
Algorithmen und Datenstrukturen

Vorlesung 16:
Amortisierte Analyse

1e
0e
2e
2e

1e
0e
0e
0e
2e
2e
2e
2e

1e
2e

2e
2
1

3
4

6
5

7

2
1

3
4

2
11

Alexander Wolff Wintersemester 2024

1. Zwischentest: Punkteverteilung

90 67

n = 157 arithmetisches Mittel = 22,9 Median = 19,5

2. Zwischentest: Punkteverteilung

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
0

2

4

6

8

10

12

43 93

2. Zwischentest: Punkteverteilung

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
0

2

4

6

8

10

12

43 93

n = 136; µ = 30,2; Median = 29,5

2. Zwischentest: Aufgabenübersicht

2 3 4
0%

10%

20%

30%

40%

50%

60%

70%

Da
ten

str
ukt

ure
n

Qu
ick

So
rt

Ha
shi
ng

2. Zwischentest: Aufgabenübersicht

1 2 3 4 5 6
0%

10%

20%

30%

40%

50%

60%

70%

Kla
mm

era
usd

rüc
ke

Da
ten

str
ukt

ure
n

Qu
ick

So
rt

Ha
shi
ng

Ps
eud

oco
de

Bä
um

e

Erw
art

un
gsw

ert

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft oder dass Operationen ineffizient werden.

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft oder dass Operationen ineffizient werden.

Problem: Was tun, wenn man die maximale Anzahl zu speichernder Elemente vorab nicht
kennt?

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft oder dass Operationen ineffizient werden.

Problem:

Lösung:

Was tun, wenn man die maximale Anzahl zu speichernder Elemente vorab nicht
kennt?

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft oder dass Operationen ineffizient werden.

Problem:

Lösung:

Was tun, wenn man die maximale Anzahl zu speichernder Elemente vorab nicht
kennt?

Dynamische Tabellen!

Dynamische Tabellen

Idee.

Dynamische Tabellen

Idee.

Dynamische Tabellen

Idee.
Insert(1)

Dynamische Tabellen

Idee.
Insert(1) 1

Dynamische Tabellen

Idee.
Insert(1) 1
Insert(2)

Dynamische Tabellen

Idee.
Insert(1) 1

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

Insert(2)

Dynamische Tabellen

Idee.
Insert(1) 1

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

Insert(2)

Dynamische Tabellen

Idee.
Insert(1) 1

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

Insert(2)

Dynamische Tabellen

Idee.
Insert(1) 11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

Insert(2)

Dynamische Tabellen

Idee.
Insert(1) 11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Dynamische Tabellen

Idee.
Insert(1) 11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Dynamische Tabellen

Idee.
Insert(1)

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Dynamische Tabellen

Idee.
Insert(1)

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Dynamische Tabellen

Idee.
Insert(1)

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Dynamische Tabellen

Idee.
Insert(1)

2
1

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Dynamische Tabellen

Idee.
Insert(1)

2
1

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Dynamische Tabellen

Idee.
Insert(1)

2
1

3
2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4
5

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4
5

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort.

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)

falsch!

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

O

Insert(2)

Insert(3)

Insert(5)

falsch!

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

O

Insert(2)

Insert(3)

Insert(5)

, genauer
falsch!

Dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse. Welche Laufzeit benötigen n Einfügeoperationen im schlimmsten Fall?

Antwort. ■ Tabelle wird genau ⌈log2 n⌉ mal kopiert.

■ Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

■ Wenn die Tabelle voll ist,
fordere eine doppelt so große an.

■ Kopiere alle Einträge von alter in neue Tabelle.

■ Gib Speicher für alte Tabelle frei.

. . .

