Approximation Algorithms

Lecture 10:

MINIMUM-DEGREE SPANNING TREE via Local Search

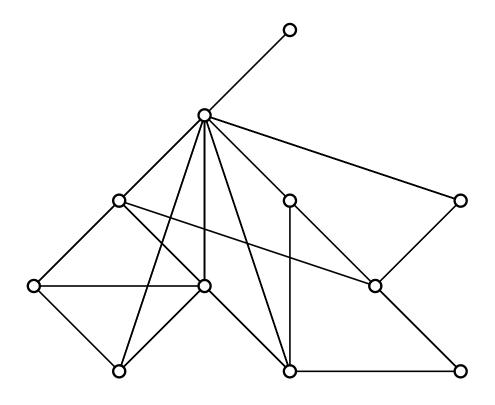
Part I:

Minimum-Degree Spanning Tree

Given: A connected graph *G*.

Minimum-Degree Spanning Tree

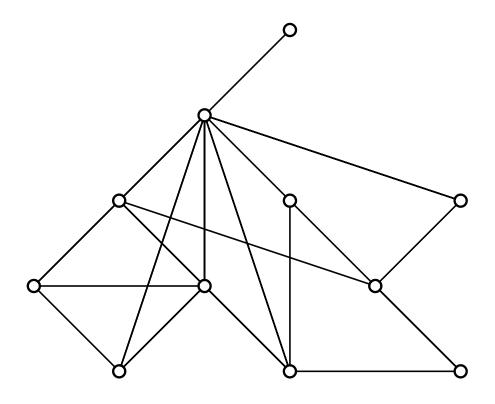
Given: A connected graph *G*.



Given: A connected graph *G*.

Task: Find a spanning tree *T* that has

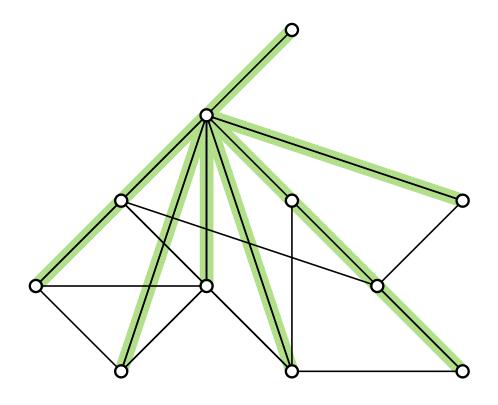
the smallest maximum degree $\Delta(T)$



Given: A connected graph *G*.

Task: Find a spanning tree *T* that has

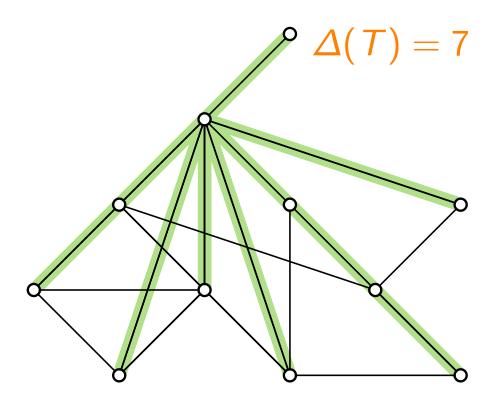
the smallest maximum degree $\Delta(T)$



Given: A connected graph *G*.

Task: Find a spanning tree *T* that has

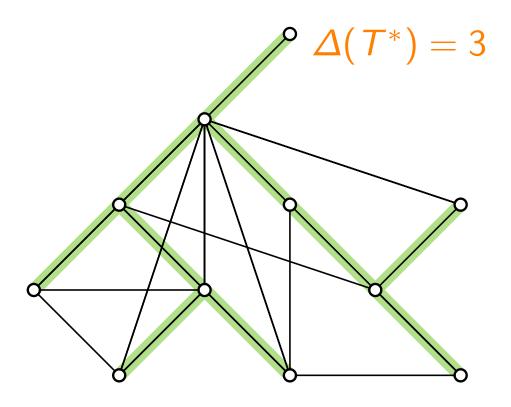
the smallest maximum degree $\Delta(T)$



Given: A connected graph *G*.

Task: Find a spanning tree *T* that has

the smallest maximum degree $\Delta(T)$



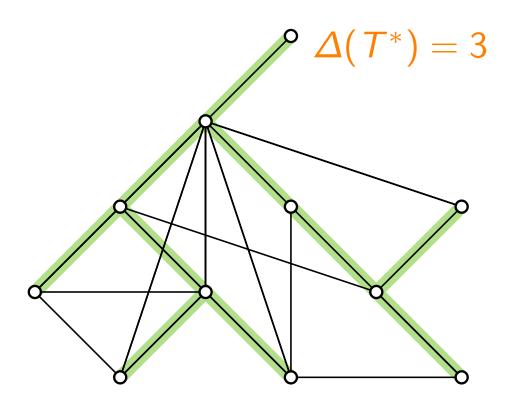
Given: A connected graph *G*.

Task: Find a spanning tree *T* that has

the smallest maximum degree $\Delta(T)$

among all spanning trees of G.

NP-hard.



Given: A connected graph *G*.

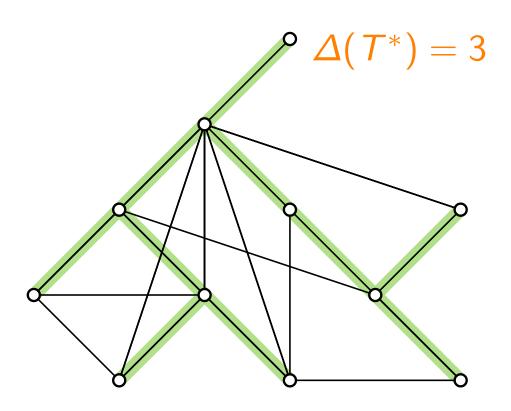
Task: Find a spanning tree *T* that has

the smallest maximum degree $\Delta(T)$

among all spanning trees of G.

NP-hard. 🔑

Why?



Given: A connected graph G.

Find a spanning tree T that has Task:

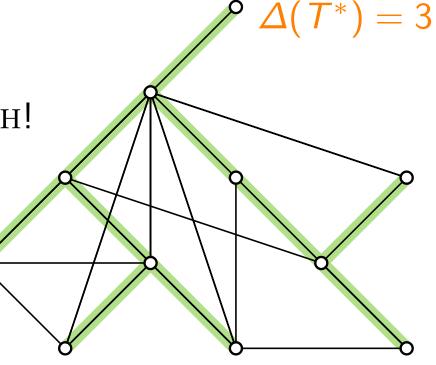
the smallest maximum degree $\Delta(T)$

among all spanning trees of G.

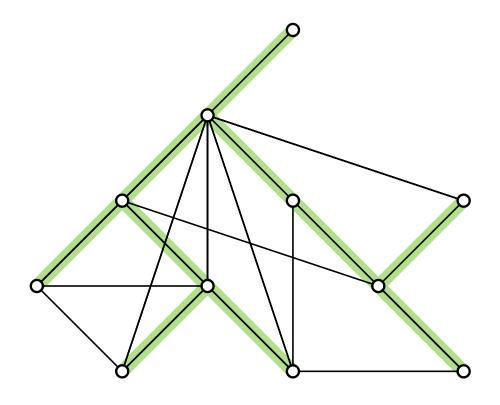
NP-hard.

Why?

Special case of Hamiltonian Path!

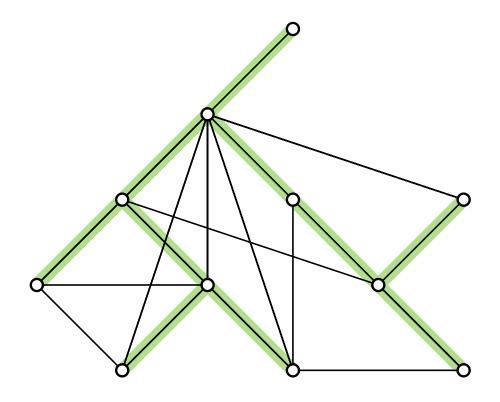


Obs. 1. A spanning tree T has...

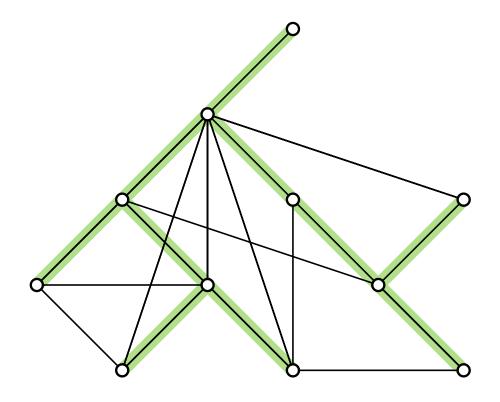


Obs. 1. A spanning tree *T* has...

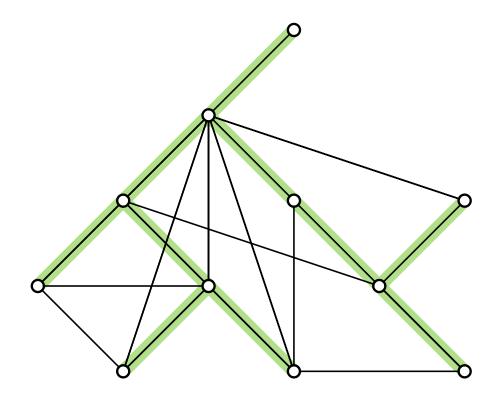
n vertices and ? edges,



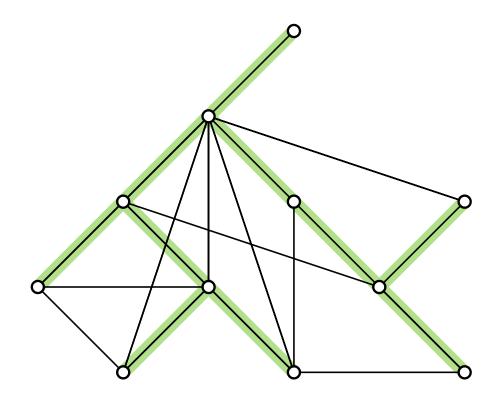
- Obs. 1. A spanning tree T has...
 - n vertices and ? edges,
 - sum of degrees $\sum_{v \in V(G)} \deg_{\mathcal{T}}(v) = ?$



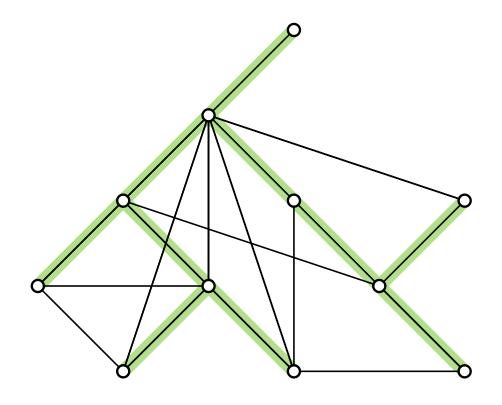
- Obs. 1. A spanning tree T has...
 - n vertices and ? edges,
 - sum of degrees $\sum_{v \in V(G)} \deg_{\mathcal{T}}(v) = ?$ average degree < ?



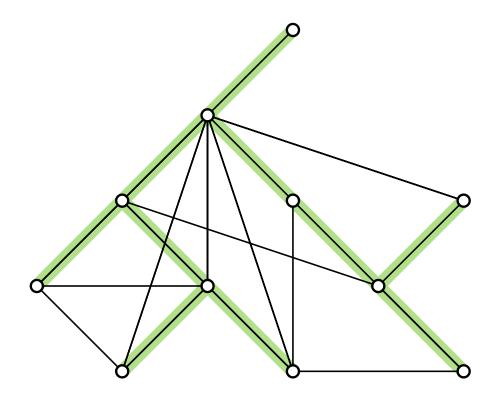
- Obs. 1. A spanning tree T has...
 - \blacksquare *n* vertices and n-1 edges,
 - sum of degrees $\sum_{v \in V(G)} \deg_T(v) = ?$
 - average degree < ?</p>



- Obs. 1. A spanning tree T has...
 - \blacksquare *n* vertices and n-1 edges,
 - sum of degrees $\sum_{v \in V(G)} \deg_{T}(v) = 2n 2$,
 - average degree < ?</p>



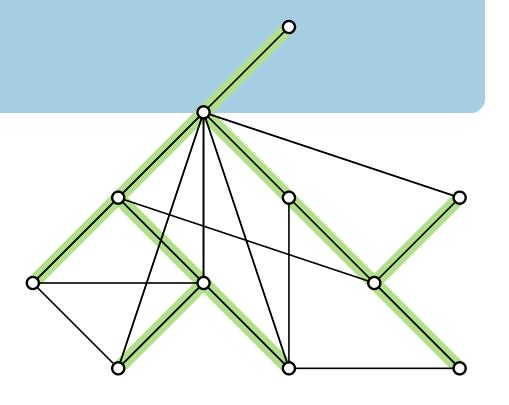
- Obs. 1. A spanning tree T has...
 - \blacksquare *n* vertices and n-1 edges,
 - sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n 2$,
 - average degree < 2.</p>



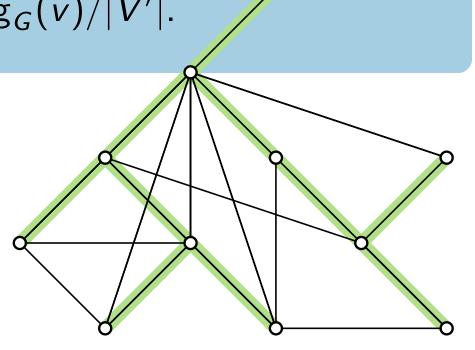
Obs. 1. A spanning tree T has...

