Approximation Algorithms

Lecture 2:

SETCOVER and SHORTESTSUPERSTRING

Part I:
SETCOVER

Let *U* be some **ground set** (universe),

Let *U* be some **ground set** (universe),

Let U be some **ground set** (universe), and let S be a family of **subsets** of U with $\bigcup S = U$.

Let U be some **ground set** (universe), and let S be a family of **subsets** of U with $\bigcup S = U$.

Let U be some **ground set** (universe), and let S be a family of **subsets** of U with $\bigcup S = U$.

Let U be some **ground set** (universe), and let S be a family of **subsets** of U with $\bigcup S = U$. Each $S \in S$ has cost c(S) > 0.

Let U be some **ground set** (universe), and let S be a family of **subsets** of U with $\bigcup S = U$. Each $S \in S$ has cost c(S) > 0.

Find a **cover** $S' \subseteq S$ of U (i.e., with $\bigcup S' = U$) of minimum cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.

Let U be some **ground set** (universe), and let S be a family of **subsets** of U with $\bigcup S = U$. Each $S \in S$ has cost c(S) > 0.

Find a **cover** $S' \subseteq S$ of U (i.e., with $\bigcup S' = U$) of minimum cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.

Let U be some **ground set** (universe), and let S be a family of **subsets** of U with $\bigcup S = U$. Each $S \in S$ has cost c(S) > 0.

Find a **cover** $S' \subseteq S$ of U (i.e., with $\bigcup S' = U$) of minimum cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.

Approximation Algorithms

Lecture 2:

SETCOVER and SHORTESTSUPERSTRING

Part II:

Greedy for SetCover

What is the real cost of picking a set?

What is the real cost of picking a set?

What is the real cost of picking a set?

What is the real cost of picking a set? Set with k elements and cost c has per-element cost c/k. What happens if we "buy" a set?

What is the real cost of picking a set? Set with k elements and cost c has per-element cost c/k. What happens if we "buy" a set? Fix price of elements bought and recompute per-element cost.

What is the real cost of picking a set? Set with k elements and cost c has per-element cost c/k. What happens if we "buy" a set? Fix price of elements bought and recompute per-element cost.

What is the real cost of picking a set? Set with k elements and cost c has per-element cost c/k. What happens if we "buy" a set? Fix price of elements bought and recompute per-element cost.

What is the real cost of picking a set? Set with k elements and cost c has per-element cost c/k. What happens if we "buy" a set? Fix price of elements bought and recompute per-element cost. total cost: $\sum_{u \in U} \operatorname{price}(u)$

What is the real cost of picking a set?

Set with k elements and cost c has per-element cost c/k.

What happens if we "buy" a set?

Fix price of elements bought and recompute per-element cost.

total cost: $\sum_{u \in U} \operatorname{price}(u)$

Greedy: Always choose the set with minimum per-element cost.

GreedySetCover(U, S, c)

$$C \leftarrow \emptyset$$

$$\mathcal{S}' \leftarrow \emptyset$$

return S'

// Cover of U

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
   \mathcal{S}' \leftarrow \emptyset
   while C \neq U do
   return S'
                                                              // Cover of U
```

```
GreedySetCover(U, S, c)
    C \leftarrow \emptyset
   \mathcal{S}' \leftarrow \emptyset
   while C \neq U do
          S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
    return S'
                                                                         // Cover of U
```

```
GreedySetCover(U, S, c)
    C \leftarrow \emptyset
   \mathcal{S}' \leftarrow \emptyset
   while C \neq U do
         S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
          foreach u \in S \setminus C do
    return S'
                                                                       // Cover of U
```

Greedy for SETCOVER

```
GreedySetCover(U, S, c)
    C \leftarrow \emptyset
    \mathcal{S}' \leftarrow \emptyset
    while C \neq U do
          S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
          foreach u \in S \setminus C do
                price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
    return S'
                                                                             // Cover of U
```

Greedy for SETCOVER

```
GreedySetCover(U, S, c)
    C \leftarrow \emptyset
    \mathcal{S}' \leftarrow \emptyset
    while C \neq U do
          S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
          foreach u \in S \setminus C do
             price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
          C \leftarrow C \cup S
    return S'
                                                                            // Cover of U
```

Greedy for SETCOVER

