Approximation Algorithms

Lecture 11:

MaxSat via Randomized Rounding

Part I:

Maximum Satisfiability (MAXSAT)

Given: Boolean variables x_1, \ldots, x_n and

Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m

```
Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights w_1, \ldots, w_m.
```

Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights w_1, \ldots, w_m .

Task: Find an assignment of the variables x_1, \ldots, x_n

Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights w_1, \ldots, w_m .

Task: Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the satisfied clauses is **maximized**.

Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights w_1, \ldots, w_m .

Task: Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the satisfied clauses is **maximized**.

Literal: Variable or negated variable – e.g., x_1 , $\overline{x_1}$.

Given: Boolean variables x_1, \ldots, x_n and

clauses C_1, \ldots, C_m with weights w_1, \ldots, w_m .

Task: Find an assignment of the variables x_1, \ldots, x_n

such that the total weight of the satisfied clauses

is maximized.

Literal: Variable or negated variable – e.g., x_1 , $\overline{x_1}$.

Clause: Disjunction of literals – e.g., $x_1 \vee \overline{x_2} \vee x_3$.

Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights w_1, \ldots, w_m .

Task: Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the satisfied clauses is **maximized**.

Literal: Variable or negated variable – e.g., x_1 , $\overline{x_1}$.

Clause: Disjunction of literals – e.g., $x_1 \vee \overline{x_2} \vee x_3$.

Length of a clause = number of literals.

Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights w_1, \ldots, w_m .

Task: Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the satisfied clauses is **maximized**.

Literal: Variable or negated variable – e.g., x_1 , $\overline{x_1}$.

Clause: Disjunction of literals – e.g., $x_1 \vee \overline{x_2} \vee x_3$.

Length of a clause = number of literals.

Problem is NP-hard since Satisfiability (Sat) is NP-hard: Is a given formula in conjunctive normal form satisfiable?

Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights w_1, \ldots, w_m .

Task: Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the satisfied clauses is **maximized**.

Literal: Variable or negated variable – e.g., x_1 , $\overline{x_1}$.

Clause: Disjunction of literals – e.g., $x_1 \vee \overline{x_2} \vee x_3$.

Length of a clause = number of literals.

Problem is NP-hard since SATISFIABILITY (SAT) is NP-hard: Is a given formula in conjunctive normal form satisfiable? E.g., $(x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor \overline{x_3} \lor x_4) \land (x_1 \lor \overline{x_4})$.

Approximation Algorithms

Lecture 11:

MaxSat via Randomized Rounding

Part II:

A Simple Randomized Algorithm

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected -approximation for MAXSAT.

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_j .

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_j .

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_j .

$$\mathbf{E}[W] =$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_j .

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^m w_j Y_j
ight] =$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_i .

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j \mathbf{E}[Y_j] =$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_i .

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j \mathbf{E}[Y_j] = \sum_{j=1}^{m} w_j \mathbf{Pr}[C_j \text{ satisfied}]$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_i .

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j \mathbf{E}[Y_j] = \sum_{j=1}^{m} w_j \mathbf{Pr}[C_j \text{ satisfied}]$$

$$I_j := \operatorname{length}(C_j) \Rightarrow$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_i .

Let W be a random variable for the total weight of the satisfied clauses.

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j \mathbf{E}[Y_j] = \sum_{j=1}^{m} w_j \mathbf{Pr}[C_j \text{ satisfied}]$$

 $I_j := \text{length}(C_j) \Rightarrow \Pr[C_j \text{ satisfied}] =$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_i .

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_{j} Y_{j}\right] = \sum_{j=1}^{m} w_{j} \mathbf{E}[Y_{j}] = \sum_{j=1}^{m} w_{j} \mathbf{Pr}[C_{j} \text{ satisfied}]$$

$$I_{j} := \text{length}(C_{j}) \Rightarrow \mathbf{Pr}[C_{j} \text{ satisfied}] = 1 - (1/2)^{l_{j}} \geq$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_i \in \{0, 1\}$ be a random variable for the truth value of clause C_i .

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_{j} Y_{j}\right] = \sum_{j=1}^{m} w_{j} \mathbf{E}[Y_{j}] = \sum_{j=1}^{m} w_{j} \mathbf{Pr}[C_{j} \text{ satisfied}]$$

$$I_{j} := \operatorname{length}(C_{j}) \Rightarrow \mathbf{Pr}[C_{j} \text{ satisfied}] = 1 - (1/2)^{I_{j}} \ge 1/2.$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_j .

Let W be a random variable for the total weight of the satisfied clauses.

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j \mathbf{E}[Y_j] = \sum_{j=1}^{m} w_j \mathbf{Pr}[C_j \text{ satisfied}]$$

 $I_j := \text{length}(C_j) \Rightarrow \Pr[C_j \text{ satisfied}] = 1 - (1/2)^{I_j} \ge 1/2.$

Thus, $\mathbf{E}[W] \geq$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_i .

Let W be a random variable for the total weight of the satisfied clauses.

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j \mathbf{E}[Y_j] = \sum_{j=1}^{m} w_j \mathbf{Pr}[C_j \text{ satisfied}]$$

 $I_j := \text{length}(C_j) \Rightarrow \Pr[C_j \text{ satisfied}] = 1 - (1/2)^{I_j} \ge 1/2.$

Thus,
$$\mathbf{E}[W] \ge \frac{1}{2} \sum_{j=1}^{m} w_j \ge$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be a random variable for the truth value of clause C_i .

Let W be a random variable for the total weight of the satisfied clauses.

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j \mathbf{E}[Y_j] = \sum_{j=1}^{m} w_j \mathbf{Pr}[C_j \text{ satisfied}]$$

 $I_j := \operatorname{length}(C_j) \Rightarrow \Pr[C_j \text{ satisfied}] = 1 - (1/2)^{I_j} \ge 1/2.$

Thus,
$$\mathbf{E}[W] \ge \frac{1}{2} \sum_{j=1}^{m} w_j \ge OPT/2$$
.

