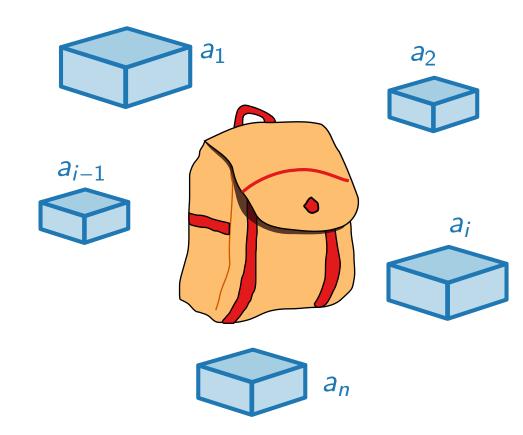
Approximation Algorithms

Lecture 8:

Approximation Schemes and the KNAPSACK Problem

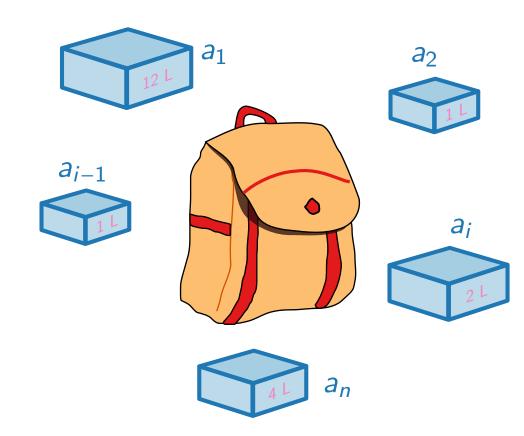
Part I:
KNAPSACK

Given: \blacksquare A set $S = \{a_1, \ldots, a_n\}$ of objects.



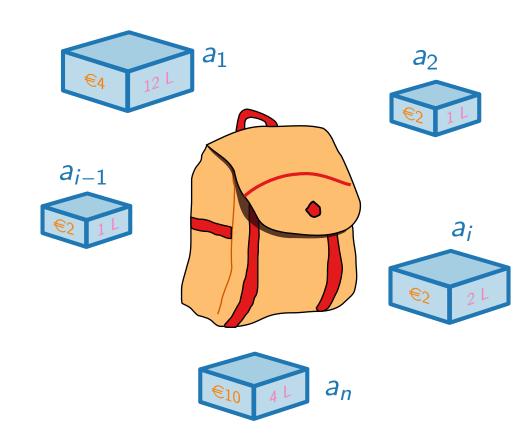
Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$



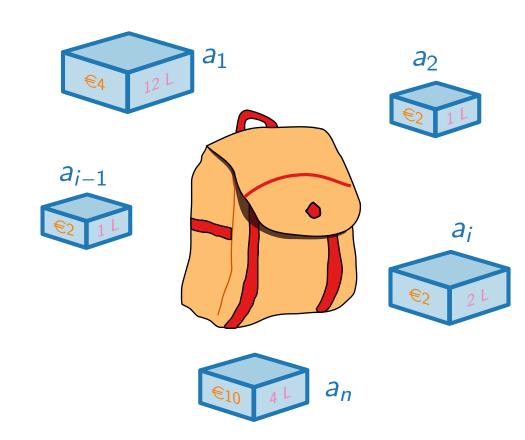
Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** profit $(a_i) \in \mathbb{N}^+$



Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size $size(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

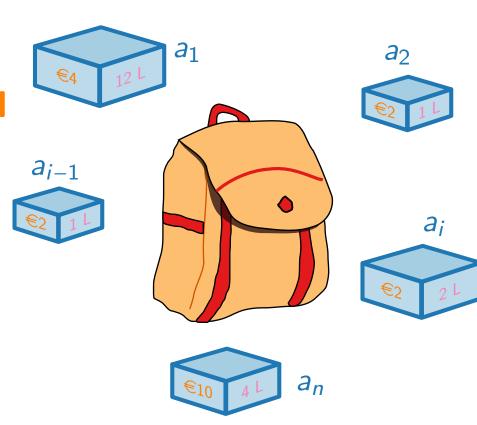


Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size $size(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose **total size** is at most *B* and whose **total profit** is maximum.

