
Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part I:
SetCover as an ILP

Approximation Algorithms

Alexander Wolff Winter 2024/25

SetCover as an ILP

Ground set U

SetCover as an ILP

Ground set U
Family S ⊆ 2U with

⋃
S = U

SetCover as an ILP

Ground set U

1

4

4 6 5
23

Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+

SetCover as an ILP

Ground set U

Find cover S ′ ⊆ S
of U with
minimum cost.

1

4

4 6 5
23

Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+

SetCover as an ILP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ∈ {0, 1} ∀S ∈ S
Ground set U

Find cover S ′ ⊆ S
of U with
minimum cost.

1

4

4 6 5
23

Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+

SetCover as an ILP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ∈ {0, 1} ∀S ∈ S
Ground set U

Find cover S ′ ⊆ S
of U with
minimum cost.

1

4

4 6 5
23

Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+

SetCover as an ILP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ∈ {0, 1} ∀S ∈ S
Ground set U

Find cover S ′ ⊆ S
of U with
minimum cost.

1

4

4 6 5
23

Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+

SetCover as an ILP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ∈ {0, 1} ∀S ∈ S
Ground set U

Find cover S ′ ⊆ S
of U with
minimum cost.

1

4

4 6 5
23

Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+

SetCover as an ILP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ∈ {0, 1} ∀S ∈ S
Ground set U

Find cover S ′ ⊆ S
of U with
minimum cost.

1

4

4 6 5
23

Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+

SetCover as an ILP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ∈ {0, 1} ∀S ∈ S
Ground set U

Find cover S ′ ⊆ S
of U with
minimum cost.

1

4

4 6 5
23

Family S ⊆ 2U with
⋃
S = U

Costs c : S → Q+

Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part II:
LP-Rounding

Approximation Algorithms

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

Difficulty: Ensure the feasiblity of the solution.

Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

α

Difficulty: Ensure the feasiblity of the solution.

Approximation factor: ALG/OPTΠ ≤ ALG/OPTrelax.

SetCover – LP-Relaxation

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

SetCover – LP-Relaxation

Optimal?

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

SetCover – LP-Relaxation

Optimal?

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

SetCover – LP-Relaxation

Optimal?

1

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

SetCover – LP-Relaxation

1

Optimal?

1

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

SetCover – LP-Relaxation

11

Optimal?

1

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

SetCover – LP-Relaxation

11

Optimal?

1

11

1

integer: 2

×1

×1 ×0

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

SetCover – LP-Relaxation

11

Optimal?

1

11

1

integer: 2

×1

×1 ×0
11

1

fractional: 3
2

× 1
2

× 1
2 × 1

2

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

. . .

Use frequency f

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach II

LP-Rounding-Two(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS ≥ 1/f to 1; remaining to 0.

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach II

LP-Rounding-Two(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS ≥ 1/f to 1; remaining to 0.

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

LP-Rounding: Approach II

LP-Rounding-Two(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS ≥ 1/f to 1; remaining to 0.

Theorem. LP-Rounding-Two is a factor-f approximation
algorithm for SetCover.

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part III:
The Primal-Dual Schema

Approximation Algorithms

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Consider a minimization problem Π in ILP form.

sd
s
Π

OPTΠOPTdual = OPTprimal

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd s
Π

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd s
Π

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

s
Π

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

α

Approximation factor ≤ obj(s
Π
)/obj(sd)

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

s
Π

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.

Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

α

Approximation factor ≤ obj(s
Π
)/obj(sd)

Advantage: Don’t need LP-“machinery”; possibly faster, more flexible.

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

s
Π

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.

SetCover – Dual LP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

SetCover – Dual LP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

SetCover – Dual LP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

SetCover – Dual LP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

SetCover – Dual LP

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Complementary Slackness

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program, respectively.
Then x and y are optimal ⇔ following conditions are met:

Primal CS:
For each j = 1, . . . , n: xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: yi = 0 or

∑n
j=1 ai jxj = bi

Theorem.

Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: yi = 0 or

∑n
j=1 ai jxj = bi

⇔
n∑

j=1

cjxj =
m∑
i=1

biyi

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: yi = 0 or

∑n
j=1 ai jxj = bi

Relaxed Primal CS

cj/α ≤
∑m

i=1 ai jyi ≤ cj

⇔
n∑

j=1

cjxj =
m∑
i=1

biyi

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: yi = 0 or

∑n
j=1 ai jxj = bi

Relaxed Primal CS

cj/α ≤
∑m

i=1 ai jyi ≤ cj

bi ≤
∑n

j=1 ai jxj ≤ β · bi

⇔
n∑

j=1

cjxj =
m∑
i=1

biyi

Relaxed Dual CS

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Relaxing Complementary Slackness

Primal CS:
For each j = 1, . . . , n: xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: yi = 0 or

∑n
j=1 ai jxj = bi

Relaxed Primal CS

cj/α ≤
∑m

i=1 ai jyi ≤ cj

bi ≤
∑n

j=1 ai jxj ≤ β · bi

⇔
n∑

j=1

cjxj =
m∑
i=1

biyi

Relaxed Dual CS

⇒
n∑

j=1

cjxj ≤ αβ

m∑
i=1

biyi ≤ αβ · OPTLP

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

“Improve” the feasibility of the primal solution...

