Visualization of Graphs

Lecture 7:
Contact Representations of Planar Graphs:
Triangle Contacts and Rectangular Duals

Summer semester 2024

Intersection Representation of Graphs

In an intersection representation of a graph,

- each vertex is represented by a set
- such that two sets intersect \Leftrightarrow the corresponding vertices are adjacent.

For a collection \mathcal{S} of sets, the intersection graph $G(\mathcal{S})$ of \mathcal{S}
has vertex set \mathcal{S} and edge set
 $\left\{\left\{S, S^{\prime}\right\}: S, S^{\prime} \in \mathcal{S}, S \neq S^{\prime}\right.$, and $\left.S \cap S^{\prime} \neq \emptyset\right\}$.

Contact Representation of Graphs

Let G be a graph.

Let \mathcal{S} be a family of geometric objects (e.g., disks). Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an \mathcal{S}-contact representation of $G, S(u)$ and $S(v)$ touch iff $u v \in E$

G is planar $\xrightarrow{[\text { Koebe 1936] }}$ disks
\rightarrow polygons
A contact representation is an intersection representation with interior-disjoint sets.

Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?
■ No, not even for connected object types in the plane.
Some object types imply restrictions to special classes of planar graphs:

bipartite planar graphs

max. triangle-free planar graphs

General Approach

How to compute a contact representation of a given graph G ?

- Consider only inner triangulations (or maximal bipartite graphs, etc.)
- Triangulate by adding vertices, not by adding edges

■ Describe contact representation combinatorially.
■ Which objects touch each other in which way?
■ Compute combinatorial description.

- Show that combinatorial description can be used to construct drawing.

This Lecture

Representation with right-triangles and corner contact:
■ Use Schnyder realizer to describe contacts between triangles.
■ Use canonical order to compute drawing.

Representation with dissection of a rectangle, called rectangular dual:
■ Find a description similar to a Schnyder realizer for rectangles.
■ Construct drawing via st-digraphs, duals, and topological sorting.

Triangle Corner Contact Representation

Main Idea.

Use canonical order and Schnyder realizer to find coordinates for triangles.

Detailed Idea.

■ Place base of triangle at height equal to position in canonical order.

- Triangle tip is precisely at base of triangle corresponding to cover neighbor.

■ Outgoing edges in Schnyder forest indicate corner contacts.

Triangle Contact Representation Example

Triangle Contact Representation Example

T-shape Contact Representation

T-shape Contact Representation

T-shape Contact Representation

Cartograms

Rectangular Dual

Properly Triangulated Planar Graph G

田RD

[Koźmiński, Kinnen '85]
Theorem.
A graph G has a rectangular dual if and only if G is a PTP graph.
A rectangular dual of a graph G is a contact representation with axis-aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle

No separating triangle!

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling

Properly Triangulated Planar Graph G

Regular Edge Labeling

Properties:

Properly Triangulated
Planar Graph G

Regular Edge Labeling REL

Rectangular Dual \mathcal{R}

[Kant, He '94]:

$$
\xrightarrow{O(n)}
$$

PTP

REL

RD

inner vertex

for four outer vertices

Refined Canonical Order

Theorem.

Let G be a PTP graph that is embedded in its unique planar embedding with counter-clockwise outer face $\left\langle v_{W}, v_{S}, v_{E}, v_{N}\right\rangle$. There exists a labeling $v_{1}=v_{S}, v_{2}=v_{W}, v_{3}, \ldots, v_{n}=v_{N}$ of the vertices of G such that for every $4 \leq k \leq n$:

- The subgraph G_{k-1} induced by v_{1}, \ldots, v_{k-1} is biconnected and the boundary C_{k-1} of G_{k-1} contains the edge (v_{S}, v_{W}).
$\square v_{k}$ is in the outer face of G_{k-1}, and its neighbors in G_{k-1} form an (at least 2-element) subinterval of the path $C_{k-1} \backslash\left(v_{S}, v_{W}\right)$.

- If $k \leq n-2$, then v_{k} has at least two neighbors in $G \backslash G_{k}$.