- \blacksquare *n* vertices and n-1 edges,
- sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n 2$,
- average degree < 2.</p>

Obs. 2. Let $V' \subseteq V(G)$. Then $\Delta(G) \geq ?$



- Obs. 1. A spanning tree T has...
 - \blacksquare *n* vertices and n-1 edges,
 - sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n 2$,
 - average degree < 2.



- Obs. 1. A spanning tree T has...
 - \blacksquare *n* vertices and n-1 edges,
 - sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n 2$,
 - average degree < 2.
- Obs. 2. Let $V' \subseteq V(G)$.

Then $\Delta(G) \ge \sum_{v \in V'} \deg_G(v)/|V'|$.

Obs. 3. Let T be a spanning tree with $k = \Delta(T)$. Then T has at most ? vertices of degree k.

- Obs. 1. A spanning tree T has...
 - \blacksquare *n* vertices and n-1 edges,
 - sum of degrees $\sum_{v \in V(G)} \deg_T(v) = 2n 2$,
 - average degree < 2.
- Obs. 2. Let $V' \subseteq V(G)$.

Then $\Delta(G) \ge \sum_{v \in V'} \deg_G(v)/|V'|$.

Obs. 3. Let T be a spanning tree with $k = \Delta(T)$. Then T has at most $\frac{2n-2}{k}$ vertices of degree k.

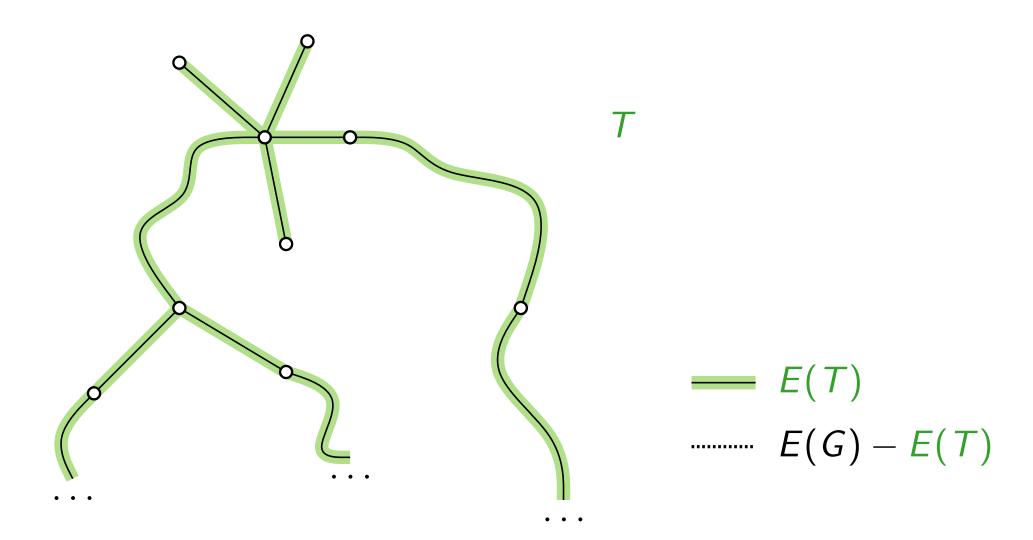
Approximation Algorithms

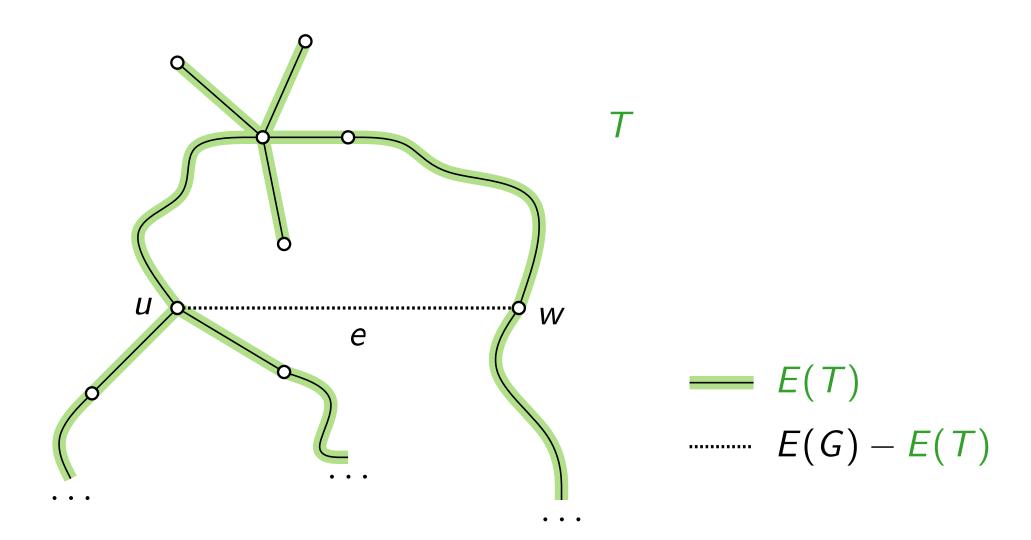
Lecture 10:

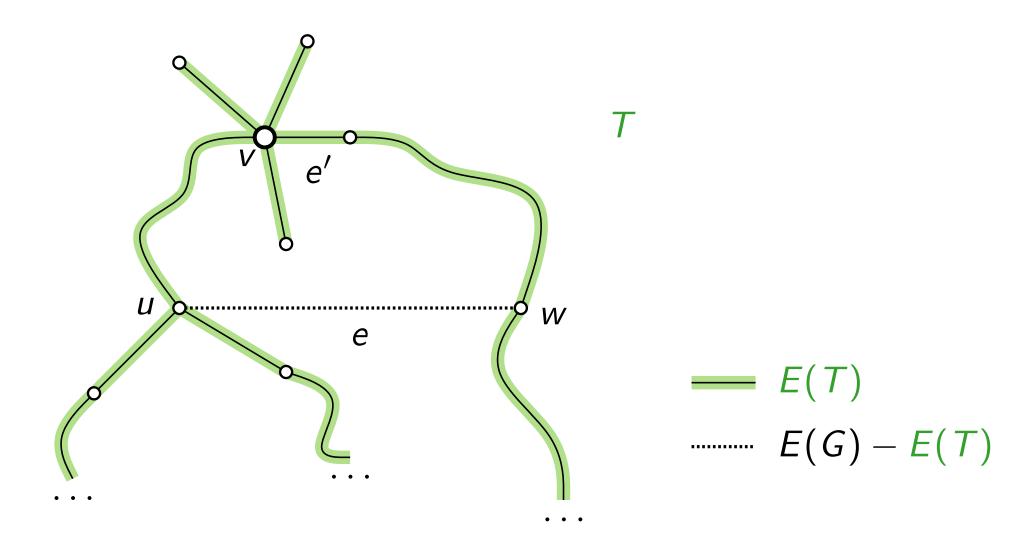
MINIMUM-DEGREE SPANNING TREE via Local Search

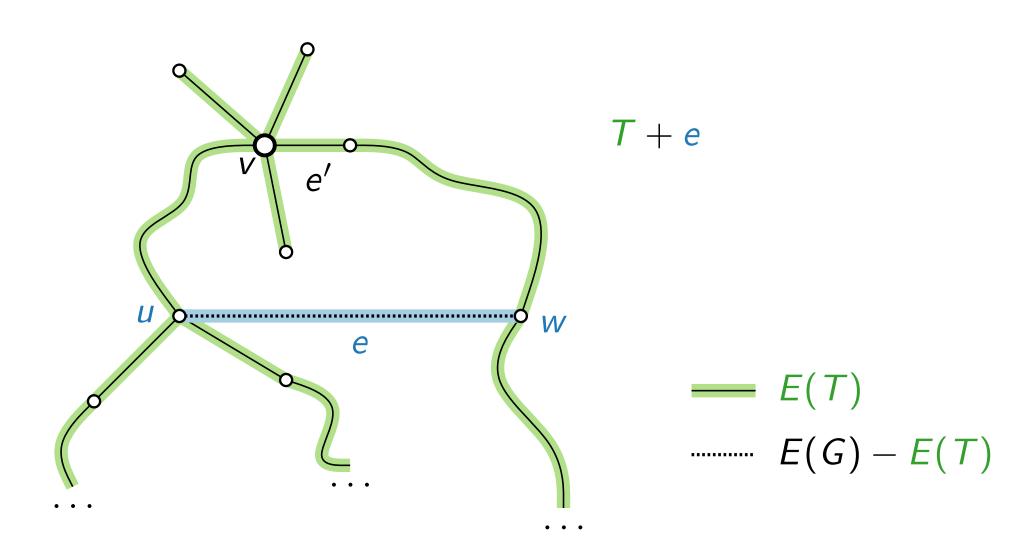
Part II:

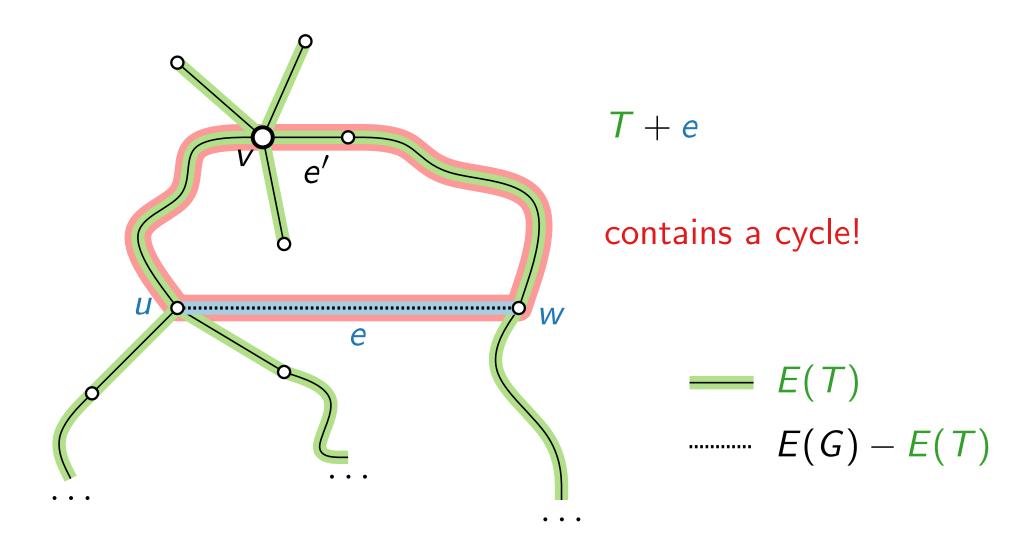
Edge Flips and Local Search

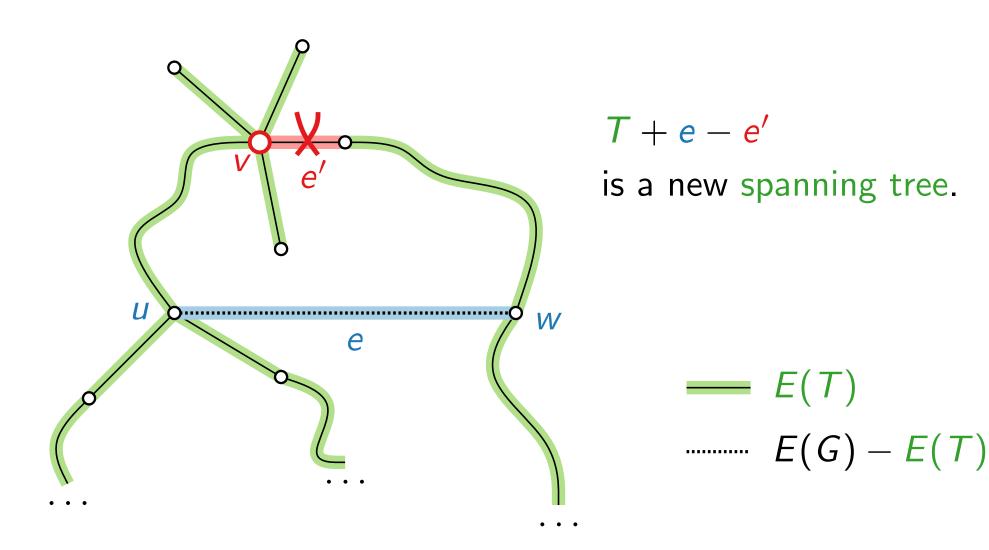




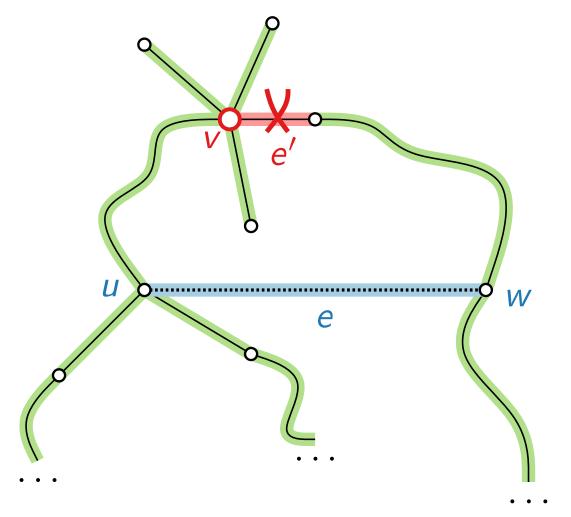








Def. An **improving flip** in T for a vertex v and an edge $uw \in E(G) \setminus E(T)$ is a flip with $\deg_T(v) >$



