Lecture 1: Introduction and Vertex Cover Part I: Organizational ## Organizational Lectures: Fri, 10:15–11:45 (ÜR I) English/German, depending on audience. hands-on, with tasks/questions for audience Tutorials: Tue, 10:15–11:45 (SE I), starting Oct. 22, 2024. discussing old solutions and solving new tasks roughly one exercise sheet per lecture bonus (+0.3 on final grade) for $\geq 50\%$ points Up to two students can hand in solutions together. Make sure to write both names! Most slides are due to Joachim Spoerhase, polishing & colors are due to Philipp Kindermann – thanks! ### **Textbooks** Vijay V. Vazirani: Approximation Algorithms Springer-Verlag, 2003. D. P. Williamson & D. B. Shmoys: The Design of Approximation Algorithms Cambridge-Verlag, 2011. http://www.designofapproxalgs.com/ "All exact science is dominated by the idea of approximation." Bertrand Russell (1872 – 1970) - Many optimization problems are NP-hard! (For example, the traveling salesperson problem.) - ~ an optimal solution cannot be efficiently computed unless P=NP. - However, good approximate solutions can often be found efficiently! - Techniques for the design and analysis of approximation algorithms arise from studying specific optimization problems. ### Overview #### Combinatorial algorithms - Introduction (Vertex Cover) - Set Cover via Greedy - Shortest Superstring via reduction to SC - Steiner Tree via MST - Multiway Cut via Greedy - *k*-Center via Parametrized Pruning - Min-Degree Spanning Tree and local search - Knapsack via DP and Scaling - Euclidean TSP via Quadtrees #### LP-based algorithms - introduction to LP-Duality - Set Cover via LP Rounding - Set Cover via Primal–Dual Schema - Maximum Satisfiability - Scheduling und Extreme Point Solutions - Steiner Forest via Primal–Dual Lecture 1: Introduction and Vertex Cover Part II: (Cardinality) Vertex Cover # VERTEXCOVER (card.) **Input:** graph *G* **Output:** a minimum **vertex cover**, that is, a minimum-cardinality vertex set $V' \subseteq V(G)$ s. t. every edge is **covered** (i.e., for every $uv \in E(G)$, it holds that $u \in V'$ or $v \in V'$). **Optimum** (OPT = 4) – but in general NP-hard to find :-(Lecture 1: Introduction and Vertex Cover Part III: NP-Optimization Problem ## NP-Optimization Problem #### An NP-optimization problem Π is given by: - A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|. - For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that: - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$. - A polynomial time computable objective function obj_{Π} which assigns a positive objective value $\operatorname{obj}_{\Pi}(I,s) \geq 0$ to any given pair (s,I) with $s \in S_{\Pi}(I)$. - \blacksquare Π is either a minimization or maximization problem. ## VertexCover: NP-Optimization Problem Task: Fill in the gaps for $\Pi = VERTEX COVER$. $D_{\Pi} = \text{ set of all graphs}$ For $$I \in D_{\Pi}$$: $|I| = \text{number of vertices of } G$ graph G $S_{\Pi}(I) = \text{set of all vertex covers of } G$ - Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V(G)| = |I|$ - For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered. $$\operatorname{obj}_{\Pi}(I,s) = |s|$$ Π is a minimization problem. ## Optimum and Optimal Objective Value maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π . A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\underset{\Pi}{\text{obj}}_{\Pi}(I, s^*)$ is minimal among the objective values attained by the feasible solutions of I. The optimal value $obj_{\Pi}(I, s^*)$ of the objective function is denoted by $OPT_{\Pi}(I)$ or simply by OPT in context. maximization problem $\alpha: \mathbb{N} \to \mathbb{Q}$ Let Π be a minimization problem and $\alpha: \mathbb{N} \to \mathbb{Q}$. A factor- α approximation algorithm for Π is an efficient algorithm that provides, for **any** instance $I \in D_{\Pi}$, a feasible solution $s \in S_{\Pi}(I)$ such that $$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \stackrel{\geq}{\leq} \varkappa. \quad \alpha(|I|)$$ Lecture 