Visualization of Graphs

Lecture 11:
 Beyond Planarity

Drawing Graphs with Crossings

Johannes Zink

Summer semester 2024

Planar Graphs

Planar graphs admit drawings in the plane without crossings.
Plane graph is a planar graph with an embedding (fixed rotation system and fixed outer face).
Planarity is recognizable in linear time.
Different drawing styles ...

straight-line drawing

orthogonal drawing

grid drawing with bends \& 3 slopes

circular-arc drawing

And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing

hierarchical drawing

orthogonal layouts (via planarization)

Maybe not all crossings are equally bad?

block crossings

Which crossings feel worse?

Eye-Tracking Experiment

Input: A graph drawing and designated path.
Task: Trace path and count number of edges.

Results: no crossings

large crossing angles
small crossing angles

eye movements smooth and fast
eye movements smooth but slightly slower
eye movements no longer smooth and very slow (back-and-forth movements at crossing points)

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

/rosing configurations.

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

$$
k \text {-planar }(k=1)
$$

$$
k \text {-quasi-planar }(k=3)
$$

right-angle crossing

There are many more beyond-planar graph classes...
XX

IC (independent crossing)

fan-crossing-free

skewness- $k(k=2)$

Drawing Styles for Crossings

RAC
right-angle crossing
\square

orthogonal

slanted orthogonal

block / bundled crossings circular layout: 28 invididual vs. 12 bundle crossings

symmetric partial edge drawing

1/4-SHPED

Geometric Representations

Geometric Representations

lines of sight through ≤ 1 bars
■ Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014;

Angelini et al. 2018]

decompose into 2 planar graphs

- Rectangle visibility graphs (RVGs) have $\leq 6 n-20$ edges. [Hutchinson, Shermer, Vince 1996]
- Recognizing thickness-2 graphs and RVGs is NP-hard.
[Mansfields 1983] [Shermer 1996]
- RVGs can be recognized efficiently if embedding is fixed.
[Biedl, Liotta, Montecchiani 2018]

GD Beyond Planarity: a Taxonomy

"Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Density of 1-Planar Graphs

Theorem.
 [Ringel 1965, Pach \& Tóth 1997]

A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

- Let the red edges be those that do not cross.

■ Each blue edge crosses a green edge.
■ This yields a red-blue plane graph $G_{r b}$ with

$$
m_{r b} \leq 3 n-6
$$

- and a green plane graph G_{g} with

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

■ Observe that each green edge joins two faces in $G_{r b}$.

Lower-bound construction:
$2 n-4$ edges
$n-2$ faces
Edges per face:
2 edges
Total:
$4 n-8$ edges

$$
\begin{aligned}
m_{g} \leq f_{r b} / 2 \leq(2 n-4) / 2 & =n-2 \\
\Rightarrow \quad & m=m_{r b}+m_{g} \leq 3 n-6+n-2=4 n-8
\end{aligned}
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

A 1-planar graph is called maximal if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]
There are maximal 1-planar graphs with n vertices and $45 / 17 n-O(1) \approx 2.65 n-O(1)$ edges.

Theorem.

[Didimo 2013]
A 1-planar graph with n vertices that admits a straight-line drawing has at most $4 n-9$ edges.

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges
0
$3(n-2)$
$1 \quad 4(n-2)$
2
$5(n-2)$

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]

Planar structure:

$$
\begin{aligned}
& \frac{5}{3}(n-2) \text { edges } \\
& \frac{2}{3}(n-2) \text { faces }
\end{aligned}
$$

Edges per face: 5 edges Total:
$5(n-2)$ edges

$$
\begin{aligned}
& n-m+f=2 \\
& m=c \cdot f ? \\
& m=\frac{5}{2} f
\end{aligned}
$$

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges

0	$3(n-2)$	Euler's formula
1	$4(n-2)$	[Ringel 1965]
2	$5(n-2)$	[Pach and Tóth 1997]
3	$5.5(n-2)$	[Pach et al. 2006]

optimal 3-planar

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges

0	$3(n-2)$	Euler's formula
1	$4(n-2)$	[Ringel 1965]
2	$5(n-2)$	[Pach and Tóth 1997]
3	$5.5(n-2)$	[Pach et al. 2006]

