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SetCover as an ILP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ∈ {0, 1} ∀S ∈ S
Ground set U

Find cover S ′ ⊆ S
of U with
minimum cost.
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Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+
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Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

α

Difficulty: Ensure the feasiblity of the solution.

Approximation factor: ALG/OPTΠ ≤ ALG/OPTrelax.



SetCover – LP-Relaxation

11

Optimal?
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fractional: 3
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× 1
2 × 1
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minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

. . .

Use frequency f

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach II

LP-Rounding-Two(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS ≥ 1/f to 1; remaining to 0.

Theorem. LP-Rounding-Two is a factor-f approximation
algorithm for SetCover.

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S
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Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

α

Approximation factor ≤ obj(s
Π
)/obj(sd)

Advantage: Don’t need LP-“machinery”; possibly faster, more flexible.

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

s
Π

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.



SetCover – Dual LP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U



Complementary Slackness

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program, respectively.
Then x and y are optimal ⇔ following conditions are met:

Primal CS:
For each j = 1, . . . , n: xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: yi = 0 or

∑n
j=1 ai jxj = bi

Theorem.



Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: yi = 0 or

∑n
j=1 ai jxj = bi

Relaxed Primal CS

cj/α ≤
∑m

i=1 ai jyi ≤ cj

bi ≤
∑n

j=1 ai jxj ≤ β · bi

⇔
n∑

j=1

cjxj =
m∑
i=1

biyi

Relaxed Dual CS

⇒
n∑

j=1

cjxj ≤ αβ

m∑
i=1

biyi ≤ αβ · OPTLP

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0



Primal–Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the objective value of the dual solution.

Maintain that the primal solution is integer-valued.

The feasibility of the primal solution and the relaxed CS
conditions provide an approximation ratio.

Do so until the relaxed CS conditions are met.



Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

Relaxed dual CS: yu ̸= 0⇒ 1 ≤
∑
S∋u

xS ≤ f · 1

critical set

trivial for binary x

only chooses critical sets

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U



Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x
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Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x
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Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x
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PrimalDualSetCover is a factor-f approximation
algorithm for SetCover. This bound is tight.

Theorem.



Tight Example

1 + ε
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Integrality Gap

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation:

α ≥ γ = sup
I

OPTΠ(I )

OPTprimal(I )

0

OPTΠOPTdual = OPTprimal

γ
α

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.
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Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
,

Scale the dual variables ⇝ feasible dual solution s̄d.

⇒ Scaling factor α is approximation factor :-)

i.e., obj(s
Π
) ≤ obj(sd).

obj(s
Π
)/α ≤⇒ obj(̄sd) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

s̄d

α

Consider a minimization problem Π in ILP form.

obj(sd)/α =



Dual Fitting for SetCover

GreedySetCover(universe U, S ⊆ 2U , costs c : S → Q≥0)

C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set from S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Reminder:
∑

u∈U price(u) completely pays for S ′.

Combinatorial (greedy) algorithm (see Lecture #2):



New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu = price(u)/Hk .

The greedy algorithm uses these dual variables as lower bound
for OPT.
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(k = cardinality of largest set in S.)

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U



Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui ) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1 ⇒

ℓ∑
i=1

ȳui ≤
c(S)
Hk
·
(
1
ℓ + · · ·+

1
1

)︷ ︸︸ ︷= Hℓ

≤ c(S) □

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

≤ Hk

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U



Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U

ȳu ≤

≤ Hk · OPTrelax

≤ Hk · OPT □

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Strengthened bound with respect to OPTrelax ≤ OPT.

Dual solution allows a per-instance estimation c(S ′)/OPTrelax

of the quality of the greedy solution

. . . which may be stronger than the worst-case bound Hk :

ALG/OPT ≤ ALG/OPTrelax ≤
∑

u∈U price(u)/OPTrelax ≤ Hk .
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