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order Example

Refined Canonical Order \rightarrow REL

We construct a REL as follows:

- For $i<j$, orient $\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j};
- If v_{k} has incoming edges from $v_{b_{1}}, \ldots, v_{b_{l}}$, we say that $v_{b_{1}}$ is the left point of v_{k} and $v_{b_{l}}$ is the right point of v_{k}.
■ Base edge of v_{k} is $\left(v_{b_{a}}, v_{k}\right)$, where $b_{a} \in\left\{b_{1}, \ldots, b_{l}\right\}$ is minimal.
■ If $v_{t_{1}}, \ldots, v_{t_{o}}$ are higher numbered neighbors of v_{k}, we call $\left(v_{k}, v_{t_{1}}\right)$ left edge and $\left(v_{k}, v_{t_{o}}\right)$ right edge of v_{k}.

Lemma 1.

A left edge or right edge cannot be a base edge.
Proof. Suppose that the left edge $\left(v_{k}, v_{t_{1}}\right)$ is the base edge of $v_{t_{1}}$. Since G is triangulated, $\left(v_{b_{1}}, v_{t_{1}}\right) \in E(G)$.
Contradiction since $k>b_{1}$.

Refined Canonical Order \rightarrow REL

Lemma 2.

Every edge is either a left edge, a right edge or a base edge.

Proof.

■ Exclusive "or" follows from Lemma 1.
■ Let $\left(v_{b_{a}}, v_{k}\right)$ be the base edge of v_{k}.

- $v_{b_{a}}$ is the right point of $v_{b_{a-1}}$.
- $v_{b_{i}}$ has at least two higher-numbered neighbors.

■ One of them is v_{k}; the other one is $v_{b_{i-1}}$ or $v_{b_{i+1}}$.
\square For $1 \leq i<a-1$, it is $v_{b_{i-1}}$. Thus, $v_{b_{i}}$ is the right point of $v_{b_{i-1}}$.

- Analogously, $v_{b_{i}}$ is the left point of $v_{b_{i+1}}$ for $i \geq a$.
\square Edges $\left(v_{b_{i}}, v_{k}\right), 1 \leq i<a-1$, are right edges.
- Similarly, $\left(v_{b_{i}}, v_{k}\right)$, for $a+1 \leq i \leq l$, are left edges.

Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge $\left(v_{b_{i}}, v_{k}\right)$ red if $i=1$ and blue if $i=l$ and otherwise arbitrarily.
Let T_{r} be the red edges and T_{b} the blue edges.

Lemma 3.

$\left\{T_{r}, T_{b}\right\}$ is a regular edge labeling.
 1 and $\begin{aligned} & \text { right } \\ & \text { edges } \\ & \text { edges. } \\ & \text { base } \\ & \text { edge }\end{aligned}$ 1 and $\begin{aligned} & \text { right } \\ & \text { edges } \\ & \text { edges. } \\ & \text { base } \\ & \text { edge }\end{aligned}$ 1 and $\begin{aligned} & \text { right } \\ & \text { edges } \\ & \text { edges. } \\ & \text { base } \\ & \text { edge }\end{aligned}$

■ $t_{1}<t_{2}<\ldots<t_{d}$ and $t_{d}>t_{d+1}>\ldots>t_{o}$
$\square\left(v_{k}, v_{t_{i}}\right), 2 \leq i \leq d-1$ are blue
$\square\left(v_{k}, v_{t_{i}}\right), d+1 \leq i \leq o-1$ are red
$\square\left(v_{k}, v_{t_{d}}\right)$ is either red or blue \Rightarrow Circular order of outgoing edges at v_{k} correct.

From REL to st-Digraphs to Coordinates

From REL to st-Digraphs to Coordinates

From REL to st-Digraphs to Coordinates

From REL to st-Digraphs to Coordinates

From REL to st-Digraphs to Coordinates

From REL to st-Digraphs to Coordinates

From REL to st-Digraphs to Coordinates

Rectangular Dual Algorithm

For a PTP graph G :

■ Find a $\operatorname{REL}\left\{T_{r}, T_{b}\right\}$ of G.
■ Construct a SN network $G_{\text {ver }}$ of G (consists of T_{b} plus outer edges).
■ Construct the dual $G_{\text {ver }}^{\star}$ of $G_{\text {ver }}$ and compute a topological ordering $f_{\text {ver }}$ of $G_{\text {ver }}^{\star}$.
■ For each vertex v of G, let g and h be the face on the left and face on the right of v.
Set $x_{1}(v)=f_{\text {ver }}(g)$ and $x_{2}(v)=f_{\text {ver }}(h)$.
\square Define $x_{1}\left(v_{N}\right)=0, x_{1}\left(v_{S}\right)=1$ and $x_{2}\left(v_{N}\right)=\max f_{\text {ver }}-1, x_{2}\left(v_{S}\right)=\max f_{\text {ver }}$.