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the objective value of the dual solution.

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the objective value of the dual solution.

Do so until the relaxed CS conditions are met.

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the objective value of the dual solution.

Maintain that the primal solution is integer-valued.

Do so until the relaxed CS conditions are met.

Primal–Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the objective value of the dual solution.

Maintain that the primal solution is integer-valued.

The feasibility of the primal solution and the relaxed CS
conditions provide an approximation ratio.

Do so until the relaxed CS conditions are met.

Relaxed CS for SetCover

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

critical set

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

critical set

only chooses critical sets

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

Relaxed dual CS: yu ̸= 0⇒ 1 ≤
∑
S∋u

xS ≤ f · 1

critical set

only chooses critical sets

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

Relaxed dual CS: yu ̸= 0⇒ 1 ≤
∑
S∋u

xS ≤ f · 1

critical set

only chooses critical sets

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

Relaxed dual CS: yu ̸= 0⇒ 1 ≤
∑
S∋u

xS ≤ f · 1

critical set

only chooses critical sets

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

Relaxed dual CS: yu ̸= 0⇒ 1 ≤
∑
S∋u

xS ≤ f · 1

critical set

only chooses critical sets

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Relaxed CS for SetCover

(Unrelaxed) primal CS: xS ̸= 0⇒
∑

u∈S yu = cS

Relaxed dual CS: yu ̸= 0⇒ 1 ≤
∑
S∋u

xS ≤ f · 1

critical set

trivial for binary x

only chooses critical sets

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0

0
3

0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0

0
3

0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0
3

3 0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0
3

3 0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0
3

3 0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0
3

3 0

0

0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0
3

3 0

0

0 1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0
3

3 0

0

0 1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0
3

3 0

0

1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0

0

0

0

0
3

3 0

0

1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0

0 0

0

0
3

3 0

0

1

4

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0 0 0
3

3 0

0

1

40 4 0

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0 0
3

3 0

0

1

40 4 0

1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

0 0
3

3 0

0

1

40 4 0

16 1

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

03

3 0

0

1

40 4 0

16 1
3
2

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

3

3 0

0

1

40 4 0

16 1
3
24

Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x

1

4

4 6 5
2

0

3

3 0

0

1

40 4 0

16 1
3
24

PrimalDualSetCover is a factor-f approximation
algorithm for SetCover. This bound is tight.

Theorem.

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

1
1

1

1
1

1

1

1

Tight Example

1
1

1

1
1

1

1

1

Tight Example

1 + ε

1
1

1

1
1

1

1

1

Tight Example

1 + ε

1
1

1

1
1

1

1

1

Tight Example

1 + ε

1
1

1

1
1

1

1

1

Tight Example

1 + ε

1
1

1

1
1

1

1

1

Integrality Gap

0

OPTΠOPTdual = OPTprimal

γ

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

Integrality Gap

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation:

0

OPTΠOPTdual = OPTprimal

γ

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

Integrality Gap

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation:

α ≥ γ = sup
I

OPTΠ(I)

OPTprimal(I)

0

OPTΠOPTdual = OPTprimal

γ

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

Integrality Gap

Dual methods (without outside help) are limited by the
integrality gap of the LP-relaxation:

α ≥ γ = sup
I

OPTΠ(I)

OPTprimal(I)

0

OPTΠOPTdual = OPTprimal

γ
α

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part IV:
Dual Fitting

Approximation Algorithms

Technique III) Dual Fitting

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
,

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
, i.e., obj(s

Π
) ≤ obj(sd).

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
,

Scale the dual variables ⇝ feasible dual solution s̄d.

i.e., obj(s
Π
) ≤ obj(sd).

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

s̄d

α

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
,

Scale the dual variables ⇝ feasible dual solution s̄d.

i.e., obj(s
Π
) ≤ obj(sd).

⇒ obj(̄sd) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

s̄d

α

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
,

Scale the dual variables ⇝ feasible dual solution s̄d.

i.e., obj(s
Π
) ≤ obj(sd).

⇒ obj(̄sd) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

s̄d

α

Consider a minimization problem Π in ILP form.

obj(sd)/α =

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
,

Scale the dual variables ⇝ feasible dual solution s̄d.

i.e., obj(s
Π
) ≤ obj(sd).

obj(s
Π
)/α ≤⇒ obj(̄sd) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

s̄d

α

Consider a minimization problem Π in ILP form.

obj(sd)/α =

Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
,

Scale the dual variables ⇝ feasible dual solution s̄d.

⇒ Scaling factor α is approximation factor :-)

i.e., obj(s
Π
) ≤ obj(sd).

obj(s
Π
)/α ≤⇒ obj(̄sd) ≤ OPTdual ≤ OPTΠ

0

feasible primal solutionsfeasible dual solutions

sd

OPTΠOPTdual = OPTprimal

s
Π

s̄d

α

Consider a minimization problem Π in ILP form.

obj(sd)/α =

Dual Fitting for SetCover

GreedySetCover(universe U, S ⊆ 2U , costs c : S → Q≥0)

C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set from S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Combinatorial (greedy) algorithm (see Lecture #2):

Dual Fitting for SetCover

GreedySetCover(universe U, S ⊆ 2U , costs c : S → Q≥0)

C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set from S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Reminder:
∑

u∈U price(u) . . .