Approximation Algorithms

Lecture 11:

MaxSat via Randomized Rounding

Part III:

Derandomization by Conditional Expectation

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff \mathbf{E}[W \mid x_1 = 1] \ge \mathbf{E}[W \mid x_1 = 0]$.

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff \mathbf{E}[W \mid x_1 = 1] \ge \mathbf{E}[W \mid x_1 = 0]$.

$$\mathbf{E}[W] =$$

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff \mathbf{E}[W \mid x_1 = 1] \ge \mathbf{E}[W \mid x_1 = 0]$.

$$E[W] = (E[W \mid x_1 = 0] + E[W \mid x_1 = 1])/2.$$

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set
$$x_1 = 1 \iff \mathbf{E}[W \mid x_1 = 1] \ge \mathbf{E}[W \mid x_1 = 0]$$
.

$$\mathbf{E}[\mathbf{W}] = (\mathbf{E}[\mathbf{W} \mid \mathbf{x}_1 = 0] + \mathbf{E}[\mathbf{W} \mid \mathbf{x}_1 = 1])/2.$$
 [because of the original random choice of \mathbf{x}_1]

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff \mathbf{E}[W \mid x_1 = 1] \ge \mathbf{E}[W \mid x_1 = 0]$.

$$\mathbf{E}[\mathbf{W}] = \left(\mathbf{E}[\mathbf{W} \mid \mathbf{x}_1 = 0] + \mathbf{E}[\mathbf{W} \mid \mathbf{x}_1 = 1]\right) / 2.$$
 [because of the original random choice of \mathbf{x}_1]

If x_1 was set to $b_1 \in \{0, 1\}$,

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set
$$x_1 = 1 \iff \mathbf{E}[W \mid x_1 = 1] \ge \mathbf{E}[W \mid x_1 = 0]$$
.

$$\mathbf{E}[\mathbf{W}] = \left(\mathbf{E}[\mathbf{W} \mid \mathbf{x}_1 = 0] + \mathbf{E}[\mathbf{W} \mid \mathbf{x}_1 = 1]\right) / 2.$$
 [because of the original random choice of \mathbf{x}_1]

If x_1 was set to $b_1 \in \{0, 1\}$, then $\mathbf{E}[W \mid x_1 = b_1] \ge$

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set
$$x_1 = 1 \iff \mathbf{E}[W \mid x_1 = 1] \ge \mathbf{E}[W \mid x_1 = 0]$$
.

$$\mathbf{E}[\mathbf{W}] = \left(\mathbf{E}[\mathbf{W} \mid \mathbf{x}_1 = 0] + \mathbf{E}[\mathbf{W} \mid \mathbf{x}_1 = 1]\right) / 2.$$
 [because of the original random choice of \mathbf{x}_1]

If x_1 was set to $b_1 \in \{0, 1\}$, then $\mathbf{E}[W \mid x_1 = b_1] \geq \mathbf{E}[W] \geq$

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MaxSat.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff \mathbf{E}[W \mid x_1 = 1] \ge \mathbf{E}[W \mid x_1 = 0]$.

$$\mathbf{E}[W] = (\mathbf{E}[W \mid x_1 = 0] + \mathbf{E}[W \mid x_1 = 1])/2.$$
 [because of the original random choice of x_1]

If x_1 was set to $b_1 \in \{0, 1\}$, then $\mathbf{E}[W \mid x_1 = b_1] \ge \mathbf{E}[W] \ge \mathsf{OPT}/2$.

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W | x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W | x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

Then (similar to the base case):

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W | x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

Then (similar to the base case):

$$(\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0] + \mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1])/2$$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W | x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

Then (similar to the base case):

$$(\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0]$$

$$+\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1])/2$$

$$= \mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i] \ge \mathsf{OPT}/2$$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W | x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

Then (similar to the base case):

$$\begin{aligned} & \left(\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0] \\ & + \mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1] \right) / 2 \\ & = \mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i] \ge \mathsf{OPT} / 2 \end{aligned}$$

So we set $x_{i+1} = 1 \Leftrightarrow$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W | x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

Then (similar to the base case):

$$\begin{aligned} & \left(\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0] \\ & + \mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1] \right) / 2 \\ & = \mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i] \ge \mathsf{OPT} / 2 \end{aligned}$$

So we set $x_{i+1} = 1 \Leftrightarrow$

$$\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1]$$

 $\geq \mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0]$

Thus, the algorithm can be derandomized — if the conditional expectation can be computed efficiently!

Thus, the algorithm can be derandomized – if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .

Thus, the algorithm can be derandomized – if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_i .

If C_j is already satisfied, then it contributes exactly to $\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i]$.

Thus, the algorithm can be derandomized – if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly w_j to $E[W \mid x_1 = b_1, \dots, x_i = b_i]$.

Thus, the algorithm can be derandomized — if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly w_j to $\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i]$.

If C_j is not yet satisfied and contains k unassigned variables, then it contributes exactly to

$$\mathsf{E}[W \mid x_1 = b_1, \ldots, x_i = b_i].$$

Thus, the algorithm can be derandomized – if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly w_j to $E[W \mid x_1 = b_1, \dots, x_i = b_i]$.

If C_j is not yet satisfied and contains k unassigned variables, then it contributes exactly $w_j(1-(1/2)^k)$ to $\mathbf{E}[W\mid x_1=b_1,\ldots,x_i=b_i]$.

Thus, the algorithm can be derandomized — if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly w_j to $\mathbf{E}[W \mid x_1 = b_1, \dots, x_i = b_i]$.

If C_j is not yet satisfied and contains k unassigned variables, then it contributes exactly $w_j(1-(1/2)^k)$ to $\mathbf{E}[W\mid x_1=b_1,\ldots,x_i=b_i]$.

The conditional expectation is simply the sum of the contributions from each clause.

Using Conditional Expectation is a standard procedure with which many randomized algorithms can be derandomized.

