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Lecture 3:
SteinerTree and MultiwayCut

Part I:
SteinerTree

Approximation Algorithms
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SteinerTree

A graph G with edge weights c :E (G ) → Q+

and a partition of V (G ) into a set T of terminals
and a set S of Steiner vertices.

A subtree B of G that
■ contains all terminals (i.e., T ⊆ V (B)) and
■ has minimum cost c(B) :=

∑
e∈E(B) c(e) among all

subtrees with this property.

Find:

Given:

terminal

Steiner vertex

valid solution with cost 4

optimum solution
with cost 3
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MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v ,w of
vertices, we have c(u,w) ≤ c(u, v) + c(v ,w).
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– not metric – metric
– not complete – complete
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Approximation Algorithms
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Approximation-Preserving Reduction

Let Π1,Π2 be minimization problems. An approximation-
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following properties.

■ For each instance I1 of Π1,

I2 = f (I1) is an instance of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

■ For each feasible solution t of I2,

s = g(I1, t) is a feasible sol. of I1 with objΠ1
(I1, s) ≤ objΠ2

(I2, t).

instances I1
f

I2

ts
g

solutions

Π1 Π2problems
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Approximation-Preserving Reduction

Let Π1,Π2 be minimization problems with an
approximation-preserving reduction (f , g) from Π1

to Π2. If there is a factor-α approximation
algorithm for Π2, then there is a factor-α
approximation algorithm for Π1.

Theorem.

Proof.

Let A be a factor-α approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Then:
objΠ1

(I1, s) ≤ objΠ2
(I2, t) ≤ α · OPTΠ2(I2) ≤ α · OPTΠ1(I1).

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

A

□
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MetricSteinerTree

Proof.

Instance I1 of SteinerTree:
Graph G1 = (V ,E1), edge weights c1, partition V = T ·∪S

Metric instance I2 := f (I1):
Complete graph G2 = (V ,E2), partition T ,S as in I1
c2(u, v) := length of a shortest u–v path in G1.

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4

3

2

There is an approximation-preserving reduction
from SteinerTree to MetricSteinerTree.

Theorem.



9/21

MetricSteinerTree

Proof.

Let B∗ be an optimal Steiner tree for I1.

Note that B∗ is also a feasible solution for I2:
E1 ⊆ E2 and the vertex sets V ,T ,S are the same.

(2) OPT(I2) ≤ OPT(I1)

OPT(I2) ≤ c2(B
∗) ≤ c1(B

∗) = OPT(I1)

2

1

13

5

I1 I2
f 1

4

2

There is an approximation-preserving reduction
from SteinerTree to MetricSteinerTree.

Theorem.

2 1
3
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MetricSteinerTree

Let B2 be a Steiner tree of G2.

Construct G ′
1 ⊆ G1 from B2 by replacing each edge (u, v)

of B2 by a shortest u–v path in G1.

c1(G
′
1) ≤ c2(B2) ; G

′
1 connects all terminals ; maybe not a tree.

Consider spanning tree B1 of G ′
1 ⇝ Steiner tree B1 of G1

Note that c1(B1) ≤ c1(G
′
1) ≤ c2(B2).

Proof. (3) Mapping g ts g

5

I1 I2
f 1

1
2

2

4

3
3

g

1

2 1

There is an approximation-preserving reduction
from SteinerTree to MetricSteinerTree.

Theorem.

Keep ≤ 1 copy per edge.
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Approximation Algorithms
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2-Approximation for SteinerTree

2

G

2

4

G [T ]

2

1

1

4

3 2

For an instance of MetricSteinerTree,
let B be a minimum spanning tree (MST) of the
subgraph G [T ] induced by the terminal set T .
Then c(B) ≤ 2 · OPT.

Theorem.
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Proof of Approximation Factor

Consider an optimal Steiner tree B∗.

