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Hierarchical Drawings — Motivation
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Hierarchical Drawing

Problem Statement: = N

B Input: digraph G

B Output: drawing of GG that “closely”
reproduces the hierarchical
properties of G

Desirable Properties:

B edges are directed upwards,

B vertices lie on (few) horizontal lines,

B few pairs of edges cross,

B edges are short,

B vertices are evenly spaced.

Criteria can be contradictory!



Hierarchical Drawing — Applications
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E 1 instance of y.view.GraphzD

Selection step 1 : All objects after full GC
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Hierarchical Drawing — Applications
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Hierarchical Drawing — Applications

Source: Visualization that won the Graph Drawing Contest,
Creative Track, 2016. Klawitter & Mchedlidze
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Classical ApprOaCh: Sugiyama Framework [Sugiyama, Tagawa, Toda '81]

Input — > Cycle Breaking » Layering ——
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Step 1: Cycle Breaking

Input —» Cycle Breaking » Layering —

3

Edge
Minimization Positioning Drawing

5 Crossing 5 Vertex




Step 1: Cycle Breaking

3
4 2 5] ———>»
1 6 7 6]

B Find minimum-size set £/* of edges that are not upward.

Approach.

B Remove E* and insert reversed edges.

Problem MINIMUM FEEDBACK ﬁaﬂé SET (FAS).

B |nput: directed graph GG
B Output:  minimum-size set £* C F(G) such that G* = (V(G), ELe~T™) acyclic

~..NP-hard (©) (E(G) \ E™) U B,

edges in £ but reversed



Heuristic 1

GreedyMakeAcyclic(Digraph G):

V =V(G); E' +
foreach v € V(G) do

if | | > |E* (v)| then
| E' < E'U
else
| E' <~ E'UE"(v) Broof I
 remove v and E(v) from G. root fdea.
return G' = (V, E’)
N

m G is a DAG.

7-21

[Berger, Shor '90]

AN

= {(v,u): (v,u) € E(G)}
ET(v) = {(u,v): (u,v) € E(G)}
E(v) := UE" (v)

Place the vertices on distinct y-coordinates.
y-coordinates increase/decrease towards the middle.

All edges point upwards.
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Heuristic 1 [Berger, Shor '90]

GreedyMakeAcyclic(Digraph G): /'?'v\
V=V(G), E'+ 0
foreach v € V(G) do

if | | | Z/ |7 (v)| then = A(v,u): (v,u) € E(G)}

\; 0 =& U ET(v) = {(u,v): (u,v) € E(G)}

L E  E UE%(U) E(U) = Uk (U)
 remove v and E(v) from G. Proof ldea.

return G’ = (V, E') Use the vertex order from before (edges in E’ upwards)
In this order, add the edges of E(G) \ E’ in rev. direcion
B (' is a DAG Added edges have other endpoint more in the middle.

4 4 4
L4 L4 L4

— All edges point upwards.
B F(G)\ E'is a feedback set.



Heuristic 1

GreedyMakeAcyclic(Digraph G):
V =V(G); E' +
foreach v € V(G) do

if | | > |E* (v)| then
| E' < E'U

else
| E' <~ E'UE"(v)

return G' = (V, E’)

m G is a DAG.

B F(G)\ E'is a feedback set.

remove v and FE(v) from G.

AN

7-42

[Berger, Shor '90]

= {(v,u): (v,u) € E(G)}
ET(v) = {(u,v): (u,v) € E(G)}
E(v) := UE" (v)

® Runtime: O(|V(G)

B Quality guarantee:

+E(G)])
E'| > |[E(G)|/2
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HeU riStiC 2 [Eades, Lin, Smyth '93]
GreedyMakeAcyclic2(Digraph G):

V=V(Q), E'+ 0

while V(G) # 0 do

while V(G) contains a sink v do
E' < E'UE"™(v)

L Remove v and £ (v).

