Visualization of Graphs

Lecture 10:
 Partial Visibility Representation Extension

Johannes Zink

Summer semester 2024

Partial Representation Extension Problem

Let G be a graph.

Partial Representation Extension Problem

Let G be a graph.
Let $V^{\prime} \subseteq V(G)$

Partial Representation Extension Problem

Let G be a graph.
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$

Partial Representation Extension Problem

Let G be a graph.
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$

Partial Representation Extension Problem

Let G be a graph.
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime} :
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime} :
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime} :
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime} :
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime} :
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

- (unit) interval graphs

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime} :
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

- (unit) interval graphs

- permutation graphs

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime} :
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

- (unit) interval graphs

- permutation graphs

- circle graphs

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime}
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:
NP-hard for:

- (unit) interval graphs

- permutation graphs

- circle graphs

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime}
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

- (unit) interval graphs

NP-hard for:
■ planar straight-line drawings

- permutation graphs

\square circle graphs

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime}
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

- (unit) interval graphs

- permutation graphs

\square circle graphs

NP-hard for:
■ planar straight-line drawings

- contacts of

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime}
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

- (unit) interval graphs

\square permutation graphs

\square circle graphs

NP-hard for:
■ planar straight-line drawings

- contacts of - disks

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime}
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

- (unit) interval graphs

- permutation graphs

V^{\prime} and all edges among V^{\prime}

Partial Representation Extension Problem

Let G be a graph.
induced subgraph of G w.r.t. V^{\prime}
Let $V^{\prime} \subseteq V(G)$ and $H=G\left[V^{\prime}\right]$
Let Γ_{H} be a representation of H.
Find a representation Γ_{G} of G that extends Γ_{H}.

Polytime for:

- (unit) interval graphs

- permutation graphs

■ circle graphs

NP-hard for:
■ planar straight-line drawings

- contacts of

■ disks

- triangles

■ orthogonal segments

Bar Visibility Representation

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.
■ What about unobstructed 0 -width vertical lines of sight? Do all visibilities induce edges?

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.
■ What about unobstructed 0 -width vertical lines of sight? Do all visibilities induce edges?

Models.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.
■ What about unobstructed 0 -width vertical lines of sight? Do all visibilities induce edges?

Models.

■ Strong:
Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical lines of sight.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
■ Edges correspond to unobstructed vertical lines of sight.
■ What about unobstructed 0 -width vertical lines of sight? Do all visibilities induce edges?

Models.

■ Strong:
Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical lines of sight.

- Epsilon:

Edge $u v \Leftrightarrow \varepsilon$-wide vertical lines of sight for some $\varepsilon>0$.

Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
■ What about unobstructed 0 -width vertical lines of sight? Do all visibilities induce edges?

Models.

■ Strong:
Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical lines of sight.

- Epsilon:

Edge $u v \Leftrightarrow \varepsilon$-wide vertical lines of sight for some $\varepsilon>0$.

Bar Visibility Representation

■ Vertices correspond to horizontal (open) line segments called bars.

- Edges correspond to unobstructed vertical lines of sight.
■ What about unobstructed 0 -width vertical lines of sight? Do all visibilities induce edges?

Models.

■ Strong:
Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical lines of sight.

- Epsilon:

Edge $u v \Leftrightarrow \varepsilon$-wide vertical lines of sight for some $\varepsilon>0$.

Bar Visibility Representation

■ Vertices correspond to horizontal (open) line segments called bars.

- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0 -width vertical lines of sight? Do all visibilities induce edges?

Models.

- Strong:

Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical lines of sight.

- Epsilon:

Edge $u v \Leftrightarrow \varepsilon$-wide vertical lines of sight for some $\varepsilon>0$.

■ Weak:
Edge $u v \Rightarrow$ unobstructed vertical lines of sight exists, i.e., any subset of visible pairs

Bar Visibility Representation

■ Vertices correspond to horizontal (open) line segments called bars.

- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0 -width vertical lines of sight? Do all visibilities induce edges?

Models.

- Strong:

Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical lines of sight.

- Epsilon:

Edge $u v \Leftrightarrow \varepsilon$-wide vertical lines of sight for some $\varepsilon>0$.
\square Weak:
Edge $u v \Rightarrow$ unobstructed vertical lines of sight exists, i.e., any subset of visible pairs

Problems

weak

Problems

Problems

Problems

Problems

Recognition Problem.

