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interactions in Star Wars Episode I
[https://harmoniccode.blogspot.com/2020/11/arc-charts.html]
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migration between continents
[https://www.data-to-viz.com/story/AdjacencyMatrix.html]

transcription factors in biology
[Wang, Xuejin, Zhao 2020:

Exploration of the Effects of Different Blue LED Light Intensities on Flavonoid

and Lipid Metabolism in Tea Plants via Transcriptomics and Metabolomics]
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Drawing Style: Chord Diagrams

“cut” circle

network of co-authors of Vincent Ranwez (edge ⇔ co-authors)
[https://www.data-to-viz.com/story/AdjacencyMatrix.html]

“glue” sequence

Note that, if we keep the
order of the vertices, the
crossings between the
edges remain the same.
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Task: Find a linear order ≺ of V (G) such that there is a planar drawing where

� the vertices V (G) in order ≺ are arranged along a horizontal line ` and

� the edges E(G) are drawn as x-monotone arcs in the half plane above `.

a

b

c

d

e `

Why not using the half plane below `?
Or even more half planes?
→ book embeddings



7 - 1

Book Embeddings (Stack Layouts)

Given: � graph G

� integer k

a

b

c d

e

k = 3



7 - 2

Book Embeddings (Stack Layouts)

Given: � graph G

� integer k

a

b

c d

e

k = 3



7 - 3

Book Embeddings (Stack Layouts)

Given: � graph G

� integer k
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� Whenever we encounter a vertex v, put the edges starting at v into a stack.
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No, because this would be a planar drawing of K5. ⇒ sn(K5) = 3

� Does K5 have a 1-page queue layout?

No, because if we have all edges on one page, there are nestings.

� Does K5 have a 2-page queue layout? Yes!
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Stack Number and Queue Number

� Some graphs require more pages than other graphs to admit a stack (queue) layout.

� We seek for a measure how well a graph can be represented by a stack (queue) layout.

A graph G has stack number sn(G) = k (queue number qn(G) = k)
if G admits a k-page stack (queue) layout but no (k− 1)-page stack (queue) layout.

Example:

� We have seen that K5 has a 3-page stack layout.

� Does K5 have a 2-page stack layout?

No, because this would be a planar drawing of K5. ⇒ sn(K5) = 3

� Does K5 have a 1-page queue layout?

No, because if we have all edges on one page, there are nestings.

� Does K5 have a 2-page queue layout? Yes! ⇒ qn(K5) = 2
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

a

a
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

a b

a
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

ac b c

a
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

ac bd c d

a
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

ac bd ce d

a

e
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

ac bd ce d

a

e

f

f
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

ac bd ce d

a

e

f

f g

g
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

ac bd ce d

a

e

f

f g

g
h

h
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

ac bd ce d

a

e

f

f g

g
h

h

Note, that the planar
embedding is preserved.
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1-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) = 1 ⇔ G is outerplanar

Recall: a graph is outerplanar if it
has a planar drawing where every
vertex is incident to the outer face.

Proof Idea.

“⇒”: Clearly, a 1-page stack layout can be perceived as a planar
drawing where the vertices lie at the outer face.

“⇐”: Given an outerplanar drawing of G,
traverse the outer face in counterclockwise order and place
the vertices in this order onto the spine.

b

ac bd ce d

a

e

f

f g

g
h

h

Note, that the planar
embedding is preserved.

We can think of
“morphing” the one
drawing into the other.

�
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycle
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.

� The red–green / red–blue edges induce two outerplanar embed-
dings with the same cyclic order of the vertices on the outer face.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.

� The red–green / red–blue edges induce two outerplanar embed-
dings with the same cyclic order of the vertices on the outer face.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.

� The red–green / red–blue edges induce two outerplanar embed-
dings with the same cyclic order of the vertices on the outer face.

make this the outer face
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.

� The red–green / red–blue edges induce two outerplanar embed-
dings with the same cyclic order of the vertices on the outer face.

� Put each one into a separate stack
(same order of vertices on the spine).

make this the outer face
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.

� The red–green / red–blue edges induce two outerplanar embed-
dings with the same cyclic order of the vertices on the outer face.

� Put each one into a separate stack
(same order of vertices on the spine).

make this the outer face
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.

� The red–green / red–blue edges induce two outerplanar embed-
dings with the same cyclic order of the vertices on the outer face.

� Put each one into a separate stack
(same order of vertices on the spine).

make this the outer face
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇐”: � Let Γ be a planar drawing of a graph with a Hamiltonian cycle.

� In Γ, color the edges of the Hamiltonian cycle red,
the edges inside green, and the edges outside blue.

� The red–green / red–blue edges induce two outerplanar embed-
dings with the same cyclic order of the vertices on the outer face.