Planar structure:

$$
\begin{aligned}
& \frac{3}{2}(n-2) \text { edges } \\
& \frac{1}{2}(n-2) \text { faces }
\end{aligned}
$$

Edges per face: 8 edges
Total: $\quad 5.5(n-2)$ edges

Density of k-Planar Graphs

Theorem.		
A k-planar graph with n vertices has at most:		
k	number of edges	
0	$3(n-2)$	Euler's formula
1	$4(n-2)$	[Ringel 1965]
2	$5(n-2)$	[Pach and Tóth 1997]
3	$5.5(n-2)$	[Pach et al. 2006]
4	$6(n-2)$	[Ackerman 2015]
>4	$4.108 \sqrt{k} n$	[Pach and Tóth 1997]

optimal 2-planar

GD Beyond Planarity: a Hierarchy

$\stackrel{\text { ¢ }}{\text { N0 }}$			$\begin{gathered} \text { (3-)quasi-planar } \\ 6.5 n-20 \end{gathered}$	-6.5n $\pm c$	[Agarwal et al. 1997]
		$\begin{gathered} \text { 4-planar } \\ 6 n-12 \end{gathered}$	$\begin{aligned} & \text { thickness-2 } \\ & 6 n-12 \end{aligned}$	- $6 n \pm c$	[Ackerman 2015]
		(1-bend RAC ${ }^{1}$	$\begin{gathered} \text { 3-planar } \\ 5.5 n-11 \end{gathered}$	- $5.5 n \pm c$	[Pach \& Tóth 1997] [Bekos et al. 2018]
		$\begin{aligned} & \text { fan-planar } \\ & 5 n-10 \end{aligned}$	$\begin{aligned} & \text { 2-planar } \\ & 5 n-10 \end{aligned}$	- $5 n \pm c$	[Kaufmann \& Ueckerdt 2014] [Pach \& Tóth 1997]
	$\begin{gathered} \text { bipart. fan-planar } \\ \leq 4 n-12 \end{gathered}$	${ }_{4 n} \mathrm{RAC}_{10}$	$\begin{aligned} & \text { 1-planar } \\ & 4 n-8 \end{aligned}$	- $4 n \pm c$	[Didimo et al. 2011] [Bodendiek et al. 1983] [Cheong et al. 2013]
			$\begin{gathered} \text { bipart. 2-planar } \\ \leq 3.5 n-7 \end{gathered}$	- $3.5 n \pm c$	[Dehkordi et al. 2013] [Auer et al. 2016]
	planar $3 n-6$$-$outer fan-planar $3 n-5$	bipartite RAC $3 n-7$	bipart. 1-planar $\leq 3 n-8$	- $3 n \pm c$	[Bekos et al. 2017] [Binucci et al. 2015] [Angelini et al. 2018]
		$\begin{aligned} & \text { outer RAC } \\ & 2.5 n-4 \end{aligned}$	$\begin{aligned} & \text { outer 1-planar } \\ & 2.5 n-4 \end{aligned}$	- $2.5 n \pm c$	[Dehkordi et al. 2013] [Auer et al. 2016]
べ			$\begin{aligned} & \text { outerplanar } \\ & 2 n-3 \end{aligned}$	- $2 n \pm c$	

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a k-planar graph G is the number of crossings required in any k-planar drawing of G.
$\square \operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2 \quad$ (there are at most $n-2$ green edges in the coloring of Theorem 1)
■ $\operatorname{cr}(G)=1 \Rightarrow \operatorname{cr}_{1-\mathrm{pl}}(G)=1$

Theorem.
 [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing ratio

$$
\rho_{1-\mathrm{pl}}(n)=(n-2) / 2
$$

$$
\mathrm{cr}_{1-\mathrm{pl}}(G)=n-2
$$

$$
\operatorname{cr}(G)=2
$$

Crossing Ratios

Table from "Crossing Numbers of Beyond-Planar Graphs Revisited" [van Beusekom, Parada \& Speckmann 2021]

