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Approximation Algorithms

L ecture 3:
STEINERTREE and MULTIWAYCUT

Part |:
STEINERTREE

Alexander Wolff Winter 2024 /25
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STEINER'T'R]
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Given: A graph G with edge weights ¢: E(G) — O
and a partition of V(G) into a set T of terminals
and a set 5 of

Find: A subtree B of G that
B contains all terminals (i.e., T C V/(B)) and
B has minimum cost c(B) := > _ ;) c(e) among all
subtrees with this property.

optimum solution ® terminal

with cost 3
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METRICSTEINERT'R]

Restriction of STEINERTREE where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w of

vertices, we have < +
L
H
— not complete — complete

— not metric — metric
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Approximation-Preserving Reduction

Let //;, [, be minimization problems. An approximation-
preserving reduction from //; to [, ist a tuple (f, g) of
poly-time computable functions with the following properties.

B For each instance /| of //,
[, = f(/) is an instance of I, with OPT, (L) <
B For each feasible solution t of />,

= g(/1, t) is a feasible sol. of /| with

VAN

problems [

Instances > |

solutions t
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Approximation-Preserving Reduction

Theorem. Let |/, be minimization problems with an
approximation-preserving reduction (f, g) from
to [,. If there is a factor-a approximation
algorithm for />, then there is a factor-a
approximation algorithm for

Proof. f I/Z2

Let A be a factor-a approx. alg. for /. lA
Let / be an instance of //;. t

Set [, :=1(/), t :=A(hL) and = := g(/, t).

Then:

< <a-0OPTp(h)<a-
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METRICSTEINER'T'R]

Theorem. There is an approximation-preserving reduction

from STEINERTREE to METRICSTEINERT REE.

Proof. (1) Mapping f f > I
Instance /. of STEINERTREE:
Graph G; = (V, E1), edge weights «, partition V = | U

Metric instance I := f(/):
Complete graph G, = (V/, Ey), partition T, 5 as in

= length of a shortest u—v path in G;.

/ — :
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Theorem. There is an approximation-preserving reduction
from STEINERTREE to METRICSTEINER T REE.

Proof. (2) OPT(h) <

Let be an optimal Steiner tree for

Note that Is also a feasible solution for /»:
Ei1 C E> and the vertex sets V/, T, 5 are the same.

OPT(h) < < =
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Theorem. There is an approximation-preserving reduction
from STEINERTREE to METRICSTEINER T REE.

Proof. (3) t

Let B> be a Steiner tree of Go.
Construct - C G; from B, by replacing each edge (u, v)
of B> by a shortest u—v path in G;. Keep < 1 copy per edge.

< ; connects all : maybe not a tree.
Consider spanning tree '~ of ~ Steiner tree . of G;
Note that < <
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2-Approximation for STEINERTR.

Theorem. For an instance of METRICSTEINERTREE,
let  be a minimum spanning tree (MST) of the
subgraph G[T] induced by the terminal set T.
Then < 2-0PT.

G G|[T]
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Proof of Approximation Factor

Consider an optimal Steiner tree B™.

Duplicate all edges of B~.
= Eulerian (multi-)graph B’ with cost ¢(B’) =2 - OPT.

Find a Eulerian tour 77 in B’ = ¢(T')=¢(B")=2-0PT
Find a Hamiltonian path /' in G[T] by “short-cutting” Steiner vertices

and previously visited terminals.

= < c(T")=2-0PT since G is metric.

MST  of G[T] costs < <2-0PT
since '/ is a spanning tree of G[T].




Analysis Tight?

An of G[T] has cost . 2(n—1)

. . > 2
The optimal solution has cost n. n

B terminal

</

cost 2

Can we do better?

The best known approximation factor for

- : [Byrka, Grandoni, Roth-
STEINERTREE is |n(4) + e~ 1.39. voB & Sanita, J. ACM'13]

STEINERTREE cannot be approximated within factor
22 ~ 1.0105 (unless P=NP).

[Chlebik & Chlebikova, TCS’'08]
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MurTiwaAYCuT

Given: A connected graph G with edge costs ¢: E(G) — Q"
andaset T ={t1,..., tx} € V(G) of terminals.

A multiway cut of T is a subset £’ of edges such that no
two terminals in the graph (V(G), E(G) — E’) are connected.

Find: A minimum-cost multiway cut of T.

Connected components after
removing the multiway cut

/ Special cases:
k = 2: Min s—t cut

K3 k > 3: NP-hard
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Isolating Cuts

An isolating cut for a terminal t; is a set of edges
that disconnects t; from all other terminals.

A minimum-cost isolating cut for t; can be computed efficiently:

NN

—

Add dummy terminal s and find a minimum-cost s—t; cut.
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Algorithm MULTIWAYCUT
Fori=1,..., k:
B Compute a minimum-cost isolating cut C; for ;.

B Return the union C of the k — 1 cheapest such isolating cuts.

In other words:
lgnore the most expensive one of the isolating cuts Cq, ..., Ck.

k
1
= < (1 — ;) Z because:

=1
for the most expensive cut of Cq, ..., Cx, say Cq, we have
k
1 . o
> P Zl by the pidgeon-hole principle.
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Approximation Factor

Theorem. This algorithm is a factor-(2 — 2/k)
approximation algorithm for MULTIWAYCUT.

Proof. Consider an opt. multiway cut A: Consider the alg.'s solution (:

c(C) < S c(G)

< Zf'(zl c(A))
< - 2-c(A)
<(2-2).0PT

Ai={uv e A:u € ki, v &€r;}

k
Observation. A = U A; and Zf;l c(A;) <2-c(A)=2-0PT.

=1
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Analysis Tight?

ALG = (k—1)(k—1)
k=1 .  k(k—1
OPT => . [ i= (2 )

2(k—1
ALG/OPT = 26l — o 2

k

Can we do better?

The best known approximation factor for MULTIWAYCUT is 1.2965 — %

[Sharma & Vondrak, STOC'14]

MULTIWAYCUT cannot be approximated within factor 1.20016 — O(1/k)
(unless P= NP). [Bérczi, Chandrasekaran, Kirdly & Madan, MP'18]
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