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Technique I) LP-Rounding

0

Consider a minimization problem Π in ILP form.

OPTΠ

Compute a solution for the LP-relaxation.

OPTrelax

Round to obtain an integer solution for Π.

ALG

α

Difficulty: Ensure the feasiblity of the solution.

Approximation factor: ALG/OPTΠ ≤ ALG/OPTrelax.



SetCover – LP-Relaxation

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



SetCover – LP-Relaxation

Optimal?

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



SetCover – LP-Relaxation

Optimal?

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



SetCover – LP-Relaxation

Optimal?

1

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



SetCover – LP-Relaxation

1

Optimal?

1

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



SetCover – LP-Relaxation

11

Optimal?

1

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



SetCover – LP-Relaxation

11

Optimal?

1

11

1

integer: 2

×1

×1 ×0

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



SetCover – LP-Relaxation

11

Optimal?

1

11

1

integer: 2

×1

×1 ×0
11

1

fractional: 3
2

× 1
2

× 1
2 × 1

2

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

. . .

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach I

LP-Rounding-One(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS > 0 to 1.

– Generates a feasible solution.
– Scaling factor arbitrarily large.

. . .

. . .

Use frequency f

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach II

LP-Rounding-Two(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS ≥ 1/f to 1; remaining to 0.

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach II

LP-Rounding-Two(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS ≥ 1/f to 1; remaining to 0.

Let f be the frequency of (i.e., the number of sets
containing) the most frequent element.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



LP-Rounding: Approach II

LP-Rounding-Two(U,S, c)
Compute optimal solution x for LP-relaxation.
Round each xS with xS ≥ 1/f to 1; remaining to 0.

Theorem. LP-Rounding-Two is a factor-f approximation
algorithm for SetCover.
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containing) the most frequent element.

minimize
∑
S∈S

cSxS

subject to
∑
S∋u

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S



Lecture 5:
LP-based Approximation Algorithms

for SetCover

Part III:
The Primal-Dual Schema

Approximation Algorithms



Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal



Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

Consider a minimization problem Π in ILP form.

sd
s
Π

OPTΠOPTdual = OPTprimal



Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd s
Π

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal



Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd s
Π

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.



Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

s
Π

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.



Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

α

Approximation factor ≤ obj(s
Π
)/obj(sd)

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

s
Π

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.



Technique II) Primal–Dual Approach

0

feasible primal solutionsfeasible dual solutions

■ Start with (trivial) feasible dual solution and infeasible
primal solution (e.g., all variables = 0).

sd

α

Approximation factor ≤ obj(s
Π
)/obj(sd)

Advantage: Don’t need LP-“machinery”; possibly faster, more flexible.

Consider a minimization problem Π in ILP form.

OPTΠOPTdual = OPTprimal

s
Π

■ Compute dual solution sd and integral primal solution s
Π

for Π iteratively:
Increase sd according to CS and make s

Π
“more feasible”.
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Complementary Slackness

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program, respectively.
Then x and y are optimal ⇔ following conditions are met:

Primal CS:
For each j = 1, . . . , n: xj = 0 or

∑m
i=1 ai jyi = cj

Dual CS:
For each i = 1, . . . ,m: yi = 0 or

∑n
j=1 ai jxj = bi

Theorem.
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Primal–Dual Schema

Start with a feasible dual and infeasible primal solution (often
trivial).

“Improve” the feasibility of the primal solution...

. . . and simultaneously the objective value of the dual solution.

Maintain that the primal solution is integer-valued.

The feasibility of the primal solution and the relaxed CS
conditions provide an approximation ratio.

Do so until the relaxed CS conditions are met.
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PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
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Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x
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Primal–Dual Schema for SetCover

PrimalDualSetCover(U,S, c)
x ← 0, y ← 0
repeat

Select an uncovered element u.
Increase yu until a set S is critical (

∑
u′∈S yu′ = cS).

Select all critical sets and update x .
Mark all elements in these sets as covered.

until all elements are covered.
return x
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PrimalDualSetCover is a factor-f approximation
algorithm for SetCover. This bound is tight.

Theorem.
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Technique III) Dual Fitting

Combinatorial algorithm (e.g., greedy) computes feasible
primal solution s

Π
and infeasible dual solution sd that

completely “pays” for s
Π
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Scale the dual variables ⇝ feasible dual solution s̄d.
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Dual Fitting for SetCover

GreedySetCover(universe U, S ⊆ 2U , costs c : S → Q≥0)

C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set from S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Combinatorial (greedy) algorithm (see Lecture #2):
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Dual Fitting for SetCover

GreedySetCover(universe U, S ⊆ 2U , costs c : S → Q≥0)

C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set from S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

Reminder:
∑

u∈U price(u) completely pays for S ′.

Combinatorial (greedy) algorithm (see Lecture #2):
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Take ȳu = price(u)/Hk .

The greedy algorithm uses these dual variables as lower bound
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Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .
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New: LP-based Analysis

Observation. For each u ∈ U, price(u) is a dual variable

But this dual solution is in general not feasible.
Homework exercise: Construct instance where some S are “overpacked” by factor ≈ H|S| .

Dual-fitting trick:

Scale dual variables such that no set is overpacked.

Take ȳu = price(u)/Hk .

The greedy algorithm uses these dual variables as lower bound
for OPT.

Lemma.
The vector ȳ = (ȳu)u∈U
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is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U



Proof. To prove: No set is overpacked by ȳ .
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Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Lemma.
The vector ȳ = (ȳu)u∈U
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is a feasible solution for
the dual LP.

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U



Proof. To prove: No set is overpacked by ȳ .
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Let S ∈ S and ℓ = |S | ≤ k.

Let u1, . . . , uℓ be the elements of S –
in the order in which they are covered by greedy.

Consider the iteration in which ui is covered.

Before that, ≥ ℓ− i + 1 elem. of S are uncovered.

So price(ui ) ≤ c(S)/(ℓ− i + 1).
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is a feasible solution for
the dual LP.

≤ Hk

maximize
∑
u∈U

yu

subject to
∑
u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U



Result for Dual Fitting

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.



Result for Dual Fitting

Proof. ALG = c(S ′) ≤

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.



Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) =

Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.



Result for Dual Fitting

Proof. ALG = c(S ′) ≤
∑
u∈U

price(u) = Hk ·
∑
u∈U
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Theorem. GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k = maxS∈S |S |.

Strengthened bound with respect to OPTrelax ≤ OPT.

Dual solution allows a per-instance estimation c(S ′)/OPTrelax

of the quality of the greedy solution

. . . which may be stronger than the worst-case bound Hk :

ALG/OPT ≤ ALG/OPTrelax ≤
∑

u∈U price(u)/OPTrelax ≤ Hk .
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