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■ Stapel ■ Hashtabelle

■ Heap■ Schlange



2 - 8

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste ■ binärer Suchbaum
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Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste ■ binärer Suchbaum

■ Stapel ■ Hashtabelle

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen

d.h. wir verändern Datenstrukturen, indem wir zusätzliche
Information hinzufügen und aufrechterhalten.

■ Heap■ Schlange
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Aufwand zur Aufrechterhaltung der Extrainformation?3.

Implementiere neue Operationen!4.

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.



3 - 10

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

■ Summe der Elemente (sum)

■ Anzahl der Elemente (size)

double Mean()
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Übung.
Tun Sie das gleiche für die Standardabweichung√

1
n

∑n
i=1(ai − ā)2.
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D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

ptr Select(int i)



4 - 6

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.
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3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!
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z.B. Rot-Schwarz-Bäume
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z.B. Rot-Schwarz-Bäume
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2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x
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z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17
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Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17
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Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17
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Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17
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Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17



5 - 32

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17
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Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17



5 - 34

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17
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Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17
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Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

Select(7)

+ +

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17
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Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

Select(7)

+ +

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

Problem:
Wenn i ∈ Θ(n) –
z.B. beim Median –,
dann ist die Laufzeit
linear (wie im
statischen Fall).
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Das dynamische Auswahlproblem

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1 1 1 1

1

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1 1 1

1

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

1 1

1

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

1

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung?

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

x

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

x

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem
x

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

x

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)
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21

17

3. Aufwand zur Aufrechterhaltung? später...
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13
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Das dynamische Auswahlproblem
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für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r
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3. Aufwand zur Aufrechterhaltung? später...
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r
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(vorausgesetzt, dass T.nil .size = 0)
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

O( )4.

(vorausgesetzt, dass T.nil .size = 0)
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3. Aufwand zur Aufrechterhaltung? später...
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

O( )h4.
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

O( )h4.
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Das dynamische Auswahlproblem

■ Größen der Teilbäume:
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5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)
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y = x
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Korrektheit von Rank()

Invariante:

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)



7 - 3

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

Vor 1. Iteration gilt y = x ⇒ y -Rang(x) = x .left .size + 1.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

Vor 1. Iteration gilt y = x ⇒ y -Rang(x) = x .left .size + 1.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.
yneu

x

yalt
Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

yneu

x

yalt
Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

2. Fall: y war rechtes Kind.

yneu

x

yalt

yneu

x

yalt

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

2. Fall: y war rechtes Kind.

⇒ y -Rang von x erhöht sich
um Größe des li. Teilbaums
von y plus 1 (für y selbst).

yneu

x

yalt

yneu

x

yalt

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

2. Fall: y war rechtes Kind.

⇒ y -Rang von x erhöht sich
um Größe des li. Teilbaums
von y plus 1 (für y selbst).

yneu

x

yalt

yneu

x

yalt

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

3.) Terminierung

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

y -Rang(x)
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Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung
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Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.
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RBDelete() kann man
analog

”
upgraden“.
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Ergebnis

Satz. Das dynamische Auswahlproblem kann man so lösen, dass Select() und Rank()
sowie alle gewöhnlichen Operationen für dynamische Mengen in einer Menge von
n Elementen in O(log n) Zeit laufen.
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Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓
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Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓



10 - 4

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
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Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

■ ptr Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ ̸= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

i

neu



11 - 11

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):
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