
1

Lecture 10:
Partial Visibility Representation Extension

S

1

14

2

3

9

2

3Q

1

2Q

9

14Q

3

9

8
4

R

Visualization of Graphs

Johannes Zink

Summer semester 2024



2 - 1

Partial Representation Extension Problem

Let G be a graph.



2 - 2

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]



2 - 3

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]



2 - 4

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 5

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 6

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 7

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 8

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 9

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

Polytime for:

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 10

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

Polytime for:

� (unit) interval graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 11

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

Polytime for:

� (unit) interval graphs

� permutation graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 12

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 13

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

NP-hard for:

� planar straight-line drawings

� contacts of

� disks

� triangles

� orthogonal segments

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 14

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

NP-hard for:

� planar straight-line drawings

� contacts of

� disks

� triangles

� orthogonal segments

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 15

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

NP-hard for:

� planar straight-line drawings

� contacts of

� disks

� triangles

� orthogonal segments

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 16

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

NP-hard for:

� planar straight-line drawings

� contacts of

� disks

� triangles

� orthogonal segments

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 17

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

NP-hard for:

� planar straight-line drawings

� contacts of

� disks

� triangles

� orthogonal segments

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



2 - 18

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

NP-hard for:

� planar straight-line drawings

� contacts of

� disks

� triangles

� orthogonal segments

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′



3 - 1

Bar Visibility Representation



3 - 2

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.



3 - 3

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.



3 - 4

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.



3 - 5

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.



3 - 6

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.



3 - 7

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.



3 - 8

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.



3 - 9

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.



3 - 10

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

?



3 - 11

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

?



3 - 12

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

Models.



3 - 13

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

Models.

� Strong:
Edge uv ⇔ unobstructed 0-width vertical lines of sight.



3 - 14

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

Models.

� Strong:
Edge uv ⇔ unobstructed 0-width vertical lines of sight.

� Epsilon:
Edge uv ⇔ ε-wide vertical lines of sight for some ε > 0.



3 - 15

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

Models.

� Strong:
Edge uv ⇔ unobstructed 0-width vertical lines of sight.

� Epsilon:
Edge uv ⇔ ε-wide vertical lines of sight for some ε > 0.

ε



3 - 16

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

Models.

� Strong:
Edge uv ⇔ unobstructed 0-width vertical lines of sight.

� Epsilon:
Edge uv ⇔ ε-wide vertical lines of sight for some ε > 0.

ε



3 - 17

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

Models.

� Strong:
Edge uv ⇔ unobstructed 0-width vertical lines of sight.

� Epsilon:
Edge uv ⇔ ε-wide vertical lines of sight for some ε > 0.

� Weak:
Edge uv ⇒ unobstructed vertical lines of sight exists,
i.e., any subset of visible pairs

ε



3 - 18

Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

Models.

� Strong:
Edge uv ⇔ unobstructed 0-width vertical lines of sight.

� Epsilon:
Edge uv ⇔ ε-wide vertical lines of sight for some ε > 0.

� Weak:
Edge uv ⇒ unobstructed vertical lines of sight exists,
i.e., any subset of visible pairs

ε



4 - 1

Problems

a

b

c

d

weak

a

b

c

d



4 - 2

Problems

a

b

c

d

weak strong

a

b

c

d a

b

c

d



4 - 3

Problems

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



4 - 4

Problems

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



4 - 5

Problems

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d

Recognition Problem.
Given a graph G, decide whether there
exists a weak/strong/ε-bar visibility
representation ψ of G.



4 - 6

Problems

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d

Recognition Problem.
Given a graph G, decide whether there
exists a weak/strong/ε-bar visibility
representation ψ of G.

Construction Problem.
Given a graph G, construct a
weak/strong/ε-bar visibility
representation ψ of G – if one exists.



4 - 7

Problems

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d

Recognition Problem.
Given a graph G, decide whether there
exists a weak/strong/ε-bar visibility
representation ψ of G.

Construction Problem.
Given a graph G, construct a
weak/strong/ε-bar visibility
representation ψ of G – if one exists.

Partial Representation Extension Problem.
Given a graph G and a set of bars ψ′ of
V ′ ⊆ V (G), decide whether there exists a
weak/strong/ε-bar visibility representation ψ
of G where ψ|V ′ = ψ′ (and construct ψ if a
representation exists).



5 - 1

Background

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 2

Background

Weak Bar Visibility.

� Exactly all planar graphs [Tamassia & Tollis ’86; Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension is NP-complete [Chaplick et al. ’14]

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 3

Background

Weak Bar Visibility.

� Exactly all planar graphs [Tamassia & Tollis ’86; Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension is NP-complete [Chaplick et al. ’14]

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 4

Background

Weak Bar Visibility.

� Exactly all planar graphs [Tamassia & Tollis ’86; Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension is NP-complete [Chaplick et al. ’14]

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 5

Background

Weak Bar Visibility.

� Exactly all planar graphs [Tamassia & Tollis ’86; Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension is NP-complete [Chaplick et al. ’14]

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 6

Background

Strong Bar Visibility.

� NP-complete to recognize [Andreae ’92]

Weak Bar Visibility.

