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This result includes planar bipartite and series-parallel graphs.
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Stack Layouts of Planar Graphs

We have seen that the outerplanar graphs have stack number 1 and specific planar graphs
stack number 2. What is the maximum stack number of any n-vertex planar graph?

R 3 @ 7 9 4 logn) va 0¥ a8 n/s4  n)2

Berphasi=deteatfen 1979]
For n — oo, there are n-verfex=ptene=graphs such that sn(G) — co.
The stz qmber of planar graphs is not bounded by a—eenstant.
For every planar graph G, sn(G) < 9. For every planar graph GG, sn(G) < 7.
Theorem. [Yannakakis 1986] Theorem. [Yannakakis 2020,
For every pIanar graph G, SI‘](G) S 4. Bekos, Kaufmann, Klute, Pupyrev, Raftopoulou & Ueckerdt 2020]

There is a planar graph G with sn(G) > 4.

But are there planar graphs that need 4 stacks?
Yes! (The planar graph presented by Bekos et al. has 275 vertices and 819 edges.)
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Theorem. [Bernhart & Kainen 1979]
For n > 4, sn(K,) = [n/2].
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

14 -



Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7

2 3 4 7 9 42 log(n) /n n?3 n/8 n/b @

Theorem. [Bernhart & Kainen 1979] Proof.

Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We first show that sn(K,,) > n/2.
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Theorem. [Bernhart & Kainen 1979] Proof.

For n > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).
We first show that sn(K,,) > n/2.

B Consider any order < of the vertices on the spine and name them vq, ..., v, accordingly.
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We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
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Theorem. [Bernhart & Kainen 1979] Proof.

For n > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).
We first show that sn(K,,) > n/2.

B Consider any order < of the vertices on the spine and name them vq, ..., v, accordingly.

B Consider the set of edges {v;v,,/24; | 7 € {1,...,n/2}}.
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7

2 3 4 7 9 42  log(n) vn n?3® n/8 n/4 @

Theorem. [Bernhart & Kainen 1979] Proof.

For n > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).
We first show that sn(K,,) > n/2.

B Consider any order < of the vertices on the spine and name them vq, ..., v, accordingly.

B Consider the set of edges {v;v,,/24; | 7 € {1,...,n/2}}.

B These are n/2 pairwise crossing edges (n/2-twist).

v1 U2 vz V241 Un—1 Un
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7

2 3 4 7 9 42  log(n) vn n?3® n/8 n/4 @

Theorem. [Bernhart & Kainen 1979] Proof.

For n > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).
We first show that sn(K,,) > n/2.

B Consider any order < of the vertices on the spine and name them vq, ..., v, accordingly.

B Consider the set of edges {v;v,,/24; | 7 € {1,...,n/2}}.

B These are n/2 pairwise crossing edges (n/2-twist).

B Each of these edges needs a separate stack.

v1 U2 vz V241 Un—1 Un
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.

Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2.
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We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.

Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

POt ® ... e
We now show that sn(kK,,) < n/2. g
B Arrange the vertices of K,, on a circle. .
. )
e o
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.

Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).
We now show that sn(K,,) < n/2. »

®m Arrange the vertices of K, on a circle.

B Add boundary edges and inner diagonals as follows:
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2. -

®m Arrange the vertices of K, on a circle.

B Add boundary edges and inner diagonals as follows:

B This is an outerplanar graph drawing and can go to one stack.
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2. -

B Arrange the vertices of K,, on a circle.
B Add boundary edges and inner diagonals as follows:
B This is an outerplanar graph drawing and can go to one stack.

B “Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s).
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2. -

B Arrange the vertices of K,, on a circle.
B Add boundary edges and inner diagonals as follows:
B This is an outerplanar graph drawing and can go to one stack.

B “Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s).
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2. -

B Arrange the vertices of K,, on a circle.
B Add boundary edges and inner diagonals as follows:
B This is an outerplanar graph drawing and can go to one stack.