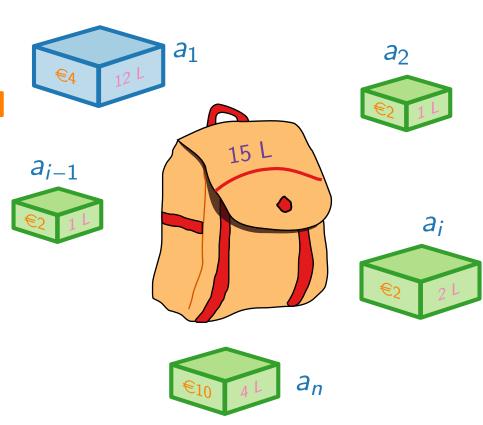


Given:

- A set $S = \{a_1, \ldots, a_n\}$ of **objects**.
- For every object a_i a size $size(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose **total size** is at most *B* and whose **total profit** is maximum.



*a*₂

KNAPSACK

Given:

- A set $S = \{a_1, \ldots, a_n\}$ of **objects**.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a **profit** profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose **total size** is at most *B* and whose **total profit** is maximum.

*a*₁

NP-hard

Approximation Algorithms

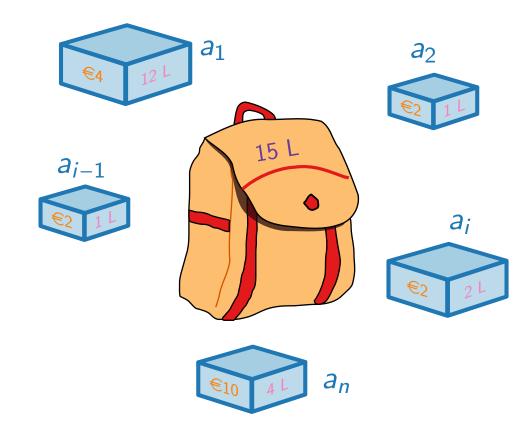
Lecture 8:

Approximation Schemes and the KNAPSACK Problem

Part II:

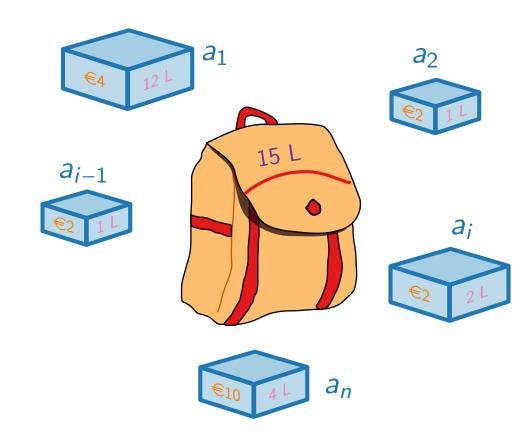
Pseudo-Polynomial Algorithms and Strong NP-Hardness

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).



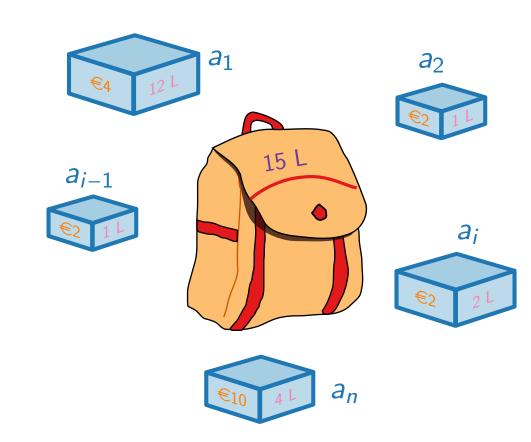
Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

|/|: The size of an instance $I \in D_{\Pi}$, where all numbers in / are encoded in **binary**.



Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

|/|: The size of an instance $I \in D_{\Pi}$, where all numbers in / are encoded in **binary**. $(5 = 101_b \Rightarrow |I| = 3)$



Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

```
|/|: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in binary. (5 = 101_b \Rightarrow |I| = 3)
```

 $|I|_u$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in **unary**.

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

```
|/|: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in binary. (5 = 101_b \Rightarrow |I| = 3)
|/|<sub>u</sub>: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in unary. (5 = 11111_u \Rightarrow |I|_u = 5)
```

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

```
|/|: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in binary. (5 = 101_b \Rightarrow |I| = 3)
|/|<sub>u</sub>: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in unary. (5 = 11111_u \Rightarrow |I|_u = 5)
```

The running time of a polynomial algorithm for Π is polynomial in |I|.