Given a graph G, decide whether there exists a weak/strong $/ \varepsilon$-bar visibility representation ψ of G.

Problems

Recognition Problem.

Given a graph G, decide whether there exists a weak/strong/ ε-bar visibility representation ψ of G.

Construction Problem.

Given a graph G, construct a weak/strong/ ε-bar visibility representation ψ of G - if one exists.

Problems

Recognition Problem.

Given a graph G, decide whether there exists a weak/strong/ ε-bar visibility representation ψ of G.

Construction Problem.

Given a graph G, construct a weak/strong/ ε-bar visibility representation ψ of G - if one exists.

Partial Representation Extension Problem. Given a graph G and a set of bars ψ^{\prime} of $V^{\prime} \subseteq V(G)$, decide whether there exists a weak/strong $/ \varepsilon$-bar visibility representation ψ of G where $\left.\psi\right|_{V^{\prime}}=\psi^{\prime}$ (and construct ψ if a representation exists).

Background

Background

Weak Bar Visibility.

Background

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia \& Tollis '86; Wismath '85]

Background

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia \& Tollis '86; Wismath '85]

■ Linear-time recognition and construction [T\&T '86]

Background

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia \& Tollis '86; Wismath '85]

■ Linear-time recognition and construction [T\&T '86]
■ Representation extension is NP-complete [Chaplick et al. '14]

Background

Weak Bar Visibility.

■ Exactly all planar graphs [Tamassia \& Tollis '86; Wismath '85]
■ Linear-time recognition and construction [T\&T '86]
■ Representation extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

Background

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia \& Tollis '86; Wismath '85]

■ Linear-time recognition and construction [T\&T '86]
■ Representation extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

■ NP-complete to recognize [Andreae '92]

Background

ε-Bar Visibility.

Background

ε-Bar Visibility.

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T\&T '86, Wismath '85]

Background

ε-Bar Visibility.
■ Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T\&T '86, Wismath '85]

■ Linear-time recognition and construction [T\&T '86]

Background

ε-Bar Visibility.

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T\&T '86, Wismath '85]
■ Linear-time recognition and construction [T\&T '86]
■ Representation extension?

Background

ε-Bar Visibility.

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T\&T '86, Wismath '85]
■ Linear-time recognition and construction [T\&T '86]
■ Representation extension? This Lecture!

Bar Visibility Representation of Digraphs

- Instead of an undirected graph, we are given a directed graph G.

Bar Visibility Representation of Digraphs

- Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε-bar visibility representation of G such that ...

Bar Visibility Representation of Digraphs

■ Instead of an undirected graph, we are given a directed graph G.
■ The task is to construct a weak/strong/ ε-bar visibility representation of G such that ...
■ ...for each directed edge $u v$, the bar representing u is below the bar representing v.

Bar Visibility Representation of Digraphs

■ Instead of an undirected graph, we are given a directed graph G.
■ The task is to construct a weak/strong/ ε-bar visibility representation of G such that ...
■ ...for each directed edge $u v$, the bar representing u is below the bar representing v.

Weak Bar Visibility.

Bar Visibility Representation of Digraphs

■ Instead of an undirected graph, we are given a directed graph G.
■ The task is to construct a weak/strong/ ε-bar visibility representation of G such that ...
■ ...for each directed edge $u v$, the bar representing u is below the bar representing v.

Weak Bar Visibility.

■ NP-complete for directed (acyclic planar) graphs!

Bar Visibility Representation of Digraphs

\square Instead of an undirected graph, we are given a directed graph G.
■ The task is to construct a weak/strong/ ε-bar visibility representation of G such that ...
■ ...for each directed edge $u v$, the bar representing u is below the bar representing v.

Weak Bar Visibility.

■ NP-complete for directed (acyclic planar) graphs!
■ This is because upward planarity testing is NP-complete. [Garg \& Tamassia '01]

Bar Visibility Representation of Digraphs

\square Instead of an undirected graph, we are given a directed graph G.
■ The task is to construct a weak/strong/ ε-bar visibility representation of G such that ...
■ ...for each directed edge $u v$, the bar representing u is below the bar representing v.

Weak Bar Visibility.

- NP-complete for directed (acyclic planar) graphs!
- This is because upward planarity testing is NP-complete. [Garg \& Tamassia '01]

Bar Visibility Representation of Digraphs

\square Instead of an undirected graph, we are given a directed graph G.
■ The task is to construct a weak/strong/ ε-bar visibility representation of G such that ...
■ ...for each directed edge $u v$, the bar representing u is below the bar representing v.