Combinatorial (greedy) algorithm (see Lecture #2):

Dual Fitting for SetCover

GreedySetCover(universe U, S ⊆ 2U , costs c : S → Q≥0)

C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set from S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Reminder:
∑

u∈U price(u) completely pays for S ′.

Combinatorial (greedy) algorithm (see Lecture #2):

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu =

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu = price(u)/

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu = price(u)/Hk .

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu = price(u)/Hk .

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

(k = cardinality of largest set in S.)

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu = price(u)/Hk .

The greedy algorithm uses these dual variables as lower bound
for OPT.

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

(k = cardinality of largest set in S.)

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu = price(u)/Hk .

The greedy algorithm uses these dual variables as lower bound
for OPT.

5
2

1

4

4
3 4

3

4
4
3

4
3

3
4
3

3
2

3
2 6

∞

3 3

4
3

5
2

(k = cardinality of largest set in S.)

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu = price(u)/Hk .

The greedy algorithm uses these dual variables as lower bound
for OPT.

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

(k = cardinality of largest set in S.)

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof.

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1 ⇒

ℓ∑
i=1

ȳui ≤

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1 ⇒

ℓ∑
i=1

ȳui ≤
c(S)
Hk
·
(
1
ℓ + · · ·+

1
1

)
Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1 ⇒

ℓ∑
i=1

ȳui ≤
c(S)
Hk
·
(
1
ℓ + · · ·+

1
1

)
Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1 ⇒

ℓ∑
i=1

ȳui ≤
c(S)
Hk
·
(
1
ℓ + · · ·+

1
1

)︷ ︸︸ ︷
Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1 ⇒

ℓ∑
i=1

ȳui ≤
c(S)
Hk
·
(
1
ℓ + · · ·+

1
1

)︷ ︸︸ ︷= Hℓ

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1 ⇒

ℓ∑
i=1

ȳui ≤
c(S)
Hk
·
(
1
ℓ + · · ·+

1
1

)︷ ︸︸ ︷= Hℓ

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

≤ Hk

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Proof. To prove: No set is overpacked by ȳ .

Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui) ≤ c(S)/(ℓ− i + 1).

⇒ ȳui ≤
c(S)
Hk
· 1
ℓ−i+1 ⇒

ℓ∑
i=1

ȳui ≤
c(S)
Hk
·
(
1
ℓ + · · ·+

1
1

)︷ ︸︸ ︷= Hℓ

≤ c(S) □

Lemma.
The vector ȳ = (ȳu)u∈U

is a feasible solution for
the dual LP.

≤ Hk

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

Result for Dual Fitting

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) =

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U

ȳu ≤

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U

ȳu ≤

≤ Hk · OPTrelax

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U

ȳu ≤

≤ Hk · OPTrelax

≤ Hk · OPT □

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U

ȳu ≤

≤ Hk · OPTrelax

≤ Hk · OPT □

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Strengthened bound with respect to OPTrelax ≤ OPT.

Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U

ȳu ≤

≤ Hk · OPTrelax

≤ Hk · OPT □

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Strengthened bound with respect to OPTrelax ≤ OPT.

Dual solution allows a per-instance estimation c(S ′)/OPTrelax

of the quality of the greedy solution

Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U

ȳu ≤

≤ Hk · OPTrelax

≤ Hk · OPT □

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Strengthened bound with respect to OPTrelax ≤ OPT.

Dual solution allows a per-instance estimation c(S ′)/OPTrelax

of the quality of the greedy solution

. . . which may be stronger than the worst-case bound Hk :

Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U

ȳu ≤

≤ Hk · OPTrelax

≤ Hk · OPT □

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Strengthened bound with respect to OPTrelax ≤ OPT.

Dual solution allows a per-instance estimation c(S ′)/OPTrelax

of the quality of the greedy solution

. . . which may be stronger than the worst-case bound Hk :

ALG/OPT ≤ ALG/OPTrelax ≤
∑

u∈U price(u)/OPTrelax ≤ Hk .

	SetCover as an ILP
	SetCover via LP-Rounding
	Technique I) LP-Rounding
	SetCover - LP-Relaxation
	LP-Rounding: Approach I
	LP-Rounding: Approach II

	SetCover via Primal-Dual Schema
	Technique II) Primal--Dual Approach
	SetCover - Dual LP
	Complementary Slackness
	Relaxing Complementary Slackness

	Primal--Dual Schema
	Primal--Dual Schema
	Relaxed CS for SetCover

	Primal--Dual Schema for \textsc{SetCover}
	Primal-Dual-Schema for SetCover
	Tight Example
	Integrality Gap

	SetCover via Dual Fitting
	Technique III) Dual Fitting
	Dual Fitting for SetCover
	New: LP-based Analysis
	Result for Dual Fitting

