
1/17

Alexander Wolff Winter 2024/25

Lecture 2:
SetCover and ShortestSuperString

Part I:
SetCover

Approximation Algorithms

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S2S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S2

S3

S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S2 S4

S3

S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S2 S4

S3

S5

S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S2 S4 S6

S3

S5

S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S2 S4 S6

S3

S5

S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S3

S5

S2 S4 S6S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S3

S5

S2 S4 S6S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

(general)

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S3

S5

S2 S4 S6S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

(general)

Each S ∈ S has cost c(S) > 0.

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

S3

S5

S2 S4 S6S1

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

(general)

Each S ∈ S has cost c(S) > 0.

total cost c(S ′) :=
∑

S∈S′ c(S).

2/17

SetCover (card.)

1

4

4 6 5
23

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

(general)

Each S ∈ S has cost c(S) > 0.

total cost c(S ′) :=
∑

S∈S′ c(S).

2/17

SetCover (card.)

Let U be some ground set (universe),
and let S be a family of subsets of U with

⋃
S = U.

Find a cover S ′ ⊆ S of U (i.e., with
⋃
S ′ = U) of minimum

cardinality.

(general)

Each S ∈ S has cost c(S) > 0.

total cost c(S ′) :=
∑

S∈S′ c(S).

1

4

4 6 5
23

3/17

Lecture 2:
SetCover and ShortestSuperString

Part II:
Greedy for SetCover

Approximation Algorithms

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

4 6 5
23

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4 6 5
23

4

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4
3

1

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4
3

1

1
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4
3

1

1
3

1

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4
3

1

1
3

1 2

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4
3

1

1
3

1 2
5
6

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4
3

1

1
3

1 2
5
6

What happens if we “buy” a set?

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

4
3

1

1
3

1 2
5
6

What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

1

1
3

1 2
5
6

What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

4
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

1

1 2
5
6

What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

1
2

4
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

4

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

1 2
5
6

What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

1
2

4
3

4
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

1 2
5
6

What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

1
2

4

4
3

4
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

6 5
23 4

Set with k elements and cost c has per-element cost c/k.

1 2
5
6

What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

1
2

4

4
3

4
3

4
3

4
3

4
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

6 5
23 4

Set with k elements and cost c has per-element cost c/k.
What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

1
2

4
4
3

4
3

3
5
4

3
2

4
3

4
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

6 5
24

Set with k elements and cost c has per-element cost c/k.
What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

4
4
3

4
3

3
5
4

3

4
3

3
2

3
2

1

4
3

4/17

“Buying” Elements Iteratively

What is the real cost of picking a set?

1

5
24

Set with k elements and cost c has per-element cost c/k.
What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

4
4
3

4
3

3

4
3

3
2

3
2 6

∞

5
23 3

4
3

4/17

“Buying” Elements Iteratively

5
2

What is the real cost of picking a set?

1

4

Set with k elements and cost c has per-element cost c/k.
What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

4
4
3

4
3

3

4
3

3
2

3
2 6

∞

3 3

4
3

5
2

4/17

“Buying” Elements Iteratively

5
2

What is the real cost of picking a set?

1

4

Set with k elements and cost c has per-element cost c/k.
What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

4
4
3

4
3

3

4
3

3
2

3
2 6

∞

3 3

4
3

total cost:
∑

u∈U price(u)

5
2

4/17

“Buying” Elements Iteratively

5
2

What is the real cost of picking a set?

1

4

Set with k elements and cost c has per-element cost c/k.
What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

4
3 4

3

4
4
3

4
3

3

4
3

3
2

3
2 6

∞

3 3

4
3

total cost:
∑

u∈U price(u)

5
2

Greedy: Always choose the set with minimum per-element cost.

5/17

Greedy for SetCover

GreedySetCover(U,S, c)
C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set in S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

5/17

Greedy for SetCover

GreedySetCover(U,S, c)
C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set in S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

5/17

Greedy for SetCover

GreedySetCover(U,S, c)
C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set in S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

5/17

Greedy for SetCover

GreedySetCover(U,S, c)
C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set in S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

5/17

Greedy for SetCover

GreedySetCover(U,S, c)
C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set in S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

5/17

Greedy for SetCover

GreedySetCover(U,S, c)
C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set in S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