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

```
|/|: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in binary. (5 = 101_b \Rightarrow |I| = 3)
|/|<sub>u</sub>: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in unary. (5 = 11111_u \Rightarrow |I|_u = 5)
```

The running time of a polynomial algorithm for Π is polynomial in |I|.

The running time of a **pseudo-polynomial algorithm** is polynomial in $|I|_u$.

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

```
|/|: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in binary. (5 = 101_b \Rightarrow |I| = 3)
|/|<sub>u</sub>: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in unary. (5 = 11111_u \Rightarrow |I|_u = 5)
```

The running time of a polynomial algorithm for Π is polynomial in |I|.

The running time of a **pseudo-polynomial algorithm** is polynomial in $|I|_u$.

The running time of a pseudo-polynomial algorithm may not be polynomial in |I|.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

An optimization problem is called **weakly NP-hard** if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

An optimization problem is called **weakly NP-hard** if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Approximation Algorithms

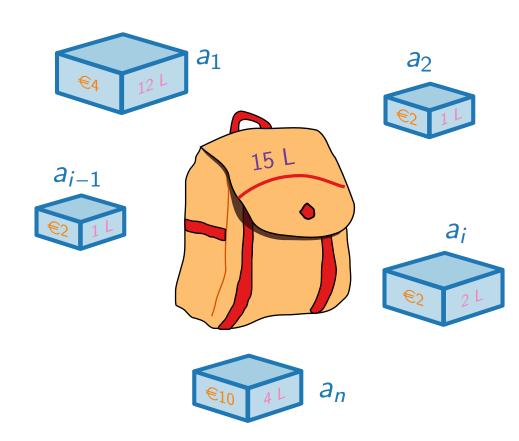
Lecture 8:

Approximation Schemes and the KNAPSACK Problem

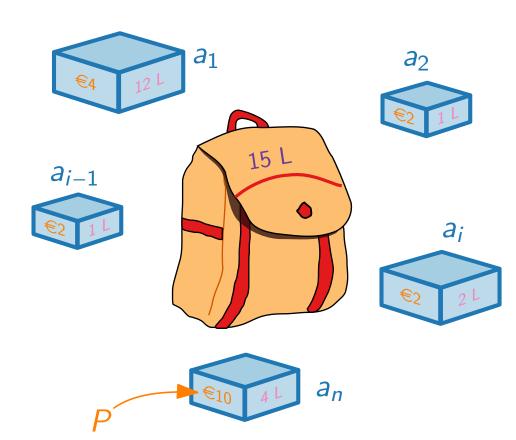
Part III:

Pseudo-Polynomial Algorithm for KNAPSACK

Let $P := \max_i \operatorname{profit}(a_i)$



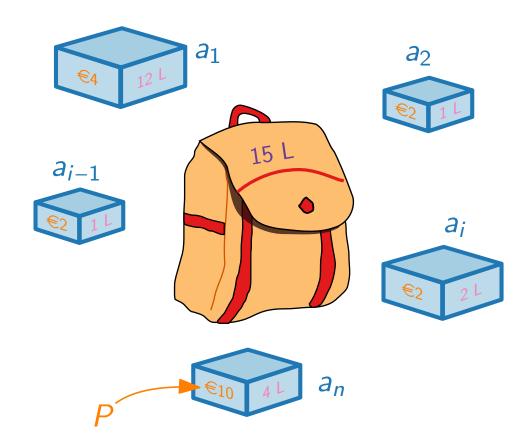
Let $P := \max_i \operatorname{profit}(a_i)$



Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow \leq \operatorname{OPT} \leq (\operatorname{assuming size}(\cdot) \leq B)$

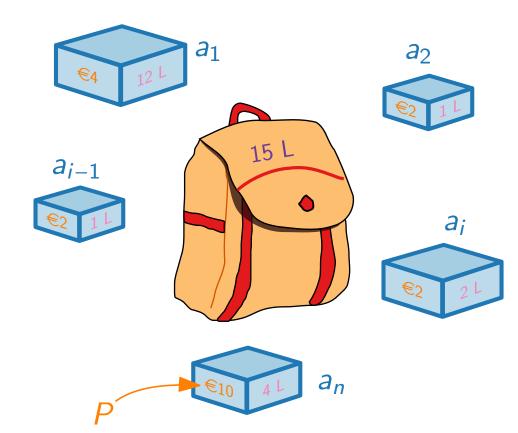


Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)