Remove all isolated vertices from V(G).

while V(&) contains a do
E' '+ E' U
Remove v and

if V(G) # 0 then
Let v € V(G) such that | | — [ (v)] maximal.
E' + E'U : S .
B Time: O(|V(G)|+ |E(G)|) [Main idea: Use bins for

R d E f G.
L emove v an (v) rom sinks and sources, and a bin for each | | — \N%(’U)H

return G’ = (V, /') B Quality guarantee: |E'| > |E|/2+ |V|/6




Step 2: Layering

Input — > Cycle Breaking » Layering —
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Step 2: Layering

Whenever an

edge spans across
a layer, we insert
a dummy vertex.

-
6

Problem.

B Input: Acyclic digraph G.

m Output: Layering y: V(G) — {1,...,n},
such that, for every (u,v) € E(G), y(u) < y(v).

Objective is to minimize . ..

B number of layers, i.e., max,cy () y(v)

B length of the longest edge, i.e., max(, ,)er(c) y(v) — y(u)

..... n}liv € V(G): y(v) =i}
B total edge length, i.e., number of dummy vertices.

B width, i.e., max;cq
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Minimize Number of Layers

Algorithm.
B for each , A
set =1 >
d !
6]

B for each non-source v,
set y(v) := max {y(u) | (u,v) € E(G)} +1

Observation.

B y(v) is the length of the longest path from a to v plus 1.
... which is optimal!
B Can be implemented in linear time, for example, using a recursive algorithm.

B Closely related to topological sorting.



Example
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Minimize Total Edge Length — ILP

Can be formulated as an integer linear program:

Minimize Z(u’v)eE(G)(y(v) — y(u))

subject to  y(v) — y(u) > 1 V(u,v) € E(G)
y(v) > 1 Yo € V(G)
y(v) € Z Yo € V(QG)

One can show that:
B Constraint matrix is totally unimodular (every square submatrix has det in {—1,0,1}).
= Extreme point solutions of the LP relaxation (ILP without y(v) € Z) are integer.

B The total edge length can be minimized in polynomial time.



Width

[T [ |

Drawings can be very wide.

] O
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Narrower Layer Assignment

Problem: Layering with a given maximum width.

B Input: Acyclic digraph G, width W > 0

B Output:  Assignment of the vertices of G to layers such that
— the assignment is a layering,
— each layer contains at most W elements, and
— the number of layers is minimized.

same!

Problem: Precedence-Constrained Multi-Processor Scheduling.

B |nput: n jobs with unit processing time, W identical machines,
partial ordering < on the jobs.

® Output:  Schedule respecting < such that completion time (known as makespan)
IS minimized.

m NP-hard,|(2 — l/W)—approximation‘, no (4/3 — €)-approximation (W > 3)

14 - 11
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Approximating Precedence-Const. Multi-Processor Scheduling

B Jobs stored in a list L, which is topologically sorted.
B A jobin L is available it all its predecessors have been scheduled.
B For each pointintimet=1,2,..., we can schedule < W available jobs.

B As long as there are free machines and available jobs,
take the first available job and assign it to a free machine.
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Approximating Precedence-Const. Multi-Processor Scheduling

Input: Precedence graph
8
VAN T Yt
6 — 9 —(C ~
1—>3—>5 N, F
N, S TISATAD
4 \ ol Ye
Number of machines is W = 2.
Output:  Schedule
Mi|1 2 4568 ACESG
M| -3 - —-79BDF -
t |1 2345678 910
Question: Good approximation factor?
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Approximating PCMPS — Analysis for W = 2

Precedence graph G- Schedule

2 A\ _ _~E M |124568ACEG
/ \ »b6—=29—2>C _|—*
1—>3—>5‘7:=A:=D><F My| = 3 = =7 9 BDF -
N, NP AN t |1 2345678910

The art of the lower bound”

OPT > [n/2] and OPT > /¢ := Number of layers of G- (= length of longest path in G.)