Weak Bar Visibility.

■ NP-complete for directed (acyclic planar) graphs!

Strong/ ε-Bar Visibility.
■ Open for directed graphs!

- This is because upward planarity testing is NP-complete. [Garg \& Tamassia '01]

Bar Visibility Representation of Digraphs

\square Instead of an undirected graph, we are given a directed graph G.

- The task is to construct a weak/strong/ ε-bar visibility representation of G such that ...

■ ...for each directed edge $u v$, the bar representing u is below the bar representing v.

Weak Bar Visibility.

■ NP-complete for directed (acyclic planar) graphs!

- This is because upward planarity testing is NP-complete. [Garg \& Tamassia '01]

Strong/ ε-Bar Visibility.

- Open for directed graphs! Next, we consider ε-bar visibility representations of specific directed graphs (\rightarrow st-graphs)

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t
where s and t occur on the outer face of an embedding of G.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.

■ ε-bar visibility testing is easily done via st-graph recognition.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

■ -bar visibility testing is easily done via st-graph recognition.

- Strong bar visibility recognition. . . open!

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

- ε-bar visibility testing is easily done via st-graph recognition.
- Strong bar visibility recognition. . . open!

■ In a rectangular bar visibility representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.

ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

- ε-bar visibility testing is easily done via st-graph recognition.
- Strong bar visibility recognition. . . open!

■ In a rectangular bar visibility representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.

Results and Outline

Theorem 1.
 Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.

Results and Outline

Theorem 1.
Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.

- Dynamic program via SPQR-trees

Results and Outline

Theorem 1.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.

- Dynamic program via SPQR-trees

■ Easier version: $\mathcal{O}\left(n^{2}\right)$

Results and Outline

Theorem 1.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.
■ Dynamic program via SPQR-trees

- Easier version: $\mathcal{O}\left(n^{2}\right)$

Theorem 2.
ε-bar visibility representation extension is NP-complete.

Results and Outline

Theorem 1.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.

- Dynamic program via SPQR-trees
- Easier version: $\mathcal{O}\left(n^{2}\right)$

Theorem 2.
ε-bar visibility representation extension is NP-complete.
■ Reduction from Planar Monotone 3-SAT

Results and Outline

Theorem 1.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.
■ Dynamic program via SPQR-trees

- Easier version: $\mathcal{O}\left(n^{2}\right)$

Theorem 2.

ε-bar visibility representation extension is NP-complete.
■ Reduction from Planar Monotone 3-SAT

Theorem 3.

ε-bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

Results and Outline

Theorem 1.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.
■ Dynamic program via SPQR-trees

- Easier version: $\mathcal{O}\left(n^{2}\right)$

Theorem 2.

ε-bar visibility representation extension is NP-complete.
■ Reduction from Planar Monotone 3-SAT

Theorem 3.

ε-bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

■ Reduction from 3-Partition

Results and Outline

Theorem 1.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.

■ Dynamic program via SPQR-trees
■ Easier version: $\mathcal{O}\left(n^{2}\right)$
Theorem 2.
ε-bar visibility representation extension is NP-complete.
■ Reduction from Planar Monotone 3-SAT

Theorem 3.

ε-bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

■ Reduction from 3-Partition

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

SPQR-Tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

SPQR-Tree

\square An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:
- S-nodes represent a series composition \square

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:

■ S-nodes represent a series composition

- P-nodes represent a parallel composition

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:

■ S-nodes represent a series composition

- P-nodes represent a parallel composition

■ Q-nodes represent a single edge

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:

■ S-nodes represent a series composition

- P-nodes represent a parallel composition

■ Q-nodes represent a single edge
■ R-nodes represent 3-connected (rigid) subgraphs

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:

■ S-nodes represent a series composition

- P-nodes represent a parallel composition
- Q-nodes represent a single edge

■ R-nodes represent 3-connected (rigid) subgraphs

- A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:

■ S-nodes represent a series composition

- P-nodes represent a parallel composition
- Q-nodes represent a single edge

■ R-nodes represent 3-connected (rigid) subgraphs

■ A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.
■ T represents all planar embeddings of G.

SPQR-Tree

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:
- S-nodes represent a series composition
- P-nodes represent a parallel composition
- Q-nodes represent a single edge

■ R-nodes represent 3-connected (rigid) subgraphs

■ A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.
■ T represents all planar embeddings of G.