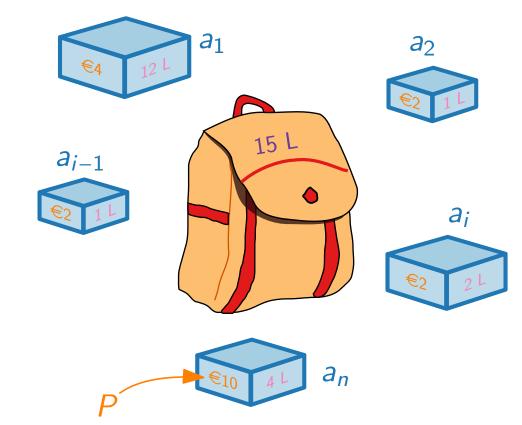
Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$,



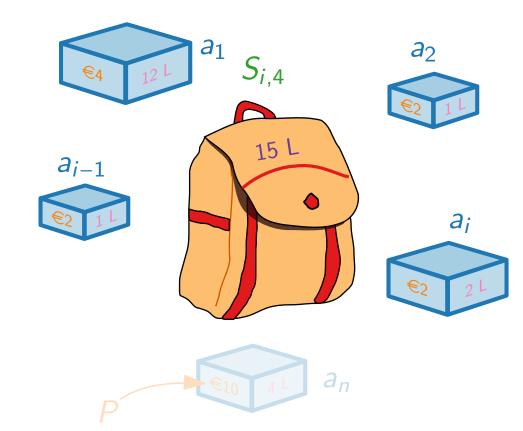
Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p



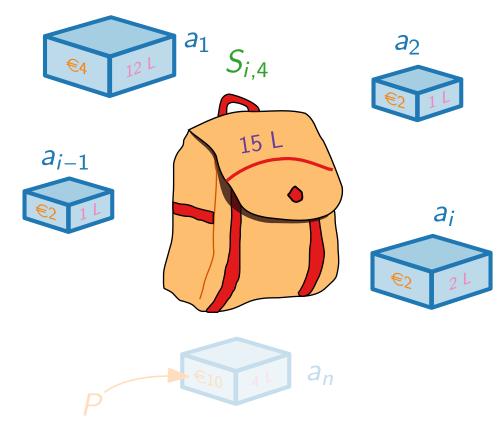
Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p



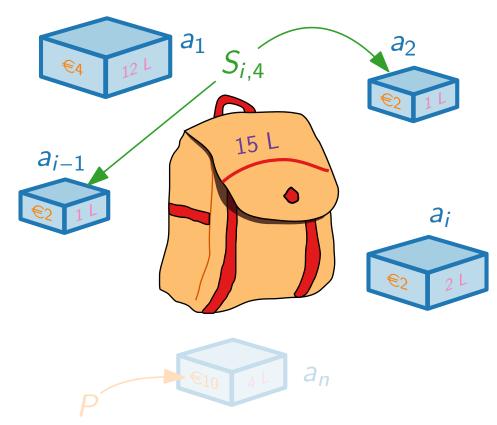
Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties.



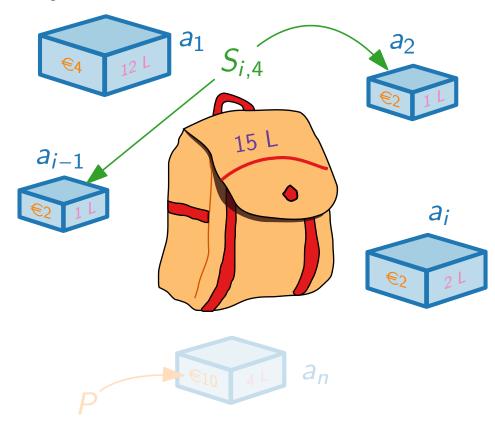
Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties.



Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

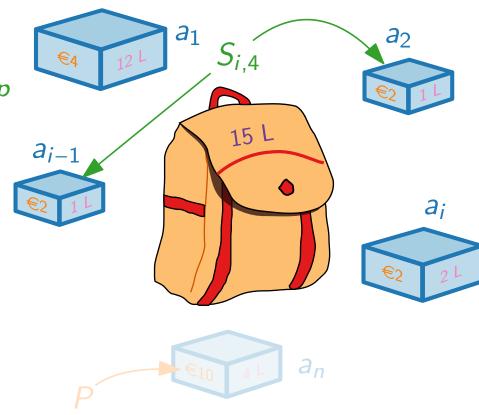
For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.



Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

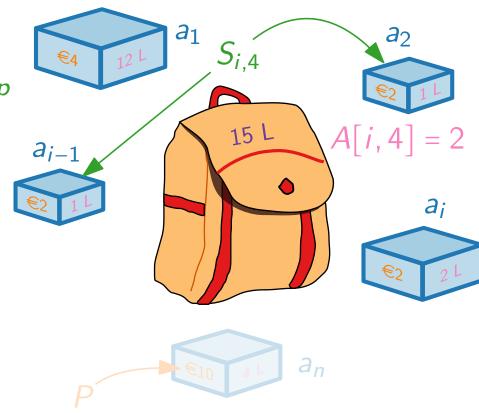
Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).



Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

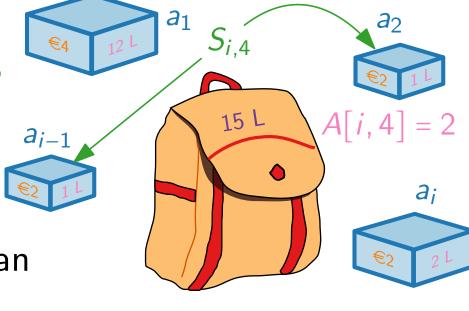


Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

If all A[i, p] are known, then we can compute



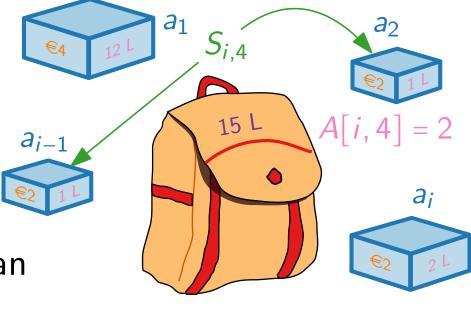
Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ (assuming $\operatorname{size}(\cdot) \leq B$)

For every $i \in \{1, ..., n\}$ and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

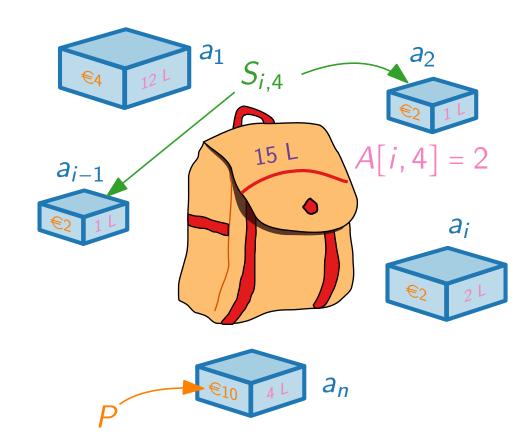
Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

If all A[i, p] are known, then we can compute

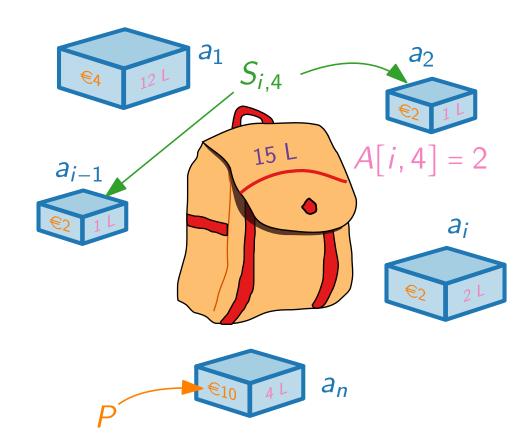
$$\mathsf{OPT} = \mathsf{max}\{\, p \mid A[n,p] \leq B \,\}.$$