O

Insert(2)

Insert(3)

Insert(5)

Θ(n)., genauer

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2j+

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn +

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn +

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn +

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤

geometrische Reihe2)
∑n

j=0 q
j = 1−qn+1

1−q

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤ n +
1− 2log2(n−1)+1

1− 2

geometrische Reihe2)
∑n

j=0 q
j = 1−qn+1

1−q

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤ n +
1− 2log2(n−1)+1

1− 2

geometrische Reihe2)
∑n

j=0 q
j = 1−qn+1

1−q

= n + 2log2(n−1)+1 − 1

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤ n +
1− 2log2(n−1)+1

1− 2

= n + 2 · 2log2(n−1) − 1
geometrische Reihe2)

∑n
j=0 q

j = 1−qn+1

1−q

= n + 2log2(n−1)+1 − 1

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤ n +
1− 2log2(n−1)+1

1− 2

= n + 2 · 2log2(n−1) − 1
geometrische Reihe2)

∑n
j=0 q

j = 1−qn+1

1−q

= n + 2log2(n−1)+1 − 1

= n + 2(n − 1)− 1

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤ n +
1− 2log2(n−1)+1

1− 2

= n + 2 · 2log2(n−1) − 1

= 3n − 3

geometrische Reihe2)
∑n

j=0 q
j = 1−qn+1

1−q

= n + 2log2(n−1)+1 − 1

= n + 2(n − 1)− 1

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤ n +
1− 2log2(n−1)+1

1− 2

= n + 2 · 2log2(n−1) − 1

= 3n − 3 ∈ Θ(n)

geometrische Reihe2)
∑n

j=0 q
j = 1−qn+1

1−q

= n + 2log2(n−1)+1 − 1

= n + 2(n − 1)− 1

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤ n +
1− 2log2(n−1)+1

1− 2

= n + 2 · 2log2(n−1) − 1

= 3n − 3 ∈ Θ(n)

D.h. die durchschnittlichen (amortisierten) Kosten sind Θ(1).

geometrische Reihe2)
∑n

j=0 q
j = 1−qn+1

1−q

= n + 2log2(n−1)+1 − 1

= n + 2(n − 1)− 1

2
1

3
4

6
5

7

2
1

3
4

2
11

Genauere Abschätzung: Aggregationsmethode

Für i = 1, . . . , n sei
ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen

← Kopieren

Also betragen die Kosten für n Einfügeoperationen

n∑
1

ci =

⌊log2(n−1)⌋∑
j=0

2jn + ≤ n +
1− 2log2(n−1)+1

1− 2

= n + 2 · 2log2(n−1) − 1

= 3n − 3 ∈ Θ(n)

D.h. die durchschnittlichen (amortisierten) Kosten sind Θ(1).

geometrische Reihe2)
∑n

j=0 q
j = 1−qn+1

1−q

= n + 2log2(n−1)+1 − 1

= n + 2(n − 1)− 1

2
1

3
4

6
5

7

2
1

3
4

2
11

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben –

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle mögl. Ergebnisse,
gewichtet nach Wahrscheinlichkeit) betrachten.

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle mögl. Ergebnisse,
gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im schlechtesten
Fall – nicht im Erwartungswert!

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle mögl. Ergebnisse,
gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im schlechtesten
Fall – nicht im Erwartungswert!

Die amortisierte Laufzeit einer Methode ist f , wenn jede Sequenz von k Aufrufen der
Methode Laufzeit ≤ k · f hat (wenn k groß genug ist).

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle mögl. Ergebnisse,
gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im schlechtesten
Fall – nicht im Erwartungswert!

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

Die amortisierte Laufzeit einer Methode ist f , wenn jede Sequenz von k Aufrufen der
Methode Laufzeit ≤ k · f hat (wenn k groß genug ist).

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle mögl. Ergebnisse,
gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im schlechtesten
Fall – nicht im Erwartungswert!

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

Die amortisierte Laufzeit einer Methode ist f , wenn jede Sequenz von k Aufrufen der
Methode Laufzeit ≤ k · f hat (wenn k groß genug ist).

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle mögl. Ergebnisse,
gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im schlechtesten
Fall – nicht im Erwartungswert!

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓

Die amortisierte Laufzeit einer Methode ist f , wenn jede Sequenz von k Aufrufen der
Methode Laufzeit ≤ k · f hat (wenn k groß genug ist).

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge kleine durchschnittliche
Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle mögl. Ergebnisse,
gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im schlechtesten
Fall – nicht im Erwartungswert!

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓

Die amortisierte Laufzeit einer Methode ist f , wenn jede Sequenz von k Aufrufen der
Methode Laufzeit ≤ k · f hat (wenn k groß genug ist).

Buchhaltermethode

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi > ci ⇒

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi > ci ⇒ Wir legen etwas beiseite.