- T can be computed in time linear in the size of G.

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

SPQR-Tree - Example

Representation Extension for st-Graphs

Theorem 1'.
Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

Representation Extension for st-Graphs

Theorem 1'.
Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

■ Simplify problem via assumption regarding y-coordinates

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

- Simplify problem via assumption regarding y-coordinates
- Exploit connection between SPQR-trees and rectangle tiling

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

- Simplify problem via assumption regarding y-coordinates
- Exploit connection between SPQR-trees and rectangle tiling
■ Solve problems for S-, P-, and R-nodes

Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.

■ Simplify problem via assumption regarding y-coordinates

- Exploit connection between SPQR-trees and rectangle tiling
■ Solve problems for S-, P-, and R-nodes
- Dynamic program via structure of SPQR-tree

y-Coordinate Invariant

- Let G be an st-graph, and let ψ^{\prime} be a representation of $V^{\prime} \subseteq V(G)$.

y-Coordinate Invariant

■ Let G be an st-graph, and let ψ^{\prime} be a representation of $V^{\prime} \subseteq V(G)$.
■ Let $y: V(G) \rightarrow \mathbb{R}$ such that

y-Coordinate Invariant

■ Let G be an st-graph, and let ψ^{\prime} be a representation of $V^{\prime} \subseteq V(G)$.
■ Let $y: V(G) \rightarrow \mathbb{R}$ such that
■ for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.

y-Coordinate Invariant

■ Let G be an st-graph, and let ψ^{\prime} be a representation of $V^{\prime} \subseteq V(G)$.
■ Let $y: V(G) \rightarrow \mathbb{R}$ such that
■ for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.
■ for each edge $(u, v), y(u)<y(v)$.

y-Coordinate Invariant

■ Let G be an st-graph, and let ψ^{\prime} be a representation of $V^{\prime} \subseteq V(G)$.
■ Let $y: V(G) \rightarrow \mathbb{R}$ such that
■ for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.

- for each edge $(u, v), y(u)<y(v)$.

Lemma 1.

G has a representation extending $\psi^{\prime} \Leftrightarrow$
G has a representation extending where the y-coordinates of the bars are as in y.

y-Coordinate Invariant

■ Let G be an st-graph, and let ψ^{\prime} be a representation of $V^{\prime} \subseteq V(G)$.
■ Let $y: V(G) \rightarrow \mathbb{R}$ such that
■ for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.
■ for each edge $(u, v), y(u)<y(v)$.

Lemma 1.

G has a representation extending $\psi^{\prime} \Leftrightarrow$
G has a representation extending
where the y-coordinates of the bars are as in y.
Proof idea. The relative positions of adjacent bars must match the order given by y.
So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.

y-Coordinate Invariant

■ Let G be an st-graph, and let ψ^{\prime} be a representation of $V^{\prime} \subseteq V(G)$.
■ Let $y: V(G) \rightarrow \mathbb{R}$ such that
■ for each $v \in V^{\prime}, y(v)=$ the y-coordinate of $\psi^{\prime}(v)$.
■ for each edge $(u, v), y(u)<y(v)$.

Lemma 1.

G has a representation extending $\psi^{\prime} \Leftrightarrow$
G has a representation extending where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of adjacent bars must match the order given by y.
So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.

But Why Do SPQR-Trees Help?

But Why Do SPQR-Trees Help?

Lemma 2.
The SPQR-tree of an st-graph G induces a recursive tiling of any ε-bar visibility representation of G.

But Why Do SPQR-Trees Help?

Lemma 2.

The SPQR-tree of an st-graph G induces a recursive tiling of any ε-bar visibility representation of G.

Solve tiles bottom-up.

Tiles

Convention. Orange bars are from the given partial representation.

Tiles

Convention. Orange bars are from the given partial representation.

Tiles

Convention. Orange bars are from the given partial representation.

Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

Tiles

Convention. Orange bars are from the given partial representation.

Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

How many different types of tiles are there?

Types of Tiles

- Right Fixed
- Left Loose

Types of Tiles

Types of Tiles

Types of Tiles

Types of Tiles

Four different types: FF, FL, LF, LL

P-Nodes

P-Nodes

P-Nodes

P-Nodes

P-Nodes

P-Nodes

■ Children of \mathbf{P}-node with prescribed bars occur in given left-to-right order

P-Nodes

■ Children of \mathbf{P}-node with prescribed bars occur in given left-to-right order

■ But there might be some gaps...

