
1

Lecture 10:
Partial Visibility Representation Extension

S

1

14

2

3

9

2

3Q

1

2Q

9

14Q

3

9

8
4

R

Visualization of Graphs

Johannes Zink

Summer semester 2024



2 - 18

Partial Representation Extension Problem

Let G be a graph.

Let V ′ ⊆ V (G) and H = G[V ′]

Let ΓH be a representation of H.

Find a representation ΓG of G that extends ΓH .

NP-hard for:

� planar straight-line drawings

� contacts of

� disks

� triangles

� orthogonal segments

Polytime for:

� (unit) interval graphs

� permutation graphs

� circle graphs

induced subgraph of G w.r.t. V ′:
V ′ and all edges among V ′
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Bar Visibility Representation

� Vertices correspond to horizontal (open) line
segments called bars.

� Edges correspond to unobstructed vertical
lines of sight.

� What about unobstructed 0-width vertical
lines of sight? Do all visibilities induce edges?

Models.

� Strong:
Edge uv ⇔ unobstructed 0-width vertical lines of sight.

� Epsilon:
Edge uv ⇔ ε-wide vertical lines of sight for some ε > 0.

� Weak:
Edge uv ⇒ unobstructed vertical lines of sight exists,
i.e., any subset of visible pairs

ε
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Problems
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Recognition Problem.
Given a graph G, decide whether there
exists a weak/strong/ε-bar visibility
representation ψ of G.

Construction Problem.
Given a graph G, construct a
weak/strong/ε-bar visibility
representation ψ of G – if one exists.

Partial Representation Extension Problem.
Given a graph G and a set of bars ψ′ of
V ′ ⊆ V (G), decide whether there exists a
weak/strong/ε-bar visibility representation ψ
of G where ψ|V ′ = ψ′ (and construct ψ if a
representation exists).
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Background

Strong Bar Visibility.

� NP-complete to recognize [Andreae ’92]

Weak Bar Visibility.

� Exactly all planar graphs [Tamassia & Tollis ’86; Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension is NP-complete [Chaplick et al. ’14]
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Background

ε-Bar Visibility.

� Exactly all planar graphs that can be embedded with all
cut vertices on the outerface [T&T ’86, Wismath ’85]

� Linear-time recognition and construction [T&T ’86]

� Representation extension? This Lecture!
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Bar Visibility Representation of Digraphs

� Instead of an undirected graph, we are given a directed graph G.

� The task is to construct a weak/strong/ε-bar visibility representation of G such that . . .

� . . . for each directed edge uv, the bar representing u is below the bar representing v.

u

v

u

v

Weak Bar Visibility.

� NP-complete for directed (acyclic planar) graphs!

� This is because upward planarity testing
is NP-complete. [Garg & Tamassia ’01]

u

v

Strong/ε-Bar Visibility.

� Open for directed graphs!

Next, we consider ε-bar visibility
representations of specific directed

graphs (→ st-graphs)
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ε-Bar Visibility and st-Graphs

Recall that an st-graph is a planar acylic
digraph G with exactly one source s and one
sink t where s and t occur on the outer face
of an embedding of G.
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� ε-bar visibility testing is easily
done via st-graph recognition.

� Strong bar visibility recogni-
tion. . . open!

� In a rectangular bar visibility
representation ψ(s) and ψ(t)
span an enclosing rectangle.

Observation.
st-orientations correspond to ε-bar
visibility representations.
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Results and Outline

� Dynamic program via SPQR-trees

� Reduction from Planar Monotone 3-SAT

� Reduction from 3-Partition

� Easier version: O(n2)

Theorem 2.
ε-bar visibility representation extension is NP-complete.

Theorem 1.
Rectangular ε-bar visibility representation extension can
be solved in O(n log2 n) time for st-graphs.

Theorem 3.
ε-bar visibility representation extension is NP-complete
even for (series-parallel) st-graphs when restricted to the
integer grid (or if any fixed ε > 0 is specified).

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta ’18]
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SPQR-Tree

� An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

� The nodes of T are of four types:

� S-nodes represent a series composition

� P-nodes represent a parallel composition

� Q-nodes represent a single edge

� R-nodes represent 3-connected (rigid) subgraphs u

v

� A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.

� T represents all planar embeddings of G.

� T can be computed in time linear in the size of G. [Gutwenger, Mutzel ’01]
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SPQR-Tree – Example
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SPQR-Tree – Example
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SPQR-Tree – Example
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Representation Extension for st-Graphs

� Simplify problem via assumption
regarding y-coordinates

� Exploit connection between
SPQR-trees and rectangle tiling

� Solve problems for S-, P-, and
R-nodes

� Dynamic program via structure
of SPQR-tree
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Theorem 1’.
Rectangular ε-bar visibility representation extension can
be solved in O(n2) time for st-graphs.
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y-Coordinate Invariant

� Let y : V (G)→ R such that

� for each v ∈ V ′, y(v) = the y-coordinate of ψ′(v).

� for each edge (u, v), y(u) < y(v).

