then
| = + v.p.left.size + 1
y=y.p
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

/ [)A/\—Rang()]

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.

Zu zeigen: Invariante gilt dann auch am Ende der aktuellen lteration.

Yneu
1. Fall: y war linkes Kind. RANK(Node)

= <.left.size + 1

Yalt

y

while y # root do &
if v == y.p.right then
| = + v.p.left.size + 1
y=y.p
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder lteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

/ [)A/\—Rang()]

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.

Zu zeigen: Invariante gilt dann auch am Ende der aktuellen lteration.

Yneu
1. Fall: y war linkes Kind. RANK(Node)

= y-Rang von x bleibt gleich. " _ jes gize 41
y p—

Yalt

while y # root do &
if v == y.p.right then
| = + v.p.left.size + 1
y=y.p
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder lteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

/ [)A/\—Rang()]

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.

Zu zeigen: Invariante gilt dann auch am Ende der aktuellen lteration.

Yneu
1. Fall: y war linkes Kind. RANK(Node)

= y-Rang von x bleibt gleich. " _ jes gize 41
=

Yalt

while y # root do &

if v == y.p.right then
| = + v.p.left.size + 1
y=y.p

Yneu E :
m . return
: (vorausgesetzt, dass T.nil.size = O):
L o o o e D L L L L L L e D D D D D D D D D DD oo 1

2. Fall: y war rechtes Kind.

Korrektheit von RANK()

Invariante: Zu Beginn jeder lteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

/ [)A/\—Rang()]

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.

Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

Yneu
1. Fall: y war linkes Kind. Rank(lode)
Yalt = y-Rang von x bleibt gleich. " _ jes gize 41

y:

while y # root do &

2. Fall: y war rechtes Kind. L if v == y.p.right then

| = + v.p.left.size + 1

Yneu = y-Rang von x erhéht sich E
. . . | y — _yp :

m um GroBe des I.|.. Teilbaums ' eturmn 5
von .y pIUS 1 (fur .y SerSt)' : (vorausgesetzt, dass T.nil.size = O)E

Korrektheit von RANK()

Invariante: Zu Beginn jeder lteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

/ [)A/\—Rang()]

1.) Initialisierung

2.) Aufrechterhaltung /

Annahme: Invariante galt zu Beginn der aktuellen Iteration.

Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

Yneu
1. Fall: y war linkes Kind. Rank(lode)
Yalt = y-Rang von x bleibt gleich. " _ jes gize 41

y:

while y # root do &

2. Fall: y war rechtes Kind. L if v == y.p.right then

| = + v.p.left.size + 1

Yneu = y-Rang von x erhéht sich E
. . . | y — _yp :

m um GroBe des I.|.. Teilbaums ' eturmn 5
von .y pIUS 1 (fur .y SerSt)' : (vorausgesetzt, dass T.nil.size = O)E

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

1.) Initialisierung ¢/ [RensC:]

2.) Aufrechterhaltung /

3.) Terminierung

__

‘RAaNK(Node x):
| = <.left.size + 1
y =X

while y # root do &

if v == y.p.right then .

| = +vy.pleft.size+1 |

y=y.p '
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

[)J/\—Rang(x)]

1.) Initialisierung ¢/

2.) Aufrechterhaltung /

3.) Terminierung

Bei Schleifenabbruch: v = root.

__

= = y—Rang(X) — Rang(x). ‘RAaNK(Node x):
= <.left.size + 1
y =x

while y # root do &

if v == y.p.right then .

| = +vy.pleft.size+1 |

y=y.p '
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

[)J/\—Rang(x)]

1.) Initialisierung ¢/
2.) Aufrechterhaltung /

3.) Terminierung /
Bei Schleifenabbruch: v = root.

__

= = y—Rang(X) — Rang(x). ‘RAaNK(Node x):
= <.left.size + 1
y =x

while y # root do &

if v == y.p.right then .

| = +vy.pleft.size+1 |

y=y.p '
return

1
(vorausgesetzt, dass T.nil.size = 0)!

Korrektheit von RANK()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

[)J/\—Rang()]

2.) Aufrechterhaltung /

1.) Initialisierung

3.) Terminierung /
Bei Schleifenabbruch: v = root.

__

= r = y-Rang(x) = Rang(x). ‘RANK(Node x):
, 1 | = «.left.size + 1
Zusammenfassung: Y=
while y # root do &
Die Methode RANK() liefert ; if y == y.p.right then :
wie gewiinscht den Rang des L yL: v +y-p-left-size +1
ibergebenen Knotens. ~ return

1
(vorausgesetzt, dass T.nil.size = 0)!

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z:

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z:

Erhohe y.size um 1.

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

LEFTROTATE(x)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

y X
RIGHTROTATE
G

LEFTROTATE(x)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,
damit nach der Rotation alle size-Eintrage wieder stimmen?

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

y X
RIGHTROTATE
G

LEFTROTATE(x)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,
damit nach der Rotation alle size-Eintrage wieder stimmen?

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z:

Erhohe y.size um 1.