Using *Conditional Expectation* is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

Using Conditional Expectation is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Using *Conditional Expectation* is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the expected value.

Using *Conditional Expectation* is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the expected value.

The algorithm iteratively sets the variables and greedily decides for the locally best assignment.

Using *Conditional Expectation* is a standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the expected value.

The algorithm iteratively sets the variables and greedily decides for the locally best assignment.

Approximation Algorithms

Lecture 11:

MaxSat via Randomized Rounding

Part IV: Randomized Rounding

Let
$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize

Let
$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize

$$y_i \in \{0, 1\},\$$

for
$$i = 1, \ldots, n$$

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize

$$y_i \in \{0, 1\},$$
 for $i = 1, ..., n$ $z_j \in \{0, 1\},$ for $j = 1, ..., m$

Let
$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize
$$\sum_{j=1}^{m} w_j z_j$$

$$y_i \in \{0,1\}, \qquad \qquad ext{for } i=1,\ldots,n$$
 $z_j \in \{0,1\}, \qquad \qquad ext{for } j=1,\ldots,m$

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

$$\begin{array}{ll} \textbf{maximize} & \displaystyle\sum_{j=1}^m w_j z_j \\ \\ \textbf{subject to} & \displaystyle\sum_{i \in P_j} y_i + \displaystyle\sum_{i \in N_j} (1-y_i) & \text{for } j=1,\ldots,m \\ \\ y_i \in \{0,1\}, & \text{for } i=1,\ldots,n \\ \\ z_j \in \{0,1\}, & \text{for } j=1,\ldots,m \end{array}$$

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

$$\begin{array}{lll} \textbf{maximize} & \displaystyle \sum_{j=1}^m w_j z_j \\ \textbf{subject to} & \displaystyle \sum_{i \in P_j} y_i + \displaystyle \sum_{i \in N_j} (1-y_i) & z_j & \text{for } j=1,\ldots,m \\ \\ & y_i \in \{0,1\}, & \text{for } i=1,\ldots,n \\ & z_j \in \{0,1\}, & \text{for } j=1,\ldots,m \end{array}$$

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

$$\begin{array}{ll} \textbf{maximize} & \displaystyle\sum_{j=1}^m w_j z_j \\ \\ \textbf{subject to} & \displaystyle\sum_{i \in P_j} y_i + \displaystyle\sum_{i \in N_j} (1-y_i) \geq z_j \quad \text{for } j=1,\ldots,m \\ \\ & \displaystyle y_i \in \{0,1\}, \qquad \qquad \text{for } i=1,\ldots,n \\ & \displaystyle z_j \in \{0,1\}, \qquad \qquad \text{for } j=1,\ldots,m \end{array}$$

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

$$\begin{array}{ll} \textbf{maximize} & \displaystyle \sum_{j=1}^m w_j z_j \\ \\ \textbf{subject to} & \displaystyle \sum_{i \in P_j} y_i + \displaystyle \sum_{i \in N_j} (1-y_i) \geq z_j \quad \text{for } j=1,\ldots,m \\ \\ & \displaystyle y_i \in \{0,1\}, \qquad \qquad \text{for } i=1,\ldots,n \\ \\ & \displaystyle z_j \in \{0,1\}, \quad 0 \leq z_j \leq 1 \qquad \text{for } j=1,\ldots,m \\ \end{array}$$

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize
$$\sum_{j=1}^{m} w_{j} z_{j}$$
subject to
$$\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq z_{j} \quad \text{for } j = 1, \dots, m$$

$$y_{i} \in \{0, 1\}, \quad 0 \leq y_{i} \leq 1 \quad \text{for } i = 1, \dots, n$$

$$z_{j} \in \{0, 1\}, \quad 0 \leq z_{j} \leq 1 \quad \text{for } j = 1, \dots, m$$

An ILP . . . and Its Relaxation

Let $C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$ for j = 1, ..., m.

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize
$$\sum_{j=1}^{N} w_j z_j$$
subject to
$$\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \ge z_j \quad \text{for } j = 1, \dots, m$$

$$y_i \in \{0, 1\}, \quad 0 \le y_i \le 1 \quad \text{for } i = 1, \dots, n$$

$$z_j \in \{0, 1\}, \quad 0 \le z_j \le 1 \quad \text{for } j = 1, \dots, m$$

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation.

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize
$$\sum_{j=1}^{m} w_{j} z_{j}$$
subject to
$$\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq z_{j} \quad \text{for } j = 1, \dots, m$$

$$y_{i} \in \{0, 1\}, \quad 0 \leq y_{i} \leq 1 \quad \text{for } i = 1, \dots, n$$

$$z_{j} \in \{0, 1\}, \quad 0 \leq z_{j} \leq 1 \quad \text{for } j = 1, \dots, m$$

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize
$$\sum_{j=1}^{m} w_{j} z_{j}$$
subject to
$$\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq z_{j} \quad \text{for } j = 1, \dots, m$$

$$y_{i} \in \{0, 1\}, \quad 0 \leq y_{i} \leq 1 \quad \text{for } i = 1, \dots, n$$

$$z_{j} \in \{0, 1\}, \quad 0 \leq z_{j} \leq 1 \quad \text{for } j = 1, \dots, m$$

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1 with probability y_i^* provides a ()-approximation for MAXSAT.

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize
$$\sum_{j=1}^{m} w_{j} z_{j}$$
subject to
$$\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq z_{j} \quad \text{for } j = 1, \dots, m$$

$$y_{i} \in \{0, 1\}, \quad 0 \leq y_{i} \leq 1 \quad \text{for } i = 1, \dots, n$$

$$z_{j} \in \{0, 1\}, \quad 0 \leq z_{j} \leq 1 \quad \text{for } j = 1, \dots, m$$

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1 with probability y_i^* provides a (1-1/e)-approximation for MAXSAT.