Family	Forbidden Configurations		Lower	Upper
k-planar	An edge crossed more than k times	$f_{0}^{k=2}$	$\Omega(\boldsymbol{n} / \boldsymbol{k})$	$O(k \sqrt{k} n)$
k-quasi-planar	k pairwise crossing edges	$\underbrace{k=3}_{0}$	$\Omega\left(n / k^{3}\right)$	$f(k) n^{2} \log ^{2} n$
Fan-planar	Two independent edges crossing a third or two adjacent edges crossing another edge from different "side"	offo 8	$\Omega(n)$	$O\left(n^{2}\right)$
(k, l)-grid-free	Set of k edges such that each edge crosses each edge from a set of l edges.	$\cdots \prod_{0}^{k_{0}^{k, l=2}}$	$\Omega\left(\frac{n}{k l(k+l)}\right)$	$g(k, l) n^{2}$
k-gap-planar	More than k crossings mapped to an edge in an optimal mapping	\&os	$\Omega\left(\boldsymbol{n} / \boldsymbol{k}^{3}\right)$	$O(k \sqrt{k} n)$
Skewness-k	Set of crossings not covered by at most k edges	$\underbrace{k=1}_{0}$	$\Omega(\boldsymbol{n} / \boldsymbol{k})$	$\boldsymbol{O}\left(\boldsymbol{k n}+\boldsymbol{k}^{2}\right)$
k-apex	Set of crossings not covered by at most k vertices	$\square_{0}^{0} \square_{0}^{k=1}$	$\Omega(n / k)$	$O\left(k^{2} n^{2}+k^{4}\right)$
Planarly connected	Two crossing edges that do not have two of their endpoint connected by a crossing-free edge	sog	$\Omega\left(n^{2}\right)$	$O\left(n^{2}\right)$
k-fan-crossing-free	An edge that crosses k adjacent edges	$\mathfrak{f}^{k=2}$	$\Omega\left(\boldsymbol{n}^{2} / \boldsymbol{k}^{3}\right)$	$\boldsymbol{O}\left(\boldsymbol{k}^{2} \boldsymbol{n}^{2}\right)$
Straight-line RAC	Two edges crossing at an angle $<\frac{\pi}{2}$	X	$\Omega\left(n^{2}\right)$	$O\left(n^{2}\right)$

GD Beyond Planarity: a Taxonomy

"Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Minors of 1-Planar Graphs

Theorem.

G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

Theorem.

[Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

For every graph there is a 1-planar subdivision.

$n \times n \times 2$ grid

Theorem.

For any n, there exist $\Omega\left(2^{n}\right)$ distinct n-vertex graphs that are not 1 -planar but all their proper subgraphs are 1-planar.

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]

Testing 1-planarity is NP-complete.
Proof Idea.
Reduction from 3-Partition.

t "big" faces

Only 1-planar embedding of K_{6}

Given a multiset $A=\left\{a_{1}, a_{2}, \ldots, a_{3 t}\right\}$ of $3 t$ numbers, partition the numbers into t triplets such that the sum of every triplet is the same.

(cannot be crossed)

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013] Testing 1-planarity is NP-complete.
Theorem.

[Cabello \& Mohar 2013]

Testing 1-planarity is NP-complete even for almost planar graphs, i.e., planar graphs plus one edge.

```
Theorem.
[Bannister, Cabello & Eppstein 2018]
Testing 1-planarity is NP-complete -
even for graphs of bounded bandwidth (pathwidth, treewidth).
```

Theorem. [Auer, Brandenburg, Gleißner \& Reislhuber 2015]
Testing 1-planarity is NP-complete -
even for 3-connected graphs with a fixed rotation system.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.
Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete, even if the rotation system is given.

GD Beyond Planarity: a Taxonomy

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Some IC-planar straight-line RAC drawings require exponential area.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Every IC-planar graph has an IC-planar straight-line RAC drawing, and such a drawing can be found in polynomial time.

non-RAC

RAC Drawings With Enough Bends

Every graph admits a RAC drawing ...
. . . if we use enough bends.

How many do we need - in total or per edge?

3-Bend RAC Drawings

Theorem.
[Didimo, Eades \& Liotta 2017]
Every graph admits a 3-bend RAC drawing, that is, a RAC drawing where every edge has at most three bends.