5/17

Greedy for SetCover

GreedySetCover(U,S, c)
C ← ∅
S ′ ← ∅
while C ̸= U do

S ← set in S that minimizes c(S)
|S\C |

foreach u ∈ S \ C do

price(u)← c(S)
|S\C |

C ← C ∪ S
S ′ ← S ′ ∪ {S}

return S ′ // Cover of U

6/17

Lecture 2:
SetCover and ShortestSuperString

Part III:
Analysis

Approximation Algorithms

7/17

Analysis

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

Proof.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

Proof. Consider the iteration when the algorithm buys uj :

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

Proof. Consider the iteration when the algorithm buys uj :

• At most j − 1 elements of S already bought.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

Proof. Consider the iteration when the algorithm buys uj :

• At most j − 1 elements of S already bought.
• At least ℓ− j + 1 elements of S not yet bought.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

Proof. Consider the iteration when the algorithm buys uj :

• At most j − 1 elements of S already bought.
• At least ℓ− j + 1 elements of S not yet bought.
• Per-element cost for S : at most

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

Proof. Consider the iteration when the algorithm buys uj :

• At most j − 1 elements of S already bought.
• At least ℓ− j + 1 elements of S not yet bought.
• Per-element cost for S : at most

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

c(S)/(ℓ− j + 1)

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

Proof. Consider the iteration when the algorithm buys uj :

• At most j − 1 elements of S already bought.
• At least ℓ− j + 1 elements of S not yet bought.
• Per-element cost for S : at most

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

• Price by alg. no larger due to greedy choice.
c(S)/(ℓ− j + 1)

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof. Let {S1, . . . ,Sm} be an opt. sol.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof. Let {S1, . . . ,Sm} be an opt. sol. OPT =
∑m

i=1 c(Si).

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof. Let {S1, . . . ,Sm} be an opt. sol. OPT =
∑m

i=1 c(Si).

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

ALG ≤

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof. Let {S1, . . . ,Sm} be an opt. sol. OPT =
∑m

i=1 c(Si).

price(U) =

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

ALG ≤

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof. Let {S1, . . . ,Sm} be an opt. sol. OPT =
∑m

i=1 c(Si).

price(U) =

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

ALG ≤
∑

u∈U price(u) ≤

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof. Let {S1, . . . ,Sm} be an opt. sol. OPT =
∑m

i=1 c(Si).

price(U) =

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

ALG ≤
∑m

i=1 price(Si)
∑

u∈U price(u) ≤

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof. Let {S1, . . . ,Sm} be an opt. sol. OPT =
∑m

i=1 c(Si).

price(U) =

≤
∑m

i=1 c(Si) · Hk =

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

ALG ≤
∑m

i=1 price(Si)
∑

u∈U price(u) ≤

7/17

Analysis

Let S ∈ S, and let u1, . . . , uℓ be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then, for every j ∈ {1, . . . , ℓ}:
price(uj) ≤ c(S)/(ℓ− j + 1).

Lemma.

price(S) :=
∑ℓ

i=1 price(ui) ≤ c(S) · Hℓ.Lemma.

Proof. Let {S1, . . . ,Sm} be an opt. sol. OPT =
∑m

i=1 c(Si).

price(U) =

≤
∑m

i=1 c(Si) · Hk =

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k → 0.5 + ln k.

Theorem.

□

ALG ≤
∑m

i=1 price(Si)
∑

u∈U price(u) ≤
OPT · Hk

8/17

Analysis tight?

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

1 + ε

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

1 + ε

1
n

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

1 + ε

1
n

1
n−1

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

1 + ε

1
n

1
n−1

1
n−2

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

1 + ε

1
n

1
n−1

1
n−2

1
2

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

1 + ε

1
n

1
n−1

1
n−2

1
2 1

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

1 + ε

1
n

1
n−1

1
n−2

1
2 1

price(U) = Hn OPT = 1 + ε

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

8/17

Analysis tight?

1 + ε

1
n

1
n−1

1
n−2

1
2 1

price(U) = Hn OPT = 1 + ε

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

Can we do better?

8/17

Analysis tight?

1 + ε

1
n

1
n−1

1
n−2

1
2 1

price(U) = Hn OPT = 1 + ε

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

Can we do better?

No – for any ε > 0, it is NP-hard to approximate SetCover
with factor (1− ε) · ln n [Feige, JACM 1998]

[Dinur, Steurer, STOC 2014]

8/17

Analysis tight?

1 + ε

1
n

1
n−1

1
n−2

1
2 1

price(U) = Hn OPT = 1 + ε

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

Can we do better?