Goal: measure the quality of our algorithm using the lower bounds

< (2—1/W)- OPT in general case

Bound. ALG < [2H] =~ [n/2]+¢/2 < 3/2- OPT

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G



Step 3: Crossing Minimization

Input — > Cycle Breaking » Layering —

3

Edge
Minimization Positioning Drawing

', Crossing ___,  Vertex
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Step 3: Crossing Minimization

Problem.
B Input: Graph G, layering y: V(G) — {1,...,n}

® Output:  (Re-)ordering of vertices in each layer
such that the number of crossings is minimized.

® NP-hard, even for two layers. [Garey & Johnson '83]
B Hardly any approaches optimize over multiple layers. @



lterative Crossing Reduction

Observation. The number of crossings depends only on permutations of adjacent layers.

Idea.
B Permute one layer after the other. — — —

B Treat dummy vertices as “regular’ vertices.

Algorithm scheme.

L

(1) choose a random permutation of L one-sided crossing minimization
(2) iteratively consider pairs of adjacent layers (L;, L;11)

3) minimize crossings by permuting L; 1 while keeping L; fixed

(
(4) repeat steps (2)—(3) in the reverse order (starting from topmost layer Ly,)
(5) repeat steps (2)—(4) until no further improvement is achieved

(

6) repeat steps (1)—(5) with different starting permutations on L,

18- 11
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One-Sided Crossing Minimization

Problem.
B Input: — bipartite graph G = (L1 U Ly, F),
— permutation m; on Ly
® Output: permutation m of L, minimizing the number of edge crossings.
One-sided crossing minimization is NP-hard. |[Eades & Whitesides '94]

4 §] 3 T 5} ol 14 2 12 15 0 13 1 11
Algorithms. \‘,,é':b‘ f’///
21 23 29 28 26 25 27 20 22 17 30

B barycenter heuristic

r: Drawing Graphs]

median heuristic

15 14 3 2 1 11

. 4 § = T 5 12 9 1

B Greedy-Switch | ‘ P 7 7 7T
N\ Sy 7
. . e . 21 23 29 28 25 T y 17 a0

-
0

& Wagne

[Kaufmann

3
26 27 2 22
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Barycenter Heuristic [Sugiyama et al. '81]

B Intuition: There are few crossing if vertices are “close” to their neighbors.

B The barycenter of u € L, is the mean rank of u's neighbors on layer L:

1
bary(u) .= Z 771(@)° Worst case?
deg(u)
vEN (u) u_ v

To get m,, sort L, ascendingly according to bary(-). T o
Vertices with the same barycenter keep their old relative ranks.

_inear runtime (in the number of vertices and edges).

Relatively good results in practice.

-inds crossing-free solutions if they exist. €= Exercise!
Factor-O(+/|V(G)]) approximation.
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Median Heuristic [Eades & Wormald '94]

B {vg,...,vk} = N(u) with m1(v1) < m1(v2) < -+ < 71 (vk)
~]0 if N(u) =10,
- med(U) - {71‘1(?)(]6/21) otherwise.

B To get m,, sort Ly ascendingly according to med(-).

B For vertices with the same median, place vertices of odd degree to the left of vertices of
even degree (and keep the old relative ranks among the odd/even-degree vertices).

_inear runtime (in the number of vertices and edges). Worst case?
Uu v

Relatively good results in practice.
Finds crossing-free solutions if they exist. €= Exercise!

Factor-3 approximation. Proof in [GD Ch 11] Eok+1l k41 k

# crossings: 2k(k+ 1) + k° vs. (k+ 1)
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Greedy-Switch Heuristic [Eades & Kelly '86]

B [teratively swap pairs of neighboring vertices on L, as long as the number of crossings
decreases.

B Runtime: O(|L,|) per iteration; at most |L,| iterations = O(|L»|?) time.

B Suitable as post-processing for other heuristics.

Worst case?