P-Nodes

■ Children of P-node with prescribed bars occur in given left-to-right order

■ But there might be some gaps...

Idea.

Greedily fill the gaps by preferring to "stretch" the children with prescribed bars.

P-Nodes

■ Children of P-node with prescribed bars occur in given left-to-right order

■ But there might be some gaps...

Idea.

Greedily fill the gaps by preferring to "stretch" the children with prescribed bars.

Outcome.

After processing, we must know the valid types for the corresponding subgraphs.

S-Nodes

S-Nodes

This fixed vertex means we can only make a Fixed-Fixed representation!

S-Nodes

This fixed vertex means we can only make a Fixed-Fixed representation!

S-Nodes

This fixed vertex means we can only make a Fixed-Fixed representation!

S-Nodes

Here we have a chance to make all (LL, FL, LF, FF) types.

This fixed vertex means we can only make a Fixed-Fixed representation!

R-Nodes

R-Nodes

R-Nodes

R-Nodes

R-Nodes

R-Nodes

R-Nodes

■ For each child (edge) e :

R-Nodes

- For each child (edge) e :

■ Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.

R-Nodes with 2-SAT Formulation

- For each child (edge) e :

■ Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.

R-Nodes with 2-SAT Formulation

- For each child (edge) e :

■ Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.
$■$ Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathbf{F}=0$).

R-Nodes with 2-SAT Formulation

- For each child (edge) e :

■ Find all types of $\{$ FF, FL, LF, LL $\}$ that admit a drawing.
$■$ Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathbf{F}=0$).

R-Nodes with 2-SAT Formulation

- For each child (edge) e :
- Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.
$■$ Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathbf{F}=0$).

R-Nodes with 2-SAT Formulation

- For each child (edge) e :
- Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.
$■$ Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathbf{F}=0$).
- Add consistency clauses

Separation pair! (\nexists in R -component.)

R-Nodes with 2-SAT Formulation

- For each child (edge) e :
- Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.
$■$ Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathbf{F}=0$).
■ Add consistency clauses

Separation pair! (\nexists in R -component.)

R-Nodes with 2-SAT Formulation

- For each child (edge) e :
- Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.
$■$ Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathbf{F}=0$).
■ Add consistency clauses

Separation pair! (\nexists in R -component.)

R-Nodes with 2-SAT Formulation

- For each child (edge) e :
- Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.
$■$ Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathbf{F}=0$).
- Add consistency clauses

Separation pair! (\nexists in R -component.)

R-Nodes with 2-SAT Formulation

- For each child (edge) e :
- Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.
$■$ Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathbf{F}=0$).
■ Add consistency clauses: e.g., $\neg\left(\neg r_{e} \wedge \neg l_{f}\right)$

Separation pair! (\nexists in R -component.)

R-Nodes with 2-SAT Formulation

- For each child (edge) e :

■ Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.

\square Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathrm{F}=0$).
■ Add consistency clauses: e.g., $\neg\left(\neg r_{e} \wedge \neg l_{f}\right) \quad \rightarrow O\left(n^{2}\right)$ many.

Separation pair!
(\nexists in R -component.)

R-Nodes with 2-SAT Formulation

- For each child (edge) e :

■ Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.

\square Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathrm{F}=0$).
■ Add consistency clauses: e.g., $\neg\left(\neg r_{e} \wedge \neg l_{f}\right) \quad \rightarrow O\left(n^{2}\right)$ many.

■ Finding a satisfying assingment of a 2-SAT formula can be done in linear time!

R-Nodes with 2-SAT Formulation

- For each child (edge) e :

■ Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.

\square Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathrm{F}=0$).
■ Add consistency clauses: e.g., $\neg\left(\neg r_{e} \wedge \neg l_{f}\right) \quad \rightarrow O\left(n^{2}\right)$ many.

Separation pair!
(\nexists in R-component.)
■ Finding a satisfying assingment of a 2-SAT formula can be done in linear time!
$\Rightarrow O\left(n^{2}\right)$ time in total

R-Nodes with 2-SAT Formulation

- For each child (edge) e :

■ Find all types of $\{F F, F L, L F, L L\}$ that admit a drawing.

\square Use two variables (l_{e} and r_{e}) to encode the type of its tile ($\mathrm{F}=0$).
■ Add consistency clauses: e.g., $\neg\left(\neg r_{e} \wedge \neg l_{f}\right) \quad \rightarrow O\left(n^{2}\right)$ many.