No – for any ε > 0, it is NP-hard to approximate SetCover
with factor (1− ε) · ln n [Feige, JACM 1998]

[Dinur, Steurer, STOC 2014]

8/17

Analysis tight?

1 + ε

1
n

1
n−1

1
n−2

1
2 1

price(U) = Hn OPT = 1 + ε

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

Can we do better?

No – for any ε > 0, it is NP-hard to approximate SetCover
with factor (1− ε) · ln n [Feige, JACM 1998]

[Dinur, Steurer, STOC 2014]

?

9/17

Lecture 2:
SetCover and ShortestSuperString

Part IV:
ShortestSuperString

Approximation Algorithms

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

U := {cbaa, abc , bcb}Example.

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

U := {cbaa, abc , bcb}Example. → cbaabcb ?

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

U := {cbaa, abc , bcb}Example.

abc

→ cbaabcb ?

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

U := {cbaa, abc , bcb}Example.

abc
bcb

→ cbaabcb ?

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

U := {cbaa, abc , bcb}Example.

abc
bcb
cbaa

→ cbaabcb ?

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

U := {cbaa, abc , bcb}Example.

abcbaa

abc
bcb
cbaa

→ cbaabcb ?

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

U := {cbaa, abc , bcb}Example.

abcbaa

abc
bcb
cbaa

“covers” all strings in U

→ cbaabcb ?

10/17

ShortestSuperString (SSS)

Given a set {s1, . . . , sn}⊆Σ+ of strings over a finite alphabetΣ .

Find a shortest string s (superstring) such that,
for each i ∈ {1, . . . , n}, the string si is a substring of s.

U := {cbaa, abc , bcb}Example.

abcbaa

abc
bcb
cbaa

“covers” all strings in UW.l.o.g.: No string si
is a substring of any
other string sj .

→ cbaabcb ?

11/17

SSS as a SetCover Problem

SetCover Instance: ground set U, set family S, costs c .

11/17

SSS as a SetCover Problem

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.

11/17

SSS as a SetCover Problem

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

11/17

SSS as a SetCover Problem

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si

11/17

SSS as a SetCover Problem

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

σi jk

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

cabab ababcsi : sj :

σi jk

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

cabab
ababc

cabab ababcsi : sj :

σi jk

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

cabab
ababc

cabab ababcsi : sj :

σi jk

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

cabab
ababc

cabababcσi j2:

cabab ababcsi : sj :

σi jk

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

cabab
ababc

cabababcσi j2:

cabab
ababc

cabab ababcsi : sj :

σi jk

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

cabab
ababc

cabababcσi j2:

cabab
ababc
cababcσi j4:

cabab ababcsi : sj :

σi jk

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

c (S(σi jk)) =

S

cabab
ababc

cabababcσi j2:

cabab
ababc
cababcσi j4:

cabab ababcsi : sj :

σi jk

S(σi jk)

=

=

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

{s ∈ U | s substring of σi jk} – contains the
elements of the ground set covered by σi jk .

c (S(σi jk)) =

S

cabab
ababc

cabababcσi j2:

cabab
ababc
cababcσi j4:

cabab ababcsi : sj :

σi jk

S(σi jk)

=

=

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

{s ∈ U | s substring of σi jk} – contains the
elements of the ground set covered by σi jk .

c (S(σi jk)) =

S

cabab
ababc

cabababcσi j2:

cabab
ababc
cababcσi j4:

cabab ababcsi : sj :

σi jk

(number of characters in σi jk)

S(σi jk)

=

|σi jk |

=

11/17

SSS as a SetCover Problem

length k

SetCover Instance: ground set U, set family S, costs c .
Ground set U := {s1, . . . , sn}.
Let be σi jk be the unique string with prefix si and suffix sj
where si and sj overlap on k characters (for suitable i , j , k)

si
sj︸ ︷︷ ︸

{s ∈ U | s substring of σi jk} – contains the
elements of the ground set covered by σi jk .

c (S(σi jk)) =

S

cabab
ababc

cabababcσi j2:

cabab
ababc
cababcσi j4:

cabab ababcsi : sj :

σi jk

(number of characters in σi jk)

S(σi jk)

{S(σi jk) | 1 ≤ i , j ≤ n, suitable k ≥ 0}=

|σi jk |

=

12/17

Lecture 2:
SetCover and ShortestSuperString

Part V:
Solving ShortestSuperString via SetCover

Approximation Algorithms

13/17

Relating SSS and SetCover

Let OPTSSS be the length of a shortest superstring
of U, and let OPTSC be the minimum cost of the
corresponding SetCover instance. Then

OPTSSS ≤ OPTSC.