Lo o\o\ 00 O 0 0 0 0 0 O
\\
=~
\\

Ly ob&oo O O O 00

\ J/
-~

k

# crossings: ~ k*/4 ~ 2k



Integer Linear Program (ILP)

23 -

[Jiinger & Mutzel, '97]

B Constant c¢;; := # crossings between edges incident to v; and v, if m(v;) < m2(v;)

B Variable x;; for each 1 < i < j < np :=|Ly|

. :{ 1 if ma(v;) < ma(vy), M

0O otherwise.

Cij — 3
B Number of crossings of a permutations m:
no—1 no no—1 np
CFOSS(T('Q) — ;J ;J (Cz'j — cji)xz-j —+ ;J ;J qu;
i=1 j=i+1 i=1 j=i+1

constant



Integer Linear Program (ILP)

B Objective (minimize the number of crossings):

n2—1 4%
minimize S: S: (Cz'j — Cji)ﬂﬁij
i=1 j=i+1
B Transitivity constraints:
0<xiyj +xjp —zir <1 forl <1 <9<k <ny

e, if z;; =1 and z;; = 1, then z;;, =1

Properties.
B branch-and-cut technique applicable for this ILP

m useful for graphs of small to medium size
B finds optimal solution

B solution in polynomial time is not guaranteed

24 - 10



lterations on Example
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lterations on Example
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lterations on Example
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lterations on Example
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Step 4

Vertex Positioning

Input — > Cycle Breaking » Layering ——

3

Edge
Minimization Positioning Drawing

| 5 Crossing 5 Vertex

26 -



Step 4: Vertex Positioning

Goals.

B paths of a single edge should be (close to) straight
B vertices on a layer evenly spaced

B perfer vertical edges

m Exact: Quadratic Program (QP)

B Heuristic: |terative approach

26 -
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Quadratic Program

B Let e = (v1,v;) be an edge of GG, and let p. = (vy, ..., V%)
be the corresponding path with dummy vertices vy, ..., vi_1.

B z-coordinate of v; according to the line segment v1v; A
(with equal spacing of the layers):

— i— 1
w(vr) = a(or) + +— )

B Define the deviation from the line

k—1

dev(p.) = Z (ZC(Uz) - 37(“72))2

1=2

m Objective function:  min)___ . dev(p.) B Width can be exponential.

B QP is time-expensive.

B Constraints for all vertices v, w in the same layer with w to the right of v:
z(w) —x(v) 2 p <*— min. horizontal distance



Iterative Heuristic

B Compute an initial layout

B Apply the following steps as long as improvements can be made:

1. vertex positioning
2. edge straightening
3. compactifying the layout (to reduce the width)

B Other algorithms, e.g., the one of Brandes and Kopf

— tries to align vertices vertically
— does horizontal compaction afterwards

— linear running time

28 -
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Example




Step 5: Drawing Edges

Input — > Cycle Breaking » Layering ——

3

Edge
Minimization Positioning Drawing

| 5 Crossing 5 Vertex
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Step 5: Drawing Edges

Possibility.
Substitute polylines by Bézier curves.

Remark.
Draw reversed edges downwards.

30 -
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Example










Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

NN

m Flexible framework to draw directed graphs.

m Highly relevant for real-world applications.
B Sequential optimization of various criteria.

® Includes NP-hard subproblems that can be solved
relatively well in practice.

—_— >

32 -
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| iterature

Detailed explanations of steps and proofs in
m [GD Ch. 11] and [DG Ch. 5]
based on

B [Sugiyama, Tagawa, Toda '81]
Methods for visual understanding of hierarchical system structures

and refined with results from
B [Berger, Shor '90] Approximation algorithms for the maximum acyclic subgraph problem

Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
(Garey, Johnson '83] Crossing number is NP-complete

Eades, Kelly '86] Heuristics for reducing crossings in 2-layered networks.

Eades, Whiteside '94] Drawing graphs in two layers

[Eades, Wormland '94] Edge crossings in drawings of bipartite graphs

Jiinger, Mutzel '97]
2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms
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