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi < ci

ĉi > ci ⇒ Wir legen etwas beiseite.

⇒

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi < ci

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher Beiseitegelegtem.⇒

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi < ci

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher Beiseitegelegtem.⇒

■ Damit’s klappt: wir dürfen nie in die Miesen kommen –

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi < ci

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher Beiseitegelegtem.⇒

■ Damit’s klappt: wir dürfen nie in die Miesen kommen –

Guthaben
n∑

i=1

ĉi −
n∑

i=1

ci darf nicht negativ werden!

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi < ci

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher Beiseitegelegtem.⇒

■ Damit’s klappt: wir dürfen nie in die Miesen kommen –

Dann gilt

Guthaben
n∑

i=1

ĉi −
n∑

i=1

ci darf nicht negativ werden!

n∑
i=1

ĉi ≥
n∑

i=1

ci .

Buchhaltermethode

■ Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi < ci

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher Beiseitegelegtem.⇒

■ Damit’s klappt: wir dürfen nie in die Miesen kommen –

Dann gilt

Guthaben
n∑

i=1

ĉi −
n∑

i=1

ci darf nicht negativ werden!

n∑
i=1

ĉi ≥
n∑

i=1

ci .
D.h. amortisierte Kosten
sind obere Schranke für
tatsächliche Kosten!

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die Datenstruktur nie Miese macht.

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die Datenstruktur nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓
D.h. amortisierte Kosten
sind obere Schranke für
tatsächliche Kosten!

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die Datenstruktur nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓

= 3n
D.h. amortisierte Kosten
sind obere Schranke für
tatsächliche Kosten!

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die Datenstruktur nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓

= 3n = Θ(n)
D.h. amortisierte Kosten
sind obere Schranke für
tatsächliche Kosten!

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = :

■ fürs tatsächliche Einfügen und
■ fürs Kopieren in die nächstgrößere Tabelle.

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die Datenstruktur nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓

D.h. die tatsächlichen Kosten für n Einfügeoperationen betragen Θ(n).

= 3n = Θ(n)
D.h. amortisierte Kosten
sind obere Schranke für
tatsächliche Kosten!

Buchhaltermethode für Stapel mit Multipop

Operation

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[]A
1 2 . . . top

Buchhaltermethode für Stapel mit Multipop

key[] Multipop(int k)

Operation

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[]A
1 2 . . . top

neu!

Buchhaltermethode für Stapel mit Multipop

key[] Multipop(int k) B = new key[k]
while k > 0 and not Empty() do

B[k] = Pop()
k = k − 1

return B

Operation

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[]A
1 2 . . . top

neu!

Buchhaltermethode für Stapel mit Multipop

key[] Multipop(int k) B = new key[k]
while k > 0 and not Empty() do

B[k] = Pop()
k = k − 1

return B

Operation

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[]A
1 2 . . . top

neu! Aufgabe.
Vervollständigen Sie den
Pseudocode.

Buchhaltermethode für Stapel mit Multipop

key[] Multipop(int k) B = new key[k]
while k > 0 and not Empty() do

B[k] = Pop()
k = k − 1

return B

Operation

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[]A
1 2 . . . top

neu!

Buchhaltermethode für Stapel mit Multipop

key[] Multipop(int k) B = new key[k]
while k > 0 and not Empty() do

B[k] = Pop()
k = k − 1

return B

Operation

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[]A
1 2 . . . top

neu!

Buchhaltermethode für Stapel mit Multipop

key[] Multipop(int k) B = new key[k]
while k > 0 and not Empty() do

B[k] = Pop()
k = k − 1

return B

Operation

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[]A
1 2 . . . top

neu!

Buchhaltermethode für Stapel mit Multipop

key[] Multipop(int k) B = new key[k]
while k > 0 and not Empty() do

B[k] = Pop()
k = k − 1

return B

Operation

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[]A
1 2 . . . top

neu!

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Geht das gut?

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Geht das gut?

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die tatsächlichen!

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Geht das gut?

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die tatsächlichen!

■ Jede Push-Operation legt ein Buch auf den Stapel.

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Geht das gut?

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die tatsächlichen!

■ Jede Push-Operation legt ein Buch auf den Stapel.