```
GreedySetCover(U, S, c)
    C \leftarrow \emptyset
   \mathcal{S}' \leftarrow \emptyset
    while C \neq U do
          S \leftarrow \text{set in } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
          foreach u \in S \setminus C do
                price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
          C \leftarrow C \cup S
          S' \leftarrow S' \cup \{S\}
    return S'
                                                                             // Cover of U
```

Approximation Algorithms

Lecture 2:

SETCOVER and SHORTESTSUPERSTRING

Part III: Analysis

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_j) \leq$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_j) \leq c(S)/$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_j) \leq c(S)/(\ell-j+1)$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Proof.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_j) \leq c(S)/(\ell-j+1)$.

Proof. Consider the iteration when the algorithm buys u_i :

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_j) \leq c(S)/(\ell-j+1)$.

Proof. Consider the iteration when the algorithm buys u_j :

• At most j-1 elements of S already bought.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_i) \leq c(S)/(\ell-j+1)$.

Proof. Consider the iteration when the algorithm buys u_j :

- At most j-1 elements of S already bought.
- At least $\ell j + 1$ elements of S not yet bought.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_j) \leq c(S)/(\ell-j+1)$.

Proof. Consider the iteration when the algorithm buys u_j :

- At most j-1 elements of S already bought.
- At least $\ell j + 1$ elements of S not yet bought.
- Per-element cost for S: at most

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_i) \leq c(S)/(\ell-j+1)$.

Proof. Consider the iteration when the algorithm buys u_j :

- At most j-1 elements of S already bought.
- At least $\ell j + 1$ elements of S not yet bought.
- Per-element cost for S: at most $c(S)/(\ell-j+1)$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_i) \leq c(S)/(\ell-j+1)$.

Proof. Consider the iteration when the algorithm buys u_i :

- At most j-1 elements of S already bought.
- At least $\ell j + 1$ elements of S not yet bought.
- Per-element cost for S: at most $c(S)/(\ell-j+1)$
- Price by alg. no larger due to greedy choice.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. price(S) := $\sum_{i=1}^{\ell} \text{price}(u_i) \leq 1$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_i) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be an opt. sol.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: price $(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be an opt. sol. $OPT = \sum_{i=1}^m c(S_i)$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be an opt. sol. $OPT = \sum_{i=1}^m c(S_i)$. ALG \leq

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be an opt. sol. $OPT = \sum_{i=1}^m c(S_i)$. ALG \leq price(U) =

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be an opt. sol. $\mathsf{OPT} = \sum_{i=1}^m c(S_i)$. $\mathsf{ALG} \leq \mathsf{price}(U) = \sum_{u \in U} \mathsf{price}(u) \leq$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in S$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be an opt. sol. $\mathsf{OPT} = \sum_{i=1}^m c(S_i)$. $\mathsf{ALG} \leq \mathsf{price}(U) = \sum_{u \in U} \mathsf{price}(u) \leq \sum_{i=1}^m \mathsf{price}(S_i)$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be an opt. sol. $\mathsf{OPT} = \sum_{i=1}^m c(S_i)$. ALG $\leq \mathsf{price}(U) = \sum_{u \in U} \mathsf{price}(u) \leq \sum_{i=1}^m \mathsf{price}(S_i)$ $\leq \sum_{i=1}^m c(S_i) \cdot \mathcal{H}_k =$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \to 0.5 + \ln k$.

Lemma. Let $S \in \mathcal{S}$, and let u_1, \ldots, u_ℓ be the elements of S in the order in which they are covered ("bought") by GreedySetCover. Then, for every $j \in \{1, \ldots, \ell\}$: $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot \mathcal{H}_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be an opt. sol. $\mathsf{OPT} = \sum_{i=1}^m c(S_i)$. ALG $\leq \mathsf{price}(U) = \sum_{u \in U} \mathsf{price}(u) \leq \sum_{i=1}^m \mathsf{price}(S_i)$ $\leq \sum_{i=1}^m c(S_i) \cdot \mathcal{H}_k = \mathsf{OPT} \cdot \mathcal{H}_k$

Analysis tight?

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

$$price(U) = \mathcal{H}_n$$

$$\mathsf{OPT} = 1 + \varepsilon$$

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

$$price(U) = \mathcal{H}_n$$

$$\mathsf{OPT} = 1 + \varepsilon$$

Can we do better?

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

Can we do better?

No – for any $\varepsilon > 0$, it is NP-hard to approximate SETCOVER with factor $(1 - \varepsilon) \cdot \ln n$ [Feige, JACM 1998]

[Dinur, Steurer, STOC 2014]

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

Can we do

No – for any with factor (

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

Can we do

No – for any with factor (

Approximation Algorithms

Lecture 2:

SETCOVER and SHORTESTSUPERSTRING

Part IV:

SHORTESTSUPERSTRING

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