Lemma.

13/17

Relating SSS and SetCover

Proof.

Consider an optimal set cover {S(π1), . . . ,S(πk)} of U.

Let OPTSSS be the length of a shortest superstring
of U, and let OPTSC be the minimum cost of the
corresponding SetCover instance. Then

OPTSSS ≤ OPTSC.

Lemma.

13/17

Relating SSS and SetCover

Proof.

Consider an optimal set cover {S(π1), . . . ,S(πk)} of U.

Then s := π1 ◦ · · · ◦ πk is a superstring of U of length∑k
i=1 |πi | =

∑k
i=1 c(S(πi)) = OPTSC.

Let OPTSSS be the length of a shortest superstring
of U, and let OPTSC be the minimum cost of the
corresponding SetCover instance. Then

OPTSSS ≤ OPTSC.

Lemma.

13/17

Relating SSS and SetCover

Proof.

Consider an optimal set cover {S(π1), . . . ,S(πk)} of U.

Then s := π1 ◦ · · · ◦ πk is a superstring of U of length∑k
i=1 |πi | =

∑k
i=1 c(S(πi)) = OPTSC.

Let OPTSSS be the length of a shortest superstring
of U, and let OPTSC be the minimum cost of the
corresponding SetCover instance. Then

OPTSSS ≤ OPTSC.

Lemma.

13/17

Relating SSS and SetCover

Proof.

Consider an optimal set cover {S(π1), . . . ,S(πk)} of U.

Then s := π1 ◦ · · · ◦ πk is a superstring of U of length∑k
i=1 |πi | =

∑k
i=1 c(S(πi)) = OPTSC.

Thus, OPTSSS ≤ |s| = OPTSC.

Let OPTSSS be the length of a shortest superstring
of U, and let OPTSC be the minimum cost of the
corresponding SetCover instance. Then

OPTSSS ≤ OPTSC.

Lemma.

14/17

Relating SSS and SetCover

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

Leftmost occurence of a string sb1 ∈ U.
sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

Leftmost occurence of another string in U.

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s
sb1

Leftmost occurence of another string in U.

OPTSC ≤ 2 · OPTSSS.Lemma.

Note that no string contains any other string.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s
sb1

Leftmost occurence of another string in U.

OPTSC ≤ 2 · OPTSSS.Lemma.

Note that no string contains any other string.
⇒ Right endpoints are ordered like left endpoints.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1
last such string that overlaps sb1

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1
last such string that overlaps sb1

π1

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1
last such string that overlaps sb1

π1

σb1,e1,k1

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2 σb2,e2,k2

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2

sb3

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2

sb3

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2

sb3
se3

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2

sb3
se3

π3

sb1

σb3,e3,k3

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2

sb3
se3

π3

No overlaps between π1 and π3!

sb1

σb3,e3,k3

OPTSC ≤ 2 · OPTSSS.Lemma.

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

π3 σb3,e3,k3

sb3
se3

No overlaps between π1 and π3!

14/17

Relating SSS and SetCover

Consider an optimal superstring s.
Construct a set cover of cost ≤ 2|s| = 2 · OPTSSS.

Proof.

s

se1

π1

sb2

se2

π2

πk

...

...
sek

sb1

OPTSC ≤ 2 · OPTSSS.Lemma.

π3 σb3,e3,k3

sb3
se3

No overlaps between π1 and π3!

15/17

Relating SSS and SetCover

Each string si ∈ U is a substring of some πj .

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

15/17

Relating SSS and SetCover

Each string si ∈ U is a substring of some πj .

{S(π1), . . . ,S(πk)} is a solution for the SetCover instance
with cost

∑
i |πi |.

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

15/17

Relating SSS and SetCover

Each string si ∈ U is a substring of some πj .

{S(π1), . . . ,S(πk)} is a solution for the SetCover instance
with cost

∑
i |πi |.

For j ∈ {1, . . . , k − 2}, substrings πj ,πj+2 do not overlap.

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

15/17

Relating SSS and SetCover

Each string si ∈ U is a substring of some πj .

{S(π1), . . . ,S(πk)} is a solution for the SetCover instance
with cost

∑
i |πi |.

For j ∈ {1, . . . , k − 2}, substrings πj ,πj+2 do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, πj and πj+1.

