

Visualization of Graphs

Lecture 10: Partial Visibility Representation Extension

Johannes Zink

Summer semester 2024

Let G be a graph.

Let G be a graph. Let $V' \subseteq V(G)$

Let G be a graph. Let $V' \subseteq V(G)$ and H = G[V']

Let G be a graph. Let $V' \subseteq V(G)$ and H = G[V']

induced subgraph of G w.r.t. V': $\checkmark V'$ and all edges among V'

V' and all edges among V'

- Let G be a graph. Let $V' \subseteq V(G)$ and H = G[V']
- Let Γ_H be a representation of H.

Let G be a graph.

V' and all edges among V'Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Let G be a graph.

V' and all edges among V'Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Let G be a graph.

V' and all edges among V'Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Let G be a graph.

V' and all edges among V'Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

Let G be a graph.

V' and all edges among V'Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

(unit) interval graphs

Let G be a graph.

 V^\prime and all edges among V^\prime Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

(unit) interval graphs

permutation graphs

Let G be a graph.

induced subgraph of G w.r.t. V': V^\prime and all edges among V^\prime Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

(unit) interval graphs

permutation graphs

circle graphs

Let G be a graph.

induced subgraph of G w.r.t. V': V^\prime and all edges among V^\prime Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

(unit) interval graphs

permutation graphs

circle graphs

NP-hard for:

Let G be a graph.

induced subgraph of G w.r.t. V': V^\prime and all edges among V^\prime Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

(unit) interval graphs

permutation graphs

circle graphs

NP-hard for:

planar straight-line drawings

Let G be a graph.

induced subgraph of G w.r.t. V': $\checkmark V'$ and all edges among V'

- Let $V' \subseteq V(G)$ and H = G[V']
- Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

(unit) interval graphs

permutation graphs

circle graphs

NP-hard for:

- planar straight-line drawings
- contacts of

Let G be a graph.

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

- (unit) interval graphs
- permutation graphs

circle graphs

NP-hard for:

- planar straight-line drawings
- contacts of

disks

Let G be a graph.

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

- (unit) interval graphs
- permutation graphs

circle graphs

NP-hard for:

- planar straight-line drawings
- contacts of
 - disks

triangles

Let G be a graph.

induced subgraph of G w.r.t. V': $\checkmark V'$ and all edges among V'

- Let $V' \subseteq V(G)$ and H = G[V']
- Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .

Polytime for:

- (unit) interval graphs
- permutation graphs

circle graphs

NP-hard for:

- planar straight-line drawings
- contacts of
 - disks

- triangles
- orthogonal segments

0 0 0

Vertices correspond to horizontal (open) line segments called bars.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow$ unobstructed **0**-width vertical lines of sight.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow$ unobstructed **0**-width vertical lines of sight.

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow$ unobstructed **0**-width vertical lines of sight.

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow$ unobstructed **0-width** vertical lines of sight.

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

■ Strong: Edge uv ⇔ unobstructed 0-width vertical lines of sight.

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

Weak:

Edge $uv \Rightarrow$ unobstructed vertical lines of sight exists, i.e., any subset of *visible* pairs

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong: Edge uv ⇔ unobstructed 0-width vertical lines of sight. Epsilon: Edge uv ⇔ ε-wide vertical lines of sight for some ε > 0. Weak: Edge uv ⇔ ε-wide vertical lines of sight for some ε > 0.

Edge $uv \Rightarrow$ unobstructed vertical lines of sight exists, i.e., any subset of *visible* pairs

Recognition Problem.

Given a graph G, decide whether there exists a weak/strong/ ε -bar visibility representation ψ of G.

Recognition Problem.

Given a graph G, decide whether there exists a weak/strong/ ε -bar visibility representation ψ of G.

Construction Problem.

Given a graph G, **construct** a weak/strong/ ε -bar visibility representation ψ of G – if one exists.

Recognition Problem.

Given a graph G, **decide** whether there exists a weak/strong/ ε -bar visibility representation ψ of G.