B “Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s).
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2. -

®m Arrange the vertices of K, on a circle.

B Add boundary edges and inner diagonals as follows:

B This is an outerplanar graph drawing and can go to one stack.

B “Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s).
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2.

B Arrange the vertices of K,, on a circle.
B Add boundary edges and inner diagonals as follows:
B This is an outerplanar graph drawing and can go to one stack.

B “Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s).
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2.

B Arrange the vertices of K,, on a circle.
B Add boundary edges and inner diagonals as follows:
B This is an outerplanar graph drawing and can go to one stack.

B “Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s).
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7
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Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2. -

B Arrange the vertices of K,, on a circle.
B Add boundary edges and inner diagonals as follows:
B This is an outerplanar graph drawing and can go to one stack.

B “Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s).
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Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7

2 3 4 7 9 42  log(n) vn n?3® n/8 n/4 @

Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

) RSN SS
7/ TR vi"l I“"V'f/’ /
221\ 2 V%
Twy4 7R . \lls L IN »e

A AR AP

\ g

. . JORN B PRI PO
B Arrange the vertices of K,, on a circle. RIS INSERN

I/

[ 4
"y

NI ARV IR
ws A
. ’ \

».

a?dn
\L.
A

\{
N\
«

7 i
’

\
D

-~

>

LN

y )

“«

-

&>
e
-

/ NS
» [N

B Add boundary edges and inner diagonals as follows:

KIAAR

-
\\\{Z/

/1 \\
» .
\ )
PR QA1
G\
——

A‘A‘A g

{

!

)
<\
Ll

> -
N\

B This is an outerplanar graph drawing and can go to one stack.

=~

W

S5y
\Ves v P
r >

\ )¢
»
K
,, "
»
NI/ ’7
//’

\”/// -

:l‘
q
¥

L

"y

[/

r'Z )

v

B “Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s). ' ;;:vgydf;gg;.‘
"A‘?.T -®7
SRANRD

m Clearly, every edge appears in some of these n/2 outerplanar graphs. ARSI

o v
o \\l/75%

—ay N
AN

;"/;M \
=zl
3
=
R\

-..\ -



14 - 23

Stack Layouts of Complete Graphs

We have seen that outerplanar and planar graphs have constant stack number.
Do all graphs have constant stack number? Clearly, complete graphs have the largest stack
number. What is the stack number of K,,7

2 3 4 7 9 42  log(n) n n?3  n/8 n/b @

Theorem. [Bernhart & Kainen 1979] Proof.
Forn > 4, sn(K,) = [n/2]. Assume that n is even (the case for odd n is similar).

We now show that sn(K,) < n/2. -

Arrange the vertices of K,, on a circle.
Add boundary edges and inner diagonals as follows:

This is an outerplanar graph drawing and can go to one stack.

“Rotate” the inner diagonals by 1, 2, ..., n/2 — 1 position(s).

Clearly, every edge appears in some of these n/2 outerplanar graphs.' '.
[]
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1-Page Queue Layouts

Theorem. [Heath & Rosenberg 1992]
For every tree T', qn(T') = 1.

Proof.

B The exploration order in a breadth-first search (BFS) traversal yields a queue layout.
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1-Page Queue Layouts

Theorem. [Heath & Rosenberg 1992]
For every tree T', qn(T') = 1.

Proof.

B The exploration order in a breadth-first search (BFS) traversal yields a queue layout.
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1-Page Queue Layouts

Theorem. [Heath & Rosenberg 1992]
For every tree T', qn(T') = 1.
Proof.

B The exploration order in a breadth-first search (BFS) traversal yields a queue layout.
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1-Page Queue Layouts

Theorem. [Heath & Rosenberg 1992]
For every tree T', qn(T') = 1.
Proof.

