“‘ O —t/
s s A

Algorithmen und Datenstrukturen

Vorlesung 15:
Augmentieren von Datenstrukturen
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Allerdings gibt es viele Situationen,
wo keine davon genau passt.

Herangehensweise:

Augmentieren von Datenstrukturen

d.h. wir verandern Datenstrukturen, indem wir zusatzliche
Information hinzufiigen und aufrechterhalten.
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= Baumhohe h € O(log n)

6

p

3

38

14

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

________________________________________________

13

17

19

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!



Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

14

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

________________________________________________

13

17

19

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!



Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

14

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

________________________________________________

13

17

19

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!



Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38
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)?—I
13

17

19

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h)
- x = MiNnimmuM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

int RANK(Node x):

1 =0

return /

________________________________________________

B gar keine?
B gar keiner

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank -

h)

SELECT(7)

Nein!



Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

________________________________________________

int RANK(Node x):

1 =0

return /

________________________________________________

12

B gar keine?
B gar keiner

14

13

17

19

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank - h):

SELECT(7)

Nein!



Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

________________________________________________

int RANK(Node x):

1 =0

return /

________________________________________________

12

B gar keine?
B gar keiner

14

13

17

19

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank - h):

SELECT(7)

Nein!



Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i): O(i - h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

________________________________________________

int RANK(Node x):

1 =0

return /

________________________________________________

12

B gar keine?
B gar keiner

14

13

17

19

21

Abschatzung bestmoglich?

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

O(rank - h):

SELECT(7)

Nein!



Das dynamische Auswahlproblem /\

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

6

p

3

38

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

‘Node SELECT(int i):  O(i+h):
x = MINIMUM() '

while x # nil and i > 1 do
L x = SUCCESSOR(x) O(h)

=1 —1
return x

| aufzeit?

________________________________________________

int RANK(Node x):

1 =0

return /

________________________________________________

while x # nil do
L x = PREDECESSOR(x) O(h)

=1+ 1

12

B gar keine?
B gar keiner

14

13

17

19

O(rank+h):

21

SELECT(7)



Das dynamische Auswahlproblem /\12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindre Suchbaume v/
z.B. Rot-Schwarz-Baume 3 2 14 21
= Baumhohe h € O(log n) : o 73 17 SELECT(7)
2. Welche Extrainformation aufrechterhalten? B gar keine?
3. Aufwand zur Aufrechterhaltung? B gar keiner
4. Implementiere neue Operationen! Laufzeit?
'N'da'é"S'tiL'lizé?E(]H{'T)"""(;)'(}'Jr"h')' 'i'ri{:"}'{A'Ni{(i\'l'éiié'}%')':""'('9'('%&5i/%¥h')"i 'Problem:
x = MINIMUM() - i=0 | Wenn i € ©(n) -
while x # nil and / > 1 do i ~ while x # nil do | z.B. beim Median -,
L X = SUCCESSOR(x) O(h) L x = PREDECESSOR(x) O(h) || dann ist die Laufzeit
i=1i—1 :. i=1i+1 Elinear(wieim
return x .~ return;,  istatischen Fall).




Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

12

2. Welche Extrainformation aufrechterhalten?

13

14

17

19

21



Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

B balancierte binare Suchbiume

z.B. Rot-Schwarz-Baume
= Baumhohe h € O(log n)

12

3 13

2. Welche Extrainformation aufrechterhalten?

14

17

19

B GroBBen der Tell

paume;

21



Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte bindare Suchbiaume
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) : 2 3l 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

fiir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte binare Suchbiaume
. 3 9 14 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] g 173] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte binare Suchbiaume
. 3 9 14 1121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? 6 19
B balancierte binare Suchbiaume
. I3 o 14 1121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] g 173] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? | 6 19
B balancierte binare Suchbiaume
. I3 o 14 1121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] g 173] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 12

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

fiir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? fir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):

_________________________________________________________________________________________



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 |
if i == then
else
if 1 < then

_________________________________________________________________________________________



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 |
if i == then return

else
if i < then

_________________________________________________________________________________________



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if 1 < then
| return SELECT(.left, i)
else
L

_________________________________________________________________________________________



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 17
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i — )

_________________________________________________________________________________________



Das dynamische Auswahlproblem 112
1. Welche Ausgangsdatenstruktur? [ 6 5(19
B balancierte binare Suchbiaume
) 213 9 14 1
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] g 173 1%
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater...

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i — )

________________________________

21

fiir jeden Knoten v, speichere v.size

- 17



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
B balancierte binare Suchbiaume
. I3 2 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) ] 13 173] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i — )

_________________________________________________________________________________________

- 18



Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? °| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] 13 73] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i — )

_________________________________________________________________________________________

- 19



Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? °| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) el 13 1|—1§ 1117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i — )

_________________________________________________________________________________________



Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? °| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) el 13 1|—1§ 1117
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
— .left.size +1 o

if i == then return

else
if i < then
| return SELECT(.left, i)
else
| return SELECT(.right, i — )

_________________________________________________________________________________________

- 21



Das dynamische Auswahlproblem 1o
1. Welche Ausgangsdatenstruktur? 6 5(19
B balancierte bindare Suchbiaume , > , .
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 1173] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then |
| return SELECT(.left, i) L
else y=y.p
| return SELECT(<.7ight,i— ) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 22



Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? °| 6 5(19
y:
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] 13 73] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then |
| return SELECT(.left, i) L
else y=y.p
| return SELECT(<.7ight,i— ) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!
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Das dynamische Auswahlproblem 1o
1. Welche Ausgangsdatenstruktur? 6 B 5(19
B balancierte bindare Suchbiaume , > - , .
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 73] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then |
| return SELECT(.left, i) L
else y=y.p
| return SELECT(<.7ight,i— ) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 24



Das dynamische Auswahlproblem 1o ,
1. Welche Ausgangsdatenstruktur? 6 5(19
B balancierte bindare Suchbiaume , > , 15
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 73] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then -
| return SELECT(.left, i) L
else y=y.p
| return SELECT(~.right,i— ) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 25



Das dynamische Auswahlproblem 1o ,
1. Welche Ausgangsdatenstruktur? 6 5(19
B balancierte bindare Suchbiaume , > , 15
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 73] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then -
| return SELECT(.left, i) L
else y=y.p
| return SELECT(~.right,i— ) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 26



Das dynamische Auswahlproblem 1o
1. Welche Ausgangsdatenstruktur? 6 _r\y 5(19
B balancierte bindare Suchbiaume , > , .
z.B. Rot-Schwarz-Baume 3 9 14 21
= Baumhohe h € O(log n) e] g 73] 117
2. Welche Extrainformation aufrechterhalten? B GroBen der Teilbaume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if i < then -
| return SELECT(.left, i) L
else y=y.p
| return SELECT(~.right,i— ) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 27



Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? )| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] 13 i3] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if 1 < then = if v == y.p.right then
| return SELECT(.left, i) | L
else o y=Yy.p
| return SELECT(<.7ight,i— ) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!
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Das dynamische Auswahlproblem 1o

1. Welche Ausgangsdatenstruktur? )| 6 5(19
B balancierte binare Suchbiaume
. I3 I 314 121
z.B. Rot-Schwarz-Biaume
= Baumhohe h € O(log n) e] 13 i3] 77
2. Welche Extrainformation aufrechterhalten? B GroBen der Tellbdume:

3. Aufwand zur Aufrechterhaltung? spater... fiir jeden Knoten v, speichere v.size

4. SELECT(Node x = root, int i): . 'RANK(Node x):
= .left.size + 1 = .left.size + 1
if i == then return Y=
else -~ while y # root do
if 1 < then = if v == y.p.right then
| return SELECT(.left, i) | \\ | = Hvy.pleft.size+1
else o y=Yy.p
| return SELECT(<.7ight,i— ) | | return

1
(vorausgesetzt, dass T.nil.size = 0)!

- 29



Das dynamische Auswahlproblem 112

1. Welche Ausgangsdatenstruktur? | 6 5(19
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3.) Terminierung

__________________________________________
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Bei Schleifenabbruch: v = root.

__________________________________________
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__________________________________________
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Invariante: Zu Beginn jeder Iteration der while-Schleife ist
der Rang von x im Teilbaum mit Wurzel y.

[)J/\—Rang( )]

2.) Aufrechterhaltung /

1.) Initialisierung

3.) Terminierung /
Bei Schleifenabbruch: v = root.

__________________________________________

= r = y-Rang(x) = Rang(x). ‘RANK(Node x):
, 1 | = «.left.size + 1
Zusammenfassung: Y=
while y # root do &
Die Methode RANK() liefert ; if y == y.p.right then :
wie gewiinscht den Rang des L yL: v +y-p-left-size +1
ibergebenen Knotens. ~ return

1
(vorausgesetzt, dass T.nil.size = 0)!
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X size = y. S12€
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(vorausgesetzt, dass T.nil.size = 0)

RBDELETE() kann man
analog ,,upgraden”.
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Ergebnis

Satz.

Das dynamische Auswahlproblem kann man so I6sen, dass SELECT() und RANK()
sowie alle gewohnlichen Operationen fiir dynamische Mengen in einer Menge von
n Elementen in O(log n) Zeit laufen.
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Satz.

Sei f Knotenattribut eines R-S-Baums mit n Knoten.
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UPDATE-Operationen zu verandern.
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Allerdings ist es im Prinzip moglich, dass sich die Veranderungen von einem gewissen
veranderten Knoten bis in die Wurzel hochpropagieren. [Details Kapitel 14.2, CLRS]




Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

11 -



Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen

11 -



Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen

11 -



Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

11 -



Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M

11 -



Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M

® DELETE(ptr x) ——_

11 -



Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M

® DELETE(ptr x) ——_

B ptr SEARCH(Interval i) =

11 -



Noch ein Beispiel
zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M

B DELETE(ptr x)

B ptr SEARCH(Interval i) =

11 -



Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) D ._.._.'_'._. |
B ptr SEARCH(Interval i) >

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.

11 -



11-10

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) Jass ._..—.'_'.—. |
B ptr SEARCH(Interval i) P

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.



11-11

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) Jass ._..—.'_' |
B ptr SEARCH(Interval i) P

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.



11-12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen [CLRS, Kapitel 14.3]):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

B ptr INSERT (Interval i) M
B DELETE(ptr x) Jizs ——
B ptr SEARCH(Interval i) P

liefert ein Element mit Interval // € M mit iN /" # 0,
falls ein solches existiert, sonst ni/.



	Augmentieren von Datenstrukturen
	Plan
	Ein Beispiel
	Neues Beispiel
	Das dynamische Auswahlproblem
	1. Versuch
	2. Versuch

	Korrektheit von Rank()
	Aufwand zur Aufrechterhaltung
	Ergebnis
	Verallgemeinerung
	Noch ein Beispiel