A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

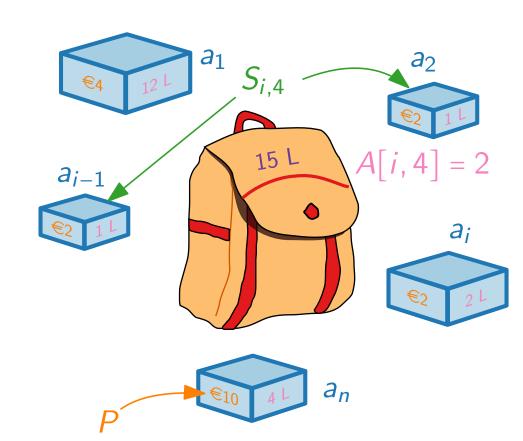


A[1, p] can be computed for every $p \in \{0, ..., nP\}$.



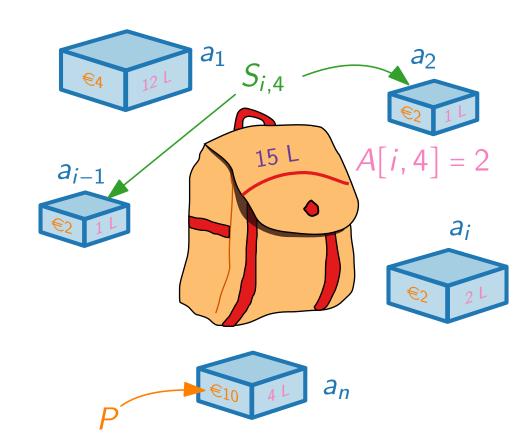
A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

$$A[i+1,p] =$$



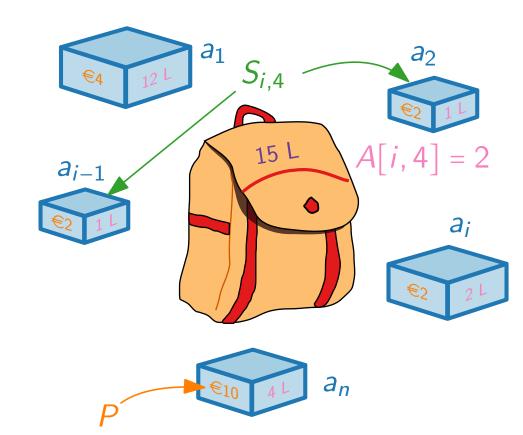
A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

$$A[i+1,p] = \min\{$$



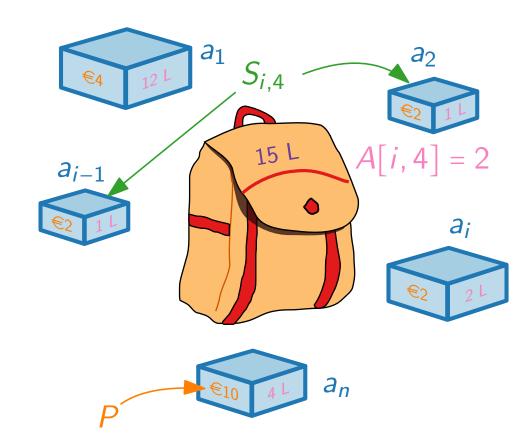
A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

$$A[i+1,p] = \min\{A[i,p],$$



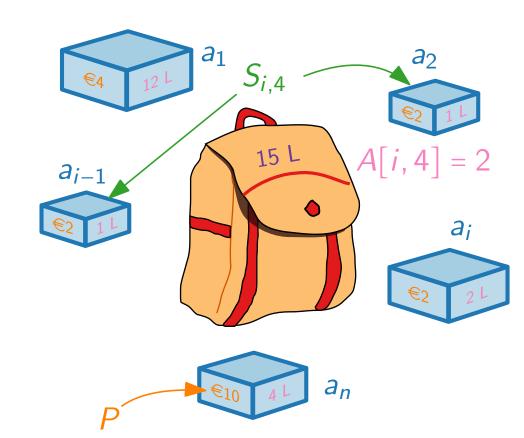
A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + a_{i+1}\}$$