Let
$$C_j = \bigvee_{i \in P_i} x_i \vee \bigvee_{i \in N_i} \bar{x_i}$$
 for $j = 1, ..., m$.

maximize
$$\sum_{j=1}^{m} w_{j} z_{j}$$
subject to
$$\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq z_{j} \quad \text{for } j = 1, \dots, m$$

$$y_{i} \in \{0, 1\}, \quad 0 \leq y_{i} \leq 1 \quad \text{for } i = 1, \dots, n$$

$$z_{j} \in \{0, 1\}, \quad 0 \leq z_{j} \leq 1 \quad \text{for } j = 1, \dots, m$$

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1 with probability y_i^* provides a $0.63 \approx (1 - 1/e)$ -approximation for MAXSAT.

Approximation Algorithms

Lecture 11:

MaxSat via Randomized Rounding

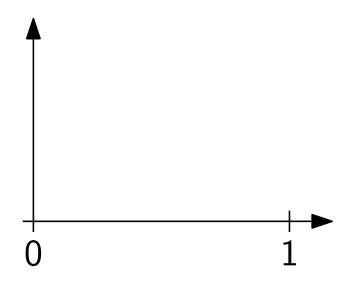
Part V:

Randomized Rounding – Proof

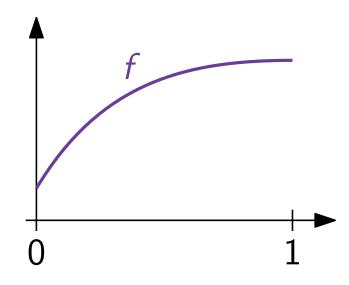
Let f be a function that is concave on [0, 1]

Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1])

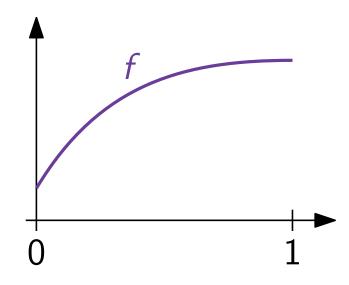
Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1])



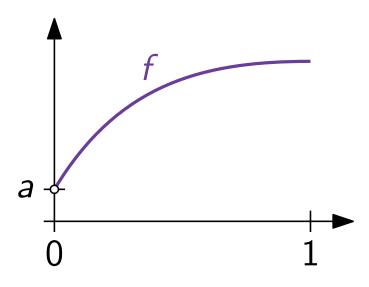
Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1])



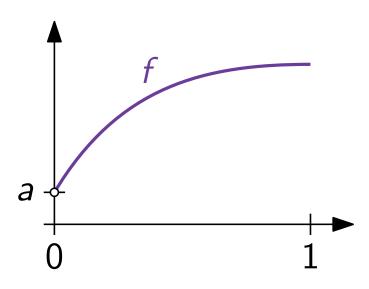
Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a



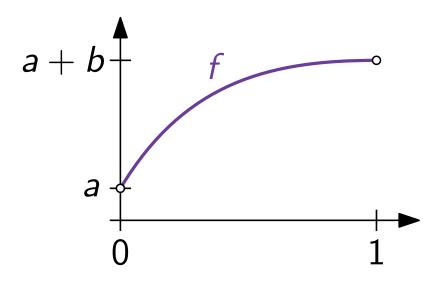
Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a



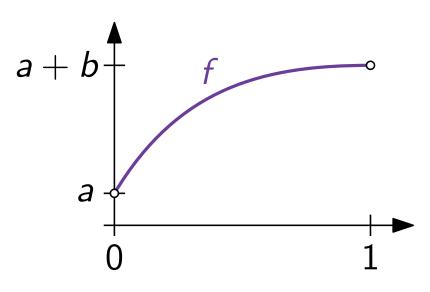
Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a and f(1) = a + b



Let f be a function that is concave on [0, 1](i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a and f(1) = a + b

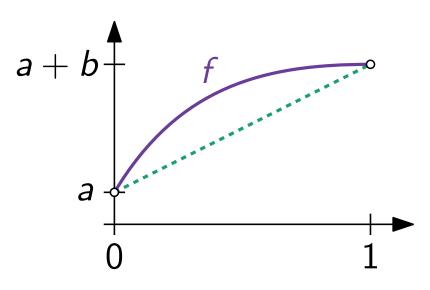


Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a and f(1) = a + b



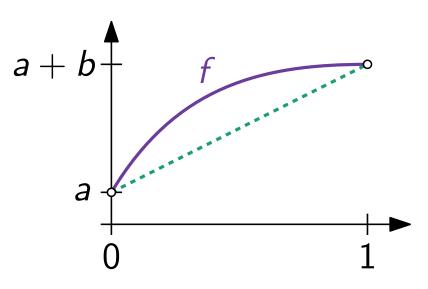
$$\Rightarrow f(x) \ge bx + a \text{ for } x \in [0, 1].$$

Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a and f(1) = a + b



$$\Rightarrow f(x) \ge bx + a$$
 for $x \in [0, 1]$.

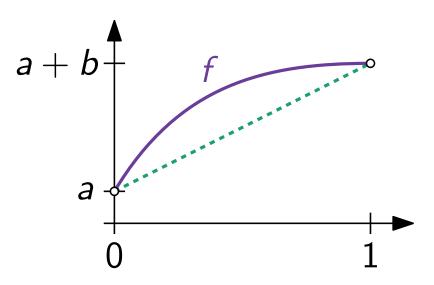
Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a and f(1) = a + b



 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.

Arithmetic-Geometric Mean Inequality (AGMI):

Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a and f(1) = a + b

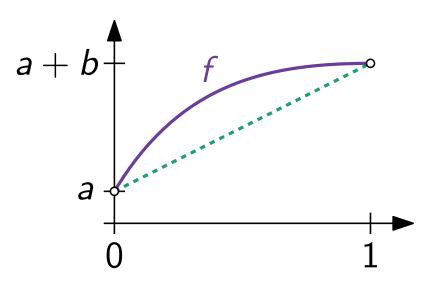


 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.

Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a_1, \ldots, a_k :

Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a and f(1) = a + b



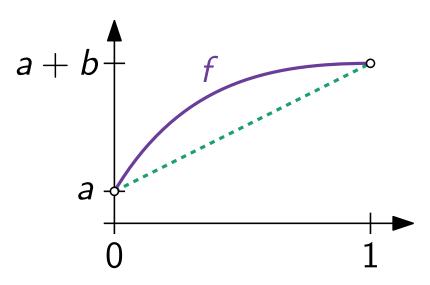
 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.

Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a_1, \ldots, a_k :

$$\leq \frac{1}{k} \left(\sum_{i=1}^k a_i \right)$$

Let f be a function that is concave on [0, 1] (i.e. $f''(x) \le 0$ on [0, 1]) with f(0) = a and f(1) = a + b



 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.

Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a_1, \ldots, a_k :

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^k a_i\right)$$

Consider a fixed clause C_i of length I_i . Then we have:

$$Pr[C_j \text{ not sat.}] =$$

:

$$\Pr[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*)$$

Consider a fixed clause C_i of length I_i . Then we have:

$$\Pr[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

<

$$\mathbf{Pr}[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

$$\left(\prod_{i=1}^{k} a_i\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^{k} a_i\right)$$
AGMI

$$\Pr[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

$$\frac{1}{i \in P_j} \qquad i \in N_j$$

$$\frac{1}{k} \left(\sum_{i=1}^k a_i\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^k a_i\right)$$

$$\leq \left(\sum_{i \in P_j} (1 - y_i^*) + \sum_{i \in N_j} y_i^*\right)$$

$$\Pr[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

$$\frac{\left(\prod_{i=1}^{k} a_{i}\right)^{1/k}}{\leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right)} \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$$

$$\Pr[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

$$\frac{\left(\prod_{i=1}^{k} a_{i}\right)^{1/k}}{\sum_{i=1}^{k} \left(\sum_{i=1}^{k} a_{i}\right)} \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$$

$$= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}}$$

$$\mathbf{Pr}[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

$$\frac{\left(\prod_{i=1}^{k} a_{i}\right)^{1/k}}{\leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right)} \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$$

$$= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}}$$

$$\mathbf{Pr}[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

$$\frac{\left(\prod_{i=1}^{k} a_{i}\right)^{1/k}}{AGMI} \leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right) \\
\leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}} \\
= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}} \\
> \text{by LP constraints}$$

$$\mathbf{Pr}[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

$$\frac{\left(\prod_{i=1}^{k} a_{i}\right)^{1/k}}{\left(\prod_{i=1}^{k} a_{i}\right)^{1/k}} \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$$

$$= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}}$$

$$\geq z_{j}^{*} \text{ by LP constraints}$$

$$\mathbf{Pr}[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

$$\widehat{i \in P_{j}} \qquad \widehat{i \in N_{j}}$$

$$\stackrel{AGMI}{\leq} \frac{1}{k} \left(\sum_{i=1}^{k} a_{i} \right)^{1/k} \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*} \right) \right]^{l_{j}}$$

$$= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*}) \right) \right]^{l_{j}}$$

$$\leq \left(1 - \frac{z_{j}^{*}}{l_{j}} \right)^{l_{j}}$$

$$\geq z_{j}^{*} \text{ by LP constraints}$$

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on $[0, 1]$.

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on $[0, 1]$.

Thus

$$\Pr[C_j \text{ satisfied}] \geq$$

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on $[0, 1]$.

Thus

$$\Pr[C_j \text{ satisfied}] \ge f(z_j^*) \ge$$

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on $[0, 1]$.

Thus

$$\Pr[C_j \text{ satisfied}] \ge f(z_j^*) \ge f(1) \cdot z_j^* + f(0)$$

$$\geq$$

The function $f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$ is concave on [0, 1].

$$\Pr[C_j \text{ satisfied}] \ge f(z_j^*) \ge f(1) \cdot z_j^* + f(0)$$

$$\ge \left[1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right] z_j^*$$

$$\ge$$

The function $f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$ is concave on [0, 1].

$$\Pr[C_j \text{ satisfied}] \ge f(z_j^*) \ge f(1) \cdot z_j^* + f(0)$$

$$\ge \left[1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right] z_j^*$$

$$\ge$$

The function $f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$ is concave on [0, 1].

$$\Pr[C_j \text{ satisfied}] \ge f(z_j^*) \ge f(1) \cdot z_j^* + f(0)$$

$$\ge \left[1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right] z_j^*$$

$$\ge$$

$$1 + x \le e^x$$

$$x = -\frac{1}{l_i} \Rightarrow$$

The function $f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$ is concave on [0, 1].

$$\begin{aligned} \mathbf{Pr}[C_j \text{ satisfied}] &\geq f(z_j^*) \geq f(1) \cdot z_j^* + f(0) \\ &\geq \left[1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right] z_j^* \\ &\geq \\ &1 + x \leq e^{\times} \\ &x = -\frac{1}{l_j} \Rightarrow 1 - \frac{1}{l_j} \leq e^{-1/l_j} \end{aligned}$$

The function $f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$ is concave on [0, 1].

