
Algorithmen und Datenstrukturen

Vorlesung 16:
Amortisierte Analyse
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1. Zwischentest: Punkteverteilung
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Verhindere, dass die Tabelle überläuft oder dass Operationen ineffizient werden.

Problem:

Lösung:

Was tun, wenn man die maximale Anzahl zu speichernder Elemente vorab nicht
kennt?

Dynamische Tabellen!



Dynamische Tabellen

Idee.



Dynamische Tabellen

Idee.



Dynamische Tabellen

Idee.
Insert(1)



Dynamische Tabellen

Idee.
Insert(1) 1



Dynamische Tabellen

Idee.
Insert(1) 1
Insert(2)



Dynamische Tabellen

Idee.
Insert(1) 1

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

Insert(2)



Dynamische Tabellen

Idee.
Insert(1) 1

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

Insert(2)



Dynamische Tabellen

Idee.
Insert(1) 1

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.
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■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)



Dynamische Tabellen

Idee.
Insert(1) 11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)



Dynamische Tabellen

Idee.
Insert(1)

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.
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■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)



Dynamische Tabellen

Idee.
Insert(1)

2
1

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)



Dynamische Tabellen

Idee.
Insert(1)

2
1

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.
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■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)



Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.
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■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)



Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?
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Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.
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Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.
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i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11



Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.
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← Kopieren

2
1

3
4

6
5

7

2
1

3
4

2
11



Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
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n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤

geometrische Reihe2)
∑n

j=0 q
j = 1−qn+1

1−q

2
1

3
4

6
5

7

2
1

3
4

2
11



Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
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Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,
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ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher Beiseitegelegtem.⇒

■ Damit’s klappt: wir dürfen nie in die Miesen kommen –



Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,
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Jede Einfügeoperation op i bezahlt ĉi = :
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Buchhaltermethode für dynamische Tabellen
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Push
Pop 0
Multipop(ki ) min{ki , size i} 0



Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.
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Pop 0
Multipop(ki ) min{ki , size i} 0
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■ Jede Push-Operation legt ein Buch auf den Stapel.

Dafür bezahlt sie und legt noch in das Buch.
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– Ja! D.h. Folge von n Operationen dauert Θ(n) Zeit.



Amortisierte Analyse

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓
✓

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge
kleine durchschnittliche Kosten haben –
auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle
mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im
schlechtesten Fall – nicht im Erwartungswert!

Die amortisierte Laufzeit einer Methode ist f , wenn jede Sequenz von k
Aufrufen der Methode Laufzeit ≤ k · f hat (wenn k groß genug ist).
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die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn



Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,
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echte Kosten
amortisierte

Kosten Potentialdifferenz

Teleskopsumme



Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di )− Φ(Di−1)

)
=

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

D.h. amortisierte Kosten
”
bezahlen“ für tatsächliche Kosten.

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Teleskopsumme
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✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.
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To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = 1

Prüfe:

✓
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sind die
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size i , also aktuelle Stapelgröße.
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Prüfe:
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To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Prüfe:

✓

Was
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⇒ ∆Φ(Di ) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:
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To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:
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Prüfe:

ci = min{ki , size i}
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To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:
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Falls die i-te Operation eine (Multi-)Pop-Operation ist:
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To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2
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To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

ĉi = ci +∆ΦDi = 0 (bei Pop ki = 1)

Also: Amortisierte Kosten pro Operation Θ(1).

⇒ Tatsächliche Kosten für n Operationen im worst case Θ(n).

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.
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ĉi = ci +∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)∑n
i=1 ĉi =
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Idee. ■ Kein Kopieren ⇒ ∆Φ(Di ) = 2
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ĉi = ci +∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)∑n
i=1 ĉi =
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i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert
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ĉi = ci +∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)∑n
i=1 ĉi =
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i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert
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ĉi = ci +∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)∑n
i=1 ĉi =
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ĉi = ci +∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)∑n
i=1 ĉi =
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ĉi = ci +∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)∑n
i=1 ĉi =
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ĉi ci ∆Φ(Di ) Φ(Di )i

0
1
2
3
4
5
6

■ ⇒ Φ(Di ) = 1 + 2 · size i − table-sizei



Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di ) = 2

■ Kopieren ⇒ ∆Φ(Di ) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

51 23
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ĉi ci ∆Φ(Di ) Φ(Di )i

0
1
2
3
4
5
6

■ ⇒ Φ(Di ) = 1 + 2 · size i − table-sizei



Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di ) = 2

■ Kopieren ⇒ ∆Φ(Di ) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

51 23

n∑
i=1

ci ≤
n∑

i=1
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i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert
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Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.

Verbinde Extrakosten mit konkreten Objekten der Datenstruktur und bezahle damit teure
Operationen.



Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer gegebenen Folge kleine
durchschnittliche Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓

✓

✓

Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.
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Definiere Potential der gesamten Datenstruktur, so dass mit der Potentialdifferenz teure
Operationen bezahlt werden können.
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