Lecture 3:

STEINER TREE and MULTIWAY CUT

Part I:
Steiner Tree

STEINERTREE

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of **terminals** and a set S of **Steiner vertices**.

Find: A subtree B of G that

- lacksquare contains all terminals (i.e., $T \subseteq V(B)$) and
- has minimum cost $c(B) := \sum_{e \in E(B)} c(e)$ among all subtrees with this property.

valid solution with cost 4 optimum solution with cost 3

Restriction of STEINERTREE where the graph G is complete and the cost function is **metric**, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v) + c(v, w)$.

- not complete
- not metric

- complete
- metric

Lecture 3:

STEINER TREE and MULTIWAY CUT

Part II:

Approximation-Preserving Reduction

Approximation-Preserving Reduction

Let Π_1 , Π_2 be minimization problems. An **approximation**-**preserving reduction** from Π_1 to Π_2 ist a tuple (f, g) of poly-time computable functions with the following properties.

- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $\mathsf{OPT}_{\Pi_2}(I_2) \leq \mathsf{OPT}_{\Pi_1}(I_1)$.
- For each feasible solution t of l_2 , $s = g(l_1, t)$ is a feasible sol. of l_1 with $\operatorname{obj}_{\Pi_1}(l_1, s) \leq \operatorname{obj}_{\Pi_2}(l_2, t)$.

Approximation-Preserving Reduction

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . If there is a factor- α approximation algorithm for Π_2 , then there is a factor- α approximation algorithm for Π_1 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$l_2 := f(l_1)$$
, $t := A(l_2)$ and $s := g(l_1, t)$.

Then:

$$\mathsf{obj}_{\Pi_1}(I_1,s) \leq \mathsf{obj}_{\Pi_2}(I_2,t) \leq \alpha \cdot \mathsf{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \mathsf{OPT}_{\Pi_1}(I_1).$$

Lecture 3:

STEINER TREE and MULTIWAY CUT

Part III:

Reduction to MetricSteinerTree

Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (1) Mapping f $I_1 I_2$ Instance I_1 of STEINERTREE: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$ Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1 $c_2(u, v) :=$ length of a shortest u-v path in G_1 .

Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (2)
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

 $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same.

$$OPT(I_2) \le c_2(B^*) \le c_1(B^*) = OPT(I_1)$$

Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (3) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u-v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of $G_1' \longrightarrow Steiner$ tree B_1 of G_1

Note that $c_1(B_1) \leq c_1(G_1') \leq c_2(B_2)$.

Lecture 3:

STEINER TREE and MULTIWAY CUT

Part IV:

2-Approximation for SteinerTree

2-Approximation for SteinerTree

Theorem. For an instance of METRICSTEINERTREE, let B be a minimum spanning tree (MST) of the subgraph G[T] induced by the terminal set T. Then $c(B) \leq 2 \cdot \mathsf{OPT}$.

Proof of Approximation Factor

Consider an optimal Steiner tree B^* .

Duplicate all edges of B^* .

 \Rightarrow Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \mathsf{OPT}$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot \mathsf{OPT}$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and previously visited terminals.

 $\Rightarrow c(H) \leq c(T') = 2 \cdot \mathsf{OPT}$ since G is metric.

MST B of G[T] costs $c(B) \le c(H) \le 2 \cdot \mathsf{OPT}$ since H is a spanning tree of G[T].

Analysis Tight?

An MST of G[T] has cost 2(n-1). The optimal solution has cost n.

- terminal
- Steiner vertex
- —— cost 1
- ____ cost 2

Can we do better?

The best known approximation factor for STEINERTREE is $ln(4) + \varepsilon \approx 1.39$.

[Byrka, Grandoni, Roth-voß & Sanità, J. ACM'13]

STEINERTREE cannot be approximated within factor $\frac{96}{05} \approx 1.0105$ (unless P = NP). [Chlebík & Chlebíková, TCS'08]

Lecture 3:

STEINER TREE and MULTIWAY CUT

Part V:
MULTIWAYCUT

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

Find: A minimum-cost multiway cut of T.

Isolating Cuts

An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:

Add dummy terminal s and find a minimum-cost $s-t_i$ cut.

Lecture 3:

STEINER TREE and MULTIWAY CUT

Part VI:
Algorithm for MultiwayCut

Algorithm MultiwayCut

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have

$$c(C_1) \ge \frac{1}{k} \sum_{i=1}^{k} c(C_i)$$
 by the pidgeon-hole principle.

Approximation Factor

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut A: Consider the alg.'s solution C:

Observation. $A = \bigcup_{i=1}^k A_i$ and $\sum_{i=1}^k c(A_i) \leq 2 \cdot c(A) = 2 \cdot \mathsf{OPT}$.

Analysis Tight?

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$

Can we do better?

The best known approximation factor for MultiwayCut is $1.2965 - \frac{1}{k}$. [Sharma & Vondrák, STOC'14]

MULTIWAYCUT cannot be approximated within factor 1.20016 - O(1/k) (unless P = NP). [Bérczi, Chandrasekaran, Király & Madan, MP'18]