$$\Pr[C_j \text{ satisfied}] \ge f(z_j^*) \ge f(1) \cdot z_j^* + f(0)$$

$$\ge \left[1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right] z_j^*$$

$$\ge \left(1 - \frac{1}{e}\right) z_j^*$$

$$1 + x \le e^x$$

$$x = -\frac{1}{l_j} \Rightarrow 1 - \frac{1}{l_j} \le e^{-1/l_j}$$

$$\mathbf{E}[W] = \sum_{j=1}^{m} \mathbf{Pr}[C_j \text{ satisfied}] \cdot w_j$$

$$\begin{aligned} \mathbf{E}[W] &= \sum_{j=1}^{m} \mathbf{Pr}[C_{j} \text{ satisfied}] \cdot w_{j} \\ &\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \end{aligned}$$

$$\mathbf{E}[W] = \sum_{j=1}^{m} \mathbf{Pr}[C_j \text{ satisfied}] \cdot w_j$$

$$\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} w_j z_j^*$$
 LP objective function

$$\begin{aligned} \mathbf{E}[W] &= \sum_{j=1}^{m} \mathbf{Pr}[C_{j} \text{ satisfied}] \cdot w_{j} \\ &\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \\ &= \left(1 - \frac{1}{e}\right) \mathsf{OPT}_{\mathsf{LP}} \\ &> \end{aligned}$$

$$\begin{aligned} \mathbf{E}[W] &= \sum_{j=1}^{m} \mathbf{Pr}[C_{j} \text{ satisfied}] \cdot w_{j} \\ &\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} w_{j} Z_{j}^{*} \\ &= \left(1 - \frac{1}{e}\right) \mathsf{OPT}_{\mathsf{LP}} \\ &\geq \left(1 - \frac{1}{e}\right) \mathsf{OPT} \end{aligned}$$

Therefore

$$\begin{aligned} \mathbf{E}[W] &= \sum_{j=1}^{m} \mathbf{Pr}[C_{j} \text{ satisfied}] \cdot w_{j} \\ &\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \\ &= \left(1 - \frac{1}{e}\right) \mathsf{OPT}_{\mathsf{LP}} \\ &\geq \left(1 - \frac{1}{e}\right) \mathsf{OPT} \end{aligned}$$

Theorem. The previous algorithm can be derandomized by the method of conditional expectation.

Approximation Algorithms

Lecture 11:

MaxSat via Randomized Rounding

Part VI:
Combining the Algorithms

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a -approximation for

MAXSAT.

Theorem.

The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MAXSAT.

Theorem.

The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MAXSAT.

Proof.

We use another probabilistic argument.

With probability 1/2, choose the solution of the first algorithm; otherwise the solution of the second algorithm.

Theorem.

The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MaxSat.

Proof.

We use another probabilistic argument.

With probability 1/2, choose the solution of the first algorithm; otherwise the solution of the second algorithm.

The better solution is at least as good as the expectation of the above randomized algorithm.

$$\frac{1}{2}$$

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) z_j^* + \right]$$
LP-rounding

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) z_j^* + \left(1 - 2^{-l_j} \right) \right] \cdot$$
LP-rounding rand. alg.

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot \mathbf{z}_j^*$$
LP-rounding rand. alg.

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding
rand. alg.
we claim!

The probability that clause C_i is satisfied is at least:

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding
rand. alg.
we claim!

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

The probability that clause C_i is satisfied is at least:

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding rand. alg. we claim!

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

The probability that clause C_i is satisfied is at least:

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding
rand. alg.
we claim!

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

For
$$l_j \ge 3$$
, $1 - (1 - 1/l_j)^{l_j} \ge$ and $1 - 2^{-l_j} \ge$

The probability that clause C_i is satisfied is at least:

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding
rand. alg.
we claim!

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

For
$$l_j \ge 3$$
, $1 - (1 - 1/l_j)^{l_j} \ge (1 - 1/e)$ and $1 - 2^{-l_j} \ge 1$

The probability that clause C_i is satisfied is at least:

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding
rand. alg.
we claim!

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

For
$$\frac{l_j}{l_j} \ge 3$$
, $1 - (1 - 1/\frac{l_j}{l_j})^{\frac{l_j}{l_j}} \ge (1 - 1/e)$ and $1 - 2^{-\frac{l_j}{l_j}} \ge \frac{7}{8}$.

The probability that clause C_i is satisfied is at least:

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding
rand. alg.
we claim!

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

For $l_j \in \{1, 2\}$, a simple calculation yields exactly $\frac{3}{4}z_i^*$.

For
$$\frac{1}{j} \ge 3$$
, $1 - (1 - 1/\frac{1}{j})^{\frac{1}{j}} \ge (1 - 1/e)$ and $1 - 2^{-\frac{1}{j}} \ge \frac{7}{8}$.

Thus, we have at least:

$$\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right]\mathbf{z}_{j}^{*}\approx$$

The probability that clause C_i is satisfied is at least:

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding
rand. alg.
we claim!

(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

For $l_j \in \{1, 2\}$, a simple calculation yields exactly $\frac{3}{4}z_i^*$.

For
$$\frac{1}{j} \ge 3$$
, $1 - (1 - 1/\frac{1}{j})^{\frac{1}{j}} \ge (1 - 1/e)$ and $1 - 2^{-\frac{1}{j}} \ge \frac{7}{8}$.

Thus, we have at least:

$$\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right]\mathbf{z}_{j}^{*}\approx0.753\mathbf{z}_{j}^{*}\geq$$

The probability that clause C_i is satisfied is at least:

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) + \left(1 - 2^{-l_j} \right) \right] \cdot z_j^* \ge \frac{3}{4} z_j^*.$$
LP-rounding
rand. alg.
we claim!

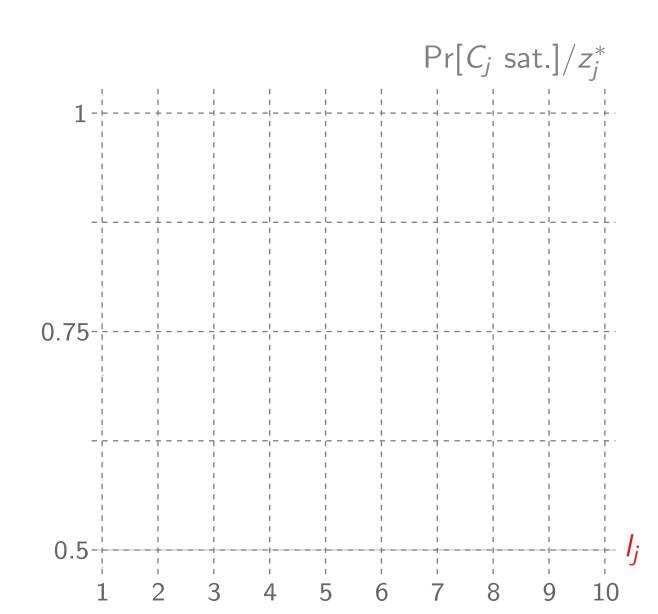
(The rest follows similarly as in the proofs of the previous two theorems by linearity of expectation.)