B The exploration order in a breadth-first search (BFS) traversal yields a queue layout.
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1-Page Queue Layouts

Theorem. [Heath & Rosenberg 1992]
For every tree T', qn(T') = 1.

Proof.

B The exploration order in a breadth-first search (BFS) traversal yields a queue layout.

de b
AT
¢ s h J,
s a b c¢c d e f g h

B If there was a nesting uv above xy, we would find u before x in the BFS, but discover a

neighbor of x before a neighbor of w.
[]
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Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, qn(G) = 1.

Proof.

B Take a leveled-planar drawing, order the ver-
tices from bottom to top and left to right;
this yields a queue layout.
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drawing where all vertices are arranged on
horizontal lines (levels) and edges only
connect vertices of adjacent levels.

RO
S0



1-Page Queue Layouts

Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, qn(G) = 1.

Proof.

B Take a leveled-planar drawing, order the ver-
tices from bottom to top and left to right;
this yields a queue layout.

16 -

A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
connect vertices of adjacent levels.




1-Page Queue Layouts

Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, qn(G) = 1.

Proof.

B Take a leveled-planar drawing, order the ver-
tices from bottom to top and left to right;
this yields a queue layout.

16 -

A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
connect vertices of adjacent levels.




1-Page Queue Layouts
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connect vertices of adjacent levels.
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1-Page Queue Layouts

A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
Proof. connect vertices of adjacent levels.

Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, qn(G) = 1.

B Take a leveled-planar drawing, order the ver-
tices from bottom to top and left to right;
this yields a queue layout.
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1-Page Queue Layouts

A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
Proof. connect vertices of adjacent levels.

Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, gqn(G) = 1.

B Take a leveled-planar drawing, order the ver-
tices from bottom to top and left to right;
this yields a queue layout.
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1-Page Queue Layouts

A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
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1-Page Queue Layouts

A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
Proof. connect vertices of adjacent levels.

Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, gqn(G) = 1.

B Take a leveled-planar drawing, order the ver-
tices from bottom to top and left to right;
this yields a queue layout.
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Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, gqn(G) = 1.

Proof.

B Take a leveled-planar drawing, order the ver-
tices from bottom to top and left to right;
this yields a queue layout.

m [f there was a nesting uv above xy,
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A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
connect vertices of adjacent levels.
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1-Page Queue Layouts

A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
Proof. connect vertices of adjacent levels.

Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, qn(G) = 1.

B Take a leveled-planar drawing, order the ver-
tices from bottom to top and left to right;
this yields a queue layout.

m [f there was a nesting uv above xy, u would
be to the left of 2 on one level, and y would

be to the left of v on the level above;
this would not be planar. -

a b ¢ d e f g h 1
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Theorem. [Heath & Rosenberg 1992]
For every leveled-planar graph G, qn(G) = 1.

Theorem. [Heath & Rosenberg 1992]
For a graph GG holds:
qn(G) = 1 < G is arched leveled-planar.
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A graph is leveled-planar if it has a planar
drawing where all vertices are arranged on
horizontal lines (levels) and edges only
connect vertices of adjacent levels.
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1-Page Queue Layouts

Theorem. Heath & Rosenberg 1992] A graph is leveled-planar if it has a planar

For every leveled-planar graph G, qn(G) = 1. drawing where all vertices are arranged on
horizontal lines (levels) and edges only

connect vertices of adjacent levels.

Theorem. [Heath & Rosenberg 1992]
For a graph GG holds:
qn(G) = 1 < G is arched leveled-planar.

A graph is arched leveled-planar if it has

a leveled-planar drawing where additionally
vertices on the same level may be connected
by edges that enclose all lower levels.
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1-Page Queue Layouts

Theorem. Heath & Rosenberg 1992] A graph is leveled-planar if it has a planar

For every leveled-planar graph G, qn(G) = 1. drawing where all vertices are arranged on
horizontal lines (levels) and edges only

connect vertices of adjacent levels.