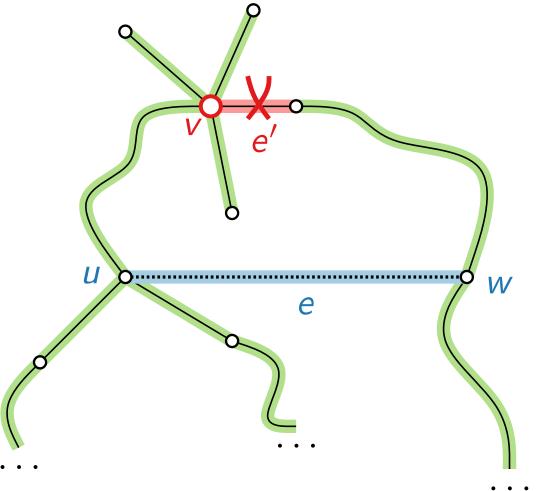
$$T + e - e'$$

is a new spanning tree.

$$= E(T)$$

$$= E(G) - E(T)$$

Def. An **improving flip** in T for a vertex v and an edge $uw \in E(G) \setminus E(T)$ is a flip with $\deg_T(v) > \max\{\deg_T(u), \deg_T(w)\} + 1$.



$$T + e - e'$$

is a new spanning tree.

$$= E(T)$$

$$= E(G) - E(T)$$

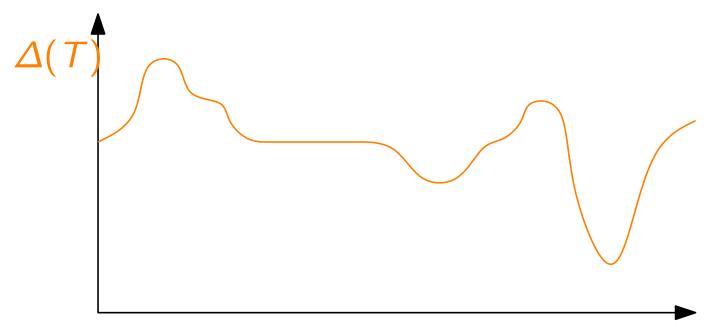
```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do

Let do the improving flip
return T
```

Note: overly simplified visualization!

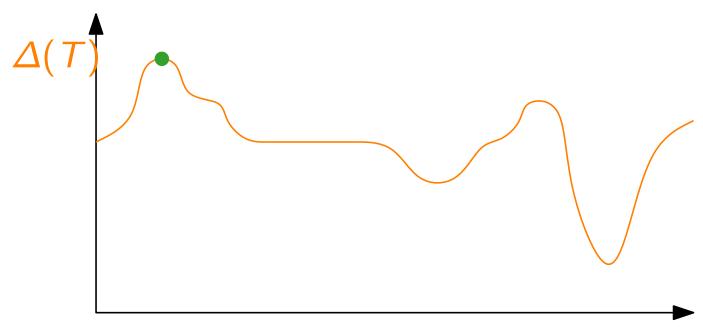
```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do

do the improving flip
return T
```



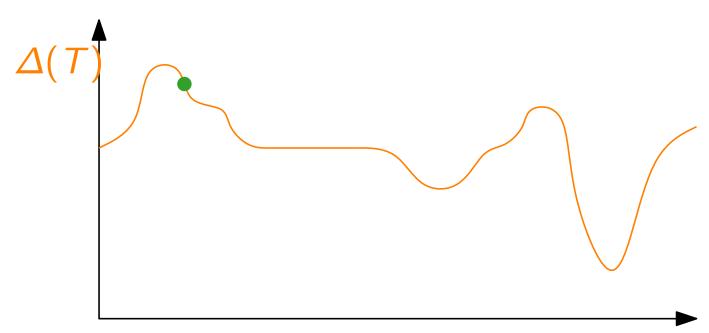
```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do

Let do the improving flip
return T
```

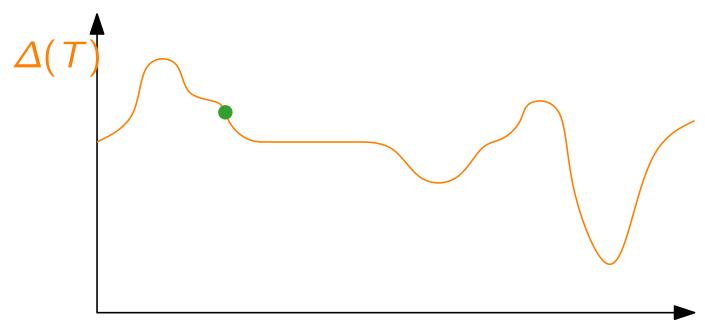


```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do

do the improving flip
return T
```

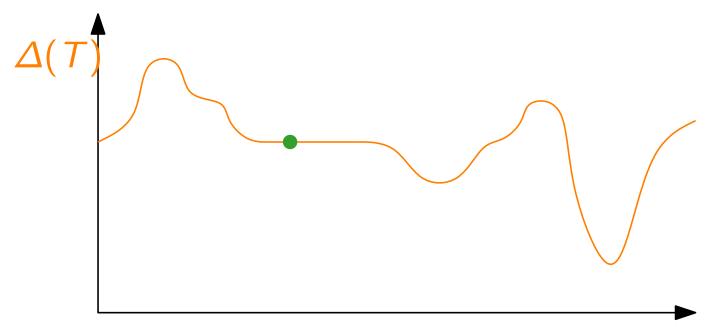


```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow \text{any spanning tree of } G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do
do the improving flip
return T
```

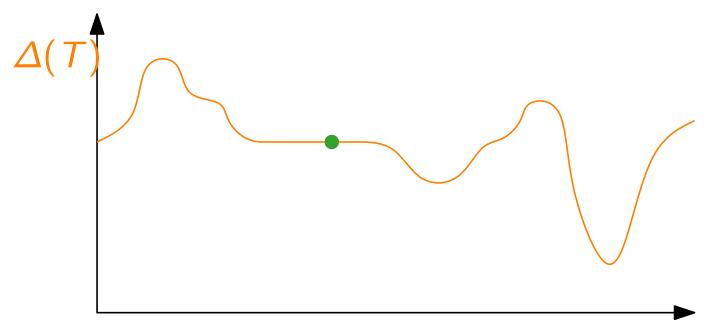


Note: overly simplified visualization!

```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow \text{any spanning tree of } G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do
do the improving flip
return T
```

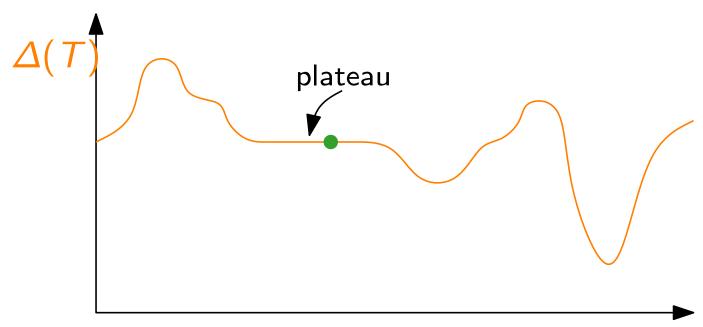


```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow \text{any spanning tree of } G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do
do the improving flip
return T
```

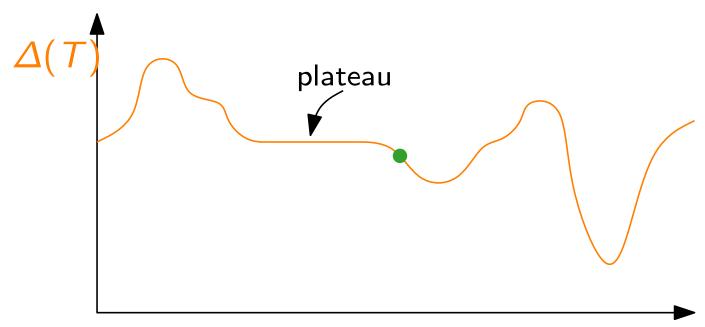


```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do

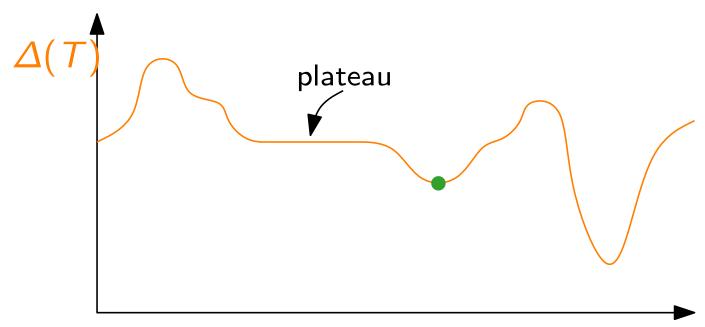
Let do the improving flip
return T
```



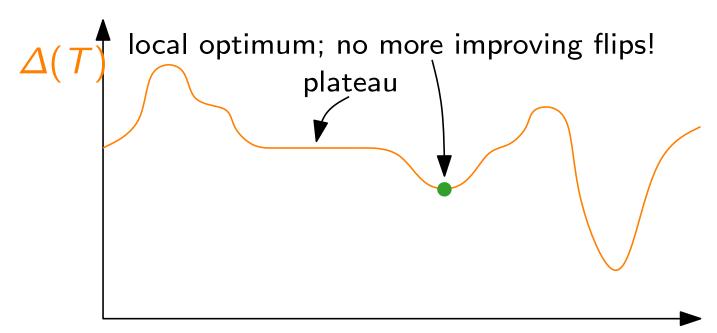
```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow \text{any spanning tree of } G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do
do the improving flip
return T
```



```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow \text{any spanning tree of } G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do
do the improving flip
return T
```

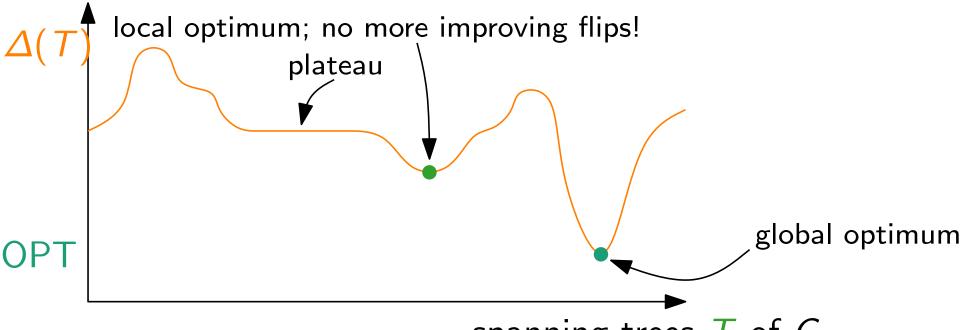


```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do
left do the improving flip
return T
```



```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do

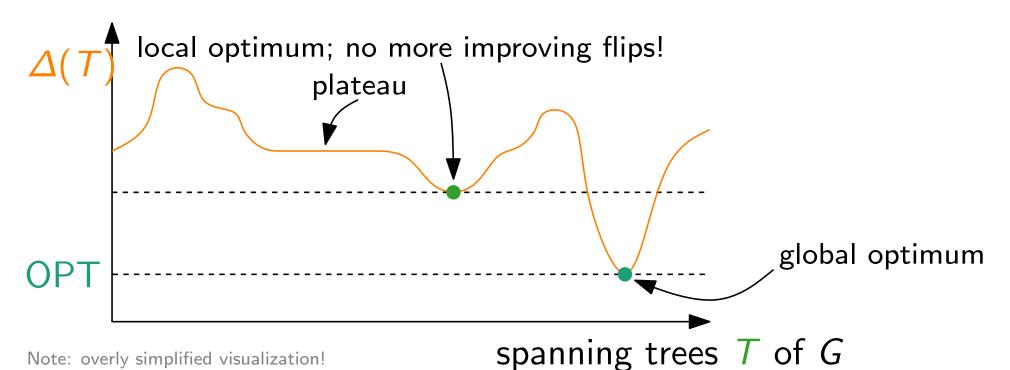
do the improving flip
return T
```



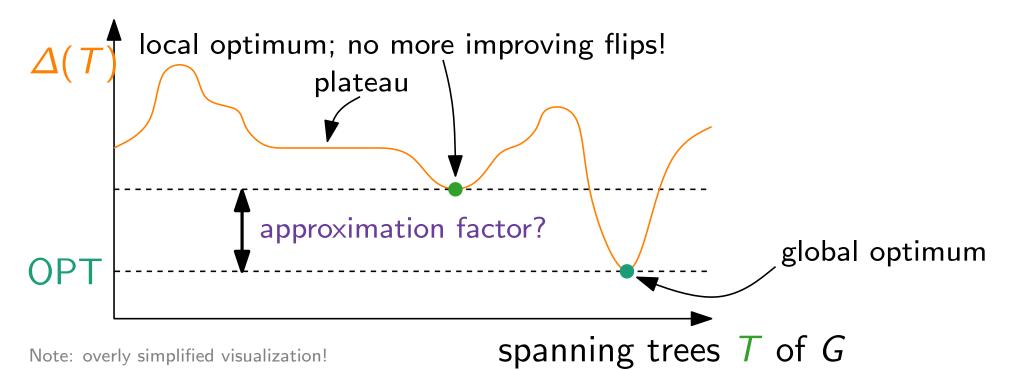
Note: overly simplified visualization!