```
Given a set \{s_1, \ldots, s_n\} \subseteq \Sigma^+ of strings over a finite alphabet \Sigma.
 Find a shortest string s (superstring) such that, for each i \in \{1, \ldots, n\}, the string s_i is a substring of s.
```

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** s (superstring) such that, for each $i \in \{1, \ldots, n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\}$

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** s (superstring) such that, for each $i \in \{1, \ldots, n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$?

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** s (superstring) such that, for each $i \in \{1, \ldots, n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$?

abc

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** s (superstring) such that, for each $i \in \{1, \ldots, n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$?

abc bcb

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** s (superstring) such that, for each $i \in \{1, \ldots, n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$?

abc bcb cbaa

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** s (superstring) such that, for each $i \in \{1, \ldots, n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$? abcbaa abc bcb

cbaa

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ . Find a **shortest string** s (superstring) such that, for each $i \in \{1, \ldots, n\}$, the string s_i is a substring of s.

Example. $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$? abcbaa "covers" all strings in U abc

bcb

cbaa

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that, for each $i \in \{1, ..., n\}$, the string s_i is a substring of s.

Example.

 $U := \{cbaa, abc, bcb\} \rightarrow cbaabcb$?

cbaa

W.l.o.g.: No string s_i is a substring of any other string s_j .

abcbaa "covers" all strings in U
abc
bcb

Set Cover Instance: ground set U, set family S, costs c.

SETCOVER Instance: ground set U, set family S, costs c. Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c. Ground set $U := \{s_1, \ldots, s_n\}$.

SETCOVER Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

Let be σ_{ijk} be the unique string with prefix s_i and suffix s_j where s_i and s_j overlap on k characters (for suitable i, j, k)

 s_i : cabab s_i : ababc

Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s<sub>i</sub>: cabab s<sub>j</sub>: ababc cabab ababc
```


Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s_i: cabab s_j: ababc cabab ababc
```


Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s_i: cabab s_j: ababc cabab ababc \sigma_{ij2}: cabababc
```


Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s_i: cabab s_j: ababc cabab ababc ababc ababc \sigma_{ij2}: cabababc
```


Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s_i: cabab s_j: ababc cabab ababc ababc \sigma_{ij2}: cabababc \sigma_{ij4}: cababc
```


Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s_i: cabab s_j: ababc cabab ababc \sigma_{ij2}: cabababc \sigma_{ij4}: cababc \sigma_{ij4}: cababc \sigma_{ijk}
```

```
S(\sigma_{ijk}) =
c(S(\sigma_{ijk})) =
S =
```

Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

$$S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\} - \text{contains the elements of the ground set covered by } \sigma_{ijk}.$$

$$c\left(S(\sigma_{ijk})\right) =$$

$$\mathcal{S} =$$

Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s_i: cabab s_j: ababc cabab ababc \sigma_{ij2}: cabababc \sigma_{ij4}: cababc \sigma_{ij4}: cababc \sigma_{ij4}: cababc
```

$$S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$$
 — contains the elements of the ground set covered by σ_{ijk} . $c(S(\sigma_{ijk})) = |\sigma_{ijk}|$ (number of characters in σ_{ijk})

Set Cover Instance: ground set U, set family S, costs c.

Ground set $U := \{s_1, \ldots, s_n\}$.

```
s_i: cabab s_j: ababc cabab ababc \sigma_{ij2}: cabababc \sigma_{ij4}: cababc \sigma_{ij4}: cababc \sigma_{ij4}: cababc
```

```
S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\} - \text{contains the elements of the ground set covered by } \sigma_{ijk}.
C(S(\sigma_{ijk})) = |\sigma_{ijk}| \qquad \text{(number of characters in } \sigma_{ijk})
S = \{S(\sigma_{ijk}) \mid 1 \leq i, j \leq n, \text{ suitable } k \geq 0\}
```

Approximation Algorithms

Lecture 2:

SETCOVER and SHORTESTSUPERSTRING

Part V:

Solving ShortestSuperString via SetCover

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

 $OPT_{SSS} \leq OPT_{SC}$.

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

 $OPT_{SSS} \leq OPT_{SC}$.

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

 $OPT_{SSS} \leq OPT_{SC}$.

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Then $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

 $OPT_{SSS} \leq OPT_{SC}$.

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Then $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length $\sum_{i=1}^k |\pi_i| = \sum_{i=1}^k c(S(\pi_i)) = \mathsf{OPT}_{\mathsf{SC}}.$

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U, and let OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then

 $OPT_{SSS} \leq OPT_{SC}$.