Theorem. [Heath & Rosenberg 1992]
For a graph GG holds:
qn(G) = 1 < G is arched leveled-planar.

Proof. — Exercise!

A graph is arched leveled-planar if it has

a leveled-planar drawing where additionally
vertices on the same level may be connected
by edges that enclose all lower levels.
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We have seen planar graphs have stack number at most 4. What is the max. queue number?
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Queue Layouts of Planar Graphs

We have seen planar graphs have stack number at most 4. What is the max. queue number?
2 3 4 7 9 42 log(n) n 0¥ n/8 n/4 n/2
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required stacks: 3
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B Consider any order < of the vertices on the spine and name them vq, ..., v, accordingly.

B Consider the set of edges {v;vn41-5 |7 € {1,...,n/2}}.

B These are n/2 pairwise nesting edges (a n/2-rainbow). Each edge needs a separate queue.

Now we show that qn(K,) < n/2.
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B Then, gn(K,) <n/2, follows directly from Lemma 1. ]
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B If we have a k-page stack layout given, we can verify its correctness in polynomial time.
This shows containment in NP.

B The problem of finding a Hamiltonian cycle in a planar graph is NP-complete.

B By the characterization of graphs with stack number 2, finding a Hamiltonian cycle
in a planar graph is equivalent to deciding whether sn(G) < 2. (]

The difficult part in the Hamiltonian-cycle problem is to find a permutation of the vertices.

So, is determining the stack number easier if the order of the vertices on the spine is given?
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B An intersection graph of chords of a circle is called circle graph.

e
B The intersection representation of a circle graph can be seen as a

linear layout (chords <+ edges, endpoints on the circle <+ vertices). g
B The circle graph is the conflict graph for the stack assignment ’

(two edge can go to the same stack if and only if they don't share ,

an edge in the circle graph).

B Coloring the circle graph with k£ colors is equivalent to
assigning the edges to k stacks.

@ @
m Coloring circle graphs is NP-complete for k£ > 4 colors. [
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Theorem. [Heath & Rosenberg 1992]
Deciding whether a graph GG has queue number qn(G) < k is NP-complete for £ > 1.

Proof Sketch.

B Deciding whether a given graph is arched leveled-planar is NP-complete.
Hence, deciding whether qn(G) = 1 is NP-hard. ]

Theorem. [Heath & Rosenberg 1992]
Deciding whether a graph G given with an order of the vertices on
the spine has queue number qn(G) < k is polynomial-time solvable.

Proof Sketch. Details in exercise! T @

B Determine the size r of the largest rainbow in polynomial time. ~—

m If r <k, then there is k-page queue layout due to Lemma 1. []
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Discussion

B There are surprisingly many applications of stack and queue layouts, e.g., in computational
biology (RNA folding), VLSI design, traffic control, ...

B By the book-embedding paradigm, page number and book thickness are alternative
terms for stack number.

B There are many more variants, e.g., for fixed vertex order, directed graphs, using other
data structures, ...
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Sources for the overview:
B [Ueckerdt 2022] Invited Talk on WG 2022: Stack and queue layouts of planar graphs.

B [Pupyrev 2024] Website on Linear Layouts:
I_https ://spupyrev.github.io/linearlayouts.html

Some of the referenced papers:
B [Bernhart & Kainen 1979] The book thickness of a graph.

'Yannakakis 1986] Embedding planar graphs in four pages.

[]
B [Heath & Rosenberg 1992] Laying out graphs using queues.
[]

Bekos, Kaufmann, Klute, Pupyrev, Raftopoulou & Ueckerdt 2020]
Four pages are indeed necessary for planar graphs.

B [Dujmovié, Joret, Micek, Morin, Ueckerdt & Wood 2020]
Planar graphs have bounded queue-number.

B [Bekos, Gronemann & Raftopoulou 2021]
An improved upper bound on the queue number of planar graphs.
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