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Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all
pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.
Hanani showed that every drawing of K5 and K3,3 must have a pair of edges that crosses
an odd number of times.

Every non-planar graph has K5 or K3,3 as a minor, so there are two paths that cross an
odd number of times.

Hence, there must be two edges on these paths that cross an odd number of times. �
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There is a graph G with ocr(G) < cr(G) ≤ 10
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� One-sided crossing minimization (see lecture 8)

� Fixed linear crossing number
1 2 3 4 65

� Book embeddings (vertices on a line, edges assig-
ned to few “pages” where edges do not cross)

� Crossings of edge bundles

� On other surfaces, such as donuts
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� Crossing minimization is NP-hard for most variants.

K7 on the torus
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� Result stayed hardly known until Székely demonstrated its usefulness (in 1997).

� Bound is asymptotically tight.

Consider this bound for
graphs with Θ(n) and
Θ(n2) many edges.



10 - 6

The Crossing Lemma
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U(n) < 6.7n4/3



12 - 4

Application 2: Unit Distances

For a set P ⊂ R2 of points, define

� U(P ) = number of pairs in P at unit distance and

� U(n) = max|P |=n U(P ).

Proof sketch.

P

Theorem 2.
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