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Then $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length

$$\sum_{i=1}^{k} |\pi_i| = \sum_{i=1}^{k} c(S(\pi_i)) = OPT_{SC}.$$

Thus, $OPT_{SSS} \leq |s| = OPT_{SC}$.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Construct a set cover of cost $\leq 2|s| = 2 \cdot \mathsf{OPT}_{\mathsf{SSS}}$.

Leftmost occurence of a string $s_{b_1} \in U$.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Construct a set cover of cost $\leq 2|s| = 2 \cdot \mathsf{OPT}_{\mathsf{SSS}}$.

 S_{b_1}

Leftmost occurence of another string in U.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Construct a set cover of cost $\leq 2|s| = 2 \cdot \mathsf{OPT}_{\mathsf{SSS}}$.

Leftmost occurrence of another string in U. Note that no string contains any other string.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring *s*.

Construct a set cover of cost $\leq 2|s| = 2 \cdot \mathsf{OPT}_{\mathsf{SSS}}$.

 S_{b_1}

Leftmost occurrence of another string in U. Note that no string contains any other string.

⇒ Right endpoints are ordered like left endpoints.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof. Consider an optimal superstring s.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_i .

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_i .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

For $j \in \{1, ..., k-2\}$, substrings π_j , π_{j+2} do **not** overlap.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is **a** solution for the SetCover instance with cost $\sum_i |\pi_i|$.

For $j \in \{1, ..., k-2\}$, substrings π_j , π_{j+2} do **not** overlap.

Each character of the optimal superstring s lies in at most **two** (subsequent) substrings, say, π_j and π_{j+1} .

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is **a** solution for the SetCover instance with cost $\sum_i |\pi_i|$.

For $j \in \{1, ..., k-2\}$, substrings π_j , π_{j+2} do **not** overlap.

Each character of the optimal superstring s lies in at most **two** (subsequent) substrings, say, π_j and π_{j+1} .

 $\mathsf{OPT}_{\mathsf{SC}} \leq$

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is **a** solution for the SetCover instance with cost $\sum_i |\pi_i|$.

For $j \in \{1, ..., k-2\}$, substrings π_j , π_{j+2} do **not** overlap.

Each character of the optimal superstring s lies in at most **two** (subsequent) substrings, say, π_j and π_{j+1} .

$$OPT_{SC} \leq \sum_{i} |\pi_{i}| \leq$$

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is **a** solution for the SetCover instance with cost $\sum_i |\pi_i|$.

For $j \in \{1, ..., k-2\}$, substrings π_j , π_{j+2} do **not** overlap.

Each character of the optimal superstring s lies in at most **two** (subsequent) substrings, say, π_j and π_{j+1} .

$$OPT_{SC} \leq \sum_{i} |\pi_{i}| \leq 2|s| =$$

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

For $j \in \{1, ..., k-2\}$, substrings π_j , π_{j+2} do **not** overlap.

Each character of the optimal superstring s lies in at most **two** (subsequent) substrings, say, π_i and π_{i+1} .

$$OPT_{SC} \leq \sum_{i} |\pi_{i}| \leq 2|s| = 2 \cdot OPT_{SSS}$$

1. Construct SetCover instance $\langle U, S, c \rangle$.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with the algorithm GreedySetCover.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithm is a factor- $2\mathcal{H}_n$ approximation algorithm for ShortestSuperString.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithm is a factor- $2\mathcal{H}_n$ approximation algorithm for SHORTESTSUPERSTRING.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

- 1. Construct SetCover instance $\langle U, S, c \rangle$.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with the algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.
- **Theorem.** This algorithm is a factor- $2\mathcal{H}_n$ approximation algorithm for SHORTESTSUPERSTRING.

Lemma. $OPT_{SC} \leq 2 \cdot OPT_{SSS}$.

Theorem. GreedySetCover is a factor- \mathcal{H}_k approximation algorithm for SetCover, where k is the cardinality of the largest set in \mathcal{S} and $\mathcal{H}_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} \leq 1 + \ln k$.

Can we do better?

Can we do better?

• The best known approximation factor for SHORTESTSUPERSTRING is $(\sqrt{67} + 14)/9 \approx 2.466$. [Englert, Matsakis, Veselý: STOC 2022, ISAAC 2023]

Can we do better?

- The best known approximation factor for SHORTESTSUPERSTRING is $(\sqrt{67} + 14)/9 \approx 2.466$. [Englert, Matsakis, Veselý: STOC 2022, ISAAC 2023]
- SHORTESTSUPERSTRING cannot be approximated within factor $\frac{333}{332} \approx 1.003$ (unless P = NP).

[Karpinski & Schmied: CATS 2013]