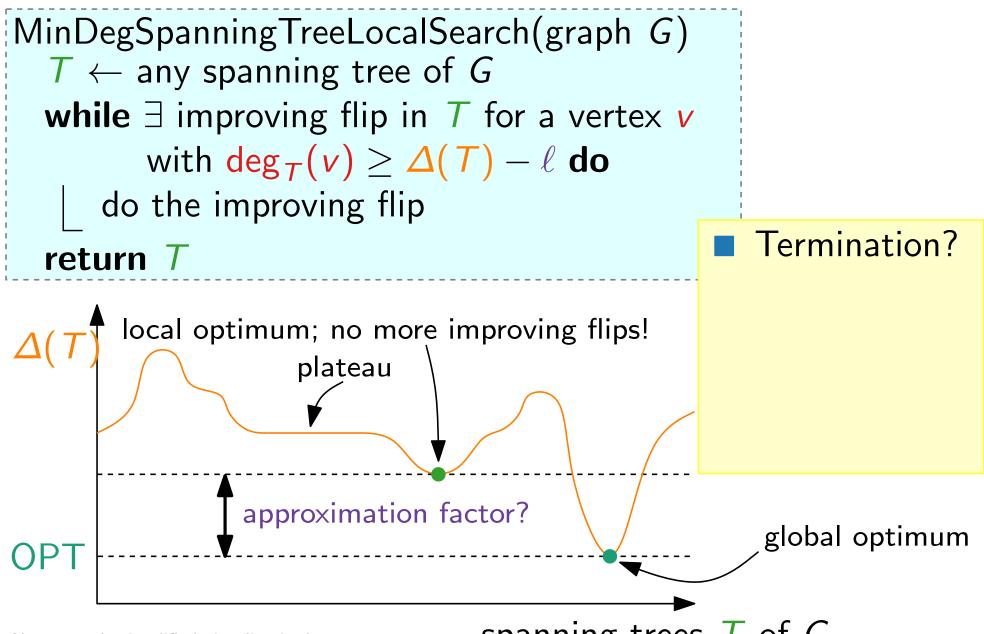
```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do

Let do the improving flip
return T
```

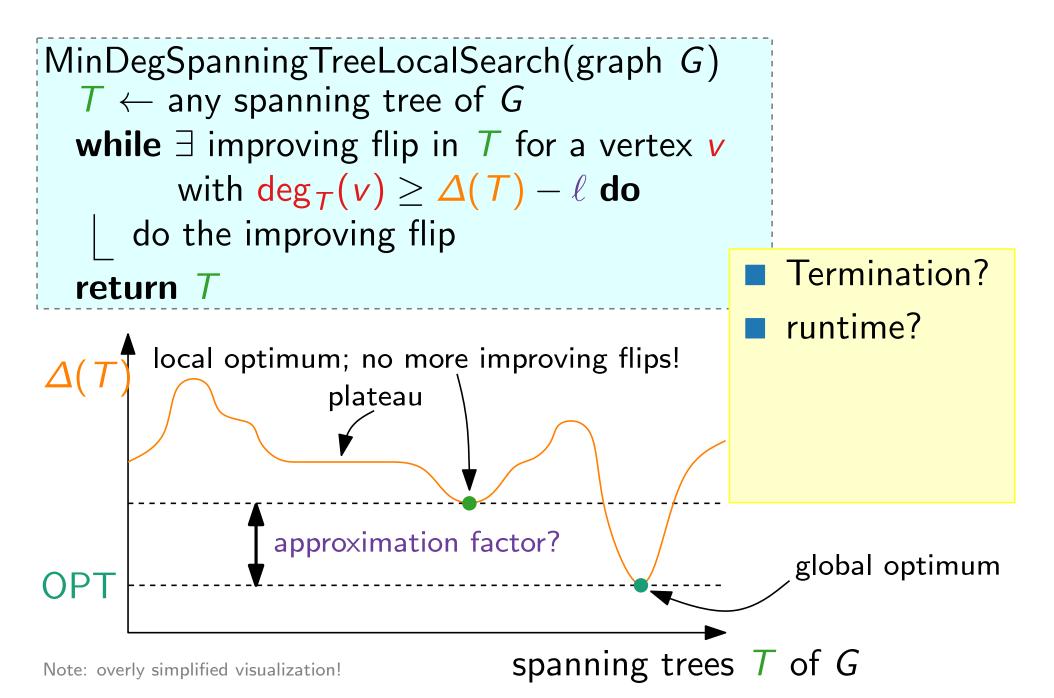


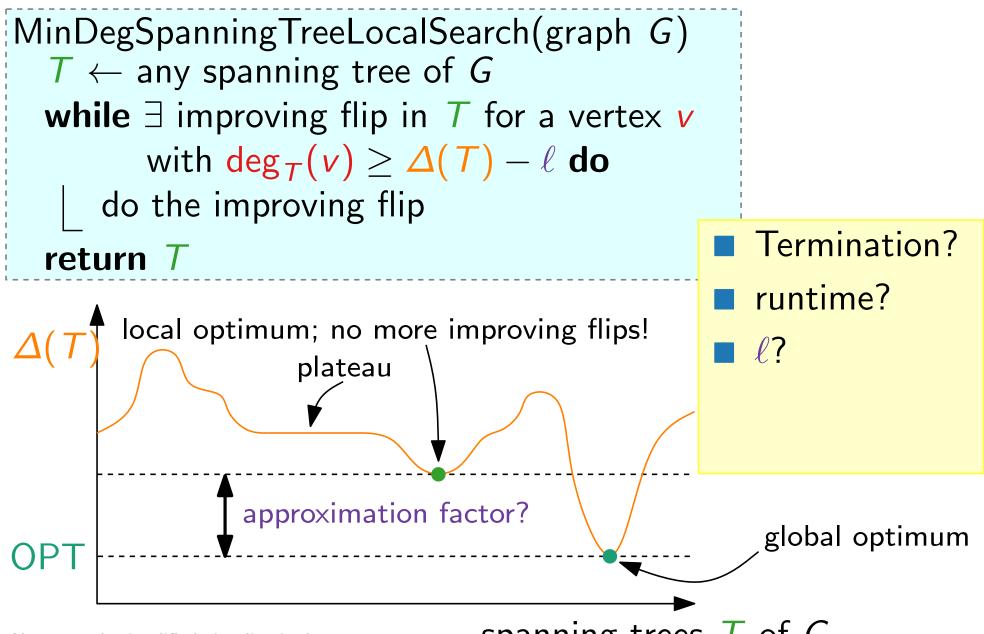
```
MinDegSpanningTreeLocalSearch(graph G)
T \leftarrow any spanning tree of G
while \exists improving flip in T for a vertex v
with \deg_T(v) \geq \Delta(T) - \ell do
left do the improving flip
return T
```



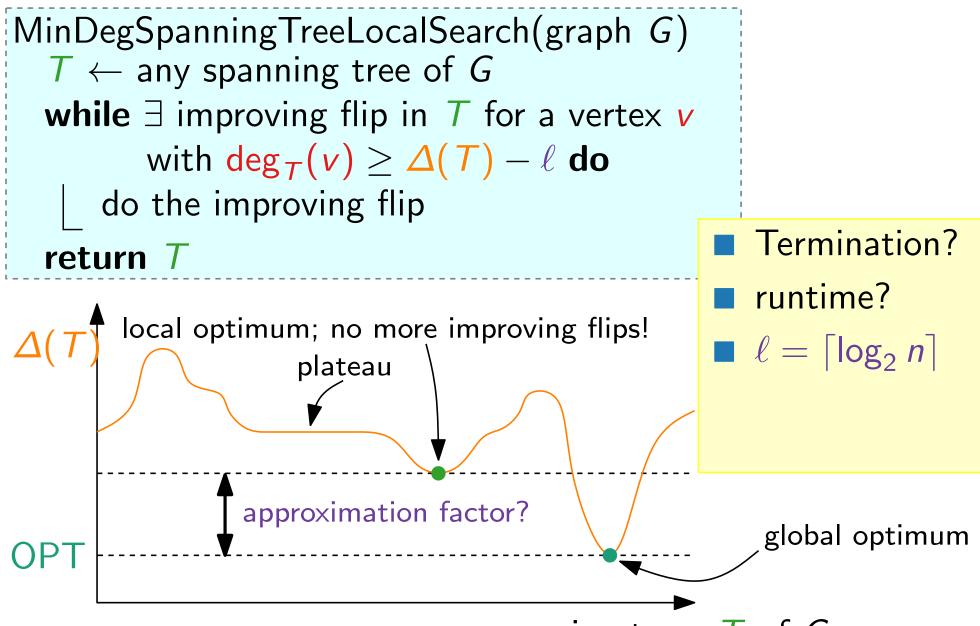


Note: overly simplified visualization!

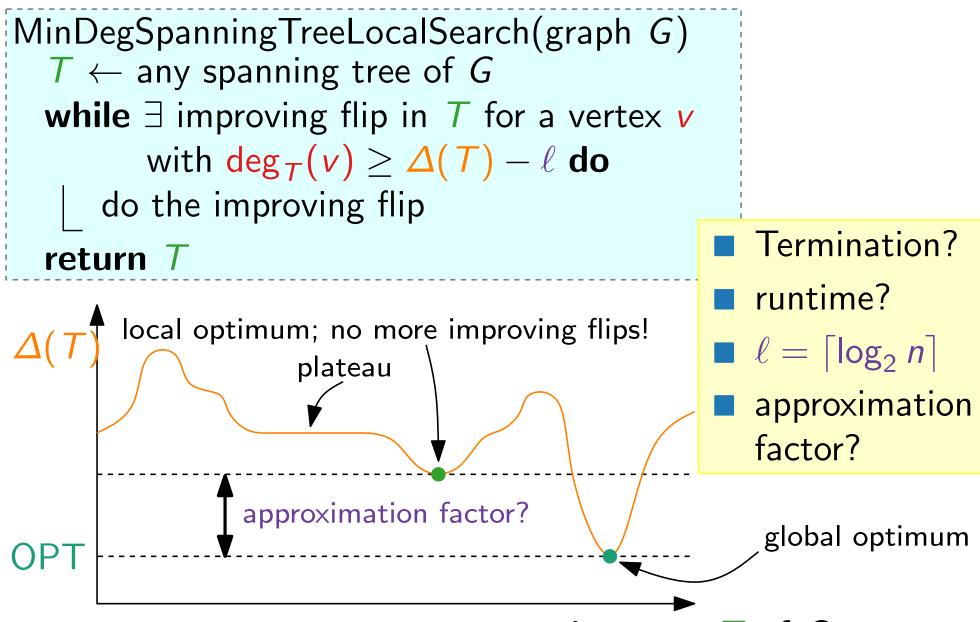




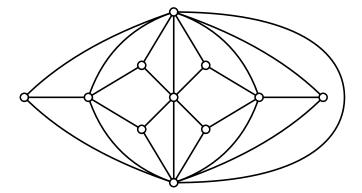
Note: overly simplified visualization!

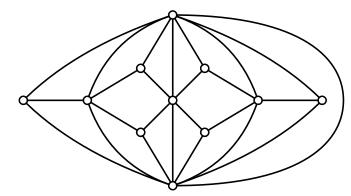


Note: overly simplified visualization!

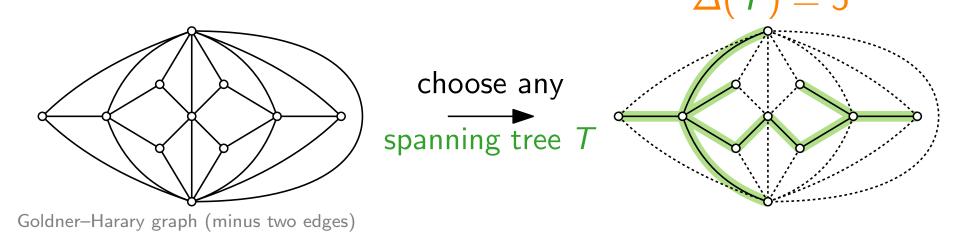


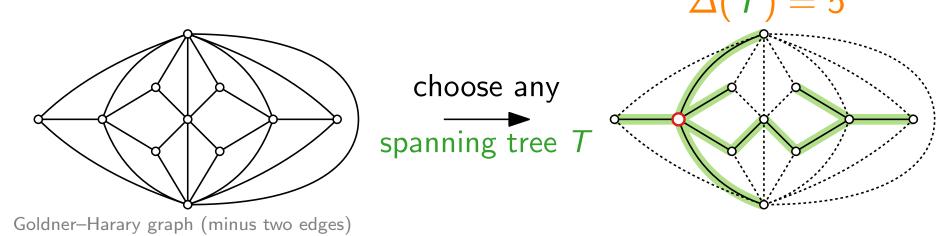
Note: overly simplified visualization!