- Analogously compute y_{1} and y_{2} with $G_{\text {hor }}$.

■ For each vertex v of G, let $R(v)=\left[x_{1}(v), x_{2}(v)\right] \times\left[y_{1}(v), y_{2}(v)\right]$.

Reading off Coordinates to Get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=0, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=1, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Reading off Coordinates to Get Rectangular Dual

$$
\begin{aligned}
& x_{1}\left(v_{N}\right)=0, x_{2}\left(v_{N}\right)=15 \\
& x_{1}\left(v_{S}\right)=1, x_{2}\left(v_{S}\right)=16 \\
& x_{1}\left(v_{W}\right)=0, x_{2}\left(v_{W}\right)=1 \\
& x_{1}\left(v_{E}\right)=15, x_{2}\left(v_{E}\right)=16 \\
& x_{1}(a)=1, x_{2}(a)=3 \\
& x_{1}(b)=3, x_{2}(b)=5 \\
& x_{1}(c)=5, x_{2}(c)=14 \\
& x_{1}(d)=14, x_{2}(d)=15 \\
& x_{1}(e)=13, x_{2}(e)=15 \\
& \cdots \\
& y_{1}\left(v_{W}\right)=0, y_{2}\left(v_{W}\right)=9 \\
& y_{1}\left(v_{E}\right)=1, y_{2}\left(v_{E}\right)=10 \\
& y_{1}\left(v_{N}\right)=9, y_{2}\left(v_{N}\right)=10 \\
& y_{1}\left(v_{S}\right)=0, y_{2}\left(v_{S}\right)=1 \\
& y_{1}(a)=1, y_{2}(a)=2 \\
& y_{1}(b)=1, y_{2}(b)=2
\end{aligned}
$$

Correctness of Algorithm (Sketch)

■ If edge (u, v) exists, then $x_{2}(u)=x_{1}(v)$

$$
x_{2}(u)=f_{\mathrm{ver}}(g)=x_{1}(v)
$$

■ ... and the vertical segments of their rectangles overlap.

$$
\begin{aligned}
y_{1}(v) & =f_{\mathrm{hor}}(a) \leq y_{1}(u)=f_{\mathrm{hor}}(b) \\
<y_{2}(v) & =f_{\mathrm{hor}}(c) \leq y_{2}(u)=f_{\mathrm{hor}}(d)
\end{aligned}
$$

- If the path from u to v in red is at least two edges long, then $x_{2}(u)<x_{1}(v)$.
- No two boxes overlap.

■ For details, see [He '93].

Rectangular Dual Result

Theorem.
 Every PTP graph G has a rectangular dual.
 A rectangular dual can be computed in linear time.

Proof.

■ Compute a planar embedding of G.
■ Compute a refined canonical ordering of G.

- Traverse the graph and color the edges. \rightarrow REL
- Construct $G_{\text {ver }}$ and $G_{\text {hor }}$.

■ Construct their duals $G_{\text {ver }}^{\star}$ and $G_{\text {hor }}^{\star}$.

- Compute topological orderings of G_{ver}^{\star} and $G_{\text {hor }}^{\star}$.
- Assign coordinates to the rectangles representing vertices.

Discussion

■ A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.

- A rectangular layout is area-universal if and only if it is one-sided.
[Eppstein et al., SIAM J. Comp. 2012]
i.e., every segment belongs to exactly one rectangle
- Area-universal rectlinear representation: possible for all planar graphs.

■ [Alam et al. 2013]: 8 sides (matches the lower bound)

Literature

Construction of triangle contact representations based on
■ [de Fraysseix, Ossona de Mendez, Rosenstiehl '94] On Triangle Contact Graphs
Construction of rectangular dual based on
■ [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs
■ [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs and originally from
■ [Koźmiński, Kinnen '85] Rectangular Duals of Planar Graphs