Construction Problem.

Given a graph G, **construct** a weak/strong/ ε -bar visibility representation ψ of G – if one exists.

Partial Representation Extension Problem. Given a graph G and a set of bars ψ' of $V' \subseteq V(G)$, decide whether there exists a weak/strong/ ε -bar visibility representation ψ of G where $\psi|_{V'} = \psi'$ (and construct ψ if a representation exists).

Weak Bar Visibility.

Weak Bar Visibility.

Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear-time recognition and construction [T&T '86]

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension is NP-complete [Chaplick et al. '14]

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

■ NP-complete to recognize [Andreae '92]

ε -Bar Visibility.

Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension?

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension? This Lecture!

Instead of an undirected graph, we are given a directed graph G.

Instead of an undirected graph, we are given a directed graph G.

The task is to construct a weak/strong/ ε -bar visibility representation of G such that ...

Instead of an undirected graph, we are given a directed graph G.

- The task is to construct a weak/strong/ ε -bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Instead of an undirected graph, we are given a directed graph G.

- The task is to construct a weak/strong/ ε -bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Weak Bar Visibility.

- Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε -bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Weak Bar Visibility.

NP-complete for directed (acyclic planar) graphs!

- Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε -bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Weak Bar Visibility.

- NP-complete for directed (acyclic planar) graphs!
- This is because upward planarity testing is NP-complete. [Garg & Tamassia '01]

Instead of an undirected graph, we are given a directed graph G.

- The task is to construct a weak/strong/ ε -bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

- Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε -bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Instead of an undirected graph, we are given a directed graph G.

- The task is to construct a weak/strong/ ε -bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1. Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees
Easier version: O(n²)

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees
Easier version: \$\mathcal{O}(n^2)\$

Theorem 2.

 ε -bar visibility representation extension is NP-complete.

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees
Easier version: O(n²)

Theorem 2.

 ε -bar visibility representation extension is NP-complete.

Reduction from Planar Monotone 3-SAT

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees
Easier version: \$\mathcal{O}(n^2)\$

Theorem 2.

 ε -bar visibility representation extension is NP-complete.

Reduction from Planar Monotone 3-SAT

Theorem 3.

 ε -bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees
Easier version: \$\mathcal{O}(n^2)\$

Theorem 2.

 ε -bar visibility representation extension is NP-complete.

Reduction from Planar Monotone 3-SAT

Theorem 3.

 ε -bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

Reduction from 3-PARTITION

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees

Easier version: $\mathcal{O}(n^2)$

Theorem 2.

 ε -bar visibility representation extension is NP-complete.

Reduction from Planar Monotone 3-SAT

Theorem 3.

 ε -bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

Reduction from 3-PARTITION

• An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

• The nodes of T are of four types:

- The nodes of T are of four types:
 - **S**-nodes represent a series composition

- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - P-nodes represent a parallel composition

- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge

- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (*rigid*) subgraphs

An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (rigid) subgraphs

A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.

- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (*rigid*) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.
- $\blacksquare T$ represents all planar embeddings of G.

- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - **R**-nodes represent 3-connected (*rigid*) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.
- \blacksquare T represents all planar embeddings of G.
- \blacksquare T can be computed in time linear in the size of G.

SPQR-Tree – Example

Theorem 1'.

Theorem 1'.

Theorem 1'.

Theorem 1'.

Theorem 1'. Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n^2)$ time for st-graphs.

 Simplify problem via assumption regarding y-coordinates

Theorem 1'.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n^2)$ time for st-graphs.

13

12

10

Simplify problem via assumption regarding y-coordinates

Exploit connection between SPQR-trees and rectangle tiling

Theorem 1'.

- Simplify problem via assumption regarding y-coordinates
- Exploit connection between SPQR-trees and rectangle tiling
- Solve problems for S-, P-, and R-nodes

Theorem 1'.