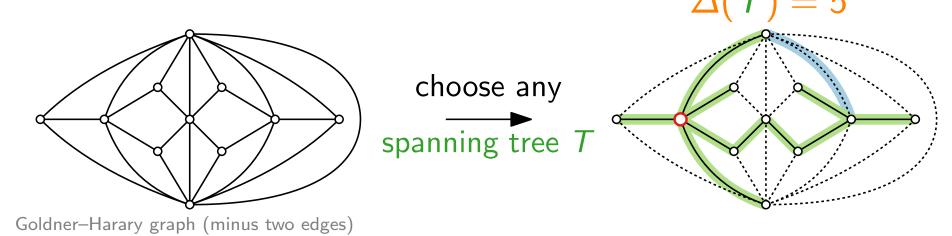


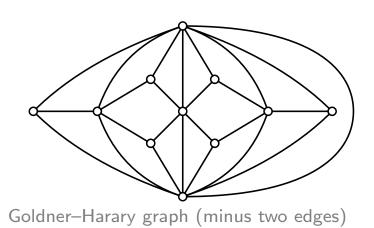


Goldner-Harary graph (minus two edges)

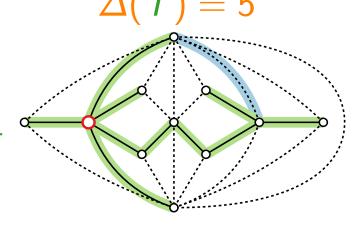


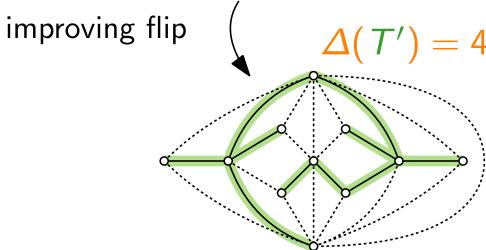


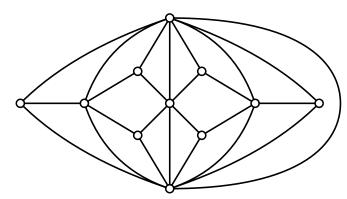




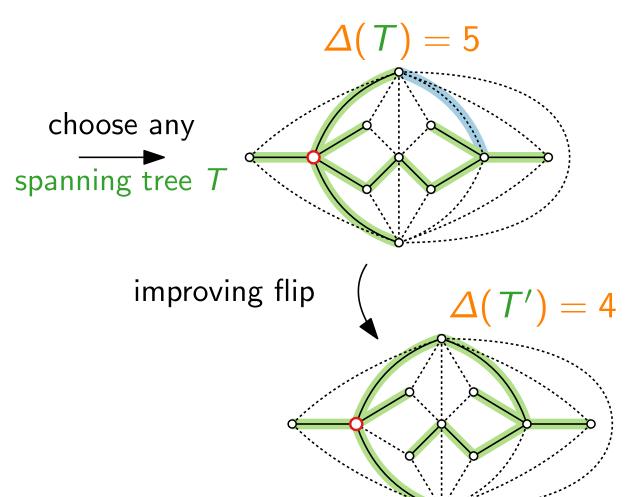
choose any
spanning tree T

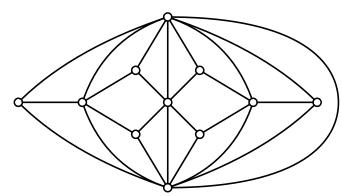




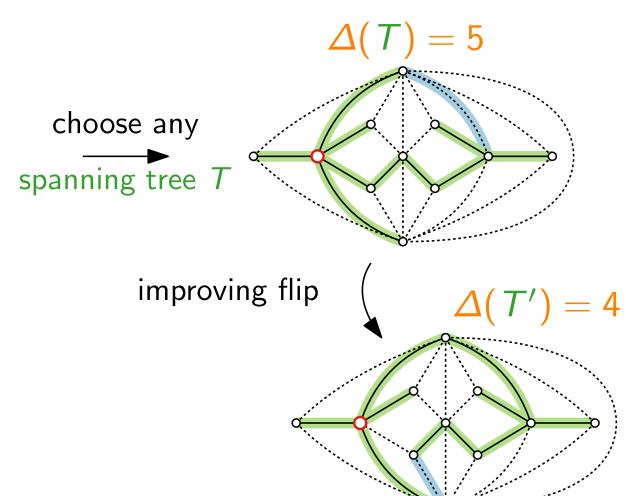


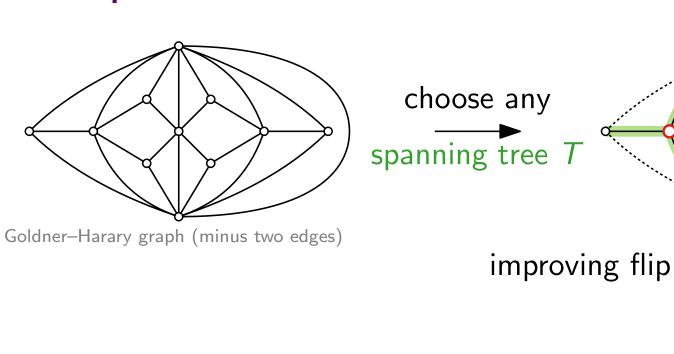
Goldner-Harary graph (minus two edges)

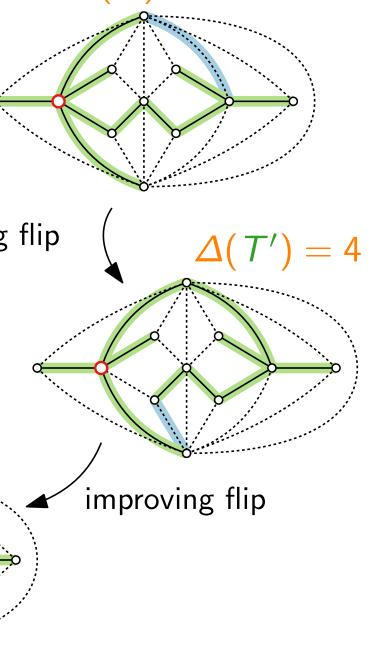


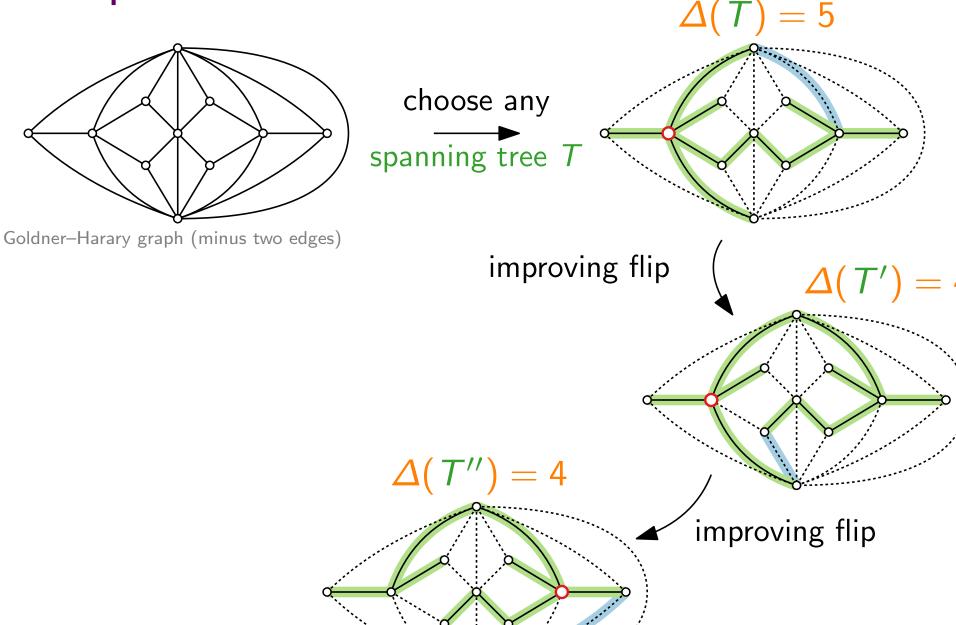


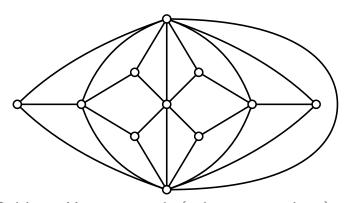
Goldner-Harary graph (minus two edges)





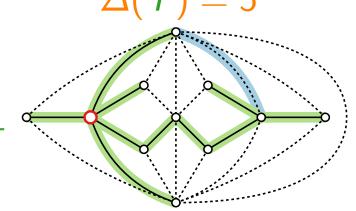


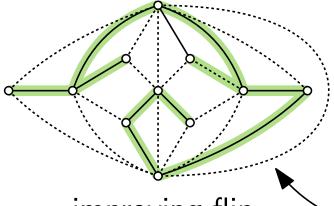




Goldner-Harary graph (minus two edges)

choose any spanning tree T

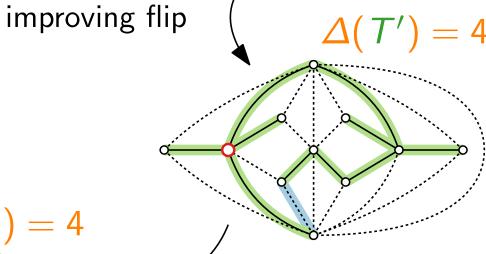


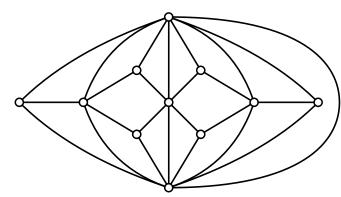


improving flip



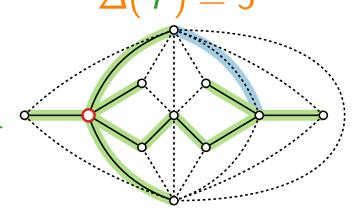
improving flip



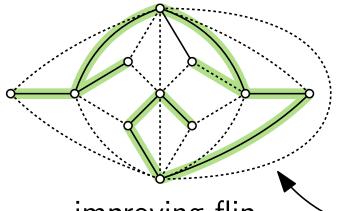


Goldner-Harary graph (minus two edges)

choose any spanning tree T

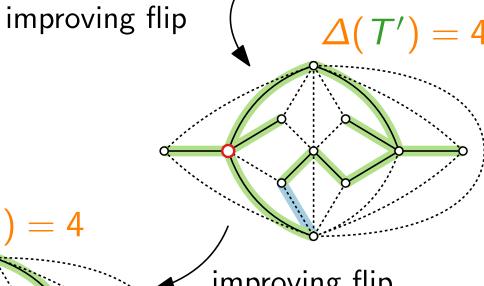


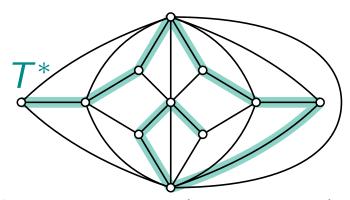
$$\Delta(T''') = 3$$
 but $\Delta(T^*) = 2$



improving flip

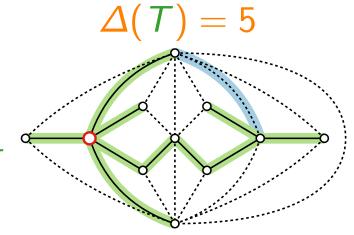
improving flip



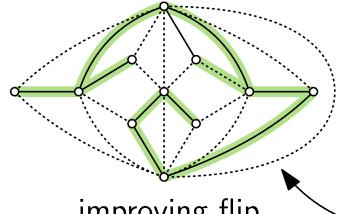


Goldner-Harary graph (minus two edges)

choose any spanning tree T

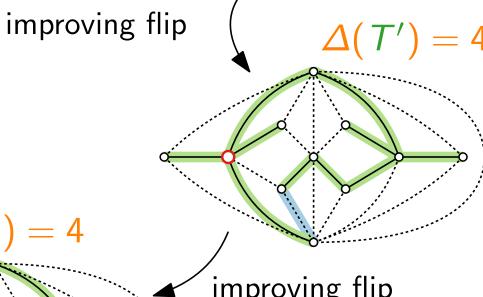


$$\Delta(T''') = 3$$
 but $\Delta(T^*) = 2$



improving flip

improving flip



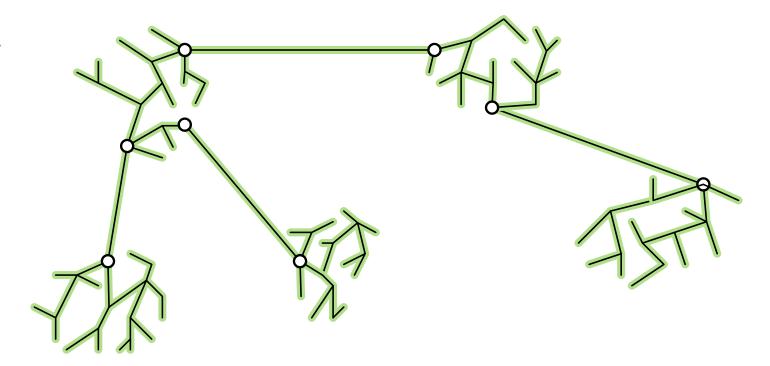
Approximation Algorithms

Lecture 10:

