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SETCOVER as an ILP
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Technique I) LP-Rounding

v
0 OPT elax OPTp ALG

Consider a minimization problem /7 in ILP form.
Compute a solution for the LP-relaxation.
Round to obtain an integer solution for /1.

Difficulty: Ensure the feasiblity of the solution.

Approximation factor: ALG/OPT; < ALG/OPT ¢jax.



SETCOVER — LP-Relaxation
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LP-Rounding: Approach |

minimize

subject to sz >1 VuelU

S3u

xs >0 VSeSs§

LP-Rounding-One(U, S, ©)

Compute optimal solution x for LP-relaxation.
Round each xs with xs > 0 to 1.

— Generates a feasible solution.
— Scaling factor arbitrarily large.

Use frequency f




LP-Rounding: Approach Il

minimize Z Xs
Ses
subject to sz >1 VuelU

SSu

xs >0 VSeSs§

LP-Rounding-Two(U, S, ©)

Compute optimal solution x for LP-relaxation.
Round each xs with xs > 1/ to 1; remaining to 0.

Let 7 be the frequency of (i.e., the number of sets
containing) the most frequent element.

Theorem. LP-Rounding-Two is a factor- approximation
algorithm for SETCOVER.
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Technique Il) Primal-Dual Approach

OI:)Tdual — OPTprimaI OPTH
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Consider a minimization problem /7 in ILP form.

B Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

B Compute dual solution sy and integral primal solution s_
for I iteratively:
Increase sq according to CS and make s, “more feasible”.

Approximation factor < obj(s,)/obj(sq)

Advantage: Don't need LP-"machinery”; possibly faster, more flexible.
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Complementary Slackness

minimize

cTx maximize bTy

subject to  Ax subjectto ATy < ¢

Theorem.

X y > 0

Let x = (x1,...,x,) and y = (y1, ..., ym) be valid solutions
for the primal and dual program, respectively.
Then x and y are optimal < following conditions are met:

Primal CS:
Foreachj=1,...,m: x;=0 or > 7. ajjyi=¢j

Dual CS:

Foreachi=1,...,m: vy, =0 or ijla,-jszb,-



Relaxing Complementary Slackness

minimize cTx maximize bTy
subject to  Ax subject to ATy
X Yy
Rrimral=CS: Relaxed Primal CS
Foreach j=1,....,n: x,=0 or Y lea;y =T

ci/ao <> " aiyi < ¢

Dual CS: Relaxed Dual CS
Foreachi=1,..., m: y; =0 or o igayxy=b,

b; < Zle ajjXj < 5+ b

m
& z”: X — 2”7: biyi = z”: cjxj < 0452 biyi < af-OPTpp
=1 i—1 =1 i—1



Primal-Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

“Improve’ the feasibility of the primal solution...

...and simultaneously the objective value of the dual solution.

Do so until the relaxed CS conditions are met.

Maintain that the primal solution is integer-valued.

The feasibility of the primal solution and the relaxed CS
conditions provide an approximation ratio.



Relaxed CS for SETCOVER

minimize maximize

subject to ZXS > 1 VYu e U] |subject to Zyu <cs VSeS

SSu uesS
xs >0 VSes o >0 VYuelU

critical set <---,

(Unrelaxed) primal CS: xs #0 =) sy, = Cs

~-»=only chooses critical sets

trivial for binary x <-------.. .

Relaxed dual CS: y, #0=>1< » xs </ -1

S3u



Primal-Dual Schema for SETCoOV:

T
-

PrimalDualSetCover(U, S, ©)

x40,y <0

repeat

Select an uncovered element wu.
Increase y,, until a set S is critical (D, cc yu =
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.

return x
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Primal-Dual Schema for SETCoOV:

T
-

PrimalDualSetCover(U, S, ©)

x40,y <0

repeat

Select an uncovered element wu.
Increase y,, until a set S is critical (), sy = c5).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.
return x
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Primal-Dual Schema for SETCoOV:

e
=y

PrimalDualSetCover(U, S, ©)

x40,y <0

repeat

Select an uncovered element wu.

Increase y,, until a set S is critical (), sy = c5).
Select all critical sets and update x.

Mark all elements in these sets as covered.

until all elements are covered.
return x

Theorem. PrimalDualSetCover is a factor- approximation
algorithm for SETCOVER. This bound is tight.
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Tight Example




Integrality Gap

OI:)Tdual — OPTprimaI OPTH

feasible dual solutions feasible primal solutions
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Consider a minimization problem /7 in ILP form.

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation:

OPTn(1)
> —
o= SL;p OF)Tprimal(l)
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Technique Il) Dual Fitting

OI:)Tdual — OI:)Tprimal OPTH
feasible dual solutions feasible primal solutions
| >l | [ i >
0 Sp Sd
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Consider a minimization problem /7 in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s, and infeasible dual solution sy that
completely “pays” for s, i.e., obj(s,) < obj(sq).

Scale the dual variables ~~ feasible dual solution
= obj(s,)/a < obj(sq4)/a = < OPTgual < OPT
= Scaling factor « is approximation factor :-)



Dual Fitting for SETCOVER

Combinatorial (greedy) algorithm (see Lecture #2):

;GreedySetCover(universe U, SC?2Y costs -: S — @20)5

C+ 0
S« ()
while C # U do
S < set from S that minimizes |§(\SC)|
foreach v € S\ C do
" Z C(S)
L price(u) < GYe
C+—CuUS
i S+ S"U{s}
return &’ // Cover of U

Reminder: ), price(u) completely pays for &'.



New: LP-based Analysis

Observation. For each u € U, price(u) is a dual variable
But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are “overpacked” by factor &~ H g .
Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take y, = price(u)/ Hi. (k = cardinality of largest set in S.)

The greedy algorithm uses these dual variables as lower bound
for OPT.

maximize E Yu
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Proof. To prove: No set is overpacked by y.
Let S € S and ¢ = |S| < k.

Let uq, ..., us be the elements of S —
in the order in which they are covered by greedy.

Consider the iteration in which u; is covered.
Before that, > ¢ — i + 1 elem. of S are uncovered.

So price(u;) < /(£ —1i41). = Hy < Hy
/ ~

' N\

— 1 1
= Vi S = T 2 Ve S s (i)
| <

Lemma. maximize Z Yu

The vector y = (V,)ucu R
is a feasible solution for subject to } v, < s VS €S

the dual LP. hes

Yu = 0 Yue U



Result for Dual Fitting

Theorem. GreedySetCover is a factor-7{, approximation
algorithm for SETCOVER, where k = maxscs |S].

Proof. = < Z price(u) = Hy - Z Vu <
uelU uelU

S Hk . OPTrelax
< Hy-OPT

Strengthened bound with respect to OPT,¢ax < OPT.
Dual solution allows a per-instance estimation JOPT elax
of the quality of the greedy solution

... which may be stronger than the worst-case bound H:

JOPT < JOPT elax < D,y price(u)/OPT glax < He.
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