Separation pair!
(\nexists in R -component.)
■ Finding a satisfying assingment of a 2-SAT formula can be done in linear time!
$\Rightarrow O\left(n^{2}\right)$ time in total or $O\left(n \log ^{2} n\right)$

Results and Outline

Theorem 1.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.
■ Dynamic program via SPQR-trees
■ Easier version: $\mathcal{O}\left(n^{2}\right)$

Theorem 2.

ε-bar visibility representation extension is NP-complete.
■ Reduction from Planar Monotone 3-SAT

Theorem 3.

ε-bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

■ Reduction from 3-Partition

Results and Outline

Theorem 1.

Rectangular ε-bar visibility representation extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for st-graphs.
■ Dynamic program via SPQR-trees
■ Easier version: $\mathcal{O}\left(n^{2}\right)$

Theorem 2.

ε-bar visibility representation extension is NP-complete.

- Reduction from Planar Monotone 3-SAT

Theorem 3.

ε-bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

■ Reduction from 3-Partition

NP-Hardness of RepExt in the General Case

```
Theorem 2.
\varepsilon-Bar visibility representation extension is NP-complete.
```

- Membership in NP?

■ NP-hard: Reduction from Planar Monotone 3-SAT

NP-Hardness of RepExt in the General Case

Theorem 2.

ε-Bar visibility representation extension is NP-complete.

- Membership in NP?
- NP-hard: Reduction from Planar Monotone 3-SAT

NP-Hardness of RepExt in the General Case

Theorem 2.

ε-Bar visibility representation extension is NP-complete.

- Membership in NP?
- NP-hard: Reduction from Planar Monotone 3-SAT

■ NP-complete
[de Berg \& Khosravi '10]

NP-Hardness of RepExt in the General Case

Theorem 2.

ε-Bar visibility representation extension is NP-complete.

- Membership in NP?

■ NP-hard: Reduction from Planar Monotone 3-SAT

■ NP-complete
[de Berg \& Khosravi '10]

Variable Gadget

Variable Gadget

$x=$ FALSE

$x=$ TRUE

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

Clause Gadget

$$
x \vee y \vee z
$$

OR' Gadget

Discussion

■ Rectangular ε-bar visibility representation extension can be solved in $O\left(n \log ^{2} n\right)$ time for st-graphs.

Discussion

■ Rectangular ε-bar visibility representation extension can be solved in $O\left(n \log ^{2} n\right)$ time for st-graphs.

■ ε-bar visibility representation extension is NP-complete.

Discussion

■ Rectangular ε-bar visibility representation extension can be solved in $O\left(n \log ^{2} n\right)$ time for st-graphs.

■ ε-bar visibility representation extension is NP-complete.
■ ε-bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

Discussion

■ Rectangular ε-bar visibility representation extension can be solved in $O\left(n \log ^{2} n\right)$ time for st-graphs.

■ ε-bar visibility representation extension is NP-complete.
■ ε-bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

Open Problems:

- Can rectanguiar ε-bar visibility representation extension be solved in polynomial time for st-graphs?

Discussion

■ Rectangular ε-bar visibility representation extension can be solved in $O\left(n \log ^{2} n\right)$ time for st-graphs.

■ ε-bar visibility representation extension is NP-complete.
■ ε-bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

Open Problems:
■ Can rectanguiar ε-bar visibility representation extension be solved in polynomial time for st-graphs? For DAGs?

Discussion

■ Rectangular ε-bar visibility representation extension can be solved in $O\left(n \log ^{2} n\right)$ time for st-graphs.

■ ε-bar visibility representation extension is NP-complete.
■ ε-bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

Open Problems:

- Can rectangutar ε-bar visibility representation extension be solved in polynomial time for st-graphs? For DAGs?
- Can strong bar visibility recognition / representation extension be solved in polynomial time for st-graphs?

Literature

Main source:

■ [Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]
The Partial Visibility Representation Extension Problem
Referenced papers:

- [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs

■ [Wismath '85] Characterizing bar line-of-sight graphs
■ [Chaplick, Dorbec, Kratochvíl, Montassier, Stacho '14] Contact representations of planar graphs: Extending a partial representation is hard
■ [Andreae '92] Some results on visibility graphs

- [Garg, Tamassia '01]

On the Computational Complexity of Upward and Rectilinear Planarity Testing
■ [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees
■ [de Berg, Khosravi '10] Optimal Binary Space Partitions in the Plane