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,
damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

LEFTROTATE(x)

y size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z:

Erhohe y.size um 1.

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,
damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

LEFTROTATE(x)

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

- 10

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

LEFTROTATE(x)

Laufzeit

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

- 11

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

LEFTROTATE(x)

Laufzeit O(1)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

- 12

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Laufzeit

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

LEFTROTATE(x)

Laufzeit O(1)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

- 13

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.

Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Laufzeit O(h)

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:
% < Laufzeit O(1)

RIGHTROTATE
)

LEFTROTATE(x)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,
damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

- 14

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

zusatzliche Laufzeit fiirs Einfiigen:

'Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Laufzeit O(h)

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

LEFTROTATE(x)

Laufzeit O(1)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

- 15

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

O(h)

zusatzliche Laufzeit fiirs Einfiigen:

'Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Laufzeit O(h)

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

LEFTROTATE(x)

Laufzeit O(1)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

- 16

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBINSERT() geht in zwei Phasen vor:

O(h)

zusatzliche Laufzeit fiirs Einfiigen:

'Phase |: Suche die Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten y auf dem Weg von der Wurzel zu z: Erh6he y.size um 1.

Laufzeit O(h)

Phase Il (RBINSERTF1XUP): Strukturdnderung nur in < 2 Rotationen:

Y

RIGHTROTATE
)

X

LEFTROTATE(x)

Laufzeit O(1)

Welche Befehle miissen wir an RIGHTROTATE(Node y) anhdngen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X size = y. S12€

y size = y.left.size + y.right.size + 1

(vorausgesetzt, dass T.nil.size = 0)

RBDELETE() kann man
analog ,,upgraden”.

- 17

Ergebnis

Satz.

Das dynamische Auswahlproblem kann man so I6sen, dass SELECT() und RANK()
sowie alle gewohnlichen Operationen fiir dynamische Mengen in einer Menge von
n Elementen in O(log n) Zeit laufen.

10 -

Verallgemeinerung

10 -

Verallgemeinerung

10 -

Verallgemeinerung

10 -

Verallgemeinerung

Verallgemeinerung

Satz.

Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:
f(v) lasst sich aus Information in v, v.left, v.right (inklusive f(v.left)
und f(v.right)) in konstanter Zeit berechnen.

|

Dann kann man beim Einfiigen und Loschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
UPDATE-Operationen zu verandern.

10 -

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:
f(v) lasst sich aus Information in v, v.left, v.right (inklusive f(v.left)
und f(v.right)) in konstanter Zeit berechnen.

|

Dann kann man beim Einfiigen und Loschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
UPDATE-Operationen zu verandern.

Beweisidee.

10 -

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:
f(v) lasst sich aus Information in v, v.left, v.right (inklusive f(v.left)
und f(v.right)) in konstanter Zeit berechnen.

|

Dann kann man beim Einfiigen und Loschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
UPDATE-Operationen zu verandern.

Beweisidee. Im Prinzip wie im Spezialfall f = size.

Verallgemeinerung

10 -

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:
f(v) lasst sich aus Information in v, v.left, v.right (inklusive f(v.left)
und f(v.right)) in konstanter Zeit berechnen.

|

Dann kann man beim Einfiigen und Loschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
UPDATE-Operationen zu verandern.

Beweisidee. Im Prinzip wie im Spezialfall f = size.

Allerdings ist es im Prinzip moglich, dass sich die Veranderungen von einem gewissen
veranderten Knoten bis in die Wurzel hochpropagieren.

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:
f(v) lasst sich aus Information in v, v.left, v.right (inklusive f(v.left)
und f(v.right)) in konstanter Zeit berechnen.

|

Dann kann man beim Einfiigen und Loschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
UPDATE-Operationen zu verandern.

Beweisidee. Im Prinzip wie im Spezialfall f = size.

Allerdings ist es im Prinzip moglich, dass sich die Veranderungen von einem gewissen
veranderten Knoten bis in die Wurzel hochpropagieren. [Details Kapitel 14.2, CLRS]

Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

11 -

Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen

11 -

Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen

11 -

Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

11 -

Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M

11 -

Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M

® DELETE(ptr x) ——_

11 -

Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M

® DELETE(ptr x) ——_

B ptr SEARCH(Interval i) =

11 -

Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M

B DELETE(ptr x)

B ptr SEARCH(Interval i) =

11 -

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) D ._.._.'_'._. |
B ptr SEARCH(Interval i) >

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.

11 -

11-10

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) Jass ._..—.'_'.—. |
B ptr SEARCH(Interval i) P

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.

11-11

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) Jass ._..—.'_' |
B ptr SEARCH(Interval i) P

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.

11-12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) Jizs ——
B ptr SEARCH(Interval i) P

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.

	Augmentieren von Datenstrukturen
	Plan
	Ein Beispiel
	Neues Beispiel
	Das dynamische Auswahlproblem
	1. Versuch
	2. Versuch

	Korrektheit von Rank()
	Aufwand zur Aufrechterhaltung
	Ergebnis
	Verallgemeinerung
	Noch ein Beispiel