� Put each one into a separate stack
(same order of vertices on the spine).

make this the outer face
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.

� Clearly, Γ is planar.
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.

� Clearly, Γ is planar.

� Add missing edges such that all pairs of neighboring
vertices on the spine are connected (always possible).



12 - 19

2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.

� Clearly, Γ is planar.

� Add missing edges such that all pairs of neighboring
vertices on the spine are connected (always possible).
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.

� Clearly, Γ is planar.

� Add missing edges such that all pairs of neighboring
vertices on the spine are connected (always possible).

� If absent, add edge from the first to the last vertex
(always possible).
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.

� Clearly, Γ is planar.

� Add missing edges such that all pairs of neighboring
vertices on the spine are connected (always possible).

� If absent, add edge from the first to the last vertex
(always possible).
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.

� Clearly, Γ is planar.

� Add missing edges such that all pairs of neighboring
vertices on the spine are connected (always possible).

� If absent, add edge from the first to the last vertex
(always possible).

� The Hamiltonian cycle traverses all vertices on the
spine in order.

�
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2-Page Stack Layouts

Theorem. [Bernhart & Kainen 1979]

For a graph G holds: sn(G) ≤ 2 ⇔ G is a subgraph of a planar Hamiltonian graph

i.e., a graph that has a Hamiltonian cycleProof.

“⇒”: � Consider a 2-page stack layout as a drawing Γ.

� Clearly, Γ is planar.

� Add missing edges such that all pairs of neighboring
vertices on the spine are connected (always possible).

� If absent, add edge from the first to the last vertex
(always possible).

� The Hamiltonian cycle traverses all vertices on the
spine in order.

�

This result includes planar bipartite and series-parallel graphs.
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/27 n2/3
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/27 n2/3

(not all planar
graphs can be

extended to have a
Hamiltonian cycle)
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/2

Conjecture. [Bernhart & Kainen 1979]

For n→∞, there are n-vertex planar graphs such that sn(G)→∞.
(The stack number of planar graphs is not bounded by a constant.)

7 n2/3
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/2

Conjecture. [Bernhart & Kainen 1979]

For n→∞, there are n-vertex planar graphs such that sn(G)→∞.
(The stack number of planar graphs is not bounded by a constant.)

7

Theorem. [Buss & Shor 1984]

For every planar graph G, sn(G) ≤ 9.

n2/3
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/2

Conjecture. [Bernhart & Kainen 1979]

For n→∞, there are n-vertex planar graphs such that sn(G)→∞.
(The stack number of planar graphs is not bounded by a constant.)

7 n2/3

Theorem. [Heath 1984]

For every planar graph G, sn(G) ≤ 7.
Theorem. [Buss & Shor 1984]

For every planar graph G, sn(G) ≤ 9.
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/2

Conjecture. [Bernhart & Kainen 1979]

For n→∞, there are n-vertex planar graphs such that sn(G)→∞.
(The stack number of planar graphs is not bounded by a constant.)

7 n2/3

Theorem. [Yannakakis 1986]

For every planar graph G, sn(G) ≤ 4.

Theorem. [Buss & Shor 1984]

For every planar graph G, sn(G) ≤ 9.
Theorem. [Heath 1984]

For every planar graph G, sn(G) ≤ 7.
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/2

Conjecture. [Bernhart & Kainen 1979]

For n→∞, there are n-vertex planar graphs such that sn(G)→∞.
(The stack number of planar graphs is not bounded by a constant.)

7 n2/3

Theorem. [Yannakakis 1986]

For every planar graph G, sn(G) ≤ 4.

Theorem. [Buss & Shor 1984]

For every planar graph G, sn(G) ≤ 9.
Theorem. [Heath 1984]

For every planar graph G, sn(G) ≤ 7.

But are there planar graphs that need 4 stacks?
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/2

Conjecture. [Bernhart & Kainen 1979]

For n→∞, there are n-vertex planar graphs such that sn(G)→∞.
(The stack number of planar graphs is not bounded by a constant.)

7 n2/3

Theorem. [Yannakakis 1986]

For every planar graph G, sn(G) ≤ 4.

Theorem. [Buss & Shor 1984]

For every planar graph G, sn(G) ≤ 9.
Theorem. [Heath 1984]

For every planar graph G, sn(G) ≤ 7.

But are there planar graphs that need 4 stacks?

Yes! (The planar graph presented by Bekos et al. has 275 vertices and 819 edges.)

Theorem. [Yannakakis 2020,

Bekos, Kaufmann, Klute, Pupyrev, Raftopoulou & Ueckerdt 2020]

There is a planar graph G with sn(G) ≥ 4.
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of Kn?
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of Kn?
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of Kn?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/27 n2/3
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of Kn?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/27 n2/3

Theorem. [Bernhart & Kainen 1979]

For n ≥ 4, sn(Kn) = dn/2e.
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of Kn?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/27 n2/3

Theorem. [Bernhart & Kainen 1979]

For n ≥ 4, sn(Kn) = dn/2e.
Proof.