A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

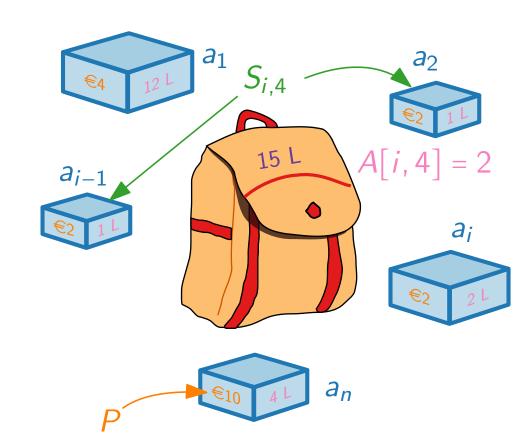


A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

Set $A[i, p] := \infty$ for p < 0 (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

 \Rightarrow All values A[i, p] can be computed in total time O(

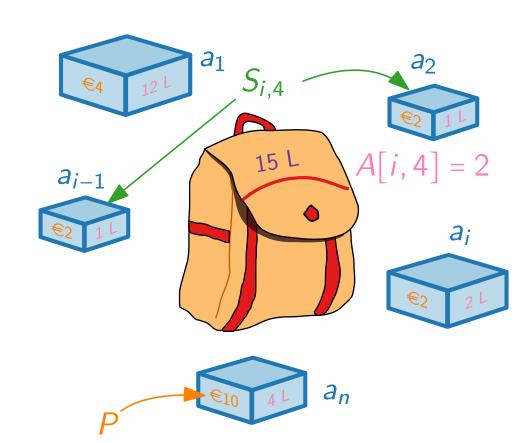


A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

Set $A[i, p] := \infty$ for p < 0 (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

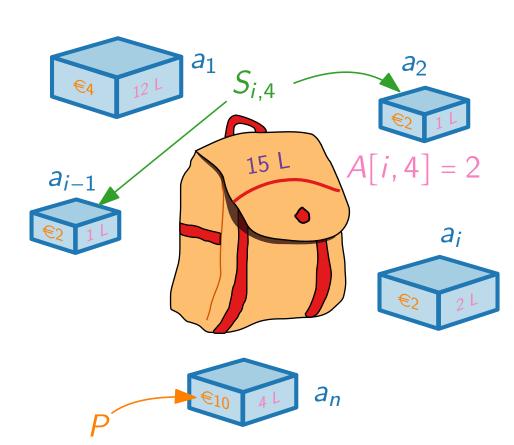
 \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.



A[1, p] can be computed for every $p \in \{0, ..., nP\}$.

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ total time.



```
A[1, p] can be computed for every p \in \{0, ..., nP\}.

Set A[i, p] := \infty for p < 0 (for convenience).

A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}

\Rightarrow All values A[i, p] can be computed in total time O(n^2P).
```

- \Rightarrow OPT can be computed in $O(n^2P)$ total time.
- Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

```
A[1, p] can be computed for every p \in \{0, ..., nP\}.
```

Set $A[i, p] := \infty$ for p < 0 (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ total time.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Corollary. KNAPSACK is weakly NP-hard.

```
A[1, p] can be computed for every p \in \{0, ..., nP\}.
```

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ total time.
- **Theorem.** KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.
- Corollary. KNAPSACK is weakly NP-hard.
- **Observe.** The running time $O(n^2P)$ is polynomial in n if P is polynomial in n.

Approximation Algorithms

Lecture 8:

Approximation Schemes and the KNAPSACK Problem

Part IV:

Approximation Schemes

Let Π be an optimization problem.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

• $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if Π is a minimization problem,

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if Π is a minimization problem,
- $obj_{\Pi}(I,s) \ge (1-\varepsilon) \cdot OPT$ if Π is a maximization problem,

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\varepsilon}) \sim$
- $O(n^3/\varepsilon^2) \sim$
- $O(2^{1/\varepsilon}n^4) \rightsquigarrow$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\varepsilon}) \sim PTAS$
- $O(n^3/\varepsilon^2) \sim$
- $O(2^{1/\varepsilon}n^4) \rightsquigarrow$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\varepsilon}) \rightsquigarrow PTAS$
- $O(n^3/\varepsilon^2) \sim \text{FPTAS}$
- $O(2^{1/\varepsilon}n^4) \rightsquigarrow$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem, and the runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\varepsilon}) \rightsquigarrow PTAS$
- $O(n^3/\varepsilon^2) \sim \text{FPTAS}$
- $O(2^{1/\varepsilon}n^4) \rightarrow PTAS$

Approximation Algorithms

Lecture 8:

Approximation Schemes and the KNAPSACK Problem

Part V: FPTAS for KNAPSACK

KnapsackScaling (I, ε)

```
KnapsackScaling (I, \varepsilon)
K = // \text{ scaling factor}
```

```
KnapsackScaling (I, \varepsilon)
K = \varepsilon P/n \qquad // \text{ scaling factor}
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n

// scaling factor

for i = 1 to n do profit'(a_i) =
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n

// scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

Lemma. $\operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}$.

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.
```

Proof. Let $OPT = \{o_1, \ldots, o_\ell\}$.

