
1

Algorithmen und Datenstrukturen

Vorlesung 15:
Augmentieren von Datenstrukturen

Alexander Wolff Wintersemester 2025

2 - 1

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

2 - 2

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ Stapel

2 - 3

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ Stapel

■ Schlange

2 - 4

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste

■ Stapel

■ Schlange

2 - 5

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste

■ Stapel ■ Hashtabelle

■ Schlange

2 - 6

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste

■ Stapel ■ Hashtabelle

■ Heap■ Schlange

2 - 7

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste ■ binärer Suchbaum

■ Stapel ■ Hashtabelle

■ Heap■ Schlange

2 - 8

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste ■ binärer Suchbaum

■ Stapel ■ Hashtabelle

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

■ Heap■ Schlange

2 - 9

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste ■ binärer Suchbaum

■ Stapel ■ Hashtabelle

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen

■ Heap■ Schlange

2 - 10

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

■ doppelt verkettete Liste ■ binärer Suchbaum

■ Stapel ■ Hashtabelle

Allerdings gibt es viele Situationen,
wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen

d.h. wir verändern Datenstrukturen, indem wir zusätzliche
Information hinzufügen und aufrechterhalten.

■ Heap■ Schlange

3 - 1

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

3 - 2

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

Welche Ausgangsdatenstruktur?1.

3 - 3

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

Welche Ausgangsdatenstruktur?1.

3 - 4

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

3 - 5

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

■ Summe der Elemente (sum)

■ Anzahl der Elemente (size)

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

3 - 6

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

■ Summe der Elemente (sum)

■ Anzahl der Elemente (size)

Aufwand zur Aufrechterhaltung der Extrainformation?3.

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

3 - 7

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

■ Summe der Elemente (sum)

■ Anzahl der Elemente (size)

■ konstanter Aufwand beim Einfügen und Löschen

Aufwand zur Aufrechterhaltung der Extrainformation?3.

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

3 - 8

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

■ Summe der Elemente (sum)

■ Anzahl der Elemente (size)

■ konstanter Aufwand beim Einfügen und Löschen

Aufwand zur Aufrechterhaltung der Extrainformation?3.

Implementiere neue Operationen!4.

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

3 - 9

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

■ Summe der Elemente (sum)

■ Anzahl der Elemente (size)

double Mean()
return sum/size

■ konstanter Aufwand beim Einfügen und Löschen

Aufwand zur Aufrechterhaltung der Extrainformation?3.

Implementiere neue Operationen!4.

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

3 - 10

Ein Beispiel

Bestimme für eine dynamische Menge von Zahlen den Mittelwert.

■ Beliebig, z.B. Liste

■ Summe der Elemente (sum)

■ Anzahl der Elemente (size)

double Mean()
return sum/size

■ konstanter Aufwand beim Einfügen und Löschen

Aufwand zur Aufrechterhaltung der Extrainformation?3.

Implementiere neue Operationen!4.

Welche Zusatzinformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

Übung.
Tun Sie das gleiche für die Standardabweichung√

1
n

∑n
i=1(ai − ā)2.

4 - 1

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

4 - 2

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

in einer dynamischen Menge bestimmen können.

4 - 3

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

in einer dynamischen Menge bestimmen können.

4 - 4

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

in einer dynamischen Menge bestimmen können.

ptr Select(int i)

4 - 5

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

ptr Select(int i)

4 - 6

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

ptr Select(int i)

int Rank(ptr x)

4 - 7

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

Fahrplan:

ptr Select(int i)

int Rank(ptr x)

4 - 8

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

ptr Select(int i)

int Rank(ptr x)

4 - 9

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

ptr Select(int i)

int Rank(ptr x)

4 - 10

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

ptr Select(int i)

int Rank(ptr x)

4 - 11

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

■ das i .-kleinste Element (z.B. den Median):

■ den Rang eines Elements:

in einer dynamischen Menge bestimmen können.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

ptr Select(int i)

int Rank(ptr x)

5 - 1

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

5 - 2

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

5 - 3

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

⇒ Baumhöhe h ∈ O(log n)

5 - 4

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

⇒ Baumhöhe h ∈ O(log n)

12

19

149

6

3

5

21

17

5 - 5

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

12

19

149

6

3

5

21

17

5 - 6

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

⇒ Baumhöhe h ∈ O(log n)

12

19

149

6

3

5

21

17

5 - 7

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

⇒ Baumhöhe h ∈ O(log n)

3. Aufwand zur Aufrechterhaltung?

12

19

149

6

3

5

21

17

5 - 8

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

⇒ Baumhöhe h ∈ O(log n)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 9

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 10

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

liefert i .-kleinstes Element Wievieltes Element ist v?

12

19

149

6

3

5

21

17

5 - 11

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

liefert i .-kleinstes Element Wievieltes Element ist v?