Assume that n is even (the case for odd n is similar).
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of Kn?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/27 n2/3

Theorem. [Bernhart & Kainen 1979]

For n ≥ 4, sn(Kn) = dn/2e.
Proof.

Assume that n is even (the case for odd n is similar).

We first show that sn(Kn) ≥ n/2.
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
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� If there was a nesting uv above xy, we would find u before x in the BFS, but discover a
neighbor of x before a neighbor of u.

u x y v
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Theorem. [Heath & Rosenberg 1992]

For every leveled-planar graph G, qn(G) = 1.

A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
connect vertices of adjacent levels.

Theorem. [Heath & Rosenberg 1992]

For a graph G holds:
qn(G) = 1 ⇔ G is arched leveled-planar.

A graph is arched leveled-planar if it has
a leveled-planar drawing where additionally
vertices on the same level may be connected
by edges that enclose all lower levels.

Proof. → Exercise!
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2-Page and 3-Page Queue Layouts

Theorem. [Heath & Rosenberg 1992,

Rengarajan & Veni Madhavan 1995.]

For every outerplanar graph G, qn(G) ≤ 2.

Theorem. [Rengarajan & Veni Madhavan 1996.]

For every series-parallel graph G, qn(G) ≤ 3.
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We have seen planar graphs have stack number at most 4. What is the max. queue number?
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For every planar graph G, qn(G) ∈ O(
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√
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Theorem. [Heath & Rosenberg 1992]
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� With n vertices, there cannot be any rainbow having a size larger than n/2.
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The stack number can be linear in n. What about the the queue number of Kn?

2 3 4 9 42 log(n)
√
n n/8 n/4 n/27 n2/3

Theorem. [Heath & Rosenberg 1992]

For any n ∈ N, qn(Kn) = bn/2c.
Proof Sketch.

Assume that n is even (the case for odd n is similar).

We first show that qn(Kn) ≥ n/2.

� Consider any order ≺ of the vertices on the spine and name them v1, . . . , vn accordingly.

� Consider the set of edges {vivn+1−i | i ∈ {1, . . . , n/2}}.

� These are n/2 pairwise nesting edges (a n/2-rainbow). Each edge needs a separate queue.

Now we show that qn(Kn) ≤ n/2.

� With n vertices, there cannot be any rainbow having a size larger than n/2.

� Then, qn(Kn) ≤ n/2, follows directly from Lemma 1. �
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Theorem. [Chung, Leighton & Rosenberg 1987]

Deciding whether a graph G has stack number sn(G) ≤ k is NP-complete for k ≥ 2.

Proof Sketch.

� If we have a k-page stack layout given, we can verify its correctness in polynomial time.
This shows containment in NP.

� The problem of finding a Hamiltonian cycle in a planar graph is NP-complete.

� By the characterization of graphs with stack number 2, finding a Hamiltonian cycle
in a planar graph is equivalent to deciding whether sn(G) ≤ 2. �

The difficult part in the Hamiltonian-cycle problem is to find a permutation of the vertices.

So, is determining the stack number easier if the order of the vertices on the spine is given?
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e
� The intersection representation of a circle graph can be seen as a

linear layout (chords ↔ edges, endpoints on the circle ↔ vertices).

� The circle graph is the conflict graph for the stack assignment
(two edge can go to the same stack if and only if they don’t share
an edge in the circle graph).

� Coloring the circle graph with k colors is equivalent to
assigning the edges to k stacks.

� Coloring circle graphs is NP-complete for k ≥ 4 colors. �
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Theorem. [Heath & Rosenberg 1992]

Deciding whether a graph G has queue number qn(G) ≤ k is NP-complete for k ≥ 1.

Proof Sketch.

� Deciding whether a given graph is arched leveled-planar is NP-complete.
Hence, deciding whether qn(G) = 1 is NP-hard.

Theorem. [Heath & Rosenberg 1992]

Deciding whether a graph G given with an order of the vertices on
the spine has queue number qn(G) ≤ k is polynomial-time solvable.

Proof Sketch.

� Determine the size r of the largest rainbow in polynomial time.

� If r ≤ k, then there is k-page queue layout due to Lemma 1. �

�

︸ ︷︷ ︸
r

Details in exercise!
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Discussion

� There are surprisingly many applications of stack and queue layouts, e.g., in computational
biology (RNA folding), VLSI design, traffic control, . . .

� By the book-embedding paradigm, page number and book thickness are alternative
terms for stack number.

� There are many more variants, e.g., for fixed vertex order, directed graphs, using other
data structures, . . .
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