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

Let $S \subseteq E\left(G^{\prime}\right)$ s.t. no two edges in S lie on the same face \ldots. and their opposite vertices do not have an edge in $E\left(G^{\prime}\right)$.

Add set T of edges connecting opposite vertices.
The resulting graph G is a kite-triangulation.
Note: optimal 1-planar graphs \subsetneq kite-triangulations.

Theorem.

 [Angelini et al. 2011] Every kite-triangulation G admits a 1-planar 1-bend RAC drawing, which can be constructed in linear time.
Proof.

Let G^{\prime} be the underlying plane triangulation of G. Let $G^{\prime \prime}=G^{\prime}-S$.
Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

otherwise

1-Planar 1-Bend RAC Drawings

Theorem. [Bekos, Didimo, Liotta, Mehrabi \& Montecchiani 2017]
Every 1-planar graph G admits a 1-planar 1-bend RAC drawing. If a 1 -planar embedding of G is given as part of the input, such a drawing can be computed in linear time.

Observation.

In a triangulated 1-plane graph (not necessarily simple), each pair of crossing edges of G forms an empty kite, except for at most one pair if their crossing point is on the outer face of G.

Theorem.

[Chiba, Yamanouchi \& Nishizeki 1984]
For every 2-connected plane graph G with outer face C_{k} and every convex k-gon P, there is a strictly convex planar straight-line drawing of G whose outer face coincides with P. Such a drawing can be computed in linear time.

Algorithm Outline

Algorithm Step 1: Augmentation
G : simple 1-plane graph

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.
$G:$ simple 1-plane graph $\longrightarrow G^{+}:$triangulated 1-plane (possibly with multi-edges)
2. Remove those multiple edges that belong to G.
3. Remove one (multiple) edge from each face of degree two (if any). α^{*} 4. Triangulate faces of degree >3 by inserting a star inside them.

Algorithm Outline

Algoritm Step 2: Hierarchical Contractions

G^{+}
triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed

■ only empty kites

structure of each separation pair

Algoritm Step 2: Hierarchical Contractions

G^{+}
triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites

structure of each separation pair

Contract all inner components of each separation pair into a thick edge.

Algoritm Step 2: Hierarchical Contractions

(multi-edges)

- triangular faces
- multiple edges never crossed

■ only empty kites

Algoritm Step 2: Hierarchical Contractions

structure of each separation pair

Contract all inner components of each separation pair into a thick edge.

Algoritm Step 2: Hierarchical Contractions

G^{\star}
hierarchical contraction of G^{+}

Algorithm Outline

Algorithm Step 3: Drawing Procedure

convex faces \& prescribed outer face

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

apply Chiba et al.

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

remove crossing edges

Algorithm Step 3: Drawing Procedure

apply Chiba et al.

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Γ^{+}: 1-bend 1-planar RAC drawing of G^{+}

Algorithm Outline

Algorithm Step 4: Removal of Dummy Vertices

Algorithm Step 4: Removal of Dummy Vertices

G : simple 1-plane graph
Γ : 1-bend 1-planar RAC drawing of G
(embedding may differ)

Remark.

By modifying the algorithm slightly, the given input embedding can be preserved.

GD Beyond Planarity: a Taxonomy

Literature

Books and surveys:

- [Didimo, Liotta \& Montecchiani 2019] A Survey on Graph Drawing Beyond Planarity
- [Kobourov, Liotta \& Montecchiani '17] An Annotated Bibliography on 1-Planarity
- [Hong and Tokuyama, editors '20] Beyond Planar Graphs

Some references for proofs:

- [Eades, Huang, Hong '08] Effects of Crossing Angles
- [Brandenburg et al. '13] On the density of maximal 1-planar graphs
- [Chimani, Kindermann, Montecchani, Valtr '19] Crossing Numbers of Beyond-Planar Graphs
- [Grigoriev and Bodlaender '07] Algorithms for graphs embeddable with few crossings per edge
- [Angelini et al. '11] On the Perspectives Opened by Right Angle Crossing Drawings
- [Didimo, Eades, Liotta '17] Drawing graphs with right angle crossings
- [Bekos et al. '17] On RAC drawings of 1-planar graphs