Find a Eulerian tour T ′ in B ′

Find a Hamiltonian path H in G [T ] by “short-cutting” Steiner vertices
and previously visited terminals.
⇒ c(H) ≤ c(T ′) = 2 · OPT since G is metric.

Duplicate all edges of B∗.
⇒ Eulerian (multi-)graph B ′ with cost c(B ′) = 2 · OPT.

B∗

MST B of G [T ] costs c(B) ≤ c(H) ≤ 2 · OPT
since H is a spanning tree of G [T ].

T ′

H

⇒ c(T ′) = c(B ′) = 2 · OPT
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Analysis Tight?

Kn
cost 1

cost 2

An MST of G [T ] has cost 2(n − 1).
The optimal solution has cost n.

2(n − 1)

n
→ 2

terminal

Steiner vertex

Can we do better?
The best known approximation factor for
SteinerTree is ln(4) + ε ≈ 1.39.

SteinerTree cannot be approximated within factor
96
95 ≈ 1.0105 (unless P=NP).

[Byrka, Grandoni, Roth-
voß & Sanità, J. ACM’13]

[Chleb́ık & Chleb́ıková, TCS’08]
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Part V:
MultiwayCut

Approximation Algorithms
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MultiwayCut

A connected graph G with edge costs c :E (G ) → Q+

and a set T = {t1, . . . , tk} ⊆ V (G ) of terminals.
Given:

A multiway cut of T is a subset E ′ of edges such that no
two terminals in the graph (V (G ),E (G )−E ′) are connected.

k ≥ 3: NP-hard

Connected components after
removing the multiway cut

1

2

2

3

6
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3
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4
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3

7

68

5

9
8

6
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t1

t2

t3

k = 2: Min s–t cut

Find: A minimum-cost multiway cut of T .

Special cases:
κ1

κ2

κ3
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Isolating Cuts

An isolating cut for a terminal ti is a set of edges
that disconnects ti from all other terminals.

ti

Add dummy terminal s and find a minimum-cost s–ti cut.

s

A minimum-cost isolating cut for ti can be computed efficiently:

∞
∞
∞
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Algorithm for MultiwayCut

Approximation Algorithms
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Algorithm MultiwayCut

For i = 1, . . . , k:

■ Return the union C of the k − 1 cheapest such isolating cuts.

In other words:
Ignore the most expensive one of the isolating cuts C1, . . . ,Ck .

⇒ c(C) ≤
(
1− 1

k

) k∑
i=1

c(Ci ) because:

for the most expensive cut of C1, . . . ,Ck , say C1, we have

c(C1) ≥
1

k

k∑
i=1

c(Ci )

■ Compute a minimum-cost isolating cut Ci for ti .

by the pidgeon-hole principle.
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Approximation Factor

ti
Ai = {uv ∈ A: u ∈ κi , v ̸∈ κi}

Consider an opt. multiway cut A:

κi

tjκj

Aj

Observation. and
∑k

i=1 c(Ai ) ≤A =
k⋃

i=1

Ai

≤
(
1− 1

k

)
· 2·c(A)

Proof.

≤
(
1− 1

k

)∑k
i=1 c(Ai )

c(C) ≤

≤
(
2− 2

k

)
· OPT

This algorithm is a factor-(2− 2/k)
approximation algorithm for MultiwayCut.

Theorem.

Consider the alg.’s solution C:(
1− 1

k

)∑k
i=1 c(Ci )

2·c(A) = 2·OPT.
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Analysis Tight?

1

OPT =
∑k−1

i=1 i = k·(k−1)
2

ALG/OPT = 2(k−1)
k = 2− 2

k

ALG = (k − 1)(k − 1)

Can we do better?

The best known approximation factor for MultiwayCut is 1.2965− 1
k .

MultiwayCut cannot be approximated within factor 1.20016−O(1/k)
(unless P=NP).

[Sharma & Vondrák, STOC’14]

[Bérczi, Chandrasekaran, Király & Madan, MP’18]
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