Dafür bezahlt sie und legt noch in das Buch.

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Geht das gut?

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die tatsächlichen!

■ Jede Push-Operation legt ein Buch auf den Stapel.

Dafür bezahlt sie und legt noch in das Buch.

■ Jede (Multi-)Pop-Operation wird mit den Euros in den Büchern,
die sie wegnimmt, komplett bezahlt.

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Geht das gut?

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die tatsächlichen!

■ Jede Push-Operation legt ein Buch auf den Stapel.

Dafür bezahlt sie und legt noch in das Buch.

■ Jede (Multi-)Pop-Operation wird mit den Euros in den Büchern,
die sie wegnimmt, komplett bezahlt.

– Ja!

Buchhaltermethode für Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operation i tatsächliche Kosten ci amortisierte Kosten ĉi
Push
Pop 0
Multipop(ki) min{ki , size i} 0

Geht das gut?

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die tatsächlichen!

■ Jede Push-Operation legt ein Buch auf den Stapel.

Dafür bezahlt sie und legt noch in das Buch.

■ Jede (Multi-)Pop-Operation wird mit den Euros in den Büchern,
die sie wegnimmt, komplett bezahlt.

– Ja! D.h. Folge von n Operationen dauert Θ(n) Zeit.

Amortisierte Analyse

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓
✓

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge
kleine durchschnittliche Kosten haben –
auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle
mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im
schlechtesten Fall – nicht im Erwartungswert!

Die amortisierte Laufzeit einer Methode ist f , wenn jede Sequenz von k
Aufrufen der Methode Laufzeit ≤ k · f hat (wenn k groß genug ist).

Amortisierte Analyse

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓
✓

...bedeutet zu zeigen, dass die Operationen einer gegebenen Folge
kleine durchschnittliche Kosten haben –
auch wenn einzelne Operationen in der Folge teuer sind!

Auch randomisierte Analyse kann man als Durchschnittsbildung (über alle
mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit) betrachten.

Bei amortisierter Analyse geht es jedoch um die durchschnittliche Laufzeit im
schlechtesten Fall – nicht im Erwartungswert!

Die amortisierte Laufzeit einer Methode ist f , wenn jede Sequenz von k
Aufrufen der Methode Laufzeit ≤ k · f hat (wenn k groß genug ist).

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R.

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel. Bank macht keine Miesen.

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Bank macht keine Miesen.

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di)

Bank macht keine Miesen.

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Teleskopsumme

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)
=

∑n
i=1 ci + Φ(Dn)− Φ(D0)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Teleskopsumme

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)
=

∑n
i=1 ci + Φ(Dn)− Φ(D0)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Teleskopsumme

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)
=

∑n
i=1 ci + Φ(Dn)− Φ(D0)

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Teleskopsumme

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)
=

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Teleskopsumme

Potentialmethode

Idee. Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn
op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel.

Also fordern wir Φ(Di) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di)− Φ(Di−1)

)
=

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

D.h. amortisierte Kosten
”
bezahlen“ für tatsächliche Kosten.

Bank macht keine Miesen.

echte Kosten
amortisierte

Kosten Potentialdifferenz

Teleskopsumme

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) = size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0. ✓
size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Prüfe:

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:Prüfe:

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1

Prüfe:

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi

Prüfe:

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Prüfe:

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

Prüfe:

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

ĉi = ci +∆ΦDi

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

ĉi = ci +∆ΦDi = 0

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

ĉi = ci +∆ΦDi = 0 (bei Pop ki = 1)

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

ĉi = ci +∆ΦDi = 0 (bei Pop ki = 1)

Also:

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

ĉi = ci +∆ΦDi = 0 (bei Pop ki = 1)

Also: Amortisierte Kosten pro Operation Θ(1).

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für Stapel mit Multipop

To do: Definiere Potentialfunktion –

in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di) =

⇒ Φ(D0) = 0 und Φ(D1), . . . ,Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di) = 1 und ĉi = ci +∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine (Multi-)Pop-Operation ist:

⇒ ∆Φ(Di) = −min{ki , size i}

Prüfe:

ci = min{ki , size i}

ĉi = ci +∆ΦDi = 0 (bei Pop ki = 1)

Also: Amortisierte Kosten pro Operation Θ(1).