� Exactly all planar graphs [Tamassia & Tollis ’86; Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension is NP-complete [Chaplick et al. ’14]

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 7

Background

Strong Bar Visibility.

� NP-complete to recognize [Andreae ’92]

Weak Bar Visibility.

� Exactly all planar graphs [Tamassia & Tollis ’86; Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension is NP-complete [Chaplick et al. ’14]

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 8

Background

ε-Bar Visibility.

� Exactly all planar graphs that can be embedded with all
cut vertices on the outerface [T&T ’86, Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension?

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 9

Background

ε-Bar Visibility.

� Exactly all planar graphs that can be embedded with all
cut vertices on the outerface [T&T ’86, Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension?

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 10

Background

ε-Bar Visibility.

� Exactly all planar graphs that can be embedded with all
cut vertices on the outerface [T&T ’86, Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension?

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 11

Background

ε-Bar Visibility.

� Exactly all planar graphs that can be embedded with all
cut vertices on the outerface [T&T ’86, Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension?

a

b

c

d

weak strong epsilon

a

b

c

d a

b

c

d a

b

c

d



5 - 12

Background

ε-Bar Visibility.

� Exactly all planar graphs that can be embedded with all
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Next, we consider ε-bar visibility
representations of specific directed

graphs (→ st-graphs)
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SPQR-Tree

� An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

� The nodes of T are of four types:

� S-nodes represent a series composition

� P-nodes represent a parallel composition

� Q-nodes represent a single edge

� R-nodes represent 3-connected (rigid) subgraphs u

v

� A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.

� T represents all planar embeddings of G.

� T can be computed in time linear in the size of G. [Gutwenger, Mutzel ’01]
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y-Coordinate Invariant

� Let y : V (G)→ R such that

� for each v ∈ V ′, y(v) = the y-coordinate of ψ′(v).

� for each edge (u, v), y(u) < y(v).

� Let G be an st-graph, and let ψ′ be a representation of V ′ ⊆ V (G).

Proof idea. The relative positions of adjacent bars must
match the order given by y.
So, we can adjust the y-coordinates of any solution to be
as in y by sweeping from bottom to top.

We can now assume that all
y-coordinates are given!

Lemma 1.
G has a representation extending ψ′ ⇔
G has a representation extending ψ′

where the y-coordinates of the bars are as in y.
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The SPQR-tree of an st-graph G induces a recursive
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Lemma 2.
The SPQR-tree of an st-graph G induces a recursive
tiling of any ε-bar visibility representation of G.
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Convention. Orange bars are from the given partial representation.
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Convention. Orange bars are from the given partial representation.

ψ(s)

Observation.
The bounding box (tile) of any solution ψ contains
the bounding box of the partial representation.
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Tiles

ψ(t)

Convention. Orange bars are from the given partial representation.

ψ(s)

How many different types of tiles are there?

Observation.
The bounding box (tile) of any solution ψ contains
the bounding box of the partial representation.
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Types of Tiles

� Right Fixed

� Left Loose

ψ(s)

ψ(t)

� Left Fixed

� Right Loose

ψ(s)

ψ(t)

Four different types: FF, FL, LF, LL
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given left-to-right order
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P-Nodes

s

t

� Children of P-node with prescribed bars occur in
given left-to-right order

� But there might be some gaps. . .

Idea.
Greedily fill the gaps by preferring to “stretch”
the children with prescribed bars.

Outcome.
After processing, we must know the valid
types for the corresponding subgraphs.
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S-Nodes
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This fixed vertex
means we can only
make a Fixed-Fixed
representation!

Here we have a
chance to make all
(LL, FL, LF, FF)
types.
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� For each child (edge) e:

� Find all types of {FF, FL, LF, LL} that admit a drawing.

� Use two variables (le and re) to encode the type of its tile (F= 0).

� Add consistency clauses: e.g., ¬(¬re ∧ ¬lf )
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R-Nodes with 2-SAT Formulation

� For each child (edge) e:
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Results and Outline

� Dynamic program via SPQR-trees

� Reduction from Planar Monotone 3-SAT

� Reduction from 3-Partition

� Easier version: O(n2)

Theorem 2.
ε-bar visibility representation extension is NP-complete.

Theorem 1.
Rectangular ε-bar visibility representation extension can be
solved in O(n log2 n) time for st-graphs.

Theorem 3.
ε-bar visibility representation extension is NP-complete
even for (series-parallel) st-graphs when restricted to the
integer grid (or if any fixed ε > 0 is specified).

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta ’18]
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NP-Hardness of RepExt in the General Case

� NP-hard: Reduction from Planar Monotone 3-SAT

Theorem 2.
ε-Bar visibility representation extension is NP-complete.

� Membership in NP?
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Discussion

� Rectangular ε-bar visibility representation extension can be
solved in O(n log2 n) time for st-graphs.

� ε-bar visibility representation extension is NP-complete for
(series-parallel) st-graphs when restricted to the integer grid
(or if any fixed ε > 0 is specified).

� ε-bar visibility representation extension is NP-complete.

Open Problems:

� Can rectangular ε-bar visibility representation extension be
solved in polynomial time for st-graphs? For DAGs?

� Can strong bar visibility recognition / representation extension
be solved in polynomial time for st-graphs?



25

Literature

Main source:
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