- Simplify problem via assumption regarding y-coordinates
- Exploit connection between SPQR-trees and rectangle tiling
- Solve problems for S-, P-, and R-nodes
- Dynamic program via structure of SPQR-tree

Let G be an st-graph, and let ψ' be a representation of $V' \subseteq V(G)$.

Let G be an st-graph, and let ψ' be a representation of V' ⊆ V(G).
Let y: V(G) → ℝ such that

Let G be an st-graph, and let ψ' be a representation of $V' \subseteq V(G)$.

- Let $y: V(G) \to \mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.

Let G be an st-graph, and let ψ' be a representation of $V' \subseteq V(G)$.

- Let $y \colon V(G) \to \mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

Let G be an st-graph, and let ψ' be a representation of $V' \subseteq V(G)$.

• Let $y: V(G) \to \mathbb{R}$ such that

- for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
- for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending $\psi' \Leftrightarrow$ G has a representation extending ψ' where the y-coordinates of the bars are as in y.

Let G be an st-graph, and let ψ' be a representation of $V' \subseteq V(G)$.

• Let $y: V(G) \to \mathbb{R}$ such that

- for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
- for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending $\psi' \Leftrightarrow$ G has a representation extending ψ' where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of **adjacent** bars must match the order given by y. So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.

Let G be an st-graph, and let ψ' be a representation of $V' \subseteq V(G)$.

• Let $y \colon V(G) \to \mathbb{R}$ such that

- for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
- for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending $\psi' \Leftrightarrow$ G has a representation extending ψ' where the y-coordinates of the bars are as in y. We can now assume that all y-coordinates are given!

Proof idea. The relative positions of **adjacent** bars must match the order given by y. So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.

But Why Do SPQR-Trees Help?

But Why Do SPQR-Trees Help?

But Why Do SPQR-Trees Help?

But Why Do SPQR-Trees Help?

But Why Do SPQR-Trees Help?

Lemma 2.

The SPQR-tree of an st-graph G induces a recursive tiling of any ε -bar visibility representation of G.

But Why Do SPQR-Trees Help?

Lemma 2.

The SPQR-tree of an st-graph G induces a recursive tiling of any ε -bar visibility representation of G.

Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

How many different **types** of tiles are there?

Right Fixed

Left Loose

- Right Fixed
- Left Loose

- Left Fixed
- Right Loose

- Right Fixed
- Left Loose

- Left Fixed
- Right Loose

Four different types: FF, FL, LF, LL

\mathbf{P} -Nodes

 \mathbf{P} -Nodes

 \mathbf{P} -Nodes

Children of P-node with prescribed bars occur in given left-to-right order

- Children of P-node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

- Children of P-node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

Idea.

Greedily *fill* the gaps by preferring to "stretch" the children with prescribed bars.

- Children of P-node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

Idea.

Greedily *fill* the gaps by preferring to "stretch" the children with prescribed bars.

Outcome.

After processing, we must know the valid types for the corresponding subgraphs.

t

Q

С

 $\mathbf{0} \\ S$

17 - 1

This fixed vertex means we can only make a Fixed-Fixed representation!

This fixed vertex means we can only make a Fixed-Fixed representation! 17 - 3

This fixed vertex means we can only make a Fixed-Fixed representation!

 ${f O} S$

 ${\stackrel{{f O}}{S}}$

Here we have a chance to make all (LL, FL, LF, FF)

types.

This fixed vertex means we can only make a Fixed-Fixed representation!

 ${}^{\mathsf{O}}_{S}$

 ${\overset{{oldsymbol{o}}}{S}}$

\mathbf{R} -Nodes

 $\left(13\right)$

18 - 2

(13)

 \mathbf{R} -Nodes

For each child (edge) *e*:

\mathbf{R} -Nodes

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.