� Let G be an st-graph, and let ψ′ be a representation of V ′ ⊆ V (G).

Proof idea. The relative positions of adjacent bars must
match the order given by y.
So, we can adjust the y-coordinates of any solution to be
as in y by sweeping from bottom to top.

We can now assume that all
y-coordinates are given!

Lemma 1.
G has a representation extending ψ′ ⇔
G has a representation extending ψ′

where the y-coordinates of the bars are as in y.
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But Why Do SPQR-Trees Help?
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Solve tiles bottom-up.

Lemma 2.
The SPQR-tree of an st-graph G induces a recursive
tiling of any ε-bar visibility representation of G.
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Tiles

ψ(t)

Convention. Orange bars are from the given partial representation.

ψ(s)

How many different types of tiles are there?

Observation.
The bounding box (tile) of any solution ψ contains
the bounding box of the partial representation.
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Types of Tiles

� Right Fixed

� Left Loose

ψ(s)

ψ(t)

� Left Fixed

� Right Loose

ψ(s)

ψ(t)

Four different types: FF, FL, LF, LL
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P-Nodes

s

t

� Children of P-node with prescribed bars occur in
given left-to-right order

� But there might be some gaps. . .

Idea.
Greedily fill the gaps by preferring to “stretch”
the children with prescribed bars.

Outcome.
After processing, we must know the valid
types for the corresponding subgraphs.

ψ(s)

ψ(t)

LF LF
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S-Nodes

s

t

This fixed vertex
means we can only
make a Fixed-Fixed
representation!

Here we have a
chance to make all
(LL, FL, LF, FF)
types.

ψ(s)

ψ(t)

s

t

ψ(s)

ψ(t)
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R-Nodes with 2-SAT Formulation

� For each child (edge) e:

� Find all types of {FF, FL, LF, LL} that admit a drawing.

� Use two variables (le and re) to encode the type of its tile (F= 0).

� Add consistency clauses: e.g., ¬(¬re ∧ ¬lf )

14

13

105

t

s

Separation pair!

ψ(s)

ψ(5) ψ(10)

ψ(13)

ψ(14)

ψ(t)

LL LL
LL

LL
LL

LL

FFLLFF

FL

→ O(n2) many.

� Finding a satisfying as-
singment of a 2-SAT
formula can be done in
linear time!

⇒ O(n2) time in total

or O(n log2 n)

( 6 ∃ in R-component.)

(can be reduced to O(n log2 n))

e f
e f
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Results and Outline

� Dynamic program via SPQR-trees

� Reduction from Planar Monotone 3-SAT

� Reduction from 3-Partition

� Easier version: O(n2)

Theorem 2.
ε-bar visibility representation extension is NP-complete.

Theorem 1.
Rectangular ε-bar visibility representation extension can be
solved in O(n log2 n) time for st-graphs.

Theorem 3.
ε-bar visibility representation extension is NP-complete
even for (series-parallel) st-graphs when restricted to the
integer grid (or if any fixed ε > 0 is specified).

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta ’18]
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NP-Hardness of RepExt in the General Case

� NP-hard: Reduction from Planar Monotone 3-SAT

x1 x2 x3 x4 x5 x6

x1 ∨ x2 ∨ x3 x4 ∨ x5 ∨ x6

x1 ∨ x3 ∨ x6

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x4

x1 ∨ x4 ∨ x5

� NP-complete
[de Berg & Khosravi ’10]

Theorem 2.
ε-Bar visibility representation extension is NP-complete.

� Membership in NP?
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NP-Hardness of RepExt in the General Case

� NP-hard: Reduction from Planar Monotone 3-SAT

� NP-complete
[de Berg & Khosravi ’10]

x
1

x
2

x
3

x
4

x
5

x
6

x
1 ∨

x
2 ∨

x
3

x
4 ∨

x
5 ∨

x
6

x
1 ∨

x
3 ∨

x
6

x
2 ∨

x
3 ∨

x
4

x
1 ∨

x
2 ∨

x
4

x
1 ∨

x
4 ∨

x
5

Theorem 2.
ε-Bar visibility representation extension is NP-complete.

� Membership in NP?
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Variable Gadget

xx

x = False x = True
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Clause Gadget

x

y

z

x ∨ y ∨ z

x ∨ y = True

x ∨ y = False

OR’

x ∨ y ∨ z = True

x ∨ y ∨ z = False

OR’

or True

or True
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OR’ Gadget

x

y

x

y
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Discussion

� Rectangular ε-bar visibility representation extension can be
solved in O(n log2 n) time for st-graphs.

� ε-bar visibility representation extension is NP-complete for
(series-parallel) st-graphs when restricted to the integer grid
(or if any fixed ε > 0 is specified).

� ε-bar visibility representation extension is NP-complete.

Open Problems:

� Can rectangular ε-bar visibility representation extension be
solved in polynomial time for st-graphs? For DAGs?

� Can strong bar visibility recognition / representation extension
be solved in polynomial time for st-graphs?
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