Aufgabe.

Schreiben Sie Pseudocode für Select() und Rank()
unter Benutzung von Successor() und Predecessor()

12

19

149

6

3

5

21

17

5 - 12

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 13

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 14

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 15

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 16

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 17

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 18

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 19

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

12

19

149

6

3

5

21

17

5 - 20

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h)

12

19

149

6

3

5

21

17

5 - 21

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h)

12

19

149

6

3

5

21

17

5 - 22

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 23

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 24

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich?4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 25

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 26

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 27

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 28

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 29

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 30

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 31

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 32

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 33

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 34

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 35

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere neue Operationen!

Select(7)

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 36

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

Select(7)

+ +

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

5 - 37

Das dynamische Auswahlproblem

8 13

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? ■ gar keine?

Node Select(int i): int Rank(Node x):

i = 0
while x ̸= nil do

x = Predecessor(x)
i = i + 1

return i

x = Minimum()
while x ̸= nil and i > 1 do

x = Successor(x)
i = i − 1

return x

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

Select(7)

+ +

3. Aufwand zur Aufrechterhaltung? ■ gar keiner

O(h) O(h)

12

19

149

6

3

5

21

17

Problem:
Wenn i ∈ Θ(n) –
z.B. beim Median –,
dann ist die Laufzeit
linear (wie im
statischen Fall).

6 - 1

Das dynamische Auswahlproblem

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12

6 - 2

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12

6 - 3

Das dynamische Auswahlproblem

■ Größen der Teilbäume:
für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12

6 - 4

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1 1 1 1

1

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12

6 - 5

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1 1 1

1

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12

6 - 6

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

1 1

1

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12

6 - 7

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

1

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12

6 - 8

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

1713

12

6 - 9

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

11

13

12

6 - 10

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung?

11

13

12

6 - 11

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 12

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 13

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 14

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 15

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 16

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 17

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

x

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 18

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

x

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 19

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 20

Das dynamische Auswahlproblem
x

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 21

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

4.

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

x

11

13

12

6 - 22

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 23

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6 y=

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 24

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6 y=

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 25

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

y
12

6 - 26

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

y
12

6 - 27

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

y

12

6 - 28

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

y

12

6 - 29

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

x

2

6

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

y

12

6 - 30

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

O()4.

(vorausgesetzt, dass T.nil .size = 0)

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 31

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

O()4.

(vorausgesetzt, dass T.nil .size = 0)

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 32

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

O()h4.

(vorausgesetzt, dass T.nil .size = 0)

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 33

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

O()h4.

(vorausgesetzt, dass T.nil .size = 0)

O()

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 34

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

O()h4.

(vorausgesetzt, dass T.nil .size = 0)

O()

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

6 - 35

Das dynamische Auswahlproblem

■ Größen der Teilbäume:

1

2

1

2

5

1 1

3 1

5

für jeden Knoten v , speichere v .size

Select(Node x = root , int i): Rank(Node x):

r = x .left .size + 1
if i == r then return x
else

if i < r then
return Select(x .left , i)

else
return Select(x .right , i − r)

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

hO()h4.

(vorausgesetzt, dass T.nil .size = 0)

O()

8

1. Welche Ausgangsdatenstruktur?

■ balancierte binäre Suchbäume

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

19

149

6

3

5

21

17

3. Aufwand zur Aufrechterhaltung? später...

11

13

12

7 - 1

Korrektheit von Rank()

Invariante:

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

7 - 2

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

7 - 3

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

7 - 4

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

y -Rang(x)

7 - 5

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

y -Rang(x)

7 - 6

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

Vor 1. Iteration gilt y = x ⇒ y -Rang(x) = x .left .size + 1.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

y -Rang(x)

7 - 7

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

Vor 1. Iteration gilt y = x ⇒ y -Rang(x) = x .left .size + 1.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

y -Rang(x)

7 - 8

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)

7 - 9

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)

7 - 10

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)

7 - 11

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.
yneu

x

yalt
Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)

7 - 12

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

yneu

x

yalt
Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)

7 - 13

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

2. Fall: y war rechtes Kind.

yneu

x

yalt

yneu

x

yalt

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)

7 - 14

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

2. Fall: y war rechtes Kind.

⇒ y -Rang von x erhöht sich
um Größe des li. Teilbaums
von y plus 1 (für y selbst).

yneu

x

yalt

yneu

x

yalt

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓
y -Rang(x)

7 - 15

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Invariante galt zu Beginn der aktuellen Iteration.
Zu zeigen: Invariante gilt dann auch am Ende der aktuellen Iteration.

1. Fall: y war linkes Kind.

⇒ y -Rang von x bleibt gleich.