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \leq K \cdot \operatorname{profit}'(o_i) \leq
```

```
Proof. Let OPT = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK =
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.

Obs. 2. \geq K \cdot \sum_i \operatorname{profit}'(o_i) \geq
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.

Obs. 2. \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_i \operatorname{profit}'(o_i) \geq
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n

// scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.

Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_i \operatorname{profit}'(o_i) \geq
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.

Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \varepsilon P
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

for i = 1 to n do profit'(a_i) = [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot).

return S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.

Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \varepsilon P
```

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

 $> OPT - \varepsilon OPT =$

```
KnapsackScaling (I, \varepsilon)
   K = \varepsilon P/n
                     // scaling factor
   for i = 1 to n do profit(a_i) = |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot).
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot \mathsf{OPT}.
                Let OPT = \{o_1, ..., o_{\ell}\}.
Proof.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
             \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i}) \geq \text{OPT} - \varepsilon P
```

FPTAS idea: **Scale** profits to polynomial size (as required by the error parameter ε)...

 \geq OPT - ε OPT = $(1 - \varepsilon) \cdot$ OPT

```
KnapsackScaling (I, \varepsilon)
   K = \varepsilon P/n
                       // scaling factor
   for i = 1 to n do profit(a_i) = |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot).
   return S'
                    \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.
Lemma.
                 Let OPT = \{o_1, ..., o_{\ell}\}.
Proof.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
              \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i}) \geq \text{OPT} - \varepsilon P
                                  \geq OPT - \varepsilon OPT = (1 - \varepsilon) \cdot OPT
```

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with running time $O(n^3/\varepsilon)$

```
KnapsackScaling (I, \varepsilon)
   K = \varepsilon P/n
                      // scaling factor
   for i = 1 to n do profit(a_i) = |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot).
   return S'
                    \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.
Lemma.
                 Let OPT = \{o_1, ..., o_{\ell}\}.
Proof.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
              \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i}) \geq \text{OPT} - \varepsilon P
                                  \geq OPT - \varepsilon OPT = (1 - \varepsilon) \cdot OPT
```

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with running time $O(n^3/\varepsilon) = O\left(n^2 \cdot \frac{P}{\varepsilon P/n}\right)$.

Approximation Algorithms

Lecture 8:

Approximation Schemes and the KNAPSACK Problem

Part VI:

Connections Between the Concepts

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π .

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS,

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time). Set $\varepsilon =$

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time). Set $\varepsilon = 1/p(|I|_u)$.

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_u)$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time). Set $\epsilon = 1/p(|I|_u)$. $\Rightarrow ALG \le (1 + \epsilon)OPT$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time). Set $\varepsilon = 1/p(|I|_u)$. $\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) =$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_{u})$$
.
 $\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_{u}) =$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time). Set $\varepsilon = 1/p(|I|_u)$. $\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) = OPT + 1$.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_u)$$
.

$$\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) = OPT + 1.$$

$$\Rightarrow$$
 ALG = OPT.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_u)$$
.

$$\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) = OPT + 1.$$

$$\Rightarrow$$
 ALG = OPT.

Running time:

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_u)$$
.

$$\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) = OPT + 1.$$

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_u))$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_u)$$
.

$$\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) = OPT + 1.$$

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_u))$, so

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assume that there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_u)$$
.

$$\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) = OPT + 1.$$

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_u))$, so $poly(|I|_u)$.

FPTAS and Strong NP-Hardness

Recall:

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

FPTAS and Strong NP-Hardness

Recall:

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

New:

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

FPTAS and Strong NP-Hardness

Recall:

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

New:

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Corollary.

Let Π be an NP-hard optimization problem that fulfills the restrictions above. If Π is strongly NP-hard, then there is no FPTAS for Π (unless P = NP).