⇒ Tatsächliche Kosten für n Operationen im worst case Θ(n).

✓

Was
sind die
amort.
Kosten?

size i , also aktuelle Stapelgröße.

Potentialmethode für dynamische Tabellen

Idee.

Potentialmethode für dynamische Tabellen

Idee.

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee. ■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1) 1

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
1

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1) 1

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
1 2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1) 1

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
21 2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1) 1

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
23 1 2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1) 1
Insert(2)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
23 1 2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
11

Insert(2)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
23 1 2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
11

Insert(2)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
23 1

2
2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
11

Insert(2)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
23 1

2
2
1

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
11

Insert(2)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3

3 1
2

2
1

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
11

Insert(2)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3

3 1
3 2

2
1

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3

3 1
3 2

2
1

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
1

3
2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3

3 1
3 2

2
1

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
1

3
2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3

3 1
3 2

2
1

3

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
1

3
2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3

3 1
3 2

2
1

3 0

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
1

3
2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3

3 1
3 2

2
1

3 0

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

2
1

3
2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3

3 1
3 2

2
1

3 03

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3

3 1
3 2

2
1

3 03

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3

3 1
3 2

2
1

3 03

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3

3 1
3 2

2
1

3 03
1

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3

3 1
3 2

2
1

3 03
1 2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5

3 1
3 2

2
1

3 03
1 2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

Insert(2)

Insert(3)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5

3 1
3 2

2
1

3 03
1 23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5

3 1
3 2

2
1

3 03
1 23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5

3 1
3 2

2
1

3 03
1 23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5

3 1
3 2

2
1

3 03
1 23
5

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5

3 1
3 2

2
1

3 03
1 23
5 −2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −2

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

2
1

3
4
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5
6

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5
6

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

51 23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5
6

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

51 23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5
6

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

51 23

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5
6

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Potentialmethode für dynamische Tabellen

Idee.
Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

Insert(2)

Insert(3)

Insert(5)

■ Kein Kopieren ⇒ ∆Φ(Di) = 2

■ Kopieren ⇒ ∆Φ(Di) = 2− (i − 1)

0
2
3
3
5
3

3 1
3 2

2
1

3 03
1 23
5 −23

51 23

n∑
i=1

ci ≤
n∑

i=1

ĉi = 3n = Θ(n)

ĉi = ci +∆Φ(Di), wobei ∆Φ(Di) = Φ(Di)− Φ(Di−1)∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) ≥

∑n
i=1 ci

i − 1 Elemente werden kopiert

ĉi ci ∆Φ(Di) Φ(Di)i

0
1
2
3
4
5
6

■ ⇒ Φ(Di) = 1 + 2 · size i − table-sizei

Zusammenfassung

Zeige mit amortisierter Analyse, dass die Operationen einer gegebenen Folge kleine
durchschnittliche Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer gegebenen Folge kleine
durchschnittliche Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer gegebenen Folge kleine
durchschnittliche Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓
Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.

Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer gegebenen Folge kleine
durchschnittliche Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓

✓
Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.

Verbinde Extrakosten mit konkreten Objekten der Datenstruktur und bezahle damit teure
Operationen.

Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer gegebenen Folge kleine
durchschnittliche Kosten haben – auch wenn einzelne Operationen in der Folge teuer sind!

■ Aggregationsmethode

■ Buchhaltermethode

■ Potentialmethode

✓

✓

✓

Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.

Verbinde Extrakosten mit konkreten Objekten der Datenstruktur und bezahle damit teure
Operationen.

Definiere Potential der gesamten Datenstruktur, so dass mit der Potentialdifferenz teure
Operationen bezahlt werden können.

	Amortisierte Analyse
	1. Zwischentest: Punkteverteilung
	2. Zwischentest: Punkteverteilung
	2. Zwischentest: Aufgabenübersicht
	Einstiegsbeispiel
	Hash-Tabellen
	Dynamische Tabellen

	Aggregationsmethode
	Amortisierte Analyse
	Buchhaltermethode
	Definition
	Dynamische Tabellen
	Stapel mit Multipop
	Analyse Stapel mit Multipop

	Potentialmethode
	Definition
	Stapel mit Multipop
	Dynamische Tabellen

	Zusammenfassung