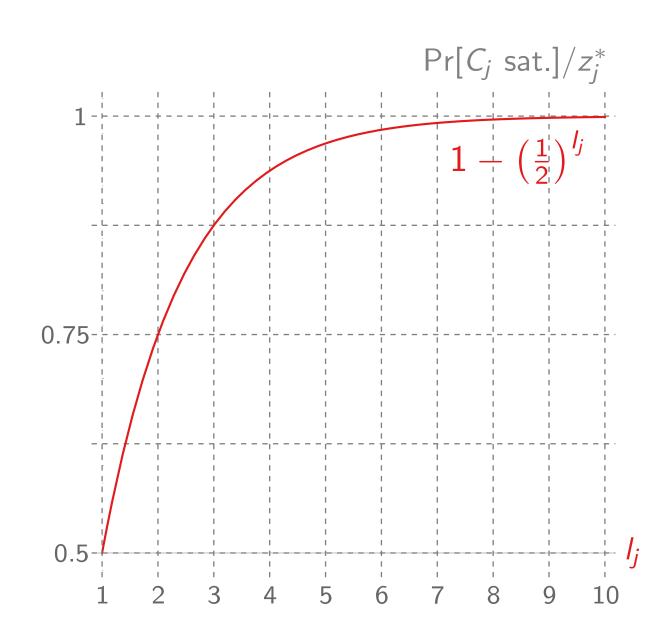
For $l_j \in \{1, 2\}$, a simple calculation yields exactly $\frac{3}{4}z_i^*$.

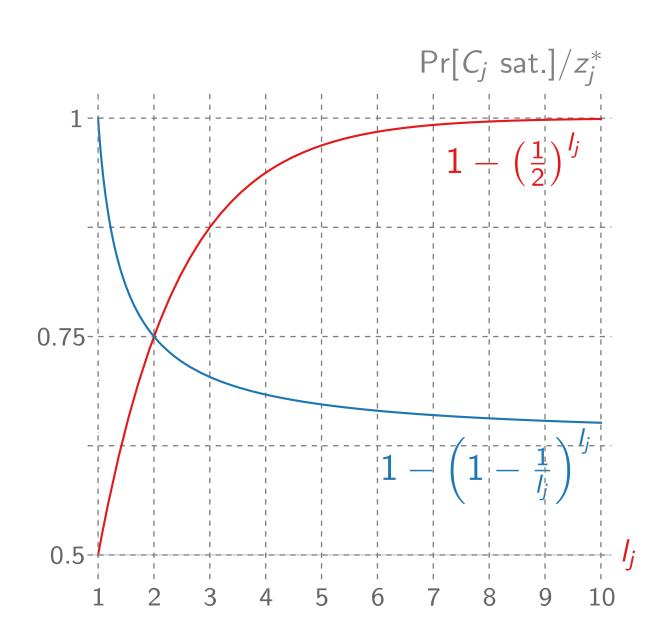
For
$$l_j \ge 3$$
, $1 - (1 - 1/l_j)^{l_j} \ge (1 - 1/e)$ and $1 - 2^{-l_j} \ge \frac{7}{8}$.

Thus, we have at least:

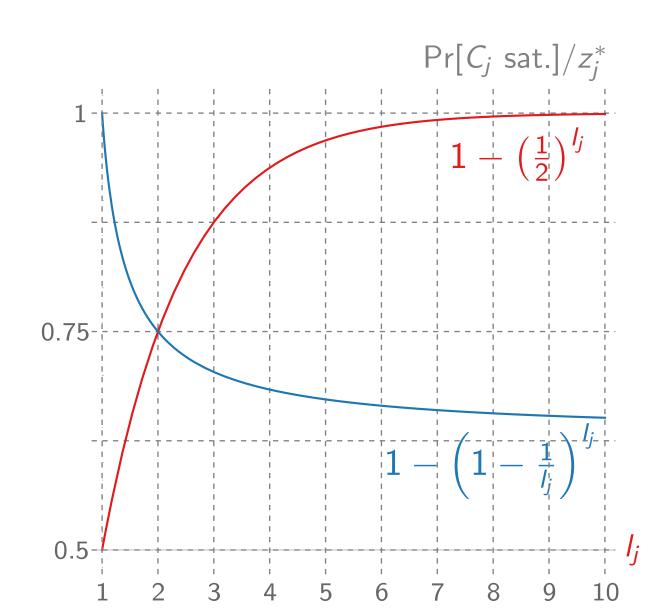
$$\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right]z_j^*\approx 0.753z_j^*\geq \frac{3}{4}z_j^*$$