For each child (edge) e:

■ Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
 - Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
 - Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
 - Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
 - Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.
 - Add consistency clauses

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
 - Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.
 - Add consistency clauses

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
 - Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.
 - Add consistency clauses

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
 - Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.
 - Add consistency clauses

- For each child (edge) *e*:
 - Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
 - Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.
 - Add consistency clauses: e.g., $\neg(\neg r_e \land \neg l_f)$

- Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
- Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.
- Add consistency clauses: e.g., $\neg(\neg r_e \land \neg l_f) \rightarrow O(n^2)$ many.

Separation pair! (∄ in **R**-component.)

Finding a satisfying assingment of a 2-SAT formula can be done in linear time!

- Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
- Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.
- Add consistency clauses: e.g., $\neg(\neg r_e \land \neg l_f) \rightarrow O(n^2)$ many.

- Separation pair! (∄ in **R**-component.)
- Finding a satisfying assingment of a 2-SAT formula can be done in linear time!

 $\Rightarrow O(n^2)$ time in total

- Find all types of {**FF**, **FL**, **LF**, **LL**} that admit a drawing.
- Use two variables $(l_e \text{ and } r_e)$ to encode the type of its tile $(\mathbf{F} = 0)$.
- Add consistency clauses: e.g., $\neg(\neg r_e \land \neg l_f) \rightarrow O(n^2)$ many.

Separation pair! (∄ in **R**-component.)

Finding a satisfying assingment of a 2-SAT formula can be done in linear time!

 $\Rightarrow O(n^2) \text{ time in total} \\ \text{or } O(n \log^2 n)$

Results and Outline

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees
Easier version: O(n²)

Theorem 2.

 $\varepsilon\textsc{-bar}$ visibility representation extension is NP-complete.

Reduction from Planar Monotone 3-SAT

Theorem 3.

 ε -bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

Reduction from 3-PARTITION

Results and Outline

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees
Easier version: \$\mathcal{O}(n^2)\$

Theorem 2.

 ε -bar visibility representation extension is NP-complete.

Reduction from PLANAR MONOTONE 3-SAT

Theorem 3.

 ε -bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

Reduction from 3-PARTITION

Theorem 2. ε -Bar visibility representation extension is NP-complete.

Membership in NP?

NP-hard: Reduction from Planar Monotone 3-SAT

Theorem 2. ε -Bar visibility representation extension is NP-complete.

Membership in NP?

NP-hard: Reduction from Planar Monotone 3-SAT

Theorem 2. ε -Bar visibility representation extension is NP-complete.

Membership in NP?

NP-hard: Reduction from Planar Monotone 3-SAT

21 - 9

21 - 10
$x \vee y \vee z$

 $x \lor y \lor z$

 $x \lor y \lor z$

OR' Gadget

Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \bullet ε -bar visibility representation extension is NP-complete.

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \bullet ε -bar visibility representation extension is NP-complete.
- ε-bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed ε > 0 is specified).

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- ε -bar visibility representation extension is NP-complete.
- ε-bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed ε > 0 is specified).

Open Problems:

Can rectangular ε-bar visibility representation extension be solved in polynomial time for st-graphs?

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- ε -bar visibility representation extension is NP-complete.
- ε-bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed ε > 0 is specified).

Open Problems:

Can rectangular ε-bar visibility representation extension be solved in polynomial time for st-graphs? For DAGs?

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \bullet ε -bar visibility representation extension is NP-complete.
- ε-bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed ε > 0 is specified).

Open Problems:

- Can rectangular ε-bar visibility representation extension be solved in polynomial time for st-graphs? For DAGs?
- Can strong bar visibility recognition / representation extension be solved in polynomial time for st-graphs?

Literature

Main source:

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]
 The Partial Visibility Representation Extension Problem

Referenced papers:

- [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs
- [Wismath '85] Characterizing bar line-of-sight graphs
- [Chaplick, Dorbec, Kratochvíl, Montassier, Stacho '14]
 Contact representations of planar graphs: Extending a partial representation is hard
- [Andreae '92] Some results on visibility graphs
- [Garg, Tamassia '01]
 On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees
- [de Berg, Khosravi '10] Optimal Binary Space Partitions in the Plane