2. Fall: y war rechtes Kind.

⇒ y -Rang von x erhöht sich
um Größe des li. Teilbaums
von y plus 1 (für y selbst).

yneu

x

yalt

yneu

x

yalt

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

y -Rang(x)

7 - 16

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

3.) Terminierung

Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

y -Rang(x)

7 - 17

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

3.) Terminierung

Bei Schleifenabbruch: y = root .
⇒ r = y -Rang(x) = Rang(x). Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

y -Rang(x)

7 - 18

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

3.) Terminierung

Bei Schleifenabbruch: y = root .
⇒ r = y -Rang(x) = Rang(x). Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

✓

y -Rang(x)

7 - 19

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife ist
r der Rang von x im Teilbaum mit Wurzel y .

1.) Initialisierung

2.) Aufrechterhaltung

3.) Terminierung

Bei Schleifenabbruch: y = root .
⇒ r = y -Rang(x) = Rang(x). Rank(Node x):

r = x .left .size + 1
y = x
while y ̸= root do

if y == y .p.right then
r = r + y .p.left .size + 1

y = y .p

return r

(vorausgesetzt, dass T.nil .size = 0)

✓

✓

✓

Zusammenfassung:

Die Methode Rank() liefert
wie gewünscht den Rang des
übergebenen Knotens.

y -Rang(x)

8 - 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

8 - 2

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

8 - 3

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Für alle Knoten y auf dem Weg von der Wurzel zu z :

8 - 4

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

8 - 5

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

8 - 6

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 7

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 8

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 10

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 11

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 12

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 13

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.
Laufzeit

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 14

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.
Laufzeit O(h)

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 15

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.
Laufzeit O(h)

zu
sä
tz
lic
h
e
L
au

fz
ei
t
fü
rs

E
in
fü
g
en
:

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 16

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.
Laufzeit O(h)

zu
sä
tz
lic
h
e
L
au

fz
ei
t
fü
rs

E
in
fü
g
en
:

O
(h
)

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

8 - 17

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche die Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten y auf dem Weg von der Wurzel zu z : Erhöhe y .size um 1.
Laufzeit O(h)

zu
sä
tz
lic
h
e
L
au

fz
ei
t
fü
rs

E
in
fü
g
en
:

O
(h
)

(vorausgesetzt, dass T.nil .size = 0)

y

x y

x
RightRotate(y)

LeftRotate(x)

RBDelete() kann man
analog

”
upgraden“.

9

Ergebnis

Satz. Das dynamische Auswahlproblem kann man so lösen, dass Select() und Rank()
sowie alle gewöhnlichen Operationen für dynamische Mengen in einer Menge von
n Elementen in O(log n) Zeit laufen.

10 - 1

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

10 - 2

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

10 - 3

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

10 - 4

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

10 - 5

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

10 - 6

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee.

10 - 7

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee. Im Prinzip wie im Spezialfall f ≡ size.

10 - 8

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee. Im Prinzip wie im Spezialfall f ≡ size.

Allerdings ist es im Prinzip möglich, dass sich die Veränderungen von einem gewissen
veränderten Knoten bis in die Wurzel hochpropagieren.

10 - 9

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right (inklusive f (v .left)
und f (v .right)) in konstanter Zeit berechnen.

Dann kann man beim Einfügen und Löschen einzelner Knoten den Wert von f in
allen Knoten aufrechterhalten, ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee. Im Prinzip wie im Spezialfall f ≡ size.

[Details Kapitel 14.2, CLRS]

Allerdings ist es im Prinzip möglich, dass sich die Veränderungen von einem gewissen
veränderten Knoten bis in die Wurzel hochpropagieren.

11 - 1

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

11 - 2

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum
verwaltet eine Menge M von Intervallen und bietet Operationen:

11 - 3

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum
verwaltet eine Menge M von Intervallen und bietet Operationen:

M

11 - 4

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum
verwaltet eine Menge M von Intervallen und bietet Operationen:

M

11 - 5

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

11 - 6

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

11 - 7

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

■ ptr Search(Interval i)

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

11 - 8

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

■ ptr Search(Interval i)

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

neu

11 - 9

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

■ ptr Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ ̸= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

neu

11 - 10

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

■ ptr Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ ̸= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

i

neu

11 - 11

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

■ ptr Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ ̸= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

i

i ′neu

11 - 12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen [CLRS, Kapitel 14.3]):

Intervall-Baum

■ ptr Insert (Interval i)

■ Delete(ptr x)

■ ptr Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ ̸= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

M

i
i ′neu

	Augmentieren von Datenstrukturen
	Plan
	Ein Beispiel
	Neues Beispiel
	Das dynamische Auswahlproblem
	1. Versuch
	2. Versuch

	Korrektheit von Rank()
	Aufwand zur Aufrechterhaltung
	Ergebnis
	Verallgemeinerung
	Noch ein Beispiel