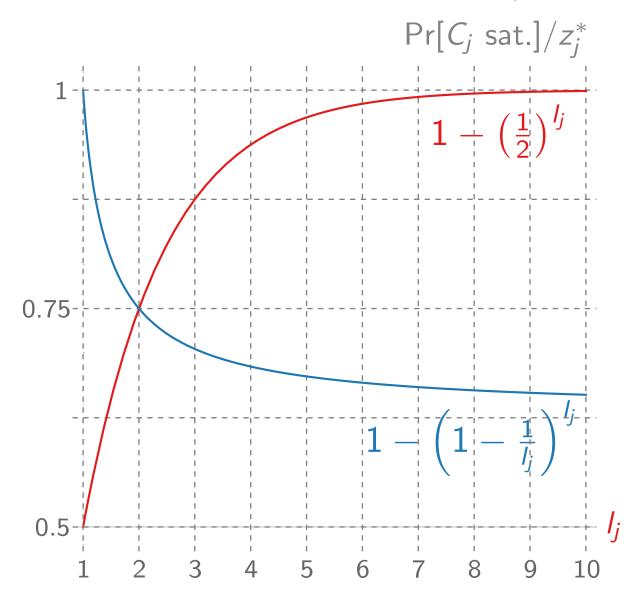




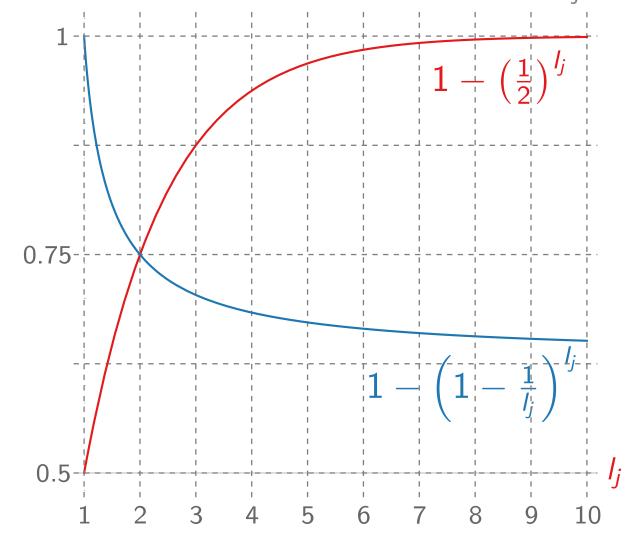
- Randomized alg. is better for large values of l_i .



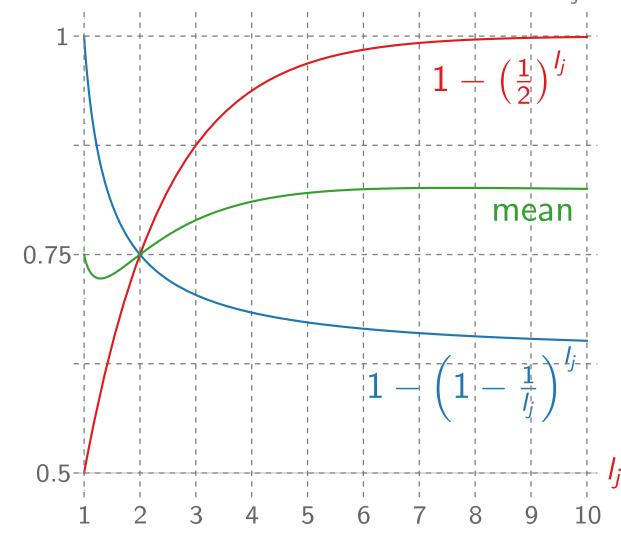
- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_j



- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_i
- \Rightarrow higher probability of satisfying clause C_j . $Pr[C_j \text{ sat.}]/z_i^*$

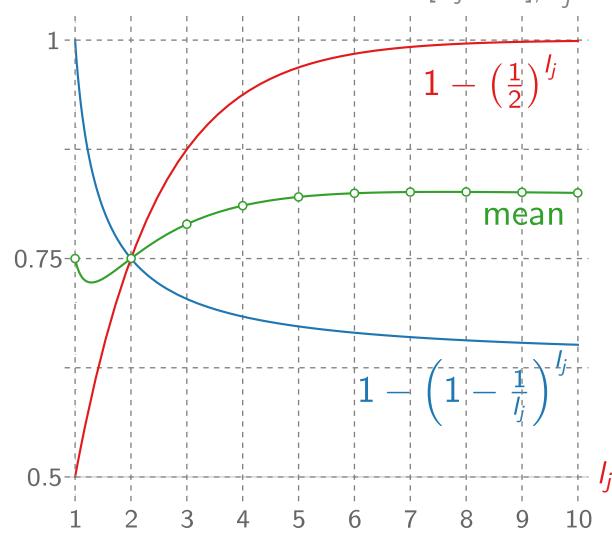


- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_i
- \Rightarrow higher probability of satisfying clause C_j . $Pr[C_j \text{ sat.}]/z_i^*$



- Randomized alg. is better for large values of l_j .
- Randomized LP-rounding is better for small values of l_j
- \Rightarrow higher probability of satisfying clause C_j .

The mean of the two solutions is at least 3/4 for *integer* l_i .

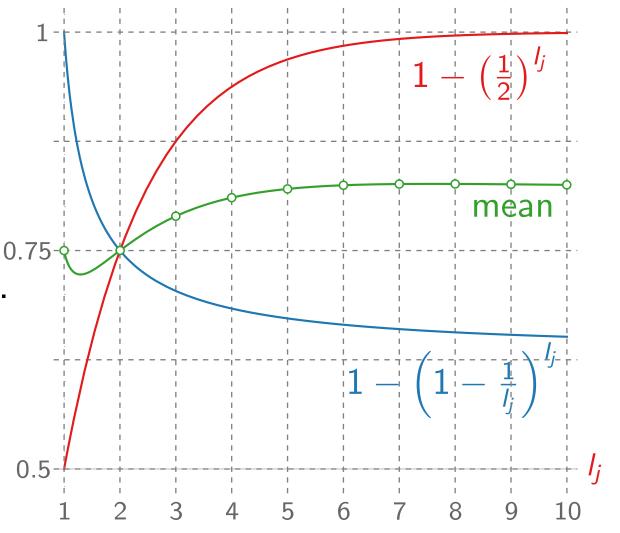


 $Pr[C_i \text{ sat.}]/z_i^*$

- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_j
- \Rightarrow higher probability of satisfying clause C_j .

The mean of the two solutions is at least 3/4 for *integer* l_i .

The maximum is at least as large as the mean.



 $Pr[C_i \text{ sat.}]/z_i^*$

- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_j
- \Rightarrow higher probability of satisfying clause C_j .

The mean of the two solutions is at least 3/4 for *integer* l_i .

The maximum is at least as large as the mean.

This algorithm, too, can be derandomized by conditional expectation.