MINIMUM-DEGREE SPANNING TREE via Local Search

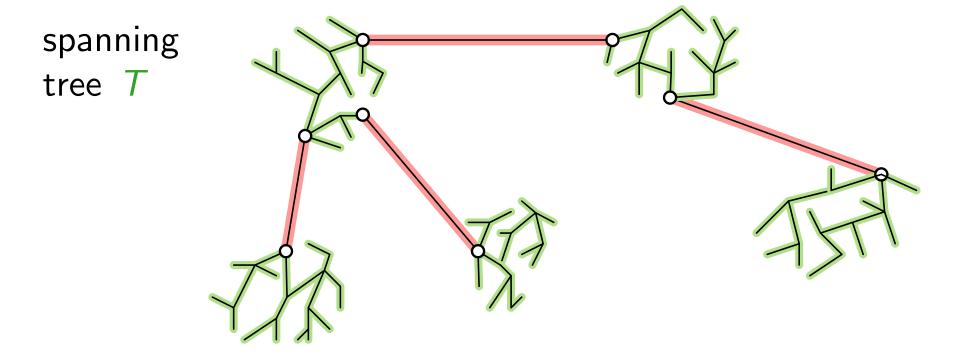
Part III: Lower Bound

spanning tree *T*

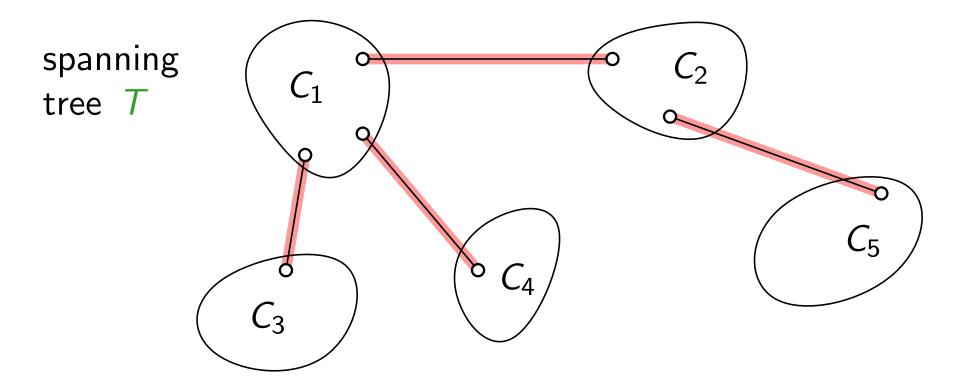


spanning tree T

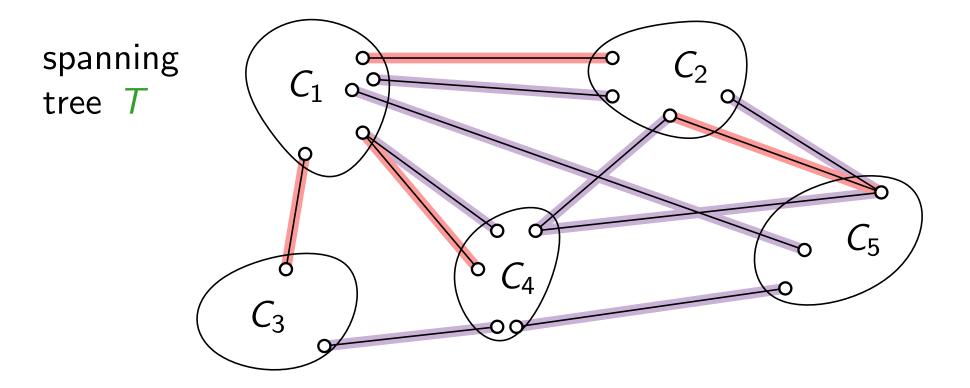
Removing k edges decomposes T into k+1 components.



Removing k edges decomposes T into k+1 components.



- Removing k edges decomposes T into k+1 components.
- $E' = \{ \text{edges in } G \text{ between different components } C_i \neq C_j \}$.



- Removing k edges decomposes T into k+1 components.
- $E' = \{ \text{edges in } G \text{ between different components } C_i \neq C_j \}.$
- \blacksquare 5 := vertex cover of E'.

spanning tree T C_1 C_2 C_5 C_4

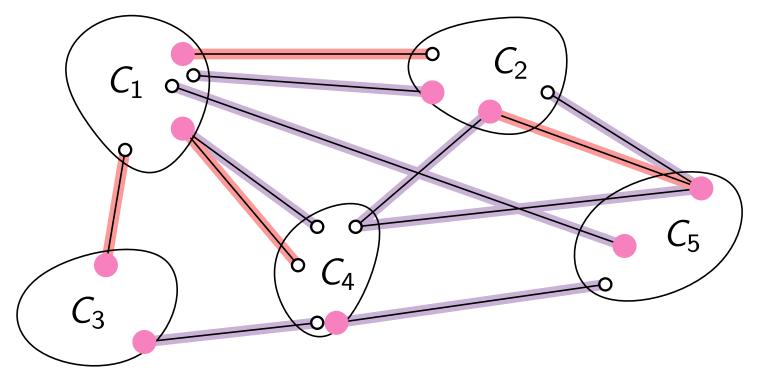
- Removing k edges decomposes T into k+1 components.
- $E' = \{ \text{edges in } G \text{ between different components } C_i \neq C_j \}.$
- \blacksquare 5 := vertex cover of E'.

spanning tree T C_1 C_2 C_5 C_4 C_5

 $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

- Removing k edges decomposes T into k+1 components.
- $E' = \{ \text{edges in } G \text{ between different components } C_i \neq C_j \}.$
- \blacksquare 5 := vertex cover of E'.

spanning tree *T*

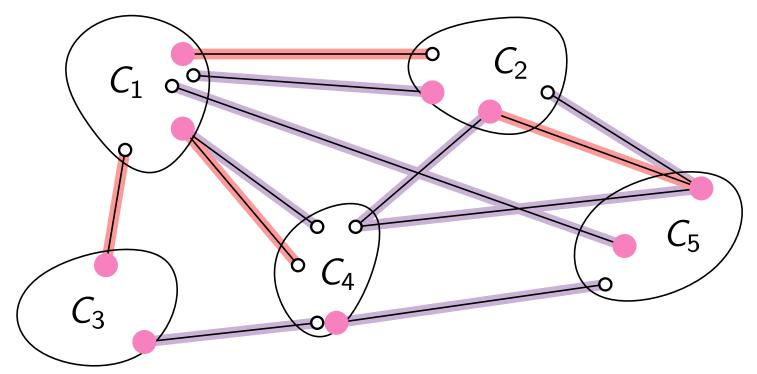


- $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

Decomposition ⇒ Lower Bound for OPT

- Removing k edges decomposes T into k+1 components.
- $E' = \{ \text{edges in } G \text{ between different components } C_i \neq C_j \}.$
- \blacksquare 5 := vertex cover of E'.

spanning tree *T*



- $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

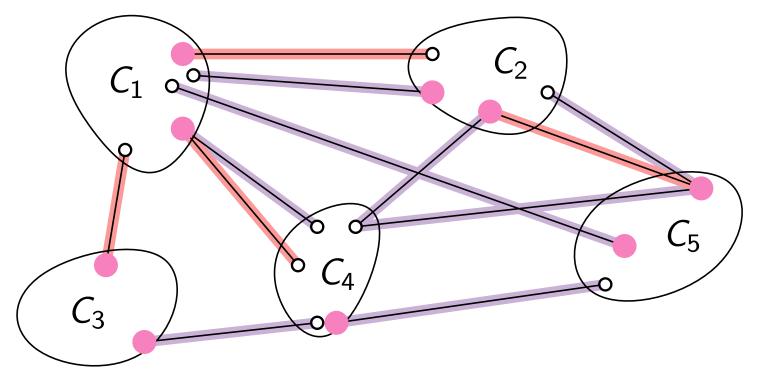
Lemma 1.

$$\Rightarrow_{Obs. 2} OPT \ge$$

Decomposition ⇒ Lower Bound for OPT

- Removing k edges decomposes T into k+1 components.
- $E' = \{ \text{edges in } G \text{ between different components } C_i \neq C_j \}.$
- \blacksquare 5 := vertex cover of E'.

spanning tree *T*



- $|E(T^*) \cap E'| \ge k$ for opt. spanning tree T^*

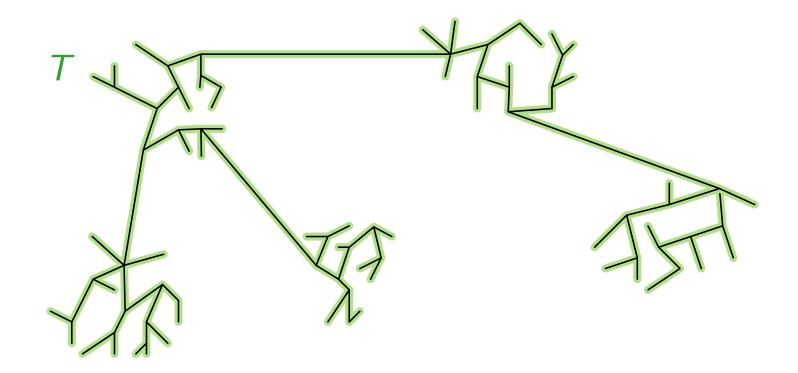
Lemma 1. $\rightarrow OPT > k/l$

Approximation Algorithms

Lecture 10:

MINIMUM-DEGREE SPANNING TREE via Local Search

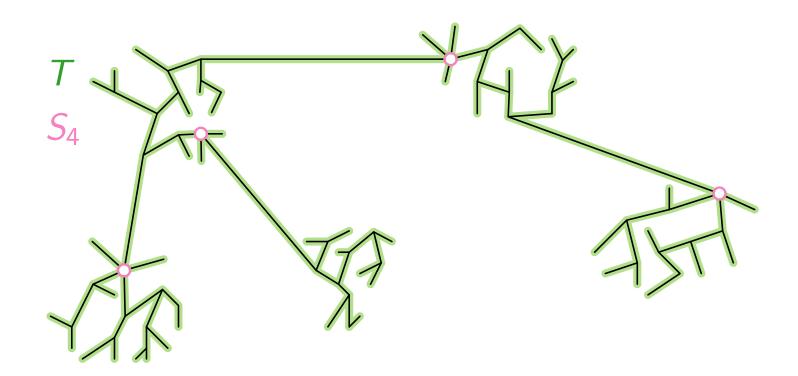
Part IV: Structure of a Decomposition

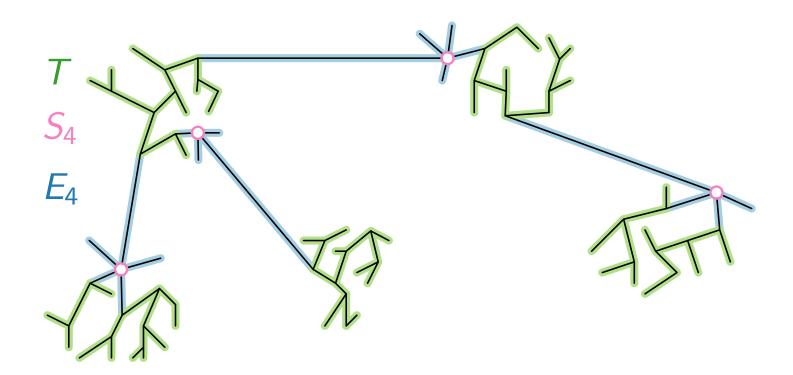


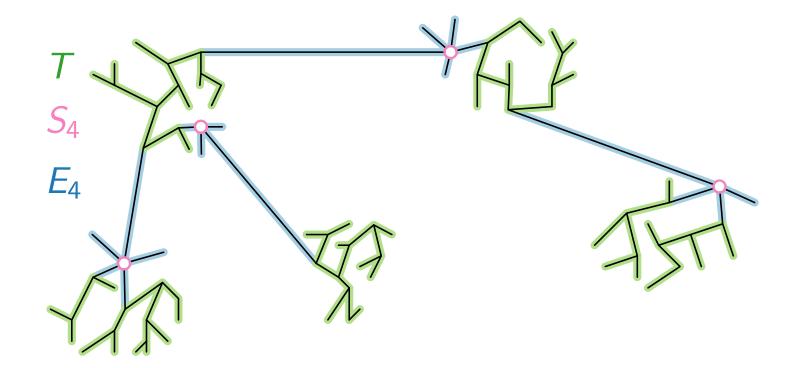
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.