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

15/17

Relating SSS and SetCover

Each string si ∈ U is a substring of some πj .

{S(π1), . . . ,S(πk)} is a solution for the SetCover instance
with cost

∑
i |πi |.

For j ∈ {1, . . . , k − 2}, substrings πj ,πj+2 do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, πj and πj+1.

OPTSC ≤

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

15/17

Relating SSS and SetCover

Each string si ∈ U is a substring of some πj .

{S(π1), . . . ,S(πk)} is a solution for the SetCover instance
with cost

∑
i |πi |.

For j ∈ {1, . . . , k − 2}, substrings πj ,πj+2 do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, πj and πj+1.

OPTSC ≤

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

∑
i |πi | ≤

15/17

Relating SSS and SetCover

Each string si ∈ U is a substring of some πj .

{S(π1), . . . ,S(πk)} is a solution for the SetCover instance
with cost

∑
i |πi |.

For j ∈ {1, . . . , k − 2}, substrings πj ,πj+2 do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, πj and πj+1.

OPTSC ≤

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

∑
i |πi | ≤ 2|s| =

15/17

Relating SSS and SetCover

Each string si ∈ U is a substring of some πj .

{S(π1), . . . ,S(πk)} is a solution for the SetCover instance
with cost

∑
i |πi |.

For j ∈ {1, . . . , k − 2}, substrings πj ,πj+2 do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, πj and πj+1.

OPTSC ≤

Proof.

OPTSC ≤ 2 · OPTSSS.Lemma.

∑
i |πi | ≤ 2 · OPTSSS2|s| = □

16/17

Algorithm for SSS

1. Construct SetCover instance ⟨U,S, c⟩.

16/17

Algorithm for SSS

1. Construct SetCover instance ⟨U,S, c⟩.
2. Compute a set cover {S(π1), . . . ,S(πk)}

with the algorithm GreedySetCover.

16/17

Algorithm for SSS

1. Construct SetCover instance ⟨U,S, c⟩.
2. Compute a set cover {S(π1), . . . ,S(πk)}

with the algorithm GreedySetCover.

3. Return π1 ◦ · · · ◦ πk as the superstring.

16/17

Algorithm for SSS

1. Construct SetCover instance ⟨U,S, c⟩.
2. Compute a set cover {S(π1), . . . ,S(πk)}

with the algorithm GreedySetCover.

3. Return π1 ◦ · · · ◦ πk as the superstring.

This algorithm is a factor-2Hn approximation
algorithm for ShortestSuperString.

Theorem.

16/17

Algorithm for SSS

1. Construct SetCover instance ⟨U,S, c⟩.
2. Compute a set cover {S(π1), . . . ,S(πk)}

with the algorithm GreedySetCover.

3. Return π1 ◦ · · · ◦ πk as the superstring.

This algorithm is a factor-2Hn approximation
algorithm for ShortestSuperString.

Theorem.

OPTSC ≤ 2 · OPTSSS.Lemma.

16/17

Algorithm for SSS

1. Construct SetCover instance ⟨U,S, c⟩.
2. Compute a set cover {S(π1), . . . ,S(πk)}

with the algorithm GreedySetCover.

3. Return π1 ◦ · · · ◦ πk as the superstring.

This algorithm is a factor-2Hn approximation
algorithm for ShortestSuperString.

Theorem.

OPTSC ≤ 2 · OPTSSS.Lemma.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.

17/17

Can we do better?

17/17

Can we do better?

• The best known approximation factor for
ShortestSuperString is (

√
67 + 14)/9 ≈ 2.466.

[Englert, Matsakis, Veselý: STOC 2022, ISAAC 2023]

17/17

Can we do better?

• The best known approximation factor for
ShortestSuperString is (

√
67 + 14)/9 ≈ 2.466.

[Englert, Matsakis, Veselý: STOC 2022, ISAAC 2023]

• ShortestSuperString cannot be approximated within
factor 333

332 ≈ 1.003 (unless P=NP).
[Karpinski & Schmied: CATS 2013]

	SetCover
	\textsc{SetCover} (card.)
	Greedy for SetCover
	``Buying'' Elements Iteratively
	Greedy for \textsc{SetCover}
	Analysis
	Analysis
	Analysis tight?

	ShortestSuperString
	SSS as a SetCover Problem

	Solving ShortestSuperString via SetCover
	Relating SSS and SetCover
	Algorithm for SSS

	Can we do better?