1: Introduction and Vertex Cover Part IV: Approximation Algorithm for VertexCover ## Approximation Alg. for VertexCover #### Ideas? - Edge-Greedy - Vertex-Greedy ### Quality? **Problem:** How can we estimate $obj_{\Pi}(I,s)/OPT$ – if it is hard to compute OPT? Idea: Find a "good" lower bound $L \leq OPT$ for OPT and compare it to our approximate solution. $$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$ ## Lower Bound by Matchings Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex). M is **maximal** if there is no matching M' with $M' \supseteq M$. $$\frac{\mathsf{OPT} \geq |M|}{\mathsf{OPT} = |M|}?$$ Vertex cover of *M*Vertex cover of *E* $$ALG = 2 \cdot |M| \leq 2 \cdot OPT$$ $$\Rightarrow \frac{\text{obj}_{\Pi}(I,s)}{\text{OPT}} = \frac{\text{ALG}}{\text{OPT}} \leq 2$$ ## Approximation Alg. for VertexCover ``` Algorithm VertexCover(G) M \leftarrow \emptyset foreach e \in E(G) do if e is not adjacent to any edge in M then M \leftarrow M \cup \{e\} return \{u, v \mid uv \in M\} ``` **Theorem.** The above algorithm is a factor-2 approximation algorithm for VERTEXCOVER. Proof. $$ALG = 2 \cdot |M| \leq 2 \cdot OPT$$ ## Approximability of Vertex Cover The best known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$. If P \neq NP, VertexCover cannot be approximated within a factor of 1.3606. VERTEXCOVER cannot be approximated within a factor of $2 - \Theta(1)$ – if the *Unique Games Conjecture* holds. Lecture 1: Introduction and Vertex Cover Part V: An LP-based Algorithm for VERTEXCOVER ### Task Write an integer linear program (ILP) for VERTEXCOVER: Using integer (and/or real) variables, express the problem using - linear constraints and - a linear objective function. You can iterate over the vertices / edges of the given graph G. Variables: for each vertex v of G, we introduce $x_v \in \{0, 1\}$. v in the solution Objective: minimize $\sum_{v \in V(G)} x_v$ Constraints: for each edge uv of G, we require that $$x_u + x_v \geq 1$$. ## Standard ILP Format #### LP relaxation minimize $$\sum_{v \in V(G)} x_v$$ subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ $x_v \in \{0, 1\}$ for each $v \in V(G)$ Problem: It's NP-hard to solve ILPs in general. But: LPs can be solved efficiently (in $O(L \cdot n^{3.5})$ time), where n = # variables and L = total bit complexity of coefficients. Problem': Now we can get fractional solutions, i.e., $x_v \in (0, 1)$. Task: Find a graph G with $OPT_{LP} \neq OPT_{ILP}!$ Solution? Round the LP solution to get an integral solution! ## Rounding the LP Solution minimize $$\sum_{v \in V(G)} x_v$$ subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$ For each $$v \in V(G)$$: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$ Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution? In other words: Is $\{v \in V(G): x'_v = 1\}$ a vertex cover of G? Need to make sure that every edge uv of G is covered. Is $x'_u = 0 = x'_v$ possible? But then $x_u < 0.5$ and $x_v < 0.5$. This contradicts $x_u + x_v \ge 1. \Rightarrow x_u' = 1$ or $x_v' = 1 \Rightarrow (x_v')$ feasible! ### Cost of the Solution minimize $$\sum_{v \in V(G)} x_v$$ subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$ For each $$v \in V(G)$$: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$ $$\mathsf{ALG} = \sum_{v \in V(G)} x_v' \le 2 \cdot \sum_{v \in V(G)} x_v = 2 \cdot \mathsf{OPT}_{\mathsf{LP}} \le 2 \cdot \mathsf{OPT}_{\mathsf{ILP}}$$ **Theorem.** The LP rounding algorithm is a factor-2 approximation algorithm for VERTEXCOVER. ### Cost of the Solution minimize $$\sum_{v \in V(G)} x_v \cdot w(v)$$ subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$ For each $$v \in V(G)$$: Set $x'_{v} = \begin{cases} 1 & \text{if } x_{v} \geq 0.5, \\ 0 & \text{otherwise.} \end{cases}$ $$ALG = \sum_{v \in V(G)} x'_{v} \leq 2 \cdot \sum_{v \in V(G)} x'_{v} = 2 \cdot \mathsf{OPT}_{\mathsf{LP}} \leq 2 \cdot \mathsf{OPT}_{\mathsf{ILP}}$$ **Theorem.** The LP rounding algorithm is a factor-2 approximation algorithm for WeightedVertexCover.