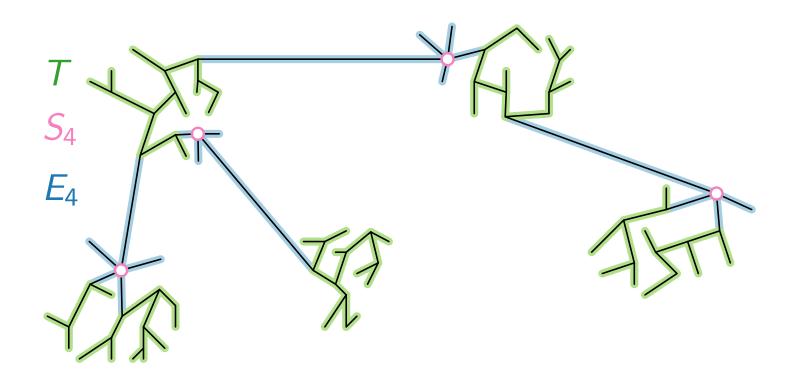
Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$.



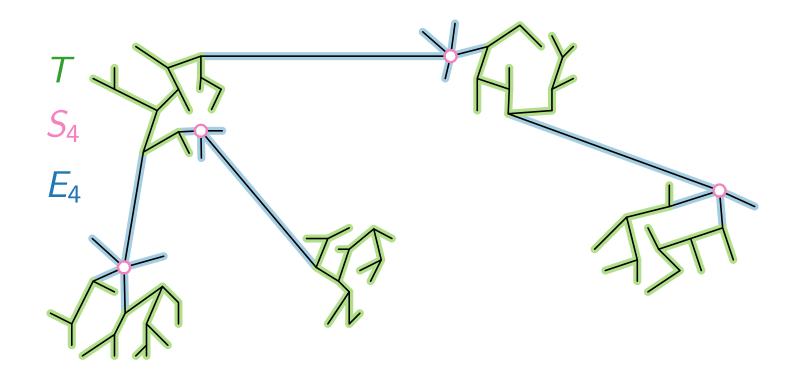




$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$

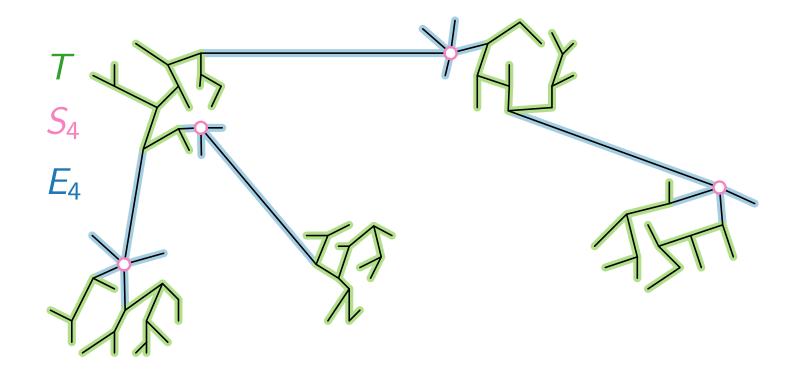


$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$
$$\Rightarrow E_1 = E(T)$$



$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$
$$\Rightarrow E_1 = E(T)$$

Lemma 2.
$$\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$$
.

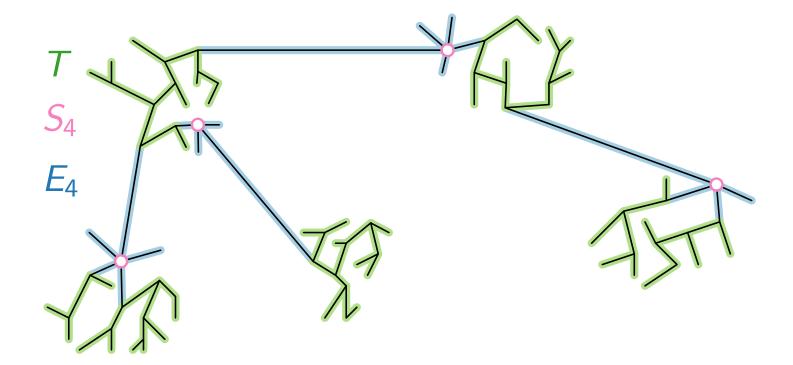


$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$
$$\Rightarrow E_1 = E(T)$$

Lemma 2.
$$\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$$
.

Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}|$$

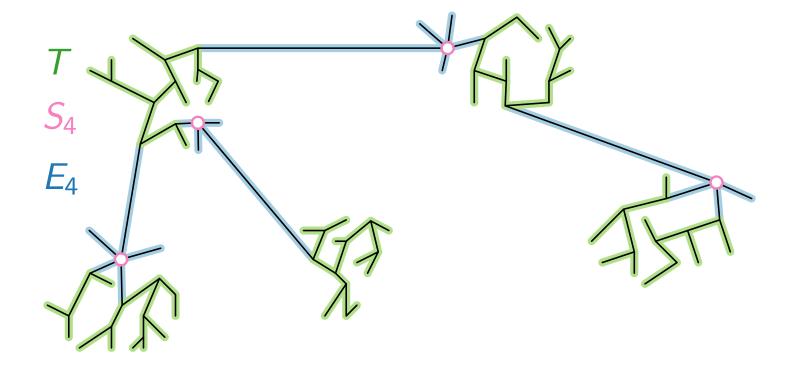
Otherwise



$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$
$$\Rightarrow E_1 = E(T)$$

Lemma 2.
$$\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$$
.

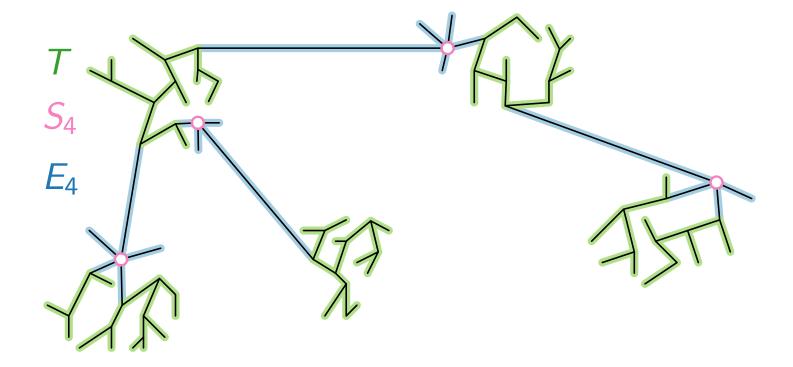
Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \ge 0$$
Otherwise



$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$
$$\Rightarrow E_1 = E(T)$$

Lemma 2.
$$\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$$
.

Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \ge n \cdot |S_{\Delta(T)}|$$
Otherwise

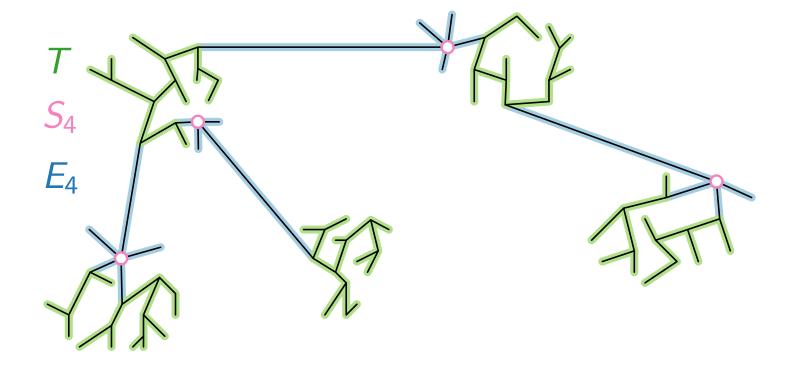


$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$
$$\Rightarrow E_1 = E(T)$$

Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$. Let E_i be the set of edges in T incident to S_i .

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \ge n \cdot |S_{\Delta(T)}|$$
 Otherwise

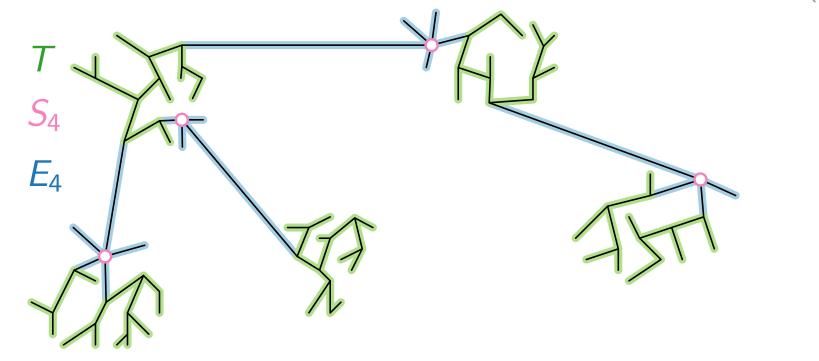


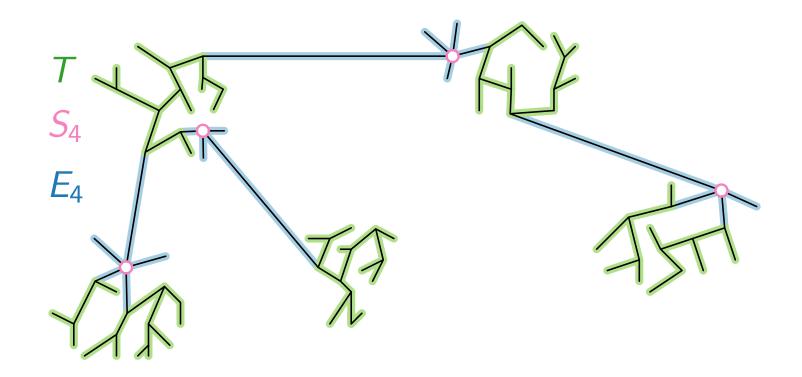
$$\Rightarrow S_1 \supseteq S_2 \supseteq \dots$$
$$\Rightarrow S_1 = V(G)$$
$$\Rightarrow E_1 = E(T)$$

Let S_i be the set of vertices v in T with $\deg_T(v) \geq i$. Let E_i be the set of edges in T incident to S_i .

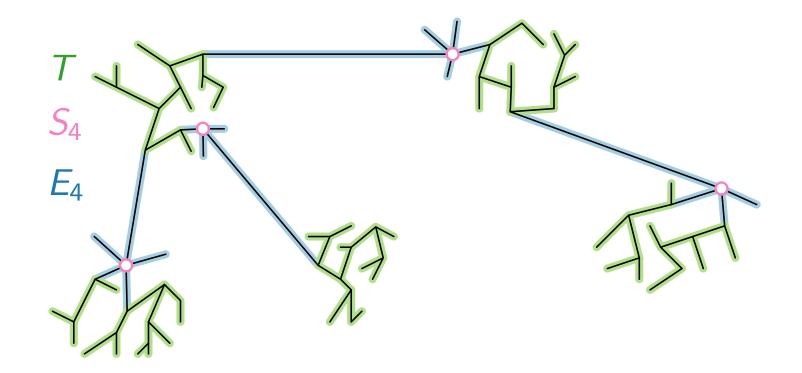
Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Proof.
$$|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \ge n \cdot |S_{\Delta(T)}|$$
Otherwise TODO: What if $\ell > \Delta(T)$?

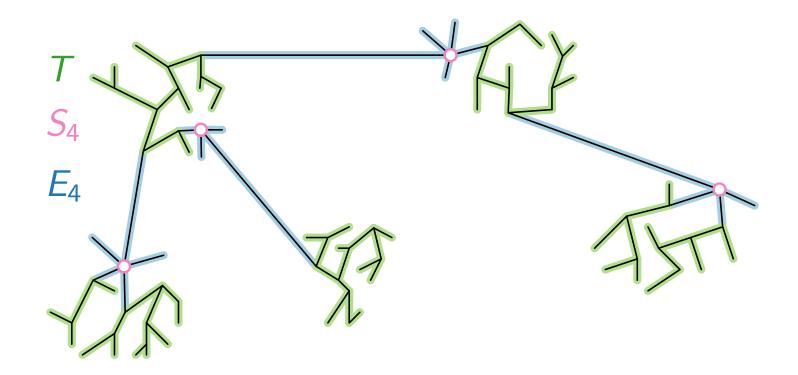




Lemma 3. For
$$i \ge \Delta(T) - \ell + 1$$
, (i) $|E_i| \ge (i-1)|S_i| + 1$,



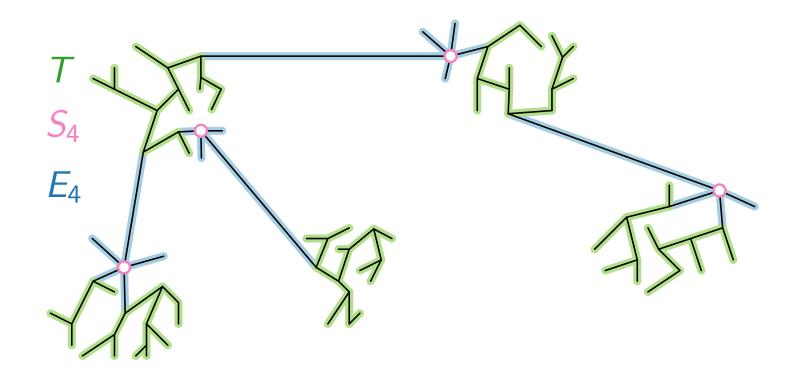
- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .



Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

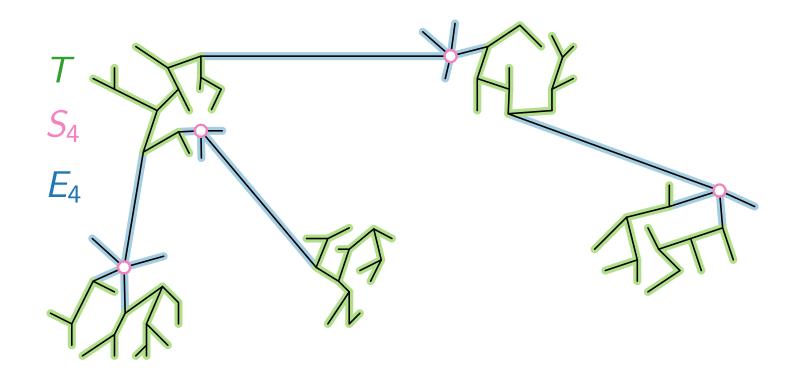
- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i) $|E_i| \ge$



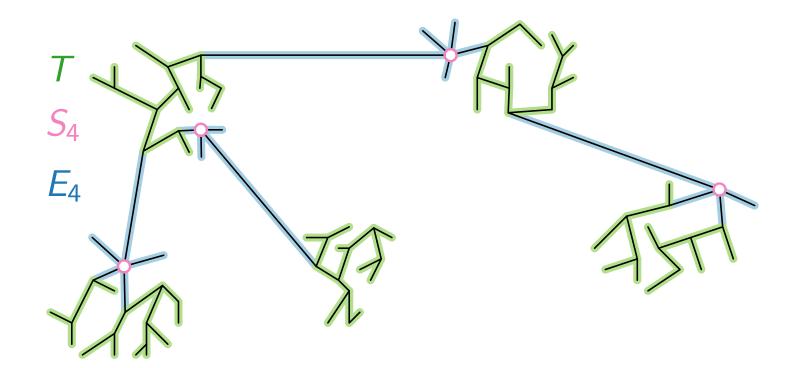
- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i |S_i|$$
 vertex-deg



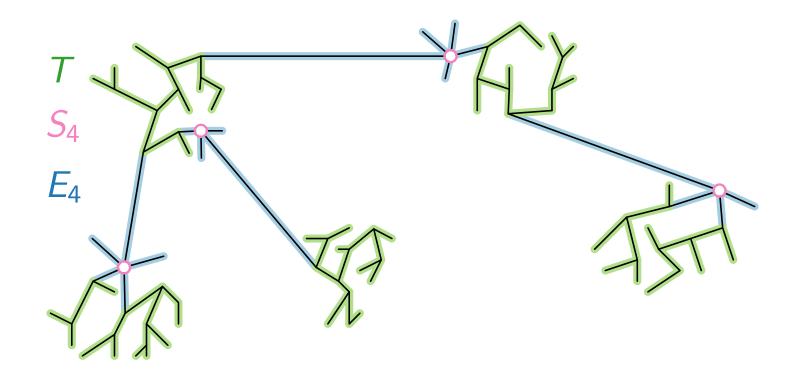
- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = \text{counted twice}$$



- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

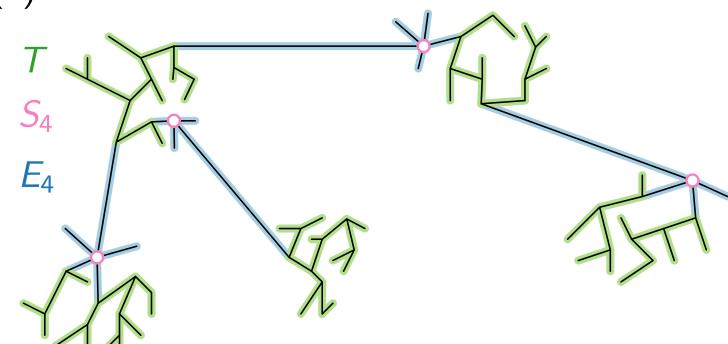
Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i - 1)|S_i| + 1$$



- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i - 1)|S_i| + 1$$
vertex-deg counted twice?

(ii)



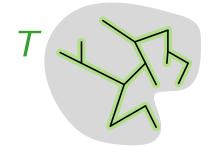
- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

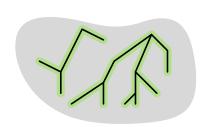
Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i - 1)|S_i| + 1$$
vertex-deg counted twice?

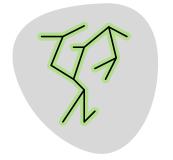
(ii)

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$
 vertex-deg counted twice?







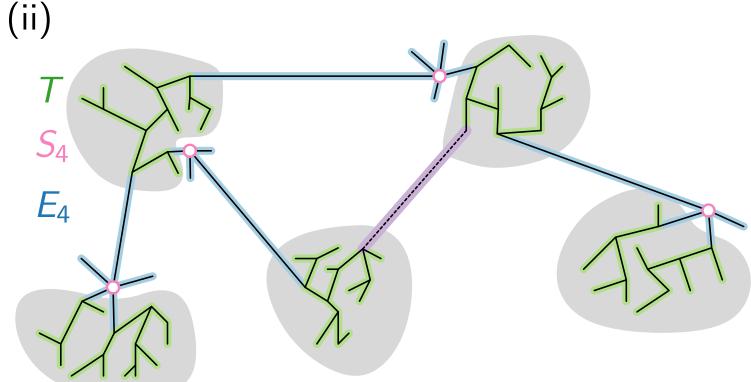
- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i - 1)|S_i| + 1$$
(ii)

The proof of th

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

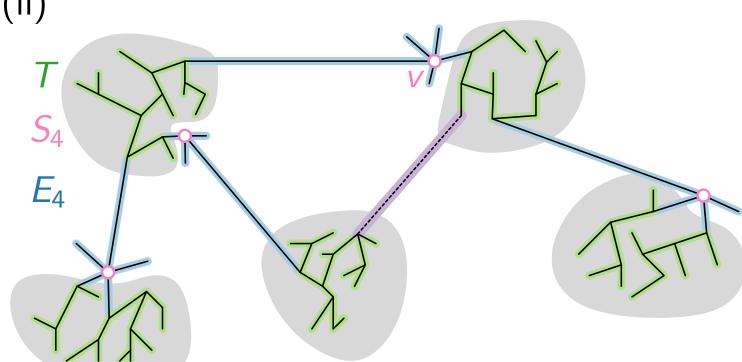
Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i-1)|S_i| + 1$$
vertex-deg counted twice?



- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i - 1)|S_i| + 1$$
vertex-deg counted twice?

(ii)

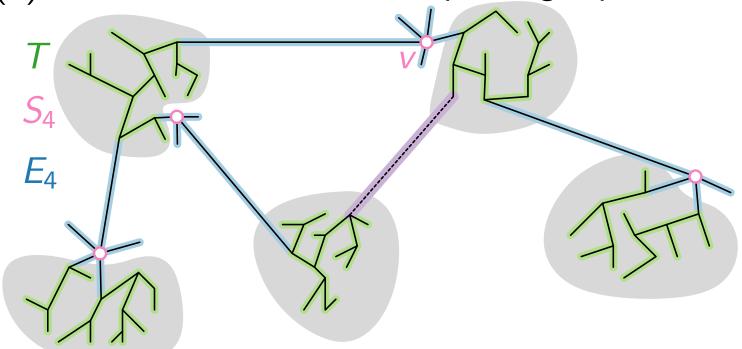


Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Proof. (i)
$$|E_i| \ge i|S_i| - (|S_i| - 1) = (i - 1)|S_i| + 1$$

(ii) Otherwise, there is an improving flip for some $v \in S_i$.



Approximation Algorithms

Lecture 10:

MINIMUM-DEGREE SPANNING TREE via Local Search

Part V: Approximation Factor

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

Lemma 3. For $i \geq \Delta(T) - \ell + 1$,

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .

Remove E_i for this i!

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\clubsuit}{\Rightarrow} S_{i-1}$ covers edges between comp.

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\clubsuit}{\Rightarrow} S_{i-1}$ covers edges between comp.

$$OPT \ge \frac{k}{|S|} =$$

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \Rightarrow S_{i-1}$ covers edges between comp.

$$\mathsf{OPT} \geq \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \geq$$

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges between comp.

$$\begin{array}{c}
OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \\
\text{Lemma 3}
\end{array}$$

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let T be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges between comp.

$$\mathsf{OPT} \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{1}{|S_i|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{1}{|S_i|} \ge \frac{1}{|S_i|} \frac{$$

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges between comp.

$$\mathsf{OPT} \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2} \ge \frac{(i-1)|S_i|+1}{2} > \frac{(i-1)|S_i|+1}{2} >$$

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. Let *T* be a locally optimal spanning tree.

Then $\Delta(T) \leq 2 \cdot \mathsf{OPT} + \ell$, where $\ell = \lceil \log_2 n \rceil$.

Proof. Let S_i be the vertices v in T with $\deg_T(v) \geq i$. Let E_i be the edges in T incident to S_i .

Lemma 1. OPT $\geq k/|S|$ if k = |removed edges|, S vertex cover.

Lemma 2. $\exists i \text{ s.t. } \Delta(T) - \ell + 1 \leq i \leq \Delta(T) \text{ with } |S_{i-1}| \leq 2|S_i|$.

- (i) $|E_i| \geq (i-1)|S_i| + 1$,
- (ii) Each edge $e \in E(G) \setminus E_i$ connecting distinct components of $T \setminus E_i$ is incident to a node of S_{i-1} .
- Remove E_i for this $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$ covers edges between comp.

$$\mathsf{OPT} \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2} \ge \frac{\Delta(T)-\ell}{2}$$
Lemma 1

Approximation Algorithms

Lecture 10:

MINIMUM-DEGREE SPANNING TREE via Local Search

Part VI:

Termination, Running Time & Extensions

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully):

Each iteration decreases the potential of a solution.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully):

Each iteration decreases the potential of a solution.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree efficiently.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully):

Each iteration decreases the potential of a solution.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully):

Each iteration decreases the potential of a solution.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

The function is bounded both from above and below.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

The function is bounded both from above and below.

Lemma. For every spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound.

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\phi(T) \in [3n, n3^n]$.

 \blacksquare Executing f(n) iterations would exceed the lower bound.

$$\phi(T)$$
 decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\phi(T) \in [3n, n3^n]$.

 \blacksquare Executing f(n) iterations would exceed the lower bound.

$$m{\phi}(T)$$
 decreases by: $(1-rac{2}{27n^3})^{f(n)} \leq 1+x \leq e^x$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound.

$$m{\phi}(T)$$
 decreases by: $(1-rac{2}{27n^3})^{f(n)} \leq (e^{-rac{2}{27n^3}})^{f(n)} = 1+x \leq e^x$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\Phi(T) \in [3n, n3^n]$.

 \blacksquare Executing f(n) iterations would exceed the lower bound.

How does $\phi(T)$ change?

$$\phi(T)$$
 decreases by: $(1-\frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} =$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\Phi(T) \in [3n, n3^n]$.

 \blacksquare Executing f(n) iterations would exceed the lower bound.

Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\phi(T)$ change?

 $\phi(T)$ decreases by: $(1-\frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} =$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound.

Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\phi(T)$ change?

 $\phi(T)$ decreases by: $(1-\frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n\ln 3} =$

Theorem. The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound.

Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\phi(T)$ change?

 $\phi(T)$ decreases by: $(1-\frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} = 3^{-n}$

Theorem. The algorithm finds a locally optimal spanning tree after at most $O(n^4)$ iterations.

Proof. Via potential function $\phi(T)$ measuring the value of a solution where (hopefully): $\phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$

Each iteration decreases the potential of a solution.

Lemma. After each flip $T \to T'$, $\phi(T') \le (1 - \frac{2}{27n^3})\phi(T)$.

■ The function is bounded both from above and below.

Lemma. For every spanning tree T, $\Phi(T) \in [3n, n3^n]$.

Executing f(n) iterations would exceed the lower bound.

Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$. How does $\phi(T)$ change?

 $\phi(T)$ decreases by: $(1-\frac{2}{27n^3})^{f(n)} \leq (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} = 3^{-n}$

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \mathsf{OPT} + \ell$.

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \mathsf{OPT} + \ell$.

Proof. Similar to previous pages.

Homework

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \mathsf{OPT} + \ell$.

Proof. Similar to previous pages. Homework

A variant of this algorithm yields the following result:

Corollary. For any constant b>1 and $\ell=\lceil\log_b n\rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \mathsf{OPT} + \ell$.

Proof. Similar to previous pages. Homework

A variant of this algorithm yields the following result:

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. There is a local search algorithm that runs in $O(EV\alpha(E,V)\log V)$ time and produces a spanning tree T with $\Delta(T) \leq \mathsf{OPT} + 1$.

Corollary. For any constant b > 1 and $\ell = \lceil \log_b n \rceil$, the local search algorithm runs in polynomial time and produces a spanning tree T with $\Delta(T) \leq b \cdot \mathsf{OPT} + \ell$.

Proof. Similar to previous pages. Homework

A variant of this algorithm yields the following result:

[Fürer & Raghavachari: SODA'92, JA'94]

Theorem. There is a local search algorithm that runs in $O(EV\alpha(E,V)\log V)$ time and produces a spanning tree T with $\Delta(T) \leq \mathsf{OPT} + 1$.

Further variants for